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Abstract 

We argue in favor of the explicit inclusion of suspicion as a 
concrete concept to be used in the analysis of audit data in order 
to guide the search for evidence of misuse.  Our approach is 
similar to that of a human forensic analyst, who first notices 
details that seem slightly odd, and then investigates further and 
cross checks information in an attempt to build a coherent 
explanation for the observed details.  We use deductive reasoning 
combined with expert knowledge about system behavior, potential 
attacks and evidence, and patterns of suspicion to link individual 
clues together in an automated way.   

A prototype implementation that was designed based on these 
considerations is presented, including details of how suspicions 
and deductions are represented, and how these structures are 
updated as new evidence is discovered.  Finally, we describe how 
this algorithm performs in practice on a realistic example where 
five discrete pieces of evidence are brought together 
automatically to create a unified and coherent description of what 
is believed to have occurred. 

1. Introduction 

Detecting intrusions into computer systems is one of the oldest 
research areas in computer security, and despite decades of 
research and increasingly sophisticated commercial systems, it 
remains a difficult problem.  In the past decade, the amount of 
sensor and audit data available from systems has increased 
dramatically, but attacks are intrinsically difficult to recognize 
from raw sensor data, unless the sensor was explicitly designed 
with that class of attack in mind.  Nevertheless, it has been widely 
recognized that intrusions do generally leave a variety of clues 
behind in the audit stream, and figuring out how to recognize 
those clues in a way that leads to a reasonably low false positive 
rate has been a popular research topic.  We bring two new ideas to 
the table that we believe show promise in improving the state of 
the art: first, a deductive point of view, where clues are identified, 
their consequences investigated, and supporting evidence may or 
may not be found, and second, the inclusion of suspicion as an 
explicit concept that guides our search.  We have developed these 
ideas into a working prototype system that we are in the process 
of evaluating.  After describing our methodology, we present the 
results of our first test of this system with a realistic example. 

Section two describes our philosophy of forensics and evidence, 
as well as the state of existing practice and research.  In section 
three, we discuss deduction and modeling, including how 
uncertainty and suspicion figure into our approach.  Section four 
discusses some concrete details of our algorithm.  Section five 

describes the details of our implementation, while in section six 
we show our algorithm at work with a brief example. 

2. Forensic Analysis 

The philosophy and point of view we wish to adopt is that of a 
forensic analyst: we are interested in the collection of evidence of 
possible misuse, and putting those clues together into a coherent 
picture that describes what has occurred on the system in 
question.  We assume that evidence is being collected and 
preserved in a secure way, so that the timeliness of the analysis 
and the level of scrutiny it receives can be varied as needed.  
However, since our forensic investigations will be at least semi-
autonomous, we will assume sensors with useful audit capabilities 
are deployed on the system, and that evidence may be being 
analyzed in real-time as it comes in.  In this case, the role of our 
investigations is not to assist a human forensic analyst, but to 
supply information and context to a separate component that may 
generate autonomic responses.  We assume that questions of 
security policy, posture and response are the responsibility of that 
component and independent of the situational awareness supplied 
by our analysis engine. 

2.1. Analysis of Evidence 

We assume that the evidence we are analyzing is most likely 
fragmentary and incomplete.  In the trivial case that a sensor 
explicitly detects an attack with high confidence (for example, an 
attachment is determined to be a known virus or a network packet 
contains an exploit for a known buffer overflow vulnerability), 
these events will be noted and added to the situational awareness, 
but analysis of such scenarios is fairly straightforward, and all the 
information needed to provide a concise and descriptive analysis 
of exactly what has occurred is already provided by the sensor 
itself.  Instead, as in traditional forensics, we are interested in 
clues that may well seem fairly innocent when viewed 
individually, but suggest a coherent story of misuse or abuse when 
viewed in context.  It is important to note that this more than just 
correlating alert information or collecting degrees of anomalous 
behavior in a “leaky bucket” until a threshold is reached; we are 
biased towards clusters of evidence that are consistent with a 
coherent “story” that explains the evidence in context of a larger 
pattern of behavior.  This has two advantages: first, it avoids the 
statistical difficulties associated with the base rate fallacy that 
often plague intrusion detection schemes [Axelsson 99], and 
second, since our analysis explicitly relies upon analysis of 
evidence in context and with regard to the inferred pattern of 
activity, a concise and coherent description of what we believe is 
happening can be generated when the analysis succeeds.  
Furthermore, the entire deduction chain can be explained at each 



level, down to the individual bits of concrete evidence that led to a 
particular deduction, and the role each pie ce of evidence played in 
leading the analysis engine to the conclusion it reached.  

2.2. Existing Forensic Analysis Tools and Previous Work 

It is interesting to note that there has been a divergence between 
intrusion detection tools and the tools used by th ose doing 
forensic analysis of systems, despite the fact that both are 
examining evidence to find indications of whether and how a 
system has been compromised.  This is despite the fact that early 
intrusion detection research was inspired by attempts to au tomate 
tasks traditionally performed by system administrators, like 
monitoring the system log (see [Lunt 88] for a summary).  

Forensic analysts generally use a wide variety tools, most of 
which can be described as evidence collection tools, and often 
were not explicitly designed for use as security tools.  These tools 
bypass friendly interfaces in order to provide explicit information 
about the low level structure of various resources of interest.  
While tools packages specifically designed for forensic anal ysts 
do exist, these concentrate mainly on issues of evidence 
preservation, and provide minimal assistance in actually analyzing 
the evidence itself.  In addition to those tools, a variety of 
configuration scanning (for example, COPS [Farmer 90]) and 
hardening tools have been developed, which analyze the security 
configuration of the machine.  These are sometimes useful from a 
forensics point of view as they provide information about the 
security configuration of the machine.  But there are surprisingly 
few tools that help a forensic analyst actually analyze the vast 
amount of evidence that can be obtained using these tools.  
Recently, some special case tools (like chkrootkit [Nelson04]) 
have started to appear, but these are highly specialized and tuned 
to detecting common clues and inconsistencies that indicate a 
system has been compromised.  

Previous host-based intrusion detection work has focused mainly 
on analyzing system level events (see, for example [Hofmeyr98]) 
in order to detect unauthorized access or  modification of the 
system.  This is partly because for an external attack, the system 
itself is what comes under attack, but it is also partly because that 
is the only level where sensor data has been widely available.  
Intrusion detection can be partiti oned into two main categories: 
anomaly detection and misuse detection.  A great deal of research 
has been focused on anomaly detection as an intrusion detection 
technique, based on the assumption that even previously 
unanticipated attacks will cause the sy stem to behave in a way 
that can be distinguished from normal behavior.  A series of 
increasingly complex schemes have been investigated, ranging 
from simple n -gram based techniques [Forrest96] to Bayesian 
statistics [Anderson95, Porras97], data mining [Le e98, 
Barbara01], and neural nets [Ryan98].  While this research shows 
great promise in detecting anomalous application behavior and 
automatically learning how to do so from training data, all it can 
do is detect anomalous behavior. That anomalous behavior may 
be either benign and or it may be malicious.  Unfortunately, 
benign anomalous behavior is several orders of magnitude more 
common than malicious behavior, leading to high false positive 
rates for anomaly detection schemes.  This is a fundamental 
limitation of the anomaly detection approach [Axelsson99].  
Furthermore, there is no guarantee that all malicious behavior is 
anomalous; even at the system level certain attacks like race 

conditions are expected to be missed by anomaly detection 
[Forest96].  In fact, a clever attacker can craft his attack in such a 
way that a known anomaly detection system will not consider it 
anomalous [Wagner02]. 

Misuse detection attempts to detect the attacks themselves 
[Garvey91].  A wide variety of methods have been investig ated, 
ranging from pattern matching [Kumar94] to rules based on state 
transitions [Ilgun95, Eckmann00].  These approaches need sensor 
data from the level where the attack is actually occurring in order 
to reliably distinguish between attacks and normal beh avior. 

We believe that looking for clues that suggest an intrusion has 
taken place could potentially be easier than recognizing explicit 
attacks.  The most troublesome characteristic of attacks is that 
they are more likely to take advantage of behaviors of  the system 
that are complex, poorly specified, or even forgotten; indeed 
many attacks take advantage of the interaction of several complex 
features of the system.  Understanding normal system behavior is 
difficult enough with current technology; understan ding an attack, 
especially an unknown attack, well enough to recognize and 
detect it under these circumstances is extremely difficult.  

On the other hand, in both the real and virtual world, it is very 
difficult to do anything without leaving some evidence behind.  In 
addition, attempts to conceal or remove evidence generally create 
new evidence, and if detected, this evidence gives strong evidence 
about the perpetrator’s intent.  Even in the virtual world, where 
creating exact replicas and performing irreve rsible deletions are 
theoretically much easier, secure deletion tools are often detected 
due to the patterns they leave over what was erased or the traces 
left behind on the system even after the tool is uninstalled.  
Security is often difficult because th e defenses must be perfect, 
while the attacker needs to find only one flaw.  An emphasis on 
forensics as a second line of defense reverses the burden, by 
requiring the attacker and his tools to be perfect, while the 
defender needs only a few clues to recog nize an intrusion is 
underway. 

2.3. Motivation and Goals 

These observations have lead us to build a system that identifies 
individual clues based on a concrete model of suspicion and then 
connects them deductively based on its understanding of the 
system and potential patterns of intrusive behavior.  At first, such 
a system would act mainly as an aid to forensic analysts looking 
through audit logs, as well as assisting security professionals in 
detecting and understanding intrusions.  
 
A secondary motivation  is based on our belief that the biggest 
barrier to useful autonomic responses is a lack of information 
about context and intent with respect to detected intrusive events.  
Without such information, responses are blind and may well do as 
much damage as the y prevent.  It is important to respond to 
situations, not single events, and we hope that such an evidence 
analysis system will be able to create the necessary situational 
awareness to allow effective responses to be planned and 
executed.  
 
To test these id eas, we have begun building a system capable of 
reasoning about evidence of intrusions based on our notions of 



suspicion, and have started performing experiments to see how 
feasible this approach is.  

3. Deduction and Modeling 

While it may seem appealing to  build a system that requires no 
knowledge or understanding of the system it is protecting and can 
detect attacks independent of any understanding of potential 
security threats, a system which does take this information into 
account almost certainly will b e more effective.  Certainly, a 
human analyst who is asked to detect intrusions without any 
information about potential threats and the system itself would 
object to this restriction and recognize that it would hinder his 
ability to concentrate on relevant  information and make 
reasonable deductions.  While a generic system that does not rely 
upon such information may be able to more easily detect certain 
classes of unknown attacks, it is necessarily blind to other classes, 
depending on what mechanism allows  attacks to be seen by such a 
generic system.  This trade -off is explicitly stated in early 
anomaly detection papers (e.g. [Forrest 96]), but is curiously 
absent from many more recent ones.  By adopting a deductive 
approach to evidence, we restrict ourselv es to scenarios involving 
evidence we can see and actions we understand.   It seems 
unlikely one can do better at detecting new attacks than that, 
except under special circumstances.  

It has long been understood that deductive reasoning is the 
foundation for forensics (interestingly, Sir Arthur Conan Doyle’s 
Sherlock Holmes was inspired by medical diagnosis, another field 
where deductive reasoning plays a crucial role).  It may be 
particularly effective on computers, due to their deterministic 
nature, though with increasing system complexity this difference 
may be slowly fading.  In fact, deductive reasoning has already 
been applied to the problem of evidence evaluation, though in a 
different context [Keppins03].  The success of such methods in 
analyzing hypotheses about real world crime scenarios suggests to 
us that similar methods are likely to prove fruitful when applied to 
analysis of intrusions.  

With respect to the models we base our deductions on, we view 
them as necessarily incomplete.  A model that fai thfully 
represents every aspect of a system is no longer a model, but a 
simulation.  Therefore we must expect that deductions based on 
the models may prove false in certain cases.  We rely on the 
models only for information about the relationship between 
deductions, the likely intent of inferred actions, and suggestions 
about what evidence may mean.  We are interested in context and 
explanations, not ironclad proofs.  We expect most attacks to 
occur at the periphery of our understanding, and hence at the 
periphery of our models; in fact, in the future we plan to take 
advantage of this to investigate more fully evidence that lies near 
the limits of our understanding.  Suspicion, after all, is closely 
related to ignorance, and ignorance is a fundamental facet of 
understanding that should not be.  

3.1. Uncertainty 

As mentioned earlier, we view incompleteness as a necessary 
characteristic of our models, and so we need to be able to deal 
with uncertainty in our deductions.  This particular problem is not 
unique to us, however, and is well known among those who work 
in model -based reasoning.  We can easily attach uncertainties to 

our inferences and manage them in a self -consistent way.  
However if we rely on this as our only measure of uncertainty, we 
will have the s ame problems encountered by many statistical 
intrusion detection schemes [Axelsson 99].  In our approach, 
suspicion is distinct from uncertainty in that suspicion evaluates 
the likelihood that a given event or pattern of events is evidence of 
malicious beh avior, while uncertainty expresses the likelihood 
that deductions are correct and the likelihood the observed 
behavior is normal under the assumption that no malicious 
behavior is present.  This avoids problems associated with the fact 
that the probability  of an event being malicious is normally very 
low, but rises dramatically when an attack is underway.  

The more subtle problem is that much of the uncertainty involved 
in forensic evaluations is not just quantitative in nature, but 
qualitative.  Many of the  concepts that are useful in expressing 
security knowledge and policies are by nature somewhat fuzzy 
and context-dependent.  Much of this, we believe, is because 
security is a field that exists only because of a lack of complete 
information, and hence an a bility to deal flexibly with uncertainty 
is often deeply embedded in the concepts used to describe security 
concerns.  For example, security experts talk about 
trustworthiness instead of correctness.  We have found that many 
of the concepts we have introdu ced in our models are best 
described as shades of gray instead of black and white concepts.  
For example, the concept of a “foreign executable” or an 
“untrusted executable” is important in many of our rules, since 
both the concepts of origin and executabil ity are useful 
generalizations that cover a wide variety of scenarios.  Each of the 
attributes can be evaluated and inferred from available evidence, 
but the degree to which a resource is untrusted, and even the 
degree to which a resource is executable can  vary (is it directly 
executable? or does it merely contain potentially executable 
content?  is it raw machine instructions, or some higher level 
language?).  And these differences in degree can affect the degree 
to which an object is suspicious.  Introduc ing such subjective 
evaluations will certainly require some tuning in order for them to 
be effective, but we feel that such a faithful representation of our 
evaluation of the evidence is crucial to building a system that can 
make sensible judgments about t he relative importance of various 
bits of evidence.  

3.2. Suspicion 

There are a variety of nuances to the notion of suspicion, most of 
which we will not concern ourselves with here.  The reason is 
because we are content to leave a suspicion as something whe re 
“we know it when we see it”.  This is not particularly 
inappropriate, as we are proposing to let experts define exactly 
what sorts of things raise their suspicions.  And, after all, 
suspicions are necessarily imprecise, since many of them turn out 
to be wrong.  However, consider the filename:  

“C:\Prográm Files\Winzip\logfile.txt<binary 0><80 spaces>.exe”  

One could take the position that this is a perfectly valid Windows 
filename, and without more information about the state of the file 
system or the context in which it occurs, nothing more than that 
can be said.  It is likely, however, that most security experts 
would immediately point out that it is a very suspicious filename, 
and that several aspects of its construction suggest it is intended to 
seem li ke it is inside C: \Program Files, which it isn’t, and that it is 



a text file, when it is in fact an executable.  In addition to alerting 
us to the fact that something may be going on here, and we should 
probably investigate further, the filename also sugge sts some 
plausible scenarios that should be investigated.  Certainly, if we 
were to later see the same file name truncated at the binary zero, 
we might reasonably conclude that a string -handling bug probably 
had been exploited.  It is this sort of knowledg e about what sorts 
of evidence causes one to become concerned, and what sorts of 
checks and further investigations one might do that we think has 
the potential to significantly improve the performance of intrusion 
detection systems.  

Once we have described our expert knowledge of the system and 
relevant security concepts, we use suspicion to link together 
events into patterns of behavior.  Events with certain 
characteristics are suspicious.  Furthermore, certain patterns of 
inferences also cause us to become  suspicious about what might 
be occurring.  Also, suspicions may be linked through deduced 
relations between events or inferred actions, or through concrete 
objects: files, processes, and so on.  Our overall suspicion is then 
a function of the degree to wh ich each resource, event, or 
inference is suspicious and the number of independent reasons we 
have for being suspicious of it.  The inference rules specify how 
objects and events become suspicious.  For example, if a file is 
added as a startup file, we bec ome suspicious of the process that 
added it, as well as the file that was added.  In addition, we 
consider the possible alternatives that either the file the process 
was started from, or the process itself was somehow 
compromised.  As we become suspicious of new objects, this 
guides our search for more evidence, since the rules concerning 
evidence pay special attention to suspicious objects and events in 
a prescribed deductive manner.  For example, if we become 
suspicious of a file, we become suspicious of other events 
involving it as well as processes started from it.  In this way, clues 
direct our search for more clues, as the clues we find become 
more significant in the context in which they appear.  Once our 
search is complete, these clues and their rela tionships can be 
presented in an easily understood form for further evaluation.  

4. Knowledge Representation 

4.1. Models 

The deduction rules are organized into a variety of different 
models, each concerned with analyzing a different aspect of the 
system, our understanding of intrusions, or suspicion itself.  All 
the models operate based on a common set of concepts, and can 
reason based on each other’s deductions as well as their own.  In 
particular, the suspicion module, which contains a variety of 
generic rules about how suspicion should be propagated, often 
interacts with other models, which contain rules about which 
particular events or inferred actions they find suspicious.  
Currently most rules are either part of the suspicion module, the 
system model, w hich is responsible for understanding and making 
inferences about what certain low level events imply (for 
example, that an attempt to connect to port 25 is likely an attempt 
to contact a mail server), or the trojan model, which encapsulates 
knowledge abou t actions which are commonly seen in worms and 
trojans. 

4.2.1. Deductive Graph 

As rules fire in response to observed events, there are two main 
data structures that are updated and maintained, the deductive 
graph and the suspicion graph.  The deductive gra ph is a directed 
acyclic graph that includes as nodes all the observed events, as 
well as the actions that have been inferred from those events, and 
any other deductions that have been made.  The directed edges 
indicate which nodes were deduced from which other nodes, so 
that the certainties can be updated as conclusions are confirmed or 
invalidated.  Currently, we are using a very simple scheme for 
propagating and updating certainties (similar to what was used in 
EMYCIN [van Melle 84]), since our results s o far do not depend 
crucially on what sort of updating scheme is used.  We plan to 
substitute a more sophisticated scheme in the future if one proves 
to be necessary. 

4.2.2. Suspicion Graph 

The suspicion graph, on the other hand, keeps track of the objects  
we are suspicious of and their interrelationships.  We may be 
suspicious of individual events, inferred actions, or resources like 
files, processes and so on.  Edges between individual nodes exist 
when two objects have been deductively linked together.  I n the 
case where we have found no linkages, just a scattering of 
suspicious events, the graph will be completely disconnected.  In 
most cases, it will have a variety of connected components of 
varying size.  Each node also has a suspicion value which 
indicates exactly how intrinsically suspicious the object is (that is, 
the suspiciousness absent independent confirmation).  Currently, 
we are using a very simple model where objects are either 
suspicious (value = 1) or very suspicious (value = 5).  We tend to 
pay less attention to small connected components with low overall 
values, and pay more attention to larger components.  We are in 
the process of evaluating a variety of metrics for measuring the 
overall “suspiciousness” of the complexes as a whole.  One op tion 
is that the suspiciousness is related to the number of directly 
observable suspicious events the node is linked to.  We’ve also 
considered using the sum of the suspiciousness of the entire 
complex. 

4.2.3. Interrelationship 

Since the suspicions in the suspicion graph are produced by 
deductions in the deductive graph, the two structures are 
interrelated and updates to one can cause updates to the other as 
well.  Newly deduced suspicions are added to the suspicion graph 
as they are made, but the suspicion  graph also influences the 
deductive graph in the following way: as the suspicion of a node 
increases due to being linked with other events in a suspicion 
complex, we proportionally increase the certainty of the 
conclusion that the object was suspicious, a nd these changes 
propagate upward through the deductive graph and change the 
certainties of other inferences.  In this way, confirmed suspicions 
modify our view of what is happening, while unconfirmed 
suspicions retain their original (usually low) certaint ies. 

5. Current Implementation 

The current implementation uses the SafeFamily wrapper [Balzer 
00] as a sensor in order to watch processes as they execute.  As 



interesting events are observed, they are forwarded to the 
Cybersafe analyzer, which is loaded in side of the central control 
process that interacts with all the wrapped processes on the 
machine.  

5.1. SafeFamily Wrapper 

The SafeFamily wrapper is an existing access control mechanism 
that enforces application specific rules during execution of 
arbitrary Windows COTS applications and the wrappers already 
support the ability to simply gather information about resource 
accesses without enforcing any rules.  The resources that can be 
monitored in this way include all files, registry keys, COM 
servers, spawnin g of new processes, and network 
communications.  In addition, the wrappers have been augmented 
with some Cybersafe specific sensors to detect certain other 
events of interest.  

The SafeFamily wrapper operates entirely in user mode, within 
the monitored appl ication itself, allowing highly efficient 

monitoring of all the application’s resource requests.  In addition, 
the monitoring mechanism has been hardened and is able to resist 
attempts to disable or modify the monitoring mechanism even if 
the application i tself has been compromised.  All resources are 
identified by the name given to them by the windows kernel itself, 
allowing reliable identification of resources even in the presence 
of alternate or short (DOS) path components or hard links.  Sensor 
information produced by the wrapper is then forwarded to a 
central process that observes all relevant application behavior on 
the machine.  

5.2. JESS-based analysis engine 

The models and maintenance of the graphs are implemented using 
the Java Expert System Shell ( JESS) [Friedman-Hill 03].  Events 
are translated into a form appropriate for the JESS implementation 
by the Cybersafe analyzer, which also includes a small component 
that allows the engine to make native system calls to query certain 
aspects of the underly ing filesystem and operating system.  

 

Figure 1: Cybersafe and SafeFamily architecture 

6. Example 

In order to test our prototype implementation, we built 
a small example that performs a number of activities 
of interest, to see how well the analysis engin e can 
deduce their relationships and provide a coherent 
explanation of what has occurred.  

6.1. Description 

In our scenario, an enticing looking document exists 
on a file server somewhere on a corporate intranet.  
We will refer to this file as Document.qqq, where 
“qqq” is an arbitrary file extension that is mapped to 
an application we have created.  This application 
(CybersafeVictim.exe) will play the role of a COTS or 
custom application that is used widely within the 
organization.  Unfortunately for any inn ocent user 
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who chooses to investigate the file, sitting in the same 
directory is InnocentLooking.dll, which happens to 
have the same name as a dynamic library 
CybersafeVictim.exe depends upon.  Since 
CybersafeVictim.exe attempts to load this particular 
library using a relative path (a flaw that has been 
found in a wide variety of applications including 
Microsoft Word), and the current directory is part of 
the default library search path on Windows, the 
malicious version from the file server will be loaded 
instead of the intended library.  Note that under the 
default settings of Windows, InnocentLooking.dll 
happens to be invisible to the user by virtue of its 
extension, and we assume it is marked as a hidden file 
in order to further reduce the chances of it b eing 
noticed.  Once InnocentLooking.dll is loaded into 
CybersafeVictim.exe on the victim’s machine, we 
assume it performs the following actions:  

(1) creates a new network share on the victim’s 
machine.  

(2) copies InnocentLooking.dll and Document.qqq to 
the new directory.  

(3) marks InnocentLooking.dll as hidden.  
(4) contacts a remote host in order to inform it that 

the propagation has succeeded.  
 
This sort of behavior is not atypical for a network 
trojan that is simply interested in propagating to as 
many hosts as possible.  

6.2. Analysis 

During the scenario above, the SafeFamily wrapper 
observes the events as they happen, and generates the 
following events that it forwards to the Cybersafe 
analyzer: 

(1) file_library_load_relative  
InnocentLooking.dll  
\\Server\Share\InnocentLooking.dll  

(2) create_network_share  
VictimMachine  
Share 
C:\Share 

(3) file_copy 
\\Server\Share\InnocentLooking.dll  
C:\Share\InnocentLooking.dll  

(4) file_hide  
C:\ Share\InnocentLooking.dll  

(5) communications_access  
12.34.56.78 port 80 

 
The Cybersafe analyzer processes these events as they 
occur.  In order to keep the example simple, we will 
simply be describing the deductions that occur, and 
will not discuss the certainties attached to the 
deductions.  

In response to the first event, the follo wing rules fire:  

(1a)  A file_library_load_relative event that tries to 
load a library that satisfies certain conditions is 

marked very suspicious.  The file is also very 
suspicious. 
trojan_dll_1:  
?e <- event file_library_load_relative 

Abstract_File_Name  File 
trojan_dll_check(Abstract_File_Name, File, _)  
=> suspicious event ?e very_suspicious  
=> suspicious file File very_suspicious  

(1b) Files on network shares are foreign. 
file_foreign:  
get_drive_type(File, network_share)  
=> event foreign_file File  

 (1c) Foreign executables are suspicious. 
ext_suspicious_2: 
?e <- event foreign_file File  
executable(extension(File), 4)  
=> suspicious file File suspicious  

 
In this particular case, we have chosen an attack that 
our sensors can see and that our rules (in partic ular, 
the rule that fired in 1a) can understand.  However, 
when we evaluate what we have learned at the end, we 
will also compare our results with what our analysis 
would have shown if we had been unaware of this 
particular method of attack.  

We also intent ionally chose an attack where the 
system technically behaves exactly as its designers 
was intended.  Because of this, despite the fact that in 
this case what we have observed is “highly 
suspicious”, there is no clear cut rule about under what 
circumstances loading a library via a relative path is 
strictly illegal; some Windows applications even rely 
on this behavior in order to function properly.  So 
while this behavior is highly suspect, confirming 
evidence would be helpful before declaring it 
malicious.  This allows the system to handle situations 
that are inherently ambiguous, and only become 
meaningful in context.  

The remaining two rules merely encode suspicions 
about remote executables; even if we did not 
understand this particular attack vector, we sti ll would 
be suspicious of the file in question.  Though our 
current rule set does not do so, the rules could be 
extended to understand the implications of loading 
suspicious dynamic libraries into a process.  

In response to the second event, the following r ule 
fires: 

(2a) Creating a network share is suspicious. 
 trojan_ns_2B: 
?e <- event create_network_share NetworkShare  
=> suspicious event ?e suspicious  

 
Here, we notice the creation of a new network share, 
which we also find suspicious.  As this is the pare nt 
directory for the files in several following events, it 
would be possible to notice a link between these 
events.  However, the current set of rules does not, 
since the system model does not yet understand 
parent-child relationships between files and 
directories.  



In response to the third event, the following rules fire:  

(3a) Any foreign file that is copied or moved is still 
foreign. 
trojan_fs_1: 
event copy_file Source_File Destination_File  
event foreign_file Source_File  
=> event foreign_file Destination_ File 

(3b) Foreign executables are suspicious. 
ext_suspicious_2: 
event foreign_file File  
executable(extension(File), 4)  
=> suspicious file File suspicious  

(3c) Writing an executable to a network share is 
suspicious.  The file being written is also 
suspicious 
trojan_ns_4: 
?e <- event copy_file Source_File 

Destination_File  
get_drive_type(Destination_File, network_share),  
executable(Source_File)  
=> suspicious event ?e suspicious  
=> suspicious file Source_File  

(3d) Any suspicious file that is copied or moved is 
suspicious to the same degree. 
forward_propagate_suspicious_file _1:  
?e <- event copy_file Source_File, 

Destination_File  
?s <- suspicious Source_File Suspicious  
=> suspicious file Destination_File  Suspicious  

 
Two of these rules (3a and 3d) are simply 
housekeeping rules that propagate certain attributes of 
files as they are moved around the filesystem.  In the 
case of suspicion, this also creates a link between them 
as their suspiciousness is causally related.  The only 
other rule we haven’t seen before not es that an 
executable is being written to a network share, which 
is noted as suspicious in and of itself.  

In response to the fourth event, the following rules 
fire: 

(4a) Any file_hide event is suspicious 
file_hide_1:  
?e <- event file_hide File  
=> suspicious event ?e suspicious  

 
This is yet another action that in many contexts is 
perfectly legitimate, but can also indicate that 
something is going on, especially in the absence of 
any legitimate reason to expect it.  In this case, this 
gives us yet another ind ependent confirmation of our 
suspicions of this string of events related to this 
particular file.  

In response to the fifth event, no rules fire since the 
action appears simply to be a connection to a web 
server of some sort; with the number of applications  
that make use of this sort of functionality these days, it 
would be impractical to warn about this sort of 
behavior except in very sensitive environments.  We 
include it here because after seeing so many 
suspicious actions previously, one might be watchin g 

outgoing connections more carefully than what would 
normally be the case, and this sort of event might be 
detected where it would have otherwise gone 
unnoticed.  At the very least, our suspicions about the 
process could be presented for evaluation before  the 
process was allowed to contact an external machine.  

Figure 2: Suspicion Graph 

The final suspicion graph is shown in Figure 2.  F1 is 
the file \\Server\Share\InnocentLooking.dll, while F2 
is the file C: \Share\InnocentLooking.dll.  The 
remaining four n odes are events 1 through 4.  The 
dotted line indicates a link that could be made, but is 
not made by the current implementation.  The file F1 
is considered very suspicious; the rest of the nodes are 
merely suspicious.  The graph clearly shows the 
context of what has occurred, and the relationships 
between the various resources and events.  
Furthermore, the explicit relationships and the reasons 
for their existence can be clearly explained (see 
below).  Even if the explicit attack had not been 
detected, the  rest of the activity would still have been 
linked together; only the library_load node would be 
missing.  

6.3. Explanations 

The engine can generate an explanation of its results 
on request.  Such a request can be made for any node 
in either the deduction g raph or the suspicion graph.  
Explanations are generated in terms of sequences of 
rule instances that lead to the specified node.  For 
cases where a rule instance associated with a node in 
the deduction graph refers to a node in the suspicion 
graph or vice versa, a crossover from one graph to the 
other will be made.  Rule instance sequences will be 
traced backward from the specified node until nodes 
representing directly observable events are reached.  

Each rule has an explanation template that is used to 
generate a fragment of the overall explanation.  An 
instance of each explanation template is generated for 
each instance of the corresponding rule that appears on 
one of the computed rule sequences.  The template is 
instantiated with the relevant attribute v alues of the 
actual events that make up the rule instance.  

For example, if we asked why F2 is suspicious in the 
example above, we would be told that 
“C:\Share\InnocentLooking.dll is suspicious because 
the process X attempted to hide it” and 
“C:\Share\InnocentLooking.dll is a copy of the 
suspicious file \\Server\\InnocentLooking.dll”.  

library_load

F1 F2

create_share

copy

file_hidelibrary_load

F1 F2

create_share

copy

file_hide



7. Conclusion 

Based on this example, we believe an explicit concept 
of suspicion shows promise in assisting a model -based 
intrusion detection system.  In addition, deductive 
links between our suspicions both help us confirm that 
our suspicions are correct, and also clarify the 
relationships between events so that they can be 
clearly explained to a human analyst, or any other 
consumer of our conclusions.  The separation of the 
deductive graph and the suspicion graph allows us to 
use certainties associated only with normal behavior in 
the deductive graph, and focus exclusively on 
relationships between potential indications of 
malicious behavior in the suspicion graph, updating 
our view of the world only once our suspicions have 
been confirmed.  
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