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ABSTRACT 
Current models of Internet Computing are highly asymmetric – a 
host protects itself from malicious mobile Java programs, but 
there is no way to get assurances about the behavior of a program 
running remotely. The asymmetry stems from a behavior-based 
security model: hosts ensure conformance to a given security 
policy by restricting the actions of programs. In contrast, security 
models that are based on cryptography (including code signing) 
are inherently symmetric by design but do not match the open 
architecture of the Internet and are unsuitable for reasoning about 
program behavior. We propose a new paradigm that combines the 
openness of the former with the symmetry of the latter and 
thereby enables completely new applications in a globally 
connected world. 

 

1. INTRODUCTION 
Research in Cyber-Security has been approached from two 
opposite sides. The first thread concerns itself with entities and 
their integrity and authentication. It involves certifying that 
various parties (persons, machines, programs) are who they claim, 
and then securing communication among them and protecting 
their information. Techniques developed for these purposes are 
encryption, digital signatures, cryptographic protocols, and 
recently, biometrics.  
A second, complementary thread of research has focused on 
behavior and is concerned with ensuring that the entities in a 
system behave within the limits of a well-defined policy. This 
thread has resulted in static analysis techniques (which broadly 
includes methods as diverse as proof-carrying code [2] and meta-
compilation [3]) and dynamic enforcement techniques such as 
inline reference monitors [4] and system-call interposition.  
Security, however, is a system-wide concern, and does not cleave 
so neatly into these two domains.  
It is instructive to note that many security vulnerabilities are 
caused when underlying design assumptions in a system stress 
one mode  of security, while ignoring the other. Malicious code in 
email attachments, for example, completely gets around the 
authentication problem (by tricking gullible users) and exploits 
the lack of fine-grained resource usage policy enforcement in the 

operating system to run unchecked with broad privileges. Thus, 
simply entity-based protection is inadequate against malicious-
code attacks. Traditional solutions such as firewalls cannot stop 
incoming executable code, nor prevent its execution on a 
compromised host. 
The present inadequacies in behavior-based security are directly 
visible in vulnerabilities in common Internet infrastructure 
software. CERT issued twenty-eight advisories in 2003 [1]. The 
underlying cause for twenty-three of those advisories was 
incorrect memory management. Of these twenty-three, twenty-
one were buffer overflow vulnerabilities, and the remaining two 
were buffer mismanagement vulnerabilities such as freeing a 
pointer twice. This clearly shows that the overwhelming majority 
of attacks exploit programming errors and fundamental flaws in 
the underlying memory model of the language being used, which 
is most cases is C. Authentication and integrity, secured by strong 
cryptographic methods, are not the weak link in security, and are 
hardly ever even targeted. 
Intuitively, “authentication” of an entity should have a broader 
meaning than it does currently. It should encompass not just 
cryptographically verifying its origin, but also include verifying 
or proving that its behavior conforms to a required security 
policy. For example, when entities are Java bytecode programs, 
we should be able to send an object or program to a server and 
ensure that all the abstractions of the program are respected. The 
remote server should not, for instance, be able to read private 
variables, even though it is hosting the object.  
We are currently investigating novel techniques that link entity-
based and behavior-based security at a finer granularity than 
existing approaches, namely at the  object  level of a 
programming language. This is also the natural level at which to 
express policies. Combining fine-grained object-level 
authentication with expressive policies will allow us to move 
away from the current client-server network computing model, 
which assumes a trusted server and untrusted (even malicious) 
clients. Many useful applications do not follow this model:  

• How can a distributed computation grid be hardened against 
rogue servers returning wrong partial results?  

• When sending a negotiating e-procurement agent program to 
a supplier to negotiate with, how can the supplier be 
prevented from performing some analysis or replay attacks to 
extract the highest price from the agent?  

• When buying services from an Application Service Provider, 
how can one ensure that one actually got the quality of service 
paid for?  
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• When implementing a database as a service, storing data in 
encrypted form on servers of questionable integrity, how can 
stored database trigger functions be implemented?  

Answering these questions will have a profound impact on the 
applicability of grid computing. It is exactly this issue of fine-
grained, two-way trust that has so far hampered the adoption of 
distributed Internet architectures for security-critical applications. 
Solving the underlying security and trust issues will allow 
networking together large grids of computers of different levels of 
trustworthiness running diverse applications without 
compromising their security. 
The need for addressing these questions is highlighted by the 
recent trend towards Trusted Computing. Trusted Computing is 
an attempt to embed a hardware-based secure sub-system into 
commodity platforms. Combined with software that uses it, it 
forms the root of trust for an array of security functionality.  
While platforms incorporating Trusted Computing components 
will start appearing in the market in the next few years, there is a 
marked lack of systematic knowledge that would enable us to use 
such systems to their fullest potential.  At present, purely 
cryptographic methods are used in Trusted Computing, and the 
stress is on identifying and authenticating entities. The question of 
how to handle behavior-based security is not addressed.  
Before Trusted Computing can reach its full potential, questions 
such as the following need to be addressed: 

• How do programs running on trusted platforms authenticate 
each other in a manner that ensures that each party satisfies 
some security criteria, while leaving room for different 
implementations? 

• The current client-server network computing model assumes a 
trusted server, and untrusted or even malicious clients. Thus, 
even though a significant fraction of work is done at the 
clients, all the trust resides at the server.  How can we design 
new network protocols, or adapt existing ones, to work in an 
environment that allows a more flexible partitioning of trust? 

• Moving away from the model of having a fully trusted server, 
and a fully untrusted client, how do we design models and 
applications that use them, and that can broker trust in more 
flexible and dynamic ways than is possible today? 

Answering these questions is a prerequisite to tackling the 
problem scenarios highlighted at the beginning of this paper. 
These questions expose some of the more practical, real-world 
aspects of the larger challenge – to meaningfully unify entity-
based and behavior-based security. 
The rest of this paper is organized as follows: in Section 2 we 
give a brief overview of Trusted Computing, explain some of its 
shortcomings, and explain our approach to tackling them – this 
forms the core of this paper; Section 3 discusses some of the 
consequences of our proposed solution; Section 4 presents the 
status of our work, and explores avenues for future work; Section 
5 briefly surveys related work; and Section 6 summarizes and 
concludes. 

2. TRUSTED COMPUTING 
In this section we give a brief overview of Trusted Computing, 
followed by our efforts to mitigate some of its shortcomings using 
language-based techniques. 

One way to get security assurances is to use closed systems. They 
enforce compliance with a certain security policy by being tightly 
controlled. They are usually manufactured by a single vendor to 
rigid specifications. Designers have complete control over the 
whole system, from hardware to software, and build it specifically 
to conform to a given security policy. When one closed system 
communicates with another, it knows within very tight bounds the 
expected behavior of the remote party. Common examples of 
closed systems are automated teller machines and proprietary 
game consoles  

Open systems, on the other hand, have no central arbiter. 
Commodity personal computers and handhelds are examples of 
open systems. An open system can be easily changed to behave 
maliciously towards other systems communicating with it. Two 
communicating open systems cannot assume anything about each 
others' behavior, and must be conservative in their assumptions. 

Trusted Computing [5] is an effort to bring some of the properties 
of closed, proprietary systems to open, commodity systems. 
Trusted computing introduces mechanisms and components in 
both hardware and software that check and enforce the integrity 
of a system, and allow it to authenticate itself to remote systems.  

The root of trust is a tamper-resistant hardware device with 
approximately the same functionality as a cryptographic token. It 
has a random number generator, an RSA engine for encryption 
and signing, and some non-volatile storage. Its purpose is to check 
the system's integrity. A secure booting procedure makes sure that 
the operating system has not been tampered with. Using a chain 
of reasoning that starts from a trusted hardware module, we can 
arrive at a conclusion about the state of a system after boot-up. 
Strong isolation between the system and applications, as well as 
between applications themselves, prevents their integrity from 
being compromised. And a process called remote attestation is 
used to authenticate software. 

Remote attestation, one of the core features of a trusted 
computing infrastructure, is the process by which software 
authenticates itself to remote parties. When asked to authenticate 
itself, an application asks the operating system for an 
endorsement. The operating system signs its integrity credentials, 
which is just a hash of the executable of the application. The 
entire certificate chain, starting from the trusted module all the 
way up to the application, is sent to the remote party. The remote 
party verifies each certificate of this chain, and also checks that 
the corresponding hashes are of software it approves. The 
attestation process must result in the client and server sharing a 
secret, or else the session can be easily hijacked (e.g. by 
performing attestation using one program, and further 
communicating using another).  

2.1 The problems of remote attestation 
This standard method of performing remote attestation suffers 
from several critical drawbacks. Briefly, they are: 

• It says nothing about program behavior 

• It is static, inflexible and inexpressive 

• Upgrades and patches to programs are hard to deal with 

• It is fundamentally incompatible with a  widely varying, 
heterogeneous computing environment 

• Revocation is a problem 
We discuss each of these in more detail below. 



The most critical shortcoming of remote attestation is that it is not 
based on program behavior. Even though what is fundamentally 
sought is some assurance of program behavior with respect to 
some security policy, remote attestation certifies something 
completely different. It simply certifies what exact executable is 
running. Any assurances about the behavior of the program are 
taken on trust. It is possible for an attested program to have bugs, 
or otherwise behave maliciously. 
Remote attestation defined in this way is completely static and 
inflexible. It can convey no dynamic information about the 
program – such as its runtime state, or the properties of the input 
it is acting upon. It is a one-time operation done at the beginning 
of a network protocol. 
Another problem is that upgrades and patches are hard to deal 
with. Linear upgrades from one version to the next can be 
accommodated by simply updating the list of “approved” 
software that a verifier uses. In closed and tightly controlled 
systems such as ATMs, this is tractable. The situation with widely 
available commodity software is completely different. As is 
increasingly common today, upgrades and patches are released 
very frequently. Also, software is patched more often than it is 
upgraded. There are usually multiple patches for multiple bugs 
and insecurities for a given program. Any subset of these patches 
may be applied in any order. This results in an exponential 
blowup in the space of possible binaries for a program. In such a 
scenario, remote attestation faces problems at both ends of the 
network. Servers have to manage the growing intractability of 
maintaining a very large list of “approved software”, which is 
likely to always be behind the current state. Clients, on the other 
hand, may have to hold off on applying patches or on upgrading, 
simply to be able to work with remote attestation framework. 
Today's computing ecosystem is extremely varied and 
accommodates a spectrum of heterogeneous systems with widely 
varying capabilities. These systems range from high-end 
supercomputers, to consumer devices such personal computers, 
handhelds, cell phones and watches, and even ubiquitously 
embedded microprocessors. In such a scenario, a high premium is 
placed on portability and interoperability. This is one reason why 
cross-platform portable solutions such as Java are so popular. 
Remote attestation, however, with its stress on certifying 
particular platform-specific binaries, is fundamentally 
incompatible with this reality. Just as with managing upgraded 
and patched versions of software, certifying programs that run on 
a variety of platforms and that must inter-operate with each other, 
quickly becomes intractable.  
Remote attestation inherits a problem from public-key 
cryptography – revocation. Once a certification authority issues a 
certificate, it is very hard to revoke. One method is to have 
publicly available certificate revocation lists (CRLs) which are 
looked up at regular intervals. Thus, there may be some time lapse 
between a certificate being revoked, and access being denied to it. 
Checking with some revocation infrastructure (such as a CRL) at 
every attestation would be very inefficient. 

2.2 Semantic Remote Attestation 
The shortcomings of traditional ways of remote attestation can be 
traced back to one root cause – what is desired is attestation of the 
behavior of software running on a remote machine, but what 
actually gets attested is the fact that a particular binary is being 
run.  

We are working on a technique called semantic remote attestation 
[6] that attempts to alleviate these shortcomings of standard 
remote attestation. The core idea behind our technique is to use a 
language-based virtual machine (a trusted virtual machine, or 
TrustedVM) that executes a form of platform-independent code. 
Software up to and including this virtual machine is trusted. 
However, the virtual machine can certify to remote parties various 
properties of code running under it by explicitly deriving or 
enforcing them. This can be done in many ways, such as 
observing the execution of programs running in a VM, or 
analyzing the code before execution. This is particularly easy to 
do with high-level platform-independent code that has a lot of 
information about the structure and properties of code.  

Some examples of properties that a trusted virtual machine can 
attest are:  

• Properties of classes: the remote party may require class A to 
subclass a well-known class B, or some interface C. This may 
be because extending B or C constraints the behavior of A in 
some way. For example, C may be a restricted interface for 
input-output operations that disallows arbitrary network 
connections.  

• Attesting dynamic properties: the program being attested 
runs under complete control of a TrustedVM. Thus, a 
TrustedVM can attest to dynamic properties. This includes the 
runtime state of the program and properties of the input of the 
program.  

• Attesting arbitrary properties: A TrustedVM has the ability 
to run arbitrary analysis code (within the limits set by the 
security policy of the local host) on the program being 
attested on behalf of the remote party. Thus the remote party 
can test for a wide variety of properties by sending across 
code that does the appropriate analysis.  

• Attesting system properties: a remote party can send across 
code that tests certain relevant system and virtual machine 
properties, and the TrustedVM can attest its results. For 
example, before running a distributed computing program 
(such as SETI@Home, or Folding@Home), the server may 
want to test the floating point behavior of the system and 
virtual machine by having the TrustedVM run a test suite of 
floating point programs 

• Information flow properties: when handling sensitive data 
on behalf of a remote party, the proper containment of 
information is important. Using a TrustedVM that supports 
fine-grained mandatory access control, a remote party can 
specify constraints on the propagation of its data.  

 

Attestation thus defined is a much more fine-grained and 
semantically richer operation than signing the hash of an 
executable image. What is now attested is not the presence of a 
particular binary executable, but relevant properties of a program.  

This has the effect of explicitly separating two concerns that were 
earlier merged into one – identity and behavior. Claims about 
code behavior are now made by the trusted virtual machine 
explicitly checking or deriving them. Cryptography now plays the 
part of binding this claim about code behavior to an entity which 
is qualified to make such claims – a trusted virtual machine.  



A direct consequence of this is that now a variety of different 
implementations of the same functionality are able to function 
within our remote attestation framework, as long as they satisfy 
the properties required of them.  

This technique leverages the trend of more and more application 
code being targeted at high-level language runtimes and virtual 
machines that execute some form of safe, platform-independent 
bytecode. The most prevalent examples of this are the Java virtual 
machine [8], and the more recent .NET common language 
runtime [9]. Such code platforms offer a number of advantages 
over native code. The virtual machine performs a number of static 
and dynamic checks to ensure a basic level of code safety – type-
safety, and control flow safety. Type safety ensures that operators 
and functions are applied only to operands and arguments of the 
correct types. A special case of type safety is memory safety, 
which prevents reading and writing to illegal memory locations – 
for example, beyond the bounds of an array – and thereby also 
provides separation between different processes without the need 
for hardware-based memory management. Control flow safety 
prevents arbitrary jumps in code (say, into the middle of an 
instruction, or to an unauthorized routine). These basic properties 
of safe code are enforced by a combination of static (e.g. 
bytecode verification) and dynamic (e.g. array bounds checks) 
techniques. Thus, safe code does away with a major source of 
bugs and vulnerabilities in current systems that stem from unsafe 
memory operations in C – such as buffer overruns and format 
string attacks.  

3. DISCUSSION 
The fundamental motivation for our work is that Trusted 
Computing is a solution to the trust problem – it is not a solution 
to the larger problem of end-to-end security and program-
behavior. 
The classes of attacks that Trusted Computing hardware and 
software prevents are those that rely on spoofing the authenticity 
and integrity of system software. For example, the Trusted 
Platform Module's boot-time integrity checks will disallow 
booting into a corrupted copy of the operating system. However, 
this still does not rule out the large majority of bugs caused by 
insecure memory handling in C.  
As a thought experiment, consider the following: what if today's 
system software was simply moved over to run on a Trusted PC? 
We would be able to get guarantees about the integrity of the 
system, and its authenticity when it communicated with other 
systems, but no assurances about its (lack of) vulnerabilities, or its 
behavior towards other systems. 
Using semantic remote attestation deeply changes the way trust is 
handled in networked applications. The current model is one of a 
completely trusted central server, with numerous untrusted 
clients. Also, these trust relationships are usually static and cannot 
be changed at runtime, across different executions of a program, 
or over the lifetime of a system. Semantic remote attestation can 
change this lop-sided balance of trust. Implementing applications 
within our framework achieves two benefits:  

• Trust relationships between peers, or between clients and 
servers, are made explicit, and then checked or enforced by 
the TrustedVM. Typically, they are implicit and taken on 
trust.  

• Making the trust relationships explicit results in having some 
knowledge of degree of trustworthiness of clients and peers 
(for example, knowing which properties were satisfied, and 

which were not). This allows the applications to make 
informed decisions about the “goodness” of a result, and 
dynamically adjust its trust relationships.  

The fact that trusted computing, and its core technique, standard 
remote attestation, can lock consumers into a particular program 
or platform has been a very widely expressed fear [10]. A key 
advantage of our approach is that reasoning about the behavior of 
a program is not tied to a particular binary. Semantic remote 
attestation checks for program properties, and works with 
different implementations of the same program as long as they 
satisfy the security criteria required of them. 

Semantic remote attestation also completely turns on its head the 
established goal of language-based security – to protect the local 
host from downloaded malicious code – and uses it to certify 
properties of code running locally to remote parties.  

4. STATUS AND FUTURE WORK 
To gain experience with semantic remote attestation, we have 
implemented a prototype TrustedVM on top of a Java virtual 
machine. Two techniques that a trusted virtual machine uses to 
certify properties of code running on it are: installation of a 
runtime monitor; and running various test suites. We have 
implemented two example applications on our prototype that take 
advantage of these techniques. The first application is a simplified 
peer-to-peer networking protocol, and the second is a distributed 
computing client-server application. The P2P client uses a 
runtime monitor to enforce some high-level constraints, such as 
checking that its replies to P2P search queries are indeed true. The 
distributed computing client uses test suites to determine a client's 
capabilities. These are then used to compute error margins of 
results that client nodes return. A full discussion of their 
implementation is beyond the scope of this paper – see [6] for 
details.  
Another technique that can be used by a TrustedVM is using 
mandatory access control on objects in a trusted virtual machine 
[7]. The goal is to certify to remote parties communicating with a 
TrustedVM that the information they provide is being handled 
according to a policy also specified by them. Consider a network 
exchange between some remote party and a TrustedVM that 
involves the exchange of some sensitive data. In such a scenario, 
the remote party would like to have some means of constraining 
how the information is handled by the TrustedVM. Taking 
advantage of MAC support in a VM, the remote party could 
specify an information flow policy for the TrustedVM to enforce. 
There are also many avenues for future work that we would like 
to explore. 
A TrustedVM is capable of attesting the results of some static 
analysis. However, there are not many static analyses of code for 
properties of interest to a remote party. Most static analyses and 
runtime enforcement policies so far have been geared towards 
protecting a host from malicious mobile code. Thus, the emphasis 
has been on type-safety, information-flow, and resource control 
and other safety issues. The emphasis is different for remote 
attestation. Servers want to know if the application is obeying 
some high-level semantic rules. One candidate for an analysis that 
may be of interest to servers is information flow [11]. Such an 
analysis would convince the server that a client is not leaking the 
results of some confidential computation, or sensitive data. As 
mentioned above, we are currently working in this direction by 
adding object-level mandatory access controls in a Java virtual 
machine. 



The ability to communicate to a server what particular property of 
a program could not be certified can be very useful. Using 
TrustedVMs, this information can be communicated, and the 
server can get detailed information about what desired properties 
are not present in a client program. It can then make an informed 
decision about either decreasing its trust in this particular 
instantiation of a protocol, or stopping altogether. Thus, the server 
gains some dynamic feedback about the trustworthiness of its 
clients. We believe this property can be fruitfully exploited to 
“port” a variety of untrusted network protocols (TCP, HTTP etc.) 
to a trusted computing framework in a gradual manner, and yet 
have various implementations of them inter-operate. This is in 
stark contrast to the all-or-nothing model that standard “signed-
hash” remote attestation provides – attestation either passes or 
fails – there is no gradation. This would also provide a gentler 
upgrade path for applications as trusted hardware becomes 
increasingly available in the market.  
Trusted computing systems use trusted paths between input 
devices and applications or device drivers to prevent spoofing as 
well as eavesdropping. For example, a fully encrypted and 
authenticated channel is used between a password-prompt dialog 
and the application asking for it. We would like to implement 
corresponding functionality in a virtual machine. Currently, the 
dynamic nature of the Java virtual machine makes is easy to do 
things like modify the class hierarchy, or use reflection to 
interpose wrappers around method calls – both at runtime. For 
example, dynamic method wrappers (also known as dynamic 
proxies) are frequently used to add a layer of logging around 
method calls. Such techniques could also be used to eavesdrop on 
the transfer of confidential data between objects. Implementing a 
trusted path mechanism for object communication would be a step 
towards solving this problem.  
In our current prototype, security policies are simply programs. 
For example, runtime monitors or test suites are sent to a 
TrustedVM as code that it installs and runs. We would like to 
explore the design of succinct, yet expressive, policy specification 
languages that can be used for this purpose. 

5. RELATED WORK 
There have been a number of approaches to building trusted 
systems. While it is generally agreed that ultimately some trust 
must reside in a tamper-proof hardware device, different 
approaches vary the degree of trust placed in that hardware.  
At one extreme, systems such as XOM and Cerium [12] put all 
trust in hardware. The trusted computing base consists entirely of 
hardware and no software at all is trusted. Everything outside the 
main CPU is fully encrypted. The disadvantage of these 
approaches is that they require a complete overhaul of the 
architecture of current systems. 
On the other hand, the TCPA platform module is relatively 
lightweight. It has roughly the same architecture and complexity 
as a cryptographic token or smartcard. It has cryptographic engine 
to perform encryption and digital signing, a random number 
generator, and a small amount of non-volatile storage. The most 
compelling advantage of the TCPA architecture is that it does not 
require overhauling changes to the architecture of widely 
available commodity computers. The platform module is 
essentially just another component on the motherboard. 
The TCPA specification [5], in turn, is based on earlier work. The 
concept of secure booting was pioneered by Arbaugh et al [13]. 
Their Aegis system checked the integrity of system software in a 

sequence of incremental steps by using signed hashes. The Digital 
Distributed System Security Architecture [14] had many of the 
features of today's TCPA specification, including secure 
bootstrapping, and remote attestation of system software using 
signed hashes. 
Virtual machines have also been used for Trusted Computing, 
albeit at lower levels of abstraction. Garfinkel et. al. [15] have 
proposed the TerraVM [16] virtual machine monitor architecture 
to interface with underlying trusted hardware. Their architecture 
provides two VMM abstractions to software – an open box VMM, 
and a closed box VMM. The open box VMM simply provides a 
legacy, untrusted interface. This allows old operating systems and 
software to run unmodified on it. The closed box VMM, however, 
provides an interface to underlying trusted hardware that new 
software can use. A number of such VMMs can execute on bare 
hardware. They are strongly isolated from each other, and have 
their own encrypted storage. 
The goal of TerraVM is similar to Microsoft's proposed Palladium 
architecture. Palladium is said to have a high-assurance trusted 
microkernel running on hardware (called the nexus) that provides 
strong isolation between legacy untrusted applications and newer 
trusted applications, as well as among trusted applications. These 
two distinct execution environments are called the left-hand side 
and right-hand side, respectively. 
Our work is largely orthogonal to these efforts. While these focus 
on providing strong isolation, and abstractions and techniques for 
using strongly isolated execution environment. They do not tackle 
the problem of remote attestation, which has been our primary 
focus. They also work at a lower level of abstraction. Our 
semantic remote attestation framework could run atop all these 
architectures. 

6. CONCLUSION 
Current Trusted Computing initiatives do not present a new 
paradigm but merely a rehash of the age-old code-signing idea. 
Remote attestation, one of Trusted Computing's core techniques is 
static, inflexible, unable to reason about program behavior, and 
fundamentally incompatible with today's heterogeneous 
computing environments. 
Our alternative mechanism, semantic remote attestation, 
combines both cryptography as well as language-based techniques 
to constrain the behavior of programs, and attest this to remote 
parties. We use language-based security techniques to certify 
properties of code running locally to remote parties. This new 
paradigm allows flexible, dynamic and symmetric trust relations, 
and enables a range of new applications.  
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