
Towards Agile Security Assurance
Konstantin Beznosov

University of British Columbia
2356 Main Mall

Vancouver, BC, V6T 4Z1 Canada
+1 (604) 822-9181

beznosov@ece.ubc.ca

Philippe Kruchten
University of British Columbia

2356 Main Mall
Vancouver, BC, V6T 4Z1 Canada

+1 (604) 827-5654
pbk@ece.ubc.ca

ABSTRACT
Agile development methodologies are gaining acceptance in
software industry. If they are to be used for constructing secu-
rity-critical solutions, what about assurance? This paper exam-
ines how well conventional security assurance suites agile
methodologies for developing software-intensive systems. It
classifies security assurance methods and techniques with
regards to their clash with agile development. For those in
conflict, ways of alleviating it are suggested.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and protection. D.2.4 [Software Engineering]: Soft-
ware/program verification. K.6.1 [Management of Computing
and Information Systems]: Project and people management -
Lifecycle. K 6.3 [Software Engineering]: Software management
– software process.

General Terms
Management, Documentation, Security.

Keywords
Agile methods, security. security assurance, security engineer-
ing, software development process

1. INTRODUCTION
For 20 years, the developers of software intensive systems
have tried very hard to apply the technical-rational approach
to project management, with a sequential (or waterfall) lifecy-
cle, including rigorous up-front planning, up-front design,
and a constant care to monitor and drive the project to conform
to the plan. On one hand this approach has served very well
certain activities of software development. By having avail-
able early on the planning and design artifacts that can be
handed out to experts for close examination has facilitated the
task of certification of the system to the conformity of external
standards, and apparently made the life of the acquirer of soft-

ware-intensive system easier. A discipline that took advantage
of this is for example security assurance, but this applies
equally to certification for safety in avionics, or medical in-
strumentation.

But the reality is sadly different. As demonstrated by the
“Chaos” report from the Standish group [1], the actual success
rate of software project is very low, with less than 50% success,
and much of it is to be blamed on the management practices.
Software design is more akin to research than to construction
or manufacturing, and many of the management paradigms we
have tried to use were simply not adapted.

In reaction, this state of affairs spawned the emergence of a new
breed of approaches to managing software projects, known
collectively as “Agile methods”. These methods proceed itera-
tively; they rely on gradual emergence of the design and the
requirements, and put more emphasis on direct person-to-
person communication than heavy written documentation.
They exploit the “soft” nature of software to modify it, shape i t
gradually like play-do, and place and exploit many feedback
loops in the process. Rather than “plan-build-implement”,
they proceed by “speculate-collaborate-learn” [2].

These methods start to show some successes in industry and
they seem indeed more suitable for software development.
Their application to the security engineering [3, 30] as well as
for safety engineering [29, 32] has been considered. Unfortu-
nately, they also go against the accepted practices in system
certification, in independent validation and verification, and
in software acquisition, where the practices appear to go to-
tally contrary to agile approaches. Can and how agility and
(particularly security) assurance adopt each other?

In this paper, we focus on security assurance, and examine how
its practices do fit or not in the context of agile methods. Spe-
cifically, we classify conventional security assurance methods
and techniques into four groups depending on the degree of
their clash with agile development practices. It turns out that
roughly half of these methods and techniques either match the
practices or could potentially support agility through automa-
tion. For the other half, we suggest ways of alleviating the
conflict. Note that in this paper we are not casting any judg-
ment on the quality or suitability of agile process: we can only
acknowledge that they are there to stay, and they provide a new
baseline for software process evolution. Neither is our intent
to explicitly challenge this or that aspect of the traditional
approaches to security assurance.

The rest of the paper is organized as follows. Section 2 gives
necessary background on security assurance and introduces
some fundamental characteristics of agile methods. Section 3
identifies the areas where agile methods seem to conflict with
the normal way of dealing with security assurance. Finally,
section 4 offers some avenues to compromise: how to combine

8/29/04 Preproceedings version

the various practices in ways that do not completely remove
but alleviate the pain points. Section 5 draws conclusions.

2. BACKGROUND AND RELATED WORK
This section provides background material on the subjects of
the paper, the methods and techniques of the conventional
security assurance and the agile development, and reviews
related work.

2.1 Security Assurance
Security assurance provides confidence in the security-related
properties and functionalities, as well as the operation and
administration procedures, of a developed solution. Conven-
tional assurance methods (more detailed description of which
is provided in _Appendix 1) can be roughly grouped into the
use of best practices in a form of (un)official guidelines, de-
sign and architectural principles, use of appropriate tools and
technologies, dynamic testing and static analysis, and, most
importantly, internal and third-party review, evaluation, and
vulnerability testing. While being the keys to achieving con-
fidence that a solution meets its security requirements, third
party’s objectivity (and therefore independence) and expertise
(and therefore high costs) result in a side-effect, documenta-
tion-focused development, which is in conflict with agile de-
velopment methods. Before going in more detail about the
conflicting points, let us provide background on agile devel-
opment.

2.2 Agile methods
Over the last 8 years or so, new families of software engineer-
ing methods have emerged, under different labels: Agile
methods, which gelled around the agile manifesto [4]. In these
families of methods we find Crystal [5], Adaptive Develop-
ment [2], Feature-driven Development, Scrum, Lean Software
development, and the most famous one, because of its pro-
vocative name, Extreme programming (XP). These processes
are quite different from each other, each has its special central
features, and appeal to different types of projects, but they
chare a certain number of common characteristics.

They are all fundamentally iterative. They do not replicate the
more traditional sequence: requirement, design, implementa-
tion, test, or rather they do this sequence again and again, ex-
ploiting the fact that software is extremely soft, modifiable,
and has no manufacturing cost associated.

Their iterative nature allows agile methods to be much more
accommodating to changes on several fronts:

• emergence of requirements (“customer on site”) and, to
match it,

• emergence of the design (refactoring, no big up-front design
(BUFD)), which goes together with less focus on “big up-
front planning,” and

• early and gradual construction of a test suite (test-driven
development)

Also, in reaction to previous attempts to make the software
development process a rigid, rigorous construction or admin-
istrative endeavour, all Agile methods exhibit a great aversion
for “software bureaucracy”, and favour direct communication
between participants rather than reliance on written artifacts.
This is very visible in practices such as ‘pair programming’,
‘customer on site’, or the daily ‘scrum’ (where all team mem-
bers rapidly gather for a stand-up 10 minute meeting to assess

progress). Direct communication is also the limiting factor
when the size of team increases, as beyond 12 or 15 some in-
termediate media must be defined. As a result, and somewhat
unfortunately, agile organizations tend to rely a lot on tacit
knowledge, which make the transfer of software to other orga-
nization more difficult.

Finally, many agile methods put much more emphasis on the
person, which is not just a cogwheel in an anonymous software
producing machine.

We will revisit these aspects of agile software development
methods: iterative lifecycle, emergence, direct communication
and tacit knowledge, in the context of security engineering to
examine how they play in favour or against the current prac-
tices in this domain.

2.3 Related works
Other researchers have examined ways to reconcile the ap-
proaches. Abrams had looked at fitting security engineering in
an evolutionary acquisition process [30].

A working group of the National Cyber Security Summit pro-
duced recommendations on processes for developing more
secure software, but failed to take into account specificities of
iterative or agile processes [31]. More importantly, the report
authors ignore the fact that software development companies
just cannot afford and have little legal and/or economic incen-
tives to employ the processes and methods the report is advo-
cating. The work reported in this paper looks into the ways of
making the engineering of secure software more affordable,
which is also recommended by Spafford in [34, 35].

Wäyrynen et al. started to investigate the issue of adapting XP
to support security engineering [28], which is the opposite to
the question we considered in this paper, that is, how to adapt
security assurance to fit agile software development. Neverthe-
less, their conclusions could be helpful for making security
assurance and agile development meet half-way:

1. Include a security engineer in the development team for
assessing security risks, proposing security related user
stories, and for performing “real-time” security reviews of
the system design and code through pair-programming.

2. Document the security engineer’s pair programming ac-
tivities to build an assurance argument.

3. Document the security architecture for the sake of assur-
ance argument.

4 . Complement pair programming with static verification
and automatic policy enforcement.

3. PAIN POINTS
When examining the normal practices of security assurance in
the context of the agile methods we just briefly characterized,
we run into a number of difficulties, conflicts, or “pain
points”: 1) reliance on 3rd party reviews, 2) reliance on 3rd
party evaluation, and 3) reliance on 3rd party testing. By
“third party,” we mean specialists coming “after the show”,
expecting to inspect, analyze, validate, test, and then certify a
more or less finished product: complete requirements, com-
plete design, and finished implementation, almost ready-to-
ship.

So the normal practice of security assurance clashes with agile
development on three elements:

8/29/04 Preproceedings version

1. Direct communication and tacit knowledge -- the special-
ists have not been on site, so they must rely on extensive
documentation.

2. An iterative lifecycle, as the 3rd party would (in theory)
have been involved at each iteration

3. Refactoring, and other major changes in architecture

4. The philosophy driving testing

3.1 Direct communication and tacit knowl-
edge
It is good practice to keep the developers and the security spe-
cialists “at arm’s length”, so that they do not pollute each
other ideas; this is a fundamental practice in the assurance
business. Security assurance must be completely neutral and
objective, and therefore its practitioners should not be in-
volved too closely with the developers, except during their
information gathering sessions. Conversely, the developers

often acquire “tunnel vision” and become quite blind to secu-
rity flaws, focusing on the functional development.

3.2 Iterative lifecycle
The involvement of a third party is expensive, and it puts a lag
in the development, for example, from a few days to a few
months, depending on the project size and complexity. While
the security assurance efforts proceed, you could continue the
development, but you are going at risks, and defeating some of
the benefits of the inspection.

3.3 Refactoring
Refactoring leads to the redesign, from the bottom up, often to
eliminate redundancies from the code. This leads to another
assignment of functionality to modules, which may not play
well with security constraints. Unfortunately, refactorings i s
one of the cornerstones of agile development, and it is more
and more supported by tools and methods [33].

Table 1 – Impedance mismatches

Security assurance method or technique

M
at

ch
 (

2)

In
d

ep
en

-
d

en
t

(8
)

(s
e

m
i)

-
au

to
m

at
ed

(4
)

M
is

-m
at

ch
(1

2)

Guidelines X

Specification analysis X

R
e-

qu
ir

e-
m

en
ts

Review X

Application of specific architectural approaches X

Use of secure design principles X

Formal validation X

Informal validation X

Internal review X

D
es

ig
n

External review X

Informal correspondence analysis X

Requirements testing X

Informal validation X

Formal validation X

Security testing X

Vulnerability and penetration testing X

Test depth analysis X

Security static analysis X

High-level programming languages and tools X

Adherence to implementation standards X

Use of version control and change tracking X

Change authorization X

Integration procedures X

Use of product generation tools X

Internal review X

External review X

Im
p

le
m

en
ta

ti
on

Security evaluation X

8/29/04 Preproceedings version

3.4 Philosophy of testing
The focus of testing is very different between the functionality
testing prepared early in agile development and performed
routinely throughout development and system testing for
security which proceeds on totally different premises; it fo-
cuses on the least exercised parts of the system (as opposed to
general functional testing). The focus is on pathological as-
pects, boundary values, and least used aspects.

Complete security testing also involves a test depth analysis,
to understand how thorough the tests are. To do this, develop-
ers need to document all the tests, which forces early documen-
tation of the requirement and the design, and this brings us
again further away from the user stories/emergence of require-
ments, and closer to BUFD.

We can note that the clashes we have identified between the
agile methods philosophy and security assurance may not be
specific to security engineering only. The certification proc-
esses for safety-critical systems, in particular those required in
the medical instrumentation area (21 CFR part 11, or ISO
14791), or the aerospace industry (ARINC DO178B) lead to
similar concerns, for the same reasons: independence of the
inspection process, relying therefore on written documenta-
tion, and cost of doing inspection iteratively (each iteration
defeating partially what had been assessed previously).

4. RECONCILING THE OPPOSITE:
MATCHING ASSURANCE WITH
AGILITY

What can be done to try to reconcile, or accommodate the
methods of security assurance with the practices of agile de-
velopment? The assurance methods, if applied naively, would
create deterring delays between critically short iterations as
well as prohibitively inflate the development budgets. They
would also turn away the developers, the majority of which i s
averse to trading development for documentation. Ideally,
adopted security assurance methods and techniques would
allow evolving the confidence in the system in regards to se-
curity in same iterative, incremental, and emerging fashion,
and through same direct communication and tacit knowledge
practices as agile development does. In a real word, where there
are neither magic nor silver bullets, a compromise that would
decrease time and budget overheads (due to security assurance
employed at every iteration) and yet provide “good enough”
assurance, is necessary. In this section we present some strate-
gies toward a compromise.

4.1 Classifying Security Assurance Methods
It is important to note that not all assurance methods and
techniques are in conflict with agile development. We found i t
useful for the purpose of this discussion to distinguish the
following groups:

Natural match. Pair programming naturally facilitates internal
design and code review, as well as motivates developers to
follow coding standards [6, 7], including standards for writing
“secure code”. In addition, in pair programming, developers
receive immediate feedback from their peers, which could very
well be on the principles and guidelines of secure design
(listed in Section _1.2). As Wäyrynen et al. [28] suggest, the
practice of pair programming could be further enhanced by
involving a security engineer who can use this opportunity for
reviewing the design and the code.

Independent of the development methodology. Some security
assurance methods, techniques, and tools can (and have to) be
applied throughout the lifecycle independently of the devel-
opment methodology in use.

Consider version control and change tracking, as an example.
Thanks to the rapid evolution of the tools, version control and
change tracking could now be found in the toolbox of any
active programmer, and even small one-person projects (see
www.sourceforge.net for numerous examples) exercise some
form of change control.

Can be (semi-)automated. Some methods and techniques can
be (semi-)automated so that they can be applied during each
iteration without creating significant budgetary or time over-
heads for an agile project. Examples are static analysis of the
source code with regards to security-related defensive coding
standards, system testing for known vulnerabilities, and pene-
tration testing.

Mismatch. Approximately half of the conventional assurance
methods and techniques directly clash with the principles and
practices of agile development. Most of these techniques cre-
ate mismatch due to their reliance on extensive documentation
served as a subject of analysis, verification, and validation
activities. The most salient one is security evaluation, such as
Common Criteria [8].

We summarize the classification in Table 1.

4.2 Proposed strategies
Since the first two groups of security assurance methods and
techniques, ‘matching’ and ‘independent’, can evidently be
integrated with agile development, this section focuses on the
other two groups. Let us first consider the group of methods
and techniques that can be (semi-)automated.

4.2.1 For semi-automatable methods
For this group, tool support can and should be boosted. As
with unit testing, which became pervasive after the corre-
sponding libraries and tools (jUnit, CPPUnit), had matured,
automation of security static analysis and dynamic testing,
vulnerability and penetration testing, as well as requirements
testing could lead to the wide acceptance of these methods by
agile developers. The goal for the automation efforts should be
in reducing these methods’ overhead to so little that they
could be applied as often as unit tests are. Automation, how-
ever, addresses half of the problem for this group of security
assurance methods.

No matter how much automation is achieved, with security
dynamic testing for example, the development of application-
specific tests requires security expertise and security-oriented
testing philosophy, which cannot be expected from an average
developer. On the other hand, the same is true for application
domains. For instance, in order for a complex banking applica-
tion to be well designed and implemented, the developers are
expected to have extensive knowledge in the domain of fi-
nance.

A possible way to close this gap is through codifying in the
tools themselves the knowledge necessary for applying assur-
ance methods and techniques from this group. Fault injection
[9] and automatic test generation [10, 11] techniques, as an
example, could be integrated into the security dynamic testing
tools. Tests could also be automatically generated from the
code to test for boundary values, and to cover least exercised
parts or execution paths in a system. Whereas with automat-

8/29/04 Preproceedings version

able assurance methods the way out of the tunnel is visible,
the fourth group is the most challenging.

4.2.2 For mismatching methods
Security assurance methods in this group rely on either exten-
sive documentation of the system, or the involvement of ex-
ternal security or formal verification experts, or both. As a
result the methods are the most difficult to reconcile with agile
development due to their daunting budgetary and time over-
heads, as well as the focus on documentation. For instance, in a
recent study reported by Veterling et al. [12] it took 3 months
for 18 developers to complete one iteration of developing a
relatively small application (20 use cases) conformable to
level 2 (i.e., structurally tested) of Common Criteria, which did
not even include time for third party evaluation. What can be
done to adopt these methods to agile development with its
short iterations?

We envision two possibilities for matching assurance methods
from the fourth group with agility. The simplest to suggest
and the most difficult to implement is the invention of new
agile-friendly security assurance methods in place ones from
this group. This direction seems to be a promising area for
future research. The other possibility is less spectacular but
more practical.

Taking into account the observation that in agile development
the biggest questions need to be answered as early as possible,
we suggest to apply the assurance methods from this group at
least twice in the development lifecycle: once after first several
iterations in a project, and once closer to the end, i.e., several
iterations before the system is expected to be shipped. The
latter application point is clearly necessary in order to obtain
security assurance in the final product. The former enables
early confidence in the security properties of the main design
and architectural decisions, and reduces the possibility of the
“big bang” toward the end of the project. Time and resources
permitting, additional applications of the methods from this
group in between these two is desirable but can be omitted.
The main drawback of this compromise, however, is that this
will still lead to too much agile-adverse documentation.

5. CONCLUSIONS
This paper makes an initial step toward integrating security
assurance methods and techniques into the agile development
practices. It classifies conventional methods and techniques
used for security assurance in regards to their acceptability for
agile development. It also proposes ways to accommodate the
conflicting techniques.

Instead of trying to bend the development process in support
for security assurance [12, 13, 28], we look at the problem from
the opposite end: can we imagine ways of satisfying the de-
mands of security assurance without making the development
documentation-focused, and totally integrated in the agile
practices and artifacts (user stories, code, testing practices),
complemented by security-specific analysis tools that would
provide assistance and support for the detection of flaws, and
the production of test suites specific to security?

At this point, we can only propose a compromise between the
two camps. Is it good enough to alleviate the conflict dis-
cussed in Section _3? What needs to be done to get to the
point where tools integrated in development environments
would incrementally and continuously check, test, and analyze
the various artifacts—code, design, requirements—in regards

to security, pretty much the way today tools like CruiseCon-
trol1 support continuous configuration management, regres-
sion testing, and integration? Is it possible to incorporate
seamless generation of the evidence necessary for external
review, testing, and evaluation (such CC [8]) into agile prac-
tices? These are our questions for the future work.

As noted by an anonymous reviewer, maybe the impedance
mismatch that we face is a blessing in disguise; it could cause
us to challenge the “good old heavyweight assurance proc-
esses” that have been enshrined in many standards and acqui-
sition policies, and may lead to their replacement by other
approaches and processes that are “good enough” and more
suitable for rapidly developed and deployed commercial soft-
ware.

6. References
[1] Standish Group, The Chaos Report, West Yarmouth, MA:

The Standish Group, 1995.

[2] J. A. Highsmith, Adaptive Software Development: A Col-
laborative Approach to Managing Complex Systems. New
York: Dorset House, 2000.

[3] K. Beznosov, "Extreme Security Engineering: On Employ-
ing XP Practices to Achieve 'Good Enough Security' with-
out Defining It," presented at First ACM Workshop on
Business Driven Security Engineering (BizSec), Fairfax,
VA, USA, 2003.

[4] Agile Alliance, "Manifesto for Agile Software Develop-
ment," 2001.

[5] A. Cockburn, Agile Software Development. Boston:
Addison-Wesley, 2002.

[6] L. Williams, R. R. Kessler, W. Cunningham, and R. Jeffries,
"Strengthening the Case for Pair-Programming," IEEE
Software, vol. 17, pp. 19-25, 2000.

[7] R. W. Jensen, "A Pair Programming Experience," in Cros-
sTalk, 2003.

[8] CC, "Common Criteria for Information Technology Secu-
rity Evaluation," 2.1 ed, 1999.

[9] J. Voas and G. McGraw, Software Fault Injection: Inocu-
lating Programs Against Errors, New York: John Wiley
and Sons, 1997.

[10] G. Wimmel and J. Jürjens, "Specification-Based Test Gen-
eration for Security-Critical Systems Using Mutations,"
presented at the 4th International Conference on Formal
Engineering Methods, 2002.

[11] G. Fink and M. Bishop, "Property Based Testing: A New
Approach to Testing for Assurance," in ACM SIGSOFT
Software Engineering Notes, vol. 22, 1997.

[12] M. Vetterling, G. Wimmel, and A. Wisspeintner, "Secure
Systems Development Based on the Common Criteria:
The PalME Project," presented at the Tenth ACM SIGSOFT
Symposium on Foundations of Software Engineering,
Charleston, South Carolina, USA, 2002.

[13] R. Breu, K. Burger, M. Hafner, J. Jürjens, G. Popp, G. Wim-
mel, and V. Lotz, "Key Issues of a Formally Based Process

1 http://cruisecontrol.sourceforge.net/ and

http://www.martinfowler.com/articles/continuousIntegratio
n.html

8/29/04 Preproceedings version

Model for Security Engineering," presented at 16th Inter-
national Conference on Software & Systems Engineering
& their Applications (ICSSEA), 2003.

[14] C. o. t. E. Communities, "Information Technology Secu-
rity Evaluation Criteria," 1.2 ed, 1991.

[15] J. Anderson, "Computer Security Technology Planning
Study," Air Force Electronic Systems Division ESD-TR-
73-51, Vols. I and II, 1972.

[16] M. Bishop, Computer Security: Art and Science. Boston:
Pearson Education, Inc., 2003.

[17] P. G. Neumann, R. J. Feiertag, K. N. Levitt, and L. Robin-
son, "Software Development and Proofs of Multi-level Se-
curity," presented at International Conference on Software
Engineering, 1976.

[18] S. Software, "RATS: Rough Auditing Tool for Security,"
2004.

[19] D. Evans and D. Larochelle, "Improving Security Using
Extensible Lightweight Static Analysis," in IEEE Soft-
ware, vol. 19, 2002, pp. 42-51.

[20] D. A. Wheeler, "Flawfinder," 2001.

[21] J. Viega, G. McGraw, T. Mutdosch, and E. W. Felten, "Stati-
cally Scanning Java Code: Finding Security Vulnerabili-
ties," in IEEE Software, vol. 17, 2000, pp. 68-77.

[22] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw, "ITS4: A
Static Vulnerability Scanner for C and C++ Code," pre-
sented at Annual Computer Security Applications Confer-
ence, New Orleans, Louisiana, USA, 2000.

[23] J. Viega and G. McGraw, Building Secure Software: How
to Avoid Security Problems the Right Way, Boston:
Addison-Wesley, 2001.

[24] G. Hoglund and G. McGraw, Exploiting Software : How to
Break Code, Boston: Pearson Higher Education, 2004.

[25] G. McGraw and E. Felten, Java Security: Hostile Applets,
Holes & Antidotes, New York: John Wiley & Sons, 1996.

[26] G. McGraw and E. W. Felten, Securing Java: Getting Down
to Business with Mobile Code, 2nd ed, New York: John
Wiley & Sons, 1999.

[27] K. Beck, "Embracing Change with Extreme Programming,"
IEEE Computer, vol. 32, pp. 70-77, 1999.

[28] J. Wäyrynen, M. Bodén, and G. Boström, "Security Engi-
neering and eXtreme Programming: an Impossible mar-
riage?," in Extreme programming and agile methods-
XP/Agile Universe 2004, C. Zannier, H. Erdogmus, and L.
Lindstrom, Eds. LNSC3134, Berlin: Springer-Verlag,
2004, pp. 117-128.

[29] M. Poppendieck and R. Morsicato, "Using XP for Safety-
Critical Software," Cutter IT Journal, vol. 15, no. 9, 2002,
pp. 12-16.

[30] M. D. Abrams, "Security Engineering in an Evolutionary
Acquisition Environment," in Proceedings of New Secu-
rity Paradigms Workshop, Charlottsville, VA, 2003, pp.
11-20.

[31] S. T. Redwine and N. Davis, ed., Processes to Produce Se-
cure Software Towards more Secure Software, Software
Process Subgroup of the Task Force on Security across the
Software Development Lifecycle National Cyber Security
Summit, 2004.

[32] P. Amey and R. Chapman, "Static verification and extreme
programming," in Proceedings of 2003 annual interna-
tional conference on Ada, San Diego, CA, USA, 2003,
ACM Press, pp. 4-9.

[33] J. Kerievsky, Refactoring to patterns, Boston: Addison-
Wesley, 2004.

[34] E. H. Spafford, "Cyber Terrorism: The New Asymmetric
Threat," USA House Armed Services Committee, Subcom-
mittee on Terrorism, Unconventional Threats and Capa-
bilities, Testimony July 24 2003.

[35] E. H. Spafford, "Exploring Common Criteria: Can it En-
sure that the Federal Government Gets Needed Security in
Software?" USA House Government Reform Committee
Subcommittee on Technology, Information Policy, Inter-
governmental Relations and the Census, Testimony Sep-
tember 17 2003.

Appendix 1: Conventional Secu-
rity Assurance
In simple words, security assurance is confidence that a sys-
tem (or, generally speaking, a solution) meets its security
requirements. Mostly of interest to the solution’s users and
owners, this confidence is based on specific evidence col-
lected and evaluated through the application of assurance
techniques. The techniques consist of a) guidelines for de-
veloping security requirements, doing design, implementa-
tion, and operation/administration of the solution in ques-
tion, b) methods for gathering assurance-related evidence,
and c) evaluating the evidence. While some techniques, e.g.,
internal and external reviews, are employed across the whole
development and operational processes, others could
roughly be grouped according to the life cycle stages in
which they are applied.

Requirements Assurance
Requirements assurance methods are concerned with justify-
ing that the security requirements specification is complete,
consistent, and technically sound. This type of assurance is
commonly achieved through following requirements devel-
opment guidelines and (informally) analyzing the specifica-
tion. For example, ITSEC [14], a security evaluation criteria
used by some European countries, defines suitability analy-
sis that aids in justifying that the security functional re-
quirements are sufficient to mitigate the threats to the sys-
tem.

Design Assurance
Particular architectural and design principles combined with
guidelines on the content of design specification, as well as
informal and formal techniques for justifying that the design
meets the requirements, are employed for design security
assurance. Specifically, security assurance methodologies
call for modularity, layering, and security kernel [15], among
others, as architectural approaches that help to analyze and

8/29/04 Preproceedings version

evaluate system design in the context of security. Among
recommended design principles are the following (adopted
from [16]):

 least privilege. A subject should be given only those
privileges that it needs to complete its task.

 fail-safe defaults. Unless a subject is given explicit access
to an object, it should be denied access to that object. This
principle is a foundation of closed-world security policies.

 economy of mechanism. Security mechanisms should be as
simple as possible.

 complete mediation. All accesses to objects should be
checked to ensure that they are allowed.

 open design. Security of a mechanism should not depend
on the secrecy of its design or implementation.

 separation of privilege. System should not grant permis-
sion based on a single condition.

 least common mechanism. The mechanisms used to access
resources should not be shared to minimize the possibility
for attackers to exchange information via the shared
mechanisms.

 psychological acceptability. Security mechanisms should
not make the resource more difficult to access than if the
security mechanisms were not present.

To aid with assuring a design, the corresponding documenta-
tion is recommended to specify (informally, semi-formally,
or formally) security functions that enforce security in the
system, external interfaces through which protected re-
sources and services are accessed, and internal design that
defines an implementation of the external interfaces. The
primary purpose of the design security specification is to
support the validation of the design against the require-
ments.

Aside from formal techniques (e.g., HDM [17]) based on
proof and model checkers and employed almost exclusively
in high-assurance efforts, the following informal methods are
used for design validation:

 requirements tracing – identifying and documenting spe-
cific security requirements that are met by (parts of) the
design specification,

 informal correspondence – showing and documenting that
external functional specifications, internal design specifi-
cations, and implementation code are consistent with each
other, and

 informal arguments – helping to go beyond tracing design
into requirements and to get confidence in how well the
requirements are met by the design.

Implementation Assurance
In addition to internal and external reviews, requirements
testing and informal correspondence analysis, as well as for-
mal proof techniques, implementation assurance is achieved
by the following means:

a) Security testing, similarly to the testing of other system
properties and functionalities, can be functional or structural
(a.k.a., black and white box testing correspondently), as well

as unit and system (a.k.a., end-to-end) testing. Whereas test-
ing of application logic targets common cases and most used
functions of a system, successful security testing requires
more attention to the least used aspects of a system, patho-
logical cases, and boundary values of the input data.

b) Special type of security testing is focused on finding
known vulnerabilities in a solution. Although catching some
vulnerabilities can and commonly is automated [18-22],
others, such as those caused by errors in the design or im-
proper use of security libraries and services [23, 24], require
manual efforts of experts. Even experts, however, can fail to
test a security-critical element or execution path of a solu-
tion. Confidence in the completeness of security testing i s
gained through test depth analysis, which provides an argu-
ment that testing at all levels is sufficient. Such analysis
relies upon (and produces more of) test documentation,
which is also used for internal and external reviews.

c) High-level programming languages and tools designed
with security in mind and when used properly, can help gain
confidence in an implementation. Run-time environments,
JVM and .NET for instance, have been designed to help de-
velopers in avoiding such common for systems implemented
in vanilla C and C++ problems as buffer overflows, string
manipulation issues, memory handling problems. Although
systems running in these virtual machines are not automati-
cally free from vulnerabilities [25, 26], they are commonly
perceived to help with increasing implementation assurance.

d) The enforcement of implementation standards helps not
only with gaining confidence in the general quality of an
implementation but with security assurance as well. As a case
in point, defensive coding standards that target potential
vulnerabilities are starting to appear in the “trenches” [23].

e) Another common approach to increasing security assur-
ance calls for the use of powerful configuration management
tools with the capabilities of version control and change
tracking, automated integration procedures, product genera-
tion, and authorization of changes to a system. The latter
capability encourages the discrimination of developers on
the basis of which parts of the implementation can be modi-
fied by which developer(s). The discrimination is in the con-
flict with the philosophy of some widely used agile method-
ologies, such as eXtreme Programming (XP) [27], which
“preaches” collective ownership of the code where every de-
veloper should feel free to refactor any part of the system to
improve or simplify it.

The major source of confidence in the security of high-
assurance systems, as well as the main objective of many
official assurance efforts is security evaluation. The dominat-
ing security evaluation framework, Common Criteria (CC)
[8] describes security related functionality to be included
into a system, and assurance requirements on its develop-
ment. The requirements are organized into evaluation assur-
ance levels (EAL). The highest level, EAL7, requires formal
representation of the high-level design and formal proofs of
correspondence with the security requirements. CC certifica-
tion is legally required for military and some government
contracts. The CC, however, does not give any guidance on
how to fulfill them during the development process [12].

