
Trust, But Verify: An Approach for Realizing
Privacy-Preserving Web-Based Services∗

Wei Xu
Department of Computer Science

Stony Brook University
Stony Brook, NY 11790-4400

weixu@cs.sunysb.edu

V.N. Venkatakrishnan
Department of Computer Science

University of Illinois at Chicago
Chicago, IL 60607
venkat@cs.uic.edu

R. Sekar
Department of Computer Science

Stony Brook University
Stony Brook, NY 11790-4400

sekar@cs.sunysb.edu

I.V. Ramakrishnan
Department of Computer Science

Stony Brook University
Stony Brook, NY 11790-4400

ram@cs.sunysb.edu

ABSTRACT
The rapid growth of web applications has raised significant
concerns regarding personal information privacy. Currently,
such concerns have addressed by non-technical mechanisms
that involve privacy policy statements that were stated in
natural language. Such approaches have remained ineffec-
tive as they have involved users to understand the complex
phrasing of privacy policies which are verbose, difficult to
understand and sometimes inconsistent. In this paper, we
present a framework for empowering users with mechanisms
to control the privacy of their personal information when us-
ing it in web-based services. The novelty of our framework
is built upon a judicial combination of trust and verification,
and provides a technological basis for consumers and service
providers to verify compatibilities between privacy policies
and terms of usage. We describe our framework and re-
port our experiences of an implementation in the context of
Personal Information Assistants, a mechanism for building
composite web services from primitive services.

1. INTRODUCTION
The past decade has witnessed a phenomenal growth in the
number of users who routinely use the web to obtain in-
formation, conduct research, or carry out financial transac-
tions. While the ability of the web to provide customized
information and financial services has boosted personal and
business productivity, it has raised significant concerns re-
garding an individual’s privacy. The privacy concerns are
exacerbated further with the advent of more complex ser-

∗This research is supported by a grant from Computer As-
sociates and an ONR grant N000140110967.

vices (such as Orbitz.com) that involve multiple service providers,
as it raises the potential of personal information being shared
across these providers in ways that weren’t intended by the
owner of the information.

To illustrate the increased privacy concerns raised by com-
posite web-based services, consider a web-based service that
allows an individual to research and order over-the-counter
medication (or health supplements) at a low cost, while en-
suring that there are no adverse interactions based on the
individuals current prescription. Such a service will require
access to the individual’s personal medical history, and will
also require interaction with other entities such as web-
based medical references, discount pharmacies and credit-
card companies. Users may not want their personal health
history to be shared with discount pharmacies or credit card
companies. Similarly, users may not want their credit card
information to be shared with providers of free on-line in-
formation.

To address consumer concerns on information privacy, web-
based service providers have taken the steps to conspicu-
ously identify and display their policies regarding the stor-
age and use of personal user information. Unfortunately,
these steps have not translated into increased user confi-
dence in the privacy of their personal information. This is
due to a combination of two factors. The first concerns the
verbose and imprecise nature of privacy policies. Usually
these policies are stated in natural language, and challenge
a user with issues such as imprecise and ambiguous phras-
ing and legal terminology. Typically these policies resemble
the dreaded software End-User License Agreements (EU-
LAs). Users simply do not have the time or know-how to
understand or interpret the varying privacy policies across
different web sites. The second problem concerns the lack
of technological means to monitor conformance with stated
policies. This factor tends to remove any significant liability
on the part of service providers for all but intentional, large-
scale breach of their stated policies. As a result of these two
factors, we are witnessing a continued rapid erosion of user
confidence on the privacy of their personal information.



The potential of advanced web services will remain unreal-
ized unless user privacy concerns are addressed satisfactorily.
In this paper, we put forth our approach which is concerned
with the development of a practical framework in which:

• consumers can express their privacy policies in a formal
way,

• service providers can express their terms of usage using
a model,

• both providers and consumers have a technological ba-
sis to verify compatibility between policies and terms
of usage.

The technology behind the framework automates compati-
bility checking between policies and models. If there is an
incompatibility, the consumer is informed how she can re-
fine her policies in order to use the service. If she does not
want to change her policies in any way, the approach passes
on additional privacy requirements to the provider. Service
access can continue in case of incompatibilities only if the
consumer relaxes her policies, or the provider honors addi-
tional consumer privacy requirements.

The key idea behind our approach is a judicial combina-
tion of trust (on service providers to accurately specify use
of consumer data) and verification (for compatibility reso-
lution). This combination enables our approach to support
privacy preservation without requiring access to proprietary
code that implement the service. This is in contrast with ap-
proaches such as static analysis for information leaks, which
have relied on availability of source code that implements the
service. (Based on current trends, one can safely say that
disclosure the source code and the algorithms involved of any
business service is a rare possibility.) Other solutions such
as P3P [2] (Platform for Privacy Preferences) have aimed at
web resources such as cookies and files. P3P has not been
developed for web-based services handling personal infor-
mation, and consequently is limited in its ability to describe
properties such as data-flow within a web-service.

Note that we are not addressing the problem of malicious
service providers: there can be no technological solution
that provides protection from providers that intentionally
lie about their usage of consumer data. Even source-code
analysis techniques are of no avail here: these techniques
can ensure that a given piece of software satisfies a certain
policy, but in a distributed environment, consumers have
no authority (or even access) to the computers hosting the
service. Therefore, they cannot prevent a malicious service
provider from simply switching to a different piece of soft-
ware that violates these policies. As such, technology cannot
prevent malicious providers that misrepresent their terms of
usage, or provide incomplete information about it. Indeed,
our approach relies on the premise that due to market or so-
cietal forces, providers and consumers have already decided
to collaborate in order to preserve consumer privacy, and
that our approach simply provides a technological basis to
facilitate this collaboration. We therefore assume some non-
technological means (e.g., legal enforcement) can address the
problem of such malicious providers.

1.1 Overview of Approach
In our approach, consumers can express their privacy con-
cerns using privacy policies. These policies capture what
types of consumer data they are willing to share with which
service providers (“principals”). The type of consumer data
is identified using data labels. For instance, a password may
be classified as “secret,” a credit-card number as “highly
sensitive,” telephone number as “sensitive,” and the coun-
try of residence as “public.” It is possible that multiple
labels may be associated with the same data, each captur-
ing one aspect about its use. For instance, data regarding a
consumer’s prescriptions may have a label “health,” while a
tax data may be labeled “financial.” Based on these labels,
policies simply state that data with a certain label can (or
cannot) be made available to a certain principal. (In prac-
tice, other abstractions to simplify policy management may
be layered on this simple policy language, but those are not
important for this overview.)

When a consumer provides data to a service provider, she
wants to ensure that it is used in a manner consistent with
her policy. To verify if this will be the case, the consumer
requests a model of the service, which captures the manner
in which the service uses consumer data. These models cap-
ture how the information provided to the service can flow to
various principals. If the service does not use other services
in turn, then there is only one principal involved, namely
the service provider itself. If the provider uses other ser-
vices, the providers of these services will also need to be
represented in the model.

A model basically captures the flow of user data to various
principals. For instance, it may state that input I1 is given
to principal P1, while inputs I2 and I3 are given to principal
P2. A model may be incomplete in that it may not explicitly
name all of the principals that it interacts with. This is
permitted for two reasons. Some providers (e.g., comparison
shopping service provider) may interact with far too many
principals that it may not be practical to list them all in a
model. Second, the service provider may consider this sort
of information to be proprietary, and may not want to share
it with the consumer.

When a consumer receives the model, he can check if the
model is compatible with their policies. To do this, the con-
sumer labels each of the data items that he is providing as
input to the service. (In reality, labels will, in most cases,
be generated automatically by a user’s application.) In ad-
dition, the user provides his/her privacy policy. To perform
policy compliance check, the consumer’s application uses the
model to discover the labels on the data that will be sent to
different principals mentioned in the model. Then it checks
if the consumer’s policy allows data with these labels to be
sent to those principals. If the check succeeds, the appli-
cation forwards the request to the service provider. If the
policy is violated, there are several possibilities:

• The user looks for an alternate service provider that
satisfies his policies, or

• The user may relax their policy so that the service can
be used. In this case, the user is told the manner is
which the policy is being violated, e.g., zip code (a



data item with the label “address”) is being sent to
an Internet merchant through a service that provides
comparison shopping, or

• The violation may be forwarded to the provider to
see if the service can be provided without violating
consumer policy, e.g., the comparison shopping site
may be informed that zip code should not be sent to
any merchants. The comparison shopping site may
still be able to provide most of its services, e.g., provide
price quotes from those merchants that do not ask for
zip code.

1.2 Distinction from Previous Work.
A unique concern that our work addresses is to resolve in-
compatibilities between consumer policies and composite ser-
vice providers’ terms of use. Previous works were that ad-
dressed consumer privacy were simply concerned with policy
enforcement, with no regard for resolving such incompatibil-
ities that do frequently arise in practice.

Another benefit of our approach is that it does not require
producers or consumers to fully reveal their models or poli-
cies. In particular, producers may not name all the services
that they use in turn. They may use a wild-card in the
place of a principal name to denote that certain data may
be sent to undisclosed principals. In such a case, there will
be a violation of the consumer policy regarding that piece of
data. Rather than simply aborting the transaction at this
point, the consumer can pass on his policies regarding that
data to the service provider, who may be able to provide the
service by going to only those servers to which the consumer
permits this data item to be sent. Note that the consumer
has to reveal some additional data in this case, i.e., provide
part of its policy to service provider. But this is only the
part of the policy that concerns data being sent to undis-
closed providers. The rest of the policy is not disclosed to
the service provider.

In contrast with previous works, our work provides a “prac-
tical” and “framework” for solving this problem. A number
of previous research efforts have gone into privacy preser-
vation in software, but all of them have turned out to be
largely of theoretical value due to the following reasons:

• Overly conservative models of information flow that,
in practice, leads to the conclusion that every piece of
software leaks every sensitive information in its out-
puts, even though in reality, they do not leak any sig-
nificant information.

• Reliance on source-code analysis techniques, which re-
quire access to source code of all the services provided
by various web sites accessed by a composite service.

Overcoming these limitations requires a fundamental reeval-
uation of the assumptions made by previous works. By un-
dertaking such an evaluation, we have developed a new ap-
proach that makes a judicial combination of trust (on service
providers to accurately specify information flows) and veri-
fication (to check conformance of these flows with end-user
specified privacy policies) to avoid requirement of source-
code for remote services provided over the web.

A second key point about our approach is that it is con-
cerned with the development of a general framework, rather
than a specific end-product that can be integrated with ex-
isting web service technologies to yield a solution. To il-
lustrate its practicality and utility, we are implementing it
in the context of Personalized Information Agents (PIAs).
PIAs are intelligent agents that are capable of navigating
web sites to access the capabilities provided by the web site
without requiring explicit navigation actions by the user.
They provide a programmatic interface to access these ca-
pabilities. Thus, PIAs can be thought of as a “wrapper” that
layers over web sites that are intended for user by humans,
and in effect, turn them into web services. This factor en-
ables us to proceed with the implementation without having
to be constrained by the limited deployment of open web ser-
vices (as opposed to closed or restricted web services, where
the service may be proprietary, for internal use, or may re-
quire contractual agreements.)

1.3 Implementation Context
We are primarily concerned with composite web-based ser-
vices that provide advanced services to end-users based on
simpler services provided by multiple providers. We believe
that the greatest potential for advanced web-based services
lie in the context of such composite services; and that they
pose the greatest challenges in terms of privacy preservation.

Illustrative examples of composite web-based services in-
clude:

• Cheap, over-the-counter medicine procurement exam-
ple outlined earlier

• A service that makes a list of used Jaguar cars adver-
tised in New York City area, such that each car is a
1999 or later model, has good safety ratings, and its
selling price is less than its Blue Book value.

• An electronics purchase service that integrates research,
reviews, comparison shopping and so on into a single,
easy-to-use service.

• A travel arrangement service that can, in one step,
make all travel arrangements, including airline reser-
vation, hotel accommodation, local transportation ar-
rangements, and more.

Although the component services will be provided by PIAs
in our implementation, the overall approach is not tied to
the PIA model at all. Indeed, the framework can be applied
in more or less a straight-forward way if the PIAs were to be
replaced by web services, or vendor-provided software that
executes purely on the end-user’s computer.

This rest of the paper is organized as follows: Section 2
gives an overview of our framework architecture. Section 3
describes the composition infrastructure. We then discuss
our approach for preserving privacy in Section 4 (privacy
policies), Section 5 (service models), and Section 6 (privacy
policy enforcement).



Model

Access


API


Service

Access


API


User

Interface


API


Policy

Access


API


Service A


Privacy-Preserving

Composition Code


Web Sources


User


Privacy

Policy


Privacy-

Preserving

Composite


Service


Service B


Service C


Figure 1: Framework architecture

2. FRAMEWORK ARCHITECTURE
Figure 1 shows the architecture of our framework. The com-
ponent services are represented by ovals in the lower part of
the figure. Each such service accepts inputs from its caller,
then interacts with other entities such as web sites, and re-
turns requested results to the caller. These services are then
glued together using the composition code, resulting in a
composite service which typically provides richer function-
alities. User-defined privacy policies are also enforced in the
composite service to preserve users’ privacy.

Let us take a concrete example to give an idea about the
function of the framework. A detailed description of our
techniques employed for service composition and privacy
preservation are presented in the following sections.

Suppose that the composite service in Figure 1 is a travel
management service, which is composed from a JetBlue air
ticket booking service (Service A), a Hotels.com hotel reser-
vation service (Service B), and a MapQuest driving direction
service (Service C). Users can use the composite service as a
one-stop shop for their travel planning and reservations. To
use this service, a user first provides his travel information
(e.g. the origin/destination cities) and his/her payment in-
formation (e.g. the credit card number) to the composite
service. The composite service will invoke Service A with
the origin/destination addresses and payment information
to book an air ticket; then request Service B to reserve a
hotel near the destination address, and execute Service C to
retrieve the driving directions from the destination airport
to the reserved hotel.

To protect users’ privacy in the composite service, the user

needs to define his privacy policy to specify his/her own pri-
vacy concerns. One example privacy policy might be that
both origin/destination addresses and payment information
are allowed to be sent to JetBlue and Hotels.com, but the
destination address is the only piece of information that is
allowed to be sent to MapQuest. Each component service is
required to provide a model that describes how its input data
is handled by other principals that the service interacts with.
For instance, the model of Service A, the JetBlue air ticket
booking service, might be described as “origin/destination
addresses and payment information are sent to JetBlue”.
These models are used by the service composition code to
verify if the services violate the specified privacy policy be-
fore executing these services. Because data can flow from
one service to another service in the composition code, a
program transformation technique is developed to instru-
ment the composition code to track such information flows
as well as to perform policy verification checks.

We should point out that our framework provides a general
way of building new services based on services which have
already been built. This entails that the composite services
themselves can be also used as a component service to con-
struct another service. Our privacy preserving techniques
will continue to work.

3. SERVICE COMPOSITION
As the need for web services is growing quickly, rapid and ef-
fective web service development techniques become increas-
ingly important. As such a technique, service composition,
in which an advanced service can be built by composing a
number of smaller services that implement a relatively sim-
pler task, shows great potential by enabling service re-use.



3.1 Composition Language
We shall use some formalism to introduce the composition
framework. A natural formalism involves construing every
service as a function that maps a set of inputs to a set
of outputs. Each service may also interact with a number
of external entities such as web sites for accomplishing its
functionality. Let (i1, i2, i3, . . . , in)denote a set of inputs to
an individual service A, and the corresponding outputs be
(o1, o2, o3, . . . , om). Each of the individual inputs can come
from primitive types such as integer, real, string,, or
complex types such as array, record. Now each composi-
tion can be understood as a function that maps the outputs
of service A to inputs of service B.

The composition constructs are written in a simple, Java-like
imperative language that uses the above-mentioned primi-
tive and complex types. The language includes the following
constructs: basic arithmetic, logical expressions, facilities
for string matching and editing, loops and procedure calls.

Services are central to composition, and we define APIs for
accessing services in the composition code.

• Service. Each object of type Service represents an
component service, and this object can be constructed
from a service definition XML file. Service defines the
following methods:

– Service(String srv fname)

– int setInput(String name, Object value)

– Object getOutput(String name)

– int execute(String out fname)

3.2 Composition Example
Before giving the example of composition, we first briefly
introduce the WinAgent system, which is used in our imple-
mentation to create open wrapper services around existing
web sites.

3.2.1 WinAgent System
The WinAgent system [3] is for creating and executing Per-
sonal Information Assistants (PIAs) which can automati-
cally extract data of interest from web pages on behalf of
a user. More importantly the user can create and execute
PIAs using just a web browser. Essentially the user only
needs to highlight in the browser examples of data of inter-
est in a web page and the links to be followed and/or forms to
be filled to reach this page. From the highlighted examples
the system creates an PIA by “learning” navigation and ex-
traction expressions (called navigation map), and stores the
navigation map into an XML file. A PIA interpreter can
then interpret this navigation map by automatically navi-
gating to the web site, following specified links, filling out
forms and extracting the targeted data from the pages as
specified. The output of the interpreter is an XML docu-
ment with attribute names that were supplied by the user
when the PIA was created.

Below is the composition code snippet of the travel manage-
ment service example described in Section 2. The compo-
nent services are implemented as PIAs created by the WinA-
gent system.

Service jb = new Service(‘‘jetblue_service.xml’’);
jb.setInput(‘‘sourceCity’’, srcCity);
jb.setInput(‘‘destinationCity’’, destCity);
jb.setInput(‘‘creditCardNo’’, creditCardNo);
status = jb.execute(‘‘jetblue_out.xml’’);
price = jb.getOutput(‘‘price’’);
confirmNo = jb.getOutput(‘‘confirmNo’’);

Service htl = new Service(‘‘hotels_service.xml’’);
htl.setInput(‘‘address’’, destCity);
htl.setInput(‘‘creditCardNo’’, creditCardNo);
status = htl.execute(‘‘hotels_out.xml’’);
hotel = htl.getOutput(‘‘Hotel’’);

Service mq = new Serivce(‘‘mapquest_service.xml’’);
mq.setInput(‘‘fromAddress’’, destCity);
mq.setInput(‘‘toAddress’’, hotel);
status = mq.execute(‘‘mapquest_out.xml’’);
directions = mq.getOutput(‘‘Directions’’);

4. PRIVACY POLICIES
A privacy policy describes the privacy requirements of a user
by defining constraints on how his data could flow between
different entities. Because privacy concerns vary across users
and users may treat their privacy policies themselves as pri-
vate, privacy policies are defined by users and not part of
composite services in our framework. Policy specifications
are also neutral to services, i.e., they express a user’s privacy
concern independent of the services that might be executed.
We will discuss how to use such policies to preserve users’
privacy in Section 6.

4.1 Policy Language
To specify privacy policies, our policy language makes use
of an important concept, label, which is described as follows.

4.1.1 Labels
In our approach, a piece of user’s data, called an data item
can flow into various entities that are called principals. Ex-
amples of principals include services or web sites. Both data
items and principals are grouped using labels to ease policy
specification and management.

Labels are classified as data labels and principal labels, which
are used to group data and principals, respectively. Each la-
bel is a vector of label attributes, each representing a partic-
ular privacy-related aspect of data or principals. Each label
attribute can have a finite number of possible values. Con-
sumers are allowed to define any label attributes that can
best express their privacy requirements. In our implementa-
tion, for example, we define label attributes sensitivity level
and information category for data labels, and label attribute
trust level for principal labels.

The attribute sensitivity level describes how sensitive a piece
of data is, and the possible sensitivity levels can be highly
sensitive, sensitive, less sensitive, and public. For instance,
one would think that his credit card number and bank ac-
count number are secret; the credit card expiration date or
the bank name are sensitive; and data such as which country
he lives in are not sensitive. Then these data items can be
assigned to sensitivity levels highly sensitive, sensitive, and
less sensitive, respectively.

Data items can also be categorized into different informa-



tion categories. One might classify his social security num-
ber (SSN) and date-of-birth as personal information, his
credit card numbers as financial information, and his res-
idence street names and numbers as address information.
This is described by the label attribute information cate-
gory. Figure 2 presents an example of some possible data
labels based on sensitivity levels and information categories.

A user may trust different web sites or web services to var-
ious extent. A well established on-line retailer might be
deemed as “highly trusted”, a random web site might be
thought as “untrusted”, and a small known web site might
be treated as “less trusted”. The principal label attribute
trust level is used to express such users’ privacy preferences.

Using these label attributes, for example, sensitivity level
and information category, we can to express more accurate
privacy policies. Suppose a person may think that both
his SSN and credit card number are sensitive information.
When he is shopping in an on-line store, he may be willing
to give his credit card number to the store, but not his SSN
number. By classifying SSN and credit card number into
different categories, we can differentiate the information flow
requirements for these two applications.

A partial order is defined on each label attribute. The par-
tial order can be either natural order based (e.g. highly
sensitive ≤ sensitive) or subset based (e.g. {personal} ⊆
{personal, financial}). A complete lattice is defined on the
label based on these partial orders on label attributes. Based
on the label lattice definition, several operator functions are
defined to facilitate inter-label operations, such as comput-
ing the lower label for a given label, or computing the least
upper bound label of two labels.

4.1.2 Policy Rules
A user’s privacy policy consists of a set of policy rules. A
policy rule is of the form:

(data label X, principal label Y, action)

which either grants a flow of data with label X to a principal
with label Y when action is specified as “allow”, or restricts
such a flow when action is “deny”. As an example, if a user
does not want to release any sensitive financial information
to a less trusted site, he can specify a policy rule:

(< sensitive, financial >, < less trusted >, deny)

4.2 High-level Policy Management
Although it is possible for a user to define his privacy policy
by directly using the primitive data labels and principal la-
bels, it would be much more desirable that privacy policies
can be defined at a higher level, as this can greatly simplify
the policy definition process and make the privacy policy
management much easier.

One possible way of higher level privacy policy definition
is to use application domains (e.g. a shipping application,
or a banking application). We can first define application
domains , then map each application domain to its required
data labels. Privacy polices will then be defined in terms of
application domains and principal labels. For example, we
can define an application domain “shipping”, then principals

that handle shipping can be allowed to access all the data
required for complete the shipping transaction (e.g. all the
data belonging to the information category “Address”).

5. SERVICE MODELS
The model of a web service is built by the service producer
and encodes the data flows among its inputs, outputs, and
interacting principals. These models are used by the com-
posite service mainly in three ways:

• The model can be used to verify whether or not the
corresponding service respect the user’s privacy policy.

• In cases where policy violations are reported, the model
can be used to create a projection of the privacy pol-
icy and the policy projection can be passed along with
other inputs to the service. If possible, the service can
execute an alternative implementation which does not
violate the policy projection passed to it.

• The model can be used to infer the data flows from the
inputs of the corresponding service to the outputs of
the same service. This is of particular importance in
tracking data flows between component services where
outputs of one service may be passed as inputs to an-
other service.

• In situations where new services are composed from
existing composed services. 1

5.1 Model Language
A model defines two kinds of data flows which happen in a
service: from an input to an output, and from an input to a
principal. These data flows can be characterized using the
following constraint expressions (here we do not distinguish
principals and outputs):

• Data independence. To denote that the output Y does
not have any dependence on data stored in X (read
“Y is independent of X’s data”), we use the nota-
tion indep(Y,X). Since the model specifies all possible
flows within the service, for any input X and output
Y, indep(Y,X) is by default, true.

• Exact dependence. To denote the (exact) nature of
the relationship between Y and X, we use the nota-
tion depend(Y,X). In cases where more accurate de-
pendence data is available, one can use any expression
constructs available for expressing such dependences.
For instance Y := X mod 2 expresses the exact relation
that Y contains the last bit of X, and Y = X.

• Quantitative dependence. To denote that the output
Y does contain a certain quantity of data derived from
the input X, then the notation quant(Y,X,b) is used.
The third argument b tells how much data contained
in Y is derived from X, and it can be quantified in
many ways, e.g. the number of bits, or a percentage
and so on.

1When we use a composite service as a component service to
construct another new service, the model of the composite
service, which is required by the new service, is obtained
through the composition of the models of its component
services. We will not discuss how this composition is done in
this paper. However, it should be a straight-forward process.



Highly sensitive Sensitive less sensitive

Personal SSN, DoB age name,gender

Address apt. no. street no. city, zip code, state, country

Financial account no. routing no. have checking?

Payment CC no. CC exp date CC type

Health medical history height, weight

Figure 2: Data labels based on sensitivity levels and information categories.

5.2 Model Example
We present part of an example model for the JetBlue service
in the travel management composite service as follows:

[Input]
srcCity
destCity
creditCardNo

[Output]
price
confirmNo

[Principal]
Jetblue

[Model]
depend(Jetblue, srcCity)
depend(Jetblue, destCity)
depend(Jetblue, creditCardNo)
quant(price, srcCity, 0.5)
quant(price, destCity, 0.5)
quant(confirmNo, creditCardNo, 0.3)

6. PRIVACY POLICY ENFORCEMENT
6.1 Label Initialization
As we mentioned before, the consumer’s privacy policy spec-
ification is defined based on labels, and is independent of
actual data items and principals in services. So as the first
step to enforce the privacy policy for a service, all the con-
sumer input data items and all the involved principals in
the service need to be assigned to appropriate labels. This
is done before the service execution by a user-agent applica-
tion to ask the user or automatically query an incrementally
maintained labeling database.

During label initialization, we also need to initialize the
mapping from flow dependence types in a service to appro-
priate label operator functions. This mapping is very useful
for declassifying data labels during information propagation.
Let us assume that a service contains a flow from an input X
to an output Y with the dependence quant(0.3), where 0.3
indicates that only small amount information leaked from X
to Y. In this case the consumer is willing to declassify Y if
X is sensitive. By mapping quant(0.3) to the label operator
“lower”, Y will be declassified as “public” after executing
the service.

This label initialization process is the dynamic part of a
consumer’s privacy policy, and completes the whole privacy
policy specification. By making different label assignments
carefully according to services, the privacy policy specifica-
tion can remain unchanged while the consumer’s changing
privacy requirements can still be satisfied.

6.2 Privacy Policy Verification
Before a service is executed, its model is retrieved and veri-
fied against the privacy policy. First, appropriate labels are
assigned to the inputs and interacting principals of the ser-
vice. The labels are then propagated along the flows defined
in the model to principals. Depending the dependence types
of the flows, the corresponding label operator functions will
be applied to obtain the result labels. These result labels
and their associated principal labels will checked against the
set of rules specified in the privacy policy. If there is no vio-
lations, the service is allowed to execute. Otherwise, conflict
resolving mechanisms will be engaged.

The simplest way of resolving policy violations is to suspend
the execution of the service, or to relax the privacy policy
after the consumer being notified with the violating rules.
Alternately a projection of the privacy policy on the service
model can be created and passed along with other inputs
to the service. In the latter case, the service is trusted in
respecting the privacy policy passed to it. The service may
still have a successful execution if it can adapt its behavior
according to the policy.

6.3 Privacy Preserving in Composite Service
To preserve privacy in composite services where data may
flow between various component services, we use a pro-
gram transformation technique to transform the composi-
tion code. The transformation makes use of the models for
each component service, and inserts runtime updates and
checks into the transformed code to track information flows.
More details on the technique and proofs of correctness are
available in [11]. A summarized description of the transfor-
mation appears below.

• Variable definitions. An auxiliary variable is in-
serted for each program variable to hold the data la-
bel of the program variable runtime value. Because
principal labels won’t change during the service exe-
cution, a special global variable is inserted for holding
labels of principal which are obtained from the label
initializaiton.

• Statements. Both explicit and implicit information
flows are tracked in the transformed code. To track the
explicit information flows, when a program variable is
updated through an assignment, its label variable is
also updated through an inserted assignment in the
transformed code. On entering a conditional branch,
there is an implicit flow of information from the con-
ditional to all the variables assigned in both branches.
To compute this set of variables a static analysis is
used. The transformation then makes use of the result
of this analysis.



The analysis computes the following: for any expres-
sion e, var(e) is the set of all variables that are used
in the expression. The if S denotes a (possibly com-
pound) statement, the set upd(S) denotes all the vari-
ables that get assigned in the statement S. The analysis
computes a conservative upper bound in case a precise
estimation of the set of variables that are updated is
not possible.

Using the results of the analysis, the program is trans-
formed such that, on entering a conditional branch,
the value of the label variable corresponding to the
condition expression (associated with enclosing nested
conditionals) is stored in a variable called pclb that is
used to track implicit flows. For all assignments that
happen inside both branches, the label variables of the
left-hand side expressions are updated with the value
of the implicit flows, that is obtained by a disjunction
with pclb. Thus, pclb includes the combined effect of
the enclosing conditionals and loops. When a condi-
tional branch is exited, the value of pclb is restored
to its previous value that existed before entering the
branch.

• Services. Before executing a service, the service model
is checked against the privacy policy to prevent un-
wanted information leaks. The checking process is de-
scribed in 6.2. When the service execution completes,
the labels of the outputs are also computed by prop-
agating the input labels in the service model. These
labels are sent along with the outputs to other services
whenever those services use the outputs of this service
as their inputs.

Below we show an example of transforming part of the travel
management service composite code.

PrivacyPolicy policy = new
PrivacyPolicy(‘‘privacy-policy.xml’’);

...
UserInterface ui = new UserInterface();
ui.readInput(‘‘creditCardNo’’, creditCardNo);
ui.readInputLabel(‘‘creditCardNo’’, creditCardNo_lb);
...
Service jb = new Service(‘‘jetblue_service.xml’’);
IflowModel jb_model =

new IflowModel(‘‘jetblue_model.xml’’);
...
jb.setInput(‘‘creditCardNo’’, creditCardNo);
jb_model.setInput(‘‘creditCardNo’’, creditCardNo_lb);

if (jb_model.verifyPolicy(policy) != SUCCESS)
raise PolicyViolationException;
status = jb.execute(‘‘jetblue_out.xml’’);

price = jb.getOutput(‘‘price’’);
confirmNo = jb.getOutput(‘‘confirmNo’’);
price_lb = jb_model.getOutput(‘‘price’’);
confirmNo_lb = jb_model.getOutput(‘‘confirmNo’’);

7. RELATED WORK
Access control based approaches (including sandboxing [6]
approaches) do prevent information from leaking from a
given resource (such as a user’s computer or a web site),
but they do not address the problem of controlling access
to a piece of information once it leaves a given host with

the consent of the user. An approach that addresses privacy
of information must address the problem of control to be
effective. Other approaches such as cryptography, (and as-
sociated programs like OpenPGP [7]) have the same effect:
they are indispensable for making personal information truly
secretive, but do not address the problem of controlling in-
formation that is once passed on to another entity.

Anonymity [5] is often another approach taken for privacy
protection, where the data relating to a particular user is
“anonymized” to be free from any information that can be
associated with the user. Anonymity has been of partial suc-
cess in addressing passive threats to privacy, such as those
that However, anonymity is of limited use when perform-
ing transactions that inherently need disclosure of personal
information, such as making airline reservations or making
credit card purchases.

The security community has been investigating with pro-
gram analysis techniques for securing programs from such
information leaks [8, 12]. As mentioned in the introduction,
these approaches are not particularly suitable in the con-
text of services provided by various web sites, due to two
factors. The first their use of overly conservative notions
of information flow, that in practice leads to the conclusion
that every piece of software leaks every sensitive informa-
tion in its outputs, even though in reality, they do not leak
any significant information. Also, in order to be effective,
these approaches need the source code of the services pro-
vided by web sites accessed by the composite service, which
is difficult to achieve in practice.

Other solutions such as P3P [2] (Platform for Privacy Pref-
erences) have aimed at web resources such as cookies and
files. P3P has not been developed for web-based services
handling personal information, and consequently is limited
in its ability to describe data-flow within a web-service.

Several NSPW papers in the past have presented ideas on
information privacy issues. Gates and Slonim [4] presents
an approach where owners control access to the individual
information by being the sources of any information per-
taining to them. While this approach does place tighter
holds on information dissemination, it does not address the
orthogonal problem of automating privacy policy compati-
bility/checking of users and the entities they interact with.
Ashley, Powers and Schunter [1] presents an approach for
enterprises to deal with increasing consumer demands on
their personal information privacy. Finally, the inspiration
for this project comes from the MCC project, presented
in NSPW 2001 [9, 10]. While MCC addressed protection
of system resources while running untrusted programs, our
current framework addresses user privacy in the context of
composite web services. Our research in adopting the MCC
paradigm in the area of privacy has yielded the framework
and results presented in this paper.

8. CONCLUSIONS
In this paper, we have sketched a framework for preserving
privacy in web-based services. In our framework, consumers
can have facilities to specify their privacy concerns through
use of privacy policies, while service providers express their
terms of use (of private data) through models. The com-



patibilities between privacy policies and service models can
be verified during the time of service execution. We be-
lieve that a judicial combination of trust and verification is
needed to address information privacy issues in web services,
and the approach presented in this paper is a first step in
that direction.

9. REFERENCES
[1] P. Ashley, C. Powers, and M. Schunter. From privacy

promises to privacy management: a new approach for
enforcing privacy throughout an enterprise. In New
security paradigms Workshop, 2002.

[2] L. Cranor. The Platform for Privacy Preferences 1.1
(P3P1.1) Specification. W3C working draft, July 2004.

[3] A. Gandhre, P. Santhanagopalan, P. Singh,
D. Ramavat, I. Ramakrishnan, and H. Davulcu.
Creating and managing personal information
assistants via a web browser: The WinAgent
experience. In Workshop on Information Integration
on the Web, Toronto, August 2004.

[4] C. Gates and J. Slonim. Owner-controlled information.
In New security paradigms Workshop, 2003.

[5] I. Goldberg, D. Wagner, and E. Brewer. Privacy
enhancing technologies for the internet. In IEEE
COMPCON, 1997.

[6] I. Goldberg, D. Wagner, R. Thomas, and E. A.
Brewer. A secure environment for untrusted helper
applications: confining the wily hacker. In USENIX
Security Symposium, 1996.

[7] Openpgp proposed standarnd rfc 2440.
http://www.ietf.org/rfc/rfc2440.txt.

[8] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE J. Selected Areas in
Communications, 21(1), Jan. 2003.

[9] R. Sekar, C. Ramakrishnan, I. Ramakrishnan, and
S. Smolka. Model carrying code: A new paradigm for
mobile code security. In New Security Paradigms
Workshop (NSPW), 2001.

[10] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar,
and D. C. DuVarney. Model carrying code: A
practical approach for safe execution of untrusted
applications. In ACM Symposium on Operating
Systems Principles (SOSP), 2003.

[11] V.N. Venkatakrishnan. Enforcement Techniques for
Expressive Security Policies. PhD thesis, Stony Brook
University, 2004.

[12] D. Volpano, G. Smith, and C. Irvine. A sound type
system for secure flow analysis. Journal of Computer
Security (JCS), 4(3):167–187, 1996.



APPENDIX
A. FRAMEWORK XML AND API DEFINI-

TIONS
In this appendix, we provide a design of XML and API def-
initions that can be used to specify privacy policies and ser-
vice models, and facilitate the privacy policy enforcement.

A.1 Label
Both consumer data and service providers (“principals”) are
grouped using labels to ease policy specification and manage-
ment.

A.1.1 Label XML Definition
Labels are classified as data labels and principal labels, which
are used to group data and principals, respectively. Each la-
bel is a vector of label attributes, each representing a partic-
ular privacy-related aspect of data/principals (e.g. sensitiv-
ity level, or information category). Each label attribute can
have a finite number of possible values (e.g. secret, sensi-
tive, public), and a partial order (either natural-order-based
or subset-based) is defined over these attribute values.

The definitions of label attributes and the composition of
the label vectors are specified by consumers as the first part
of an XML policy specification, label definition or labeldef:

• labelattr: Defines a label attribute.

– name: Name of the label attribute (e.g. sensitiv-
ity level).

– values: A list of possible label value’s (e.g. secret,
sensitive, public).

– ordering: Defines the ordertype and partial or-
der of label values (order). Two kinds of order-
type can be specified: natural-order-based order-
ing and subset-based ordering.

– opmapping: Defines the mapping (opmap) be-
tween dependence types (dependence, used in ser-
vice models) and label operators (labelop). There
are five predefined label operators:

∗ id(l): the identity operator and always returns
l

∗ lower(l): returns a smaller/lower label value
than l

∗ upper(l): returns a bigger/higher label value
than l

∗ glb(l1, l2): return the greatest-lower-bound la-
bel value of l1 and l2

∗ lub(l1, l2): return the least-upper-bound label
value of l1 and l2

The label results after applying the above operators
on given label values also depend on the partial
order defined in ordering.

• labelvector: Specifies which label attributes used in a
label vector.

A.1.2 Label Java API
Data labels and principal labels are represented as objects
of DataLabel and PrincipalLabel, which are simply con-
tainer classes (i.e. they are only used to store any kinds of

user-defined label vectors). Actual operations on labels are
defined in DataLabelOp and PrincipalLabelOp, which
will be instantiated from the above XML label definition.
Both DataLabelOp and PrincipalLabelOp are data mem-
bers of PrivacyPolicy due to the fact that the label defi-
nition is part of privacy policy specification.

The following APIs are defined in DataLabelOp (Similar
APIs are defined in PrincipalLabelOp, too):

• DataLabel lower(DataLabel l): Returns a label
lower than l

• DataLabel upper(DataLabel l): Returns a label
higher than l

• DataLabel leastUpperBound(DataLabel l1, Data-
Label l2): Returns the least upper bound of labels l1
and l2.

• DataLabel greatestLowerBound(DataLabel l1, Data-
Label l2): Returns the greatest lower bound of labels
l1 and l2.

• DataLabel dependant(DataLabel l, Dependence
d): Returns the return label after applying to l the
operation corresponding to the dependence type d.

A.1.3 Label Initialization
As part of consumer’s privacy policy, initially labels need
to be assigned to input data and involved principals in a
service. This is done in the beginning of service execution
by asking the user or querying an incrementally maintained
grouping database. After initialization, data label values
are stored in the data label variables associated with each
program variable, while principal label values are kept in
a database PrincipalLabelDB for later queries (reason:
principal labels won’t change during the execution).

The following APIs are defined in PrincipalLabelDB:

• int setPrincipalLabel(String name, PrincipalLa-
bel l): Set the label of the principal name to l.

• PrincipalLabel getPrincipalLabel(String name):
Returns the label of the principal name.

A.2 Privacy Policy
Consumers can express their privacy concerns using privacy
policies. These policies capture what types of consumer data
they are willing to share with which service providers. Policy
definitions are based on labels.

A.2.1 Policy XML Definition
There are two parts in an XML policy file (privacypolicy as
the root element): label definitions (labeldef), as described
previously, and policy rules (policydef).

In policy rule specification, each rule either grants a flow of
data with label X to a principal with label Y (e.g. ((secret,
payment), (trusted), allow)), or restricts such a flow (e.g.
((secret, payment), (untrusted), deny)).



A.2.2 Policy Java API
A privacy policy is represented as an object of PrivacyPol-
icy. The following APIs are defined in PrivacyPolicy:

• PrivacyPolicy(String xml file): Constructs a Pri-
vacyPolicy object from the XML policy specification
file xml file.

• int checkPolicy(IflowModel model): Checks whether
or not the given service model respects this privacy pol-
icy.

• PrivacyPolicy projectPolicy(IflowModel model):
Returns part of this privacy policy that only concerns
data being sent to the service represented by model.

• DataLabelOp getDataLabelOp(): Returns the Data-
LabelOp object.

• PrincipalLabelOp getPrincipalLabelOp(): Returns
the PrincipalLabelOp object.

A.3 Service Model
A service model captures the manner in which the service
uses consumer data. Specifically, these models capture how
the information provided to the service can flow to various
principals.

A.3.1 Model XML Definition
An XML service model (iflowmodel as the root element)
defines the inputs and outputs of the service, the principals
which the service interacts with, and the information flows
from inputs to principals and outputs.

• inputdef: Defines a list of input’s. Each input is
described by its name, datatype, and other attributes.

• outputdef: Defines a list of output’s. Each output is
described by its name, datatype, and other attributes.

• principaldef: Defines a list of principal’s. Each prin-
cipal is described by its name, URL, and other at-
tributes.

• flowdef: Defines a list of flow’s. Each flow is described
by its source, destination, the type of flow (either In-
putOutput or InputPrincipal), and the type of depen-
dence. The source of a flow is always an input, while
the destination of a flow can be an output or a princi-
pal. Two types of dependence can be specified:

– exact: Defines an exact dependence between the
flow source and destination. (e.g. an input is di-
rectly sent to a principal, or assigned to an output).

– quant(n): Defines a quantitative dependence be-
tween the flow source and destination, where n de-
notes the percentage of the source information sent
to the destination.

A.3.2 Model Java API
A service model is represented as an object of class Iflow-
Model. The following APIs are defined:

• IflowModel(String xml file): Constructs an Iflow-
Model object from the XML model specification file
xml file.

• int setInputLabel(String name, DataLabel la-
bel): Set the label of the input identified by name to
label.

• DataLabel getOutputLabel(String name): Get
the label value of the output identified by name.

• Vector getAllPrincipals(): Returns all principals
defined in the model. It is useful for projectPolicy()
in PrivacyPolicy.

• int setPrincipalLabel(String name, PrincipalLa-
bel label): Set the label of the principal identified by
name to label. It is useful for checkPolicy() in Pri-
vacyPolicy.

A.4 Transformation
Individual, simpler services can be “glued” together as a
composite service using composition code. To ensure that
the composite service preserves privacy, the composition
code is transformed to insert code for information flow track-
ing (ie. label propagation) and privacy policy checking.

• Variable definitions.

– A PrivacyPolicy variable is inserted to store the
user’s privacy policy (defined in a XML file).

– An IflowModel variable is inserted for each com-
ponent service to store its information flow model
(defined in a XML file).

– An auxiliary variable is inserted for each program
variable to hold its runtime data label.

– A PrincipalLabelDB variables is inserted to hold
labels of all principals used by the composite ser-
vice.

• Statements. Both explicit and implicit information
flows need to be tracked and data labels are updated
accordingly.

• Services.

– Service inputs. When passing variables as inputs
to a service, the labels of these variables are also
passed as inputs to the model of the service. The
principals involved in the service are labelled using
corresponding labels in PrincipalLabelDB.

– Service invocations. Before executing a service, the
model of the service is checked against the privacy
policy to prevent unwanted information flows.

– Service outputs. After the the execution of a service
the labels of the outputs are updated by querying
the service model.


