
Symmetric Behavior-Based Trust:
A New Paradigm for Internet Computing

Vivek Haldar Michael Franz
University of California

Irvine, CA 92697
+1-949-824-7308

{vhaldar, franz}@uci.edu

ABSTRACT
Current models of Internet Computing are highly asymmetric – a
host protects itself from malicious mobile Java programs, but
there is no way to get assurances about the behavior of a program
running remotely. The asymmetry stems from a behavior-based
security model: hosts ensure conformance to a given security
policy by restricting the actions of programs. In contrast, security
models that are based on cryptography (including code signing)
are inherently symmetric by design but do not match the open
architecture of the Internet and are unsuitable for reasoning about
program behavior. We propose a new paradigm that combines the
openness of the former with the symmetry of the latter and
thereby enables completely new applications in a globally
connected world.

1. INTRODUCTION
Research in Cyber-Security has been approached from two
opposite sides. The first thread concerns itself with entities and
their integrity and authentication. It involves certifying that
various parties (persons, machines, programs) are who they claim,
and then securing communication among them and protecting
their information. Techniques developed for these purposes are
encryption, digital signatures, cryptographic protocols, and
recently, biometrics.
A second, complementary thread of research has focused on
behavior and is concerned with ensuring that the entities in a
system behave within the limits of a well-defined policy. This
thread has resulted in static analysis techniques (which broadly
includes methods as diverse as proof-carrying code [2] and meta-
compilation [3]) and dynamic enforcement techniques such as
inline reference monitors [4] and system-call interposition.
Security, however, is a system-wide concern, and does not cleave
so neatly into these two domains.
It is instructive to note that many security vulnerabilities are
caused when underlying design assumptions in a system stress
one mode of security, while ignoring the other. Malicious code in
email attachments, for example, completely gets around the
authentication problem (by tricking gullible users) and exploits
the lack of fine-grained resource usage policy enforcement in the

operating system to run unchecked with broad privileges. Thus,
simply entity-based protection is inadequate against malicious-
code attacks. Traditional solutions such as firewalls cannot stop
incoming executable code, nor prevent its execution on a
compromised host.
The present inadequacies in behavior-based security are directly
visible in vulnerabilities in common Internet infrastructure
software. CERT issued twenty-eight advisories in 2003 [1]. The
underlying cause for twenty-three of those advisories was
incorrect memory management. Of these twenty-three, twenty-
one were buffer overflow vulnerabilities, and the remaining two
were buffer mismanagement vulnerabilities such as freeing a
pointer twice. This clearly shows that the overwhelming majority
of attacks exploit programming errors and fundamental flaws in
the underlying memory model of the language being used, which
is most cases is C. Authentication and integrity, secured by strong
cryptographic methods, are not the weak link in security, and are
hardly ever even targeted.
Intuitively, “authentication” of an entity should have a broader
meaning than it does currently. It should encompass not just
cryptographically verifying its origin, but also include verifying
or proving that its behavior conforms to a required security
policy. For example, when entities are Java bytecode programs,
we should be able to send an object or program to a server and
ensure that all the abstractions of the program are respected. The
remote server should not, for instance, be able to read private
variables, even though it is hosting the object.
We are currently investigating novel techniques that link entity-
based and behavior-based security at a finer granularity than
existing approaches, namely at the object level of a
programming language. This is also the natural level at which to
express policies. Combining fine-grained object-level
authentication with expressive policies will allow us to move
away from the current client-server network computing model,
which assumes a trusted server and untrusted (even malicious)
clients. Many useful applications do not follow this model:

• How can a distributed computation grid be hardened against
rogue servers returning wrong partial results?

• When sending a negotiating e-procurement agent program to
a supplier to negotiate with, how can the supplier be
prevented from performing some analysis or replay attacks to
extract the highest price from the agent?

• When buying services from an Application Service Provider,
how can one ensure that one actually got the quality of service
paid for?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

• When implementing a database as a service, storing data in
encrypted form on servers of questionable integrity, how can
stored database trigger functions be implemented?

Answering these questions will have a profound impact on the
applicability of grid computing. It is exactly this issue of fine-
grained, two-way trust that has so far hampered the adoption of
distributed Internet architectures for security-critical applications.
Solving the underlying security and trust issues will allow
networking together large grids of computers of different levels of
trustworthiness running diverse applications without
compromising their security.
The need for addressing these questions is highlighted by the
recent trend towards Trusted Computing. Trusted Computing is
an attempt to embed a hardware-based secure sub-system into
commodity platforms. Combined with software that uses it, it
forms the root of trust for an array of security functionality.
While platforms incorporating Trusted Computing components
will start appearing in the market in the next few years, there is a
marked lack of systematic knowledge that would enable us to use
such systems to their fullest potential. At present, purely
cryptographic methods are used in Trusted Computing, and the
stress is on identifying and authenticating entities. The question of
how to handle behavior-based security is not addressed.
Before Trusted Computing can reach its full potential, questions
such as the following need to be addressed:

• How do programs running on trusted platforms authenticate
each other in a manner that ensures that each party satisfies
some security criteria, while leaving room for different
implementations?

• The current client-server network computing model assumes a
trusted server, and untrusted or even malicious clients. Thus,
even though a significant fraction of work is done at the
clients, all the trust resides at the server. How can we design
new network protocols, or adapt existing ones, to work in an
environment that allows a more flexible partitioning of trust?

• Moving away from the model of having a fully trusted server,
and a fully untrusted client, how do we design models and
applications that use them, and that can broker trust in more
flexible and dynamic ways than is possible today?

Answering these questions is a prerequisite to tackling the
problem scenarios highlighted at the beginning of this paper.
These questions expose some of the more practical, real-world
aspects of the larger challenge – to meaningfully unify entity-
based and behavior-based security.
The rest of this paper is organized as follows: in Section 2 we
give a brief overview of Trusted Computing, explain some of its
shortcomings, and explain our approach to tackling them – this
forms the core of this paper; Section 3 discusses some of the
consequences of our proposed solution; Section 4 presents the
status of our work, and explores avenues for future work; Section
5 briefly surveys related work; and Section 6 summarizes and
concludes.

2. TRUSTED COMPUTING
In this section we give a brief overview of Trusted Computing,
followed by our efforts to mitigate some of its shortcomings using
language-based techniques.

One way to get security assurances is to use closed systems. They
enforce compliance with a certain security policy by being tightly
controlled. They are usually manufactured by a single vendor to
rigid specifications. Designers have complete control over the
whole system, from hardware to software, and build it specifically
to conform to a given security policy. When one closed system
communicates with another, it knows within very tight bounds the
expected behavior of the remote party. Common examples of
closed systems are automated teller machines and proprietary
game consoles

Open systems, on the other hand, have no central arbiter.
Commodity personal computers and handhelds are examples of
open systems. An open system can be easily changed to behave
maliciously towards other systems communicating with it. Two
communicating open systems cannot assume anything about each
others' behavior, and must be conservative in their assumptions.

Trusted Computing [5] is an effort to bring some of the properties
of closed, proprietary systems to open, commodity systems.
Trusted computing introduces mechanisms and components in
both hardware and software that check and enforce the integrity
of a system, and allow it to authenticate itself to remote systems.

The root of trust is a tamper-resistant hardware device with
approximately the same functionality as a cryptographic token. It
has a random number generator, an RSA engine for encryption
and signing, and some non-volatile storage. Its purpose is to check
the system's integrity. A secure booting procedure makes sure that
the operating system has not been tampered with. Using a chain
of reasoning that starts from a trusted hardware module, we can
arrive at a conclusion about the state of a system after boot-up.
Strong isolation between the system and applications, as well as
between applications themselves, prevents their integrity from
being compromised. And a process called remote attestation is
used to authenticate software.

Remote attestation, one of the core features of a trusted
computing infrastructure, is the process by which software
authenticates itself to remote parties. When asked to authenticate
itself, an application asks the operating system for an
endorsement. The operating system signs its integrity credentials,
which is just a hash of the executable of the application. The
entire certificate chain, starting from the trusted module all the
way up to the application, is sent to the remote party. The remote
party verifies each certificate of this chain, and also checks that
the corresponding hashes are of software it approves. The
attestation process must result in the client and server sharing a
secret, or else the session can be easily hijacked (e.g. by
performing attestation using one program, and further
communicating using another).

2.1 The problems of remote attestation
This standard method of performing remote attestation suffers
from several critical drawbacks. Briefly, they are:

• It says nothing about program behavior

• It is static, inflexible and inexpressive

• Upgrades and patches to programs are hard to deal with

• It is fundamentally incompatible with a widely varying,
heterogeneous computing environment

• Revocation is a problem
We discuss each of these in more detail below.

The most critical shortcoming of remote attestation is that it is not
based on program behavior. Even though what is fundamentally
sought is some assurance of program behavior with respect to
some security policy, remote attestation certifies something
completely different. It simply certifies what exact executable is
running. Any assurances about the behavior of the program are
taken on trust. It is possible for an attested program to have bugs,
or otherwise behave maliciously.
Remote attestation defined in this way is completely static and
inflexible. It can convey no dynamic information about the
program – such as its runtime state, or the properties of the input
it is acting upon. It is a one-time operation done at the beginning
of a network protocol.
Another problem is that upgrades and patches are hard to deal
with. Linear upgrades from one version to the next can be
accommodated by simply updating the list of “approved”
software that a verifier uses. In closed and tightly controlled
systems such as ATMs, this is tractable. The situation with widely
available commodity software is completely different. As is
increasingly common today, upgrades and patches are released
very frequently. Also, software is patched more often than it is
upgraded. There are usually multiple patches for multiple bugs
and insecurities for a given program. Any subset of these patches
may be applied in any order. This results in an exponential
blowup in the space of possible binaries for a program. In such a
scenario, remote attestation faces problems at both ends of the
network. Servers have to manage the growing intractability of
maintaining a very large list of “approved software”, which is
likely to always be behind the current state. Clients, on the other
hand, may have to hold off on applying patches or on upgrading,
simply to be able to work with remote attestation framework.
Today's computing ecosystem is extremely varied and
accommodates a spectrum of heterogeneous systems with widely
varying capabilities. These systems range from high-end
supercomputers, to consumer devices such personal computers,
handhelds, cell phones and watches, and even ubiquitously
embedded microprocessors. In such a scenario, a high premium is
placed on portability and interoperability. This is one reason why
cross-platform portable solutions such as Java are so popular.
Remote attestation, however, with its stress on certifying
particular platform-specific binaries, is fundamentally
incompatible with this reality. Just as with managing upgraded
and patched versions of software, certifying programs that run on
a variety of platforms and that must inter-operate with each other,
quickly becomes intractable.
Remote attestation inherits a problem from public-key
cryptography – revocation. Once a certification authority issues a
certificate, it is very hard to revoke. One method is to have
publicly available certificate revocation lists (CRLs) which are
looked up at regular intervals. Thus, there may be some time lapse
between a certificate being revoked, and access being denied to it.
Checking with some revocation infrastructure (such as a CRL) at
every attestation would be very inefficient.

2.2 Semantic Remote Attestation
The shortcomings of traditional ways of remote attestation can be
traced back to one root cause – what is desired is attestation of the
behavior of software running on a remote machine, but what
actually gets attested is the fact that a particular binary is being
run.

We are working on a technique called semantic remote attestation
[6] that attempts to alleviate these shortcomings of standard
remote attestation. The core idea behind our technique is to use a
language-based virtual machine (a trusted virtual machine, or
TrustedVM) that executes a form of platform-independent code.
Software up to and including this virtual machine is trusted.
However, the virtual machine can certify to remote parties various
properties of code running under it by explicitly deriving or
enforcing them. This can be done in many ways, such as
observing the execution of programs running in a VM, or
analyzing the code before execution. This is particularly easy to
do with high-level platform-independent code that has a lot of
information about the structure and properties of code.

Some examples of properties that a trusted virtual machine can
attest are:

• Properties of classes: the remote party may require class A to
subclass a well-known class B, or some interface C. This may
be because extending B or C constraints the behavior of A in
some way. For example, C may be a restricted interface for
input-output operations that disallows arbitrary network
connections.

• Attesting dynamic properties: the program being attested
runs under complete control of a TrustedVM. Thus, a
TrustedVM can attest to dynamic properties. This includes the
runtime state of the program and properties of the input of the
program.

• Attesting arbitrary properties: A TrustedVM has the ability
to run arbitrary analysis code (within the limits set by the
security policy of the local host) on the program being
attested on behalf of the remote party. Thus the remote party
can test for a wide variety of properties by sending across
code that does the appropriate analysis.

• Attesting system properties: a remote party can send across
code that tests certain relevant system and virtual machine
properties, and the TrustedVM can attest its results. For
example, before running a distributed computing program
(such as SETI@Home, or Folding@Home), the server may
want to test the floating point behavior of the system and
virtual machine by having the TrustedVM run a test suite of
floating point programs

• Information flow properties: when handling sensitive data
on behalf of a remote party, the proper containment of
information is important. Using a TrustedVM that supports
fine-grained mandatory access control, a remote party can
specify constraints on the propagation of its data.

Attestation thus defined is a much more fine-grained and
semantically richer operation than signing the hash of an
executable image. What is now attested is not the presence of a
particular binary executable, but relevant properties of a program.

This has the effect of explicitly separating two concerns that were
earlier merged into one – identity and behavior. Claims about
code behavior are now made by the trusted virtual machine
explicitly checking or deriving them. Cryptography now plays the
part of binding this claim about code behavior to an entity which
is qualified to make such claims – a trusted virtual machine.

A direct consequence of this is that now a variety of different
implementations of the same functionality are able to function
within our remote attestation framework, as long as they satisfy
the properties required of them.

This technique leverages the trend of more and more application
code being targeted at high-level language runtimes and virtual
machines that execute some form of safe, platform-independent
bytecode. The most prevalent examples of this are the Java virtual
machine [8], and the more recent .NET common language
runtime [9]. Such code platforms offer a number of advantages
over native code. The virtual machine performs a number of static
and dynamic checks to ensure a basic level of code safety – type-
safety, and control flow safety. Type safety ensures that operators
and functions are applied only to operands and arguments of the
correct types. A special case of type safety is memory safety,
which prevents reading and writing to illegal memory locations –
for example, beyond the bounds of an array – and thereby also
provides separation between different processes without the need
for hardware-based memory management. Control flow safety
prevents arbitrary jumps in code (say, into the middle of an
instruction, or to an unauthorized routine). These basic properties
of safe code are enforced by a combination of static (e.g.
bytecode verification) and dynamic (e.g. array bounds checks)
techniques. Thus, safe code does away with a major source of
bugs and vulnerabilities in current systems that stem from unsafe
memory operations in C – such as buffer overruns and format
string attacks.

3. DISCUSSION
The fundamental motivation for our work is that Trusted
Computing is a solution to the trust problem – it is not a solution
to the larger problem of end-to-end security and program-
behavior.
The classes of attacks that Trusted Computing hardware and
software prevents are those that rely on spoofing the authenticity
and integrity of system software. For example, the Trusted
Platform Module's boot-time integrity checks will disallow
booting into a corrupted copy of the operating system. However,
this still does not rule out the large majority of bugs caused by
insecure memory handling in C.
As a thought experiment, consider the following: what if today's
system software was simply moved over to run on a Trusted PC?
We would be able to get guarantees about the integrity of the
system, and its authenticity when it communicated with other
systems, but no assurances about its (lack of) vulnerabilities, or its
behavior towards other systems.
Using semantic remote attestation deeply changes the way trust is
handled in networked applications. The current model is one of a
completely trusted central server, with numerous untrusted
clients. Also, these trust relationships are usually static and cannot
be changed at runtime, across different executions of a program,
or over the lifetime of a system. Semantic remote attestation can
change this lop-sided balance of trust. Implementing applications
within our framework achieves two benefits:

• Trust relationships between peers, or between clients and
servers, are made explicit, and then checked or enforced by
the TrustedVM. Typically, they are implicit and taken on
trust.

• Making the trust relationships explicit results in having some
knowledge of degree of trustworthiness of clients and peers
(for example, knowing which properties were satisfied, and

which were not). This allows the applications to make
informed decisions about the “goodness” of a result, and
dynamically adjust its trust relationships.

The fact that trusted computing, and its core technique, standard
remote attestation, can lock consumers into a particular program
or platform has been a very widely expressed fear [10]. A key
advantage of our approach is that reasoning about the behavior of
a program is not tied to a particular binary. Semantic remote
attestation checks for program properties, and works with
different implementations of the same program as long as they
satisfy the security criteria required of them.

Semantic remote attestation also completely turns on its head the
established goal of language-based security – to protect the local
host from downloaded malicious code – and uses it to certify
properties of code running locally to remote parties.

4. STATUS AND FUTURE WORK
To gain experience with semantic remote attestation, we have
implemented a prototype TrustedVM on top of a Java virtual
machine. Two techniques that a trusted virtual machine uses to
certify properties of code running on it are: installation of a
runtime monitor; and running various test suites. We have
implemented two example applications on our prototype that take
advantage of these techniques. The first application is a simplified
peer-to-peer networking protocol, and the second is a distributed
computing client-server application. The P2P client uses a
runtime monitor to enforce some high-level constraints, such as
checking that its replies to P2P search queries are indeed true. The
distributed computing client uses test suites to determine a client's
capabilities. These are then used to compute error margins of
results that client nodes return. A full discussion of their
implementation is beyond the scope of this paper – see [6] for
details.
Another technique that can be used by a TrustedVM is using
mandatory access control on objects in a trusted virtual machine
[7]. The goal is to certify to remote parties communicating with a
TrustedVM that the information they provide is being handled
according to a policy also specified by them. Consider a network
exchange between some remote party and a TrustedVM that
involves the exchange of some sensitive data. In such a scenario,
the remote party would like to have some means of constraining
how the information is handled by the TrustedVM. Taking
advantage of MAC support in a VM, the remote party could
specify an information flow policy for the TrustedVM to enforce.
There are also many avenues for future work that we would like
to explore.
A TrustedVM is capable of attesting the results of some static
analysis. However, there are not many static analyses of code for
properties of interest to a remote party. Most static analyses and
runtime enforcement policies so far have been geared towards
protecting a host from malicious mobile code. Thus, the emphasis
has been on type-safety, information-flow, and resource control
and other safety issues. The emphasis is different for remote
attestation. Servers want to know if the application is obeying
some high-level semantic rules. One candidate for an analysis that
may be of interest to servers is information flow [11]. Such an
analysis would convince the server that a client is not leaking the
results of some confidential computation, or sensitive data. As
mentioned above, we are currently working in this direction by
adding object-level mandatory access controls in a Java virtual
machine.

The ability to communicate to a server what particular property of
a program could not be certified can be very useful. Using
TrustedVMs, this information can be communicated, and the
server can get detailed information about what desired properties
are not present in a client program. It can then make an informed
decision about either decreasing its trust in this particular
instantiation of a protocol, or stopping altogether. Thus, the server
gains some dynamic feedback about the trustworthiness of its
clients. We believe this property can be fruitfully exploited to
“port” a variety of untrusted network protocols (TCP, HTTP etc.)
to a trusted computing framework in a gradual manner, and yet
have various implementations of them inter-operate. This is in
stark contrast to the all-or-nothing model that standard “signed-
hash” remote attestation provides – attestation either passes or
fails – there is no gradation. This would also provide a gentler
upgrade path for applications as trusted hardware becomes
increasingly available in the market.
Trusted computing systems use trusted paths between input
devices and applications or device drivers to prevent spoofing as
well as eavesdropping. For example, a fully encrypted and
authenticated channel is used between a password-prompt dialog
and the application asking for it. We would like to implement
corresponding functionality in a virtual machine. Currently, the
dynamic nature of the Java virtual machine makes is easy to do
things like modify the class hierarchy, or use reflection to
interpose wrappers around method calls – both at runtime. For
example, dynamic method wrappers (also known as dynamic
proxies) are frequently used to add a layer of logging around
method calls. Such techniques could also be used to eavesdrop on
the transfer of confidential data between objects. Implementing a
trusted path mechanism for object communication would be a step
towards solving this problem.
In our current prototype, security policies are simply programs.
For example, runtime monitors or test suites are sent to a
TrustedVM as code that it installs and runs. We would like to
explore the design of succinct, yet expressive, policy specification
languages that can be used for this purpose.

5. RELATED WORK
There have been a number of approaches to building trusted
systems. While it is generally agreed that ultimately some trust
must reside in a tamper-proof hardware device, different
approaches vary the degree of trust placed in that hardware.
At one extreme, systems such as XOM and Cerium [12] put all
trust in hardware. The trusted computing base consists entirely of
hardware and no software at all is trusted. Everything outside the
main CPU is fully encrypted. The disadvantage of these
approaches is that they require a complete overhaul of the
architecture of current systems.
On the other hand, the TCPA platform module is relatively
lightweight. It has roughly the same architecture and complexity
as a cryptographic token or smartcard. It has cryptographic engine
to perform encryption and digital signing, a random number
generator, and a small amount of non-volatile storage. The most
compelling advantage of the TCPA architecture is that it does not
require overhauling changes to the architecture of widely
available commodity computers. The platform module is
essentially just another component on the motherboard.
The TCPA specification [5], in turn, is based on earlier work. The
concept of secure booting was pioneered by Arbaugh et al [13].
Their Aegis system checked the integrity of system software in a

sequence of incremental steps by using signed hashes. The Digital
Distributed System Security Architecture [14] had many of the
features of today's TCPA specification, including secure
bootstrapping, and remote attestation of system software using
signed hashes.
Virtual machines have also been used for Trusted Computing,
albeit at lower levels of abstraction. Garfinkel et. al. [15] have
proposed the TerraVM [16] virtual machine monitor architecture
to interface with underlying trusted hardware. Their architecture
provides two VMM abstractions to software – an open box VMM,
and a closed box VMM. The open box VMM simply provides a
legacy, untrusted interface. This allows old operating systems and
software to run unmodified on it. The closed box VMM, however,
provides an interface to underlying trusted hardware that new
software can use. A number of such VMMs can execute on bare
hardware. They are strongly isolated from each other, and have
their own encrypted storage.
The goal of TerraVM is similar to Microsoft's proposed Palladium
architecture. Palladium is said to have a high-assurance trusted
microkernel running on hardware (called the nexus) that provides
strong isolation between legacy untrusted applications and newer
trusted applications, as well as among trusted applications. These
two distinct execution environments are called the left-hand side
and right-hand side, respectively.
Our work is largely orthogonal to these efforts. While these focus
on providing strong isolation, and abstractions and techniques for
using strongly isolated execution environment. They do not tackle
the problem of remote attestation, which has been our primary
focus. They also work at a lower level of abstraction. Our
semantic remote attestation framework could run atop all these
architectures.

6. CONCLUSION
Current Trusted Computing initiatives do not present a new
paradigm but merely a rehash of the age-old code-signing idea.
Remote attestation, one of Trusted Computing's core techniques is
static, inflexible, unable to reason about program behavior, and
fundamentally incompatible with today's heterogeneous
computing environments.
Our alternative mechanism, semantic remote attestation,
combines both cryptography as well as language-based techniques
to constrain the behavior of programs, and attest this to remote
parties. We use language-based security techniques to certify
properties of code running locally to remote parties. This new
paradigm allows flexible, dynamic and symmetric trust relations,
and enables a range of new applications.

7. REFERENCES
[1] Computer Emergency Response Team (CERT); CERT/CC

Annual Report, 2003, http://www.cert.org
[2] George C. Necula; A Scalable Architecture for Proof-

Carrying Code; 5th International Symposium on Functional
and Logic Programming, March 2001.

[3] Ken Ashcroft and Dawson R. Engler; Using Programmer-
Written Compiler Extensions to Catch Security Holes; IEEE
Symposium on Security and Privacy, 2002.

[4] Úlfar Erlingsson, Fred Schneider; IRM Enforcement of Java
Stack Inspection; IEEE Symposium on Security and Privacy,
2000.

[5] Trusted Computing Group (TCG); TCG PC Specific
Implementation Specification; August 2003.

[6] Vivek Haldar, Deepak Chandra, and Michael Franz; Semantic
Remote attestation: A Virtual Machine Directed Approach to
Trusted Computing; USENIX Virtual Machine Research and
Technology Symposium, May 2004.

[7] Vivek Haldar and Michael Franz; Mandatory Access Control
at the Object Level in the Java Virtual Machine; Technical
Report 04-06, Information and Computer Science, University
of California, Irvine.

[8] Tim Lindholm and Frank Yellin; The Java Virtual Machine
Specification; Addison-Wesley, April 1999.

[9] David S. Platt; Introducing Microsoft .NET; Microsoft Press,
May 2003.

[10] Ross Anderson; Cryptography and Competition Policy -
Issues with Trusted Computing; 2nd Annual Workshop on
Economics and Information Security, May 2003.

[11] Andrei Sabelfeld, Andrew C. Myers; Language-Based
Information-Flow Security; IEEE Journal on Selected Areas
in Communications, special issue on Formal Methods for
Security, 21(1), January 2003

[12] B. Chen and R. Morris; Certifying program execution
with secure processors; USENIX HotOS Workshop, May
2003.

[13] W. Arbaugh, D. Farber, and J. Smith; A secure and
reliable bootstrap architecture; IEEE Symposium on Security
and Privacy, 1997.

[14] M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson;
The digital distributed system security architecture; 12th
NIST-NCSC National Computer Security Conference, pages
305-319, 1989.

[15] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D.
Boneh; Terra: A virtual machine-based platform for trusted
computing; 19th Symposium on Operating System
Principles(SOSP 2003), October 2003.

[16] T. Garfinkel, M. Rosenblum, and D. Boneh; Flexible os
support and applications for trusted computing; 9th Workshop
on Hot Topics in Operating Systems (HotOS-VIII), May
2003.

