
Detecting Denial-of-Service Attacks against Wireless Sensor Networks∗

Steven Cheung Bruno Dutertre Ulf Lindqvist
Computer Science Laboratory

SRI International
Menlo Park, CA 94025

{steven.cheung,bruno.dutertre,ulf.lindqvist}@sri.com

April 21, 2005

Abstract

Because of resource and cost constraints, and of deployment scenarios in which a number
of sensor nodes are spread in a large geographic region and are unattended, wireless sensor
networks are especially vulnerable to denial-of-service (DoS) attacks. Moreover, sensor nodes
are also used as routers to forward packets from other nodes. Compromised sensor nodes may
be able to cause network-wide DoS by dropping, corrupting, and misrouting packets. This
paper presents novel, lightweight approaches for detecting DoS caused by physical attacks and
disruptive routers.

Keywords: Sensor networks, denial of service, intrusion detection

1 Introduction

Wireless sensor networks have certain characteristics that make them especially vulnerable to
denial-of-service (DoS) attacks:

Resource constraints: Sensor nodes are typically resource constrained. In particular, sensor
nodes may run on batteries. When the energy reserve is depleted, the sensor nodes may
be rendered useless. An attack vector is to drain the energy reserve of sensor nodes. Also,
limited memory, computation power, energy reserve, and network bandwidth of sensor nodes
prevent resource-intensive security techniques from being employed in sensor networks.

Exposure: In a wired environment, network infrastructure components such as routers are dedi-
cated nodes and are usually physically inaccessible to attackers. In a sensor network, nodes
may be spread across a large geographic region, and may be in remote locations that are more
likely to be subjected to physical attacks.

∗This research is sponsored by DARPA under contract number F30602-02-C-0212 and National Science Foundation
under contract number CNS-0434997. The views herein are those of the author and do not necessarily reflect the
views of the supporting agencies.

1



Collaborative processing: Typically, the radios of sensor nodes are of short range and can only
communicate directly with other nodes in the vicinity. Multihop routing is needed for sensor
networks of nontrivial size. Sensor nodes are not only used as data sources, but also used as
routers to forward messages from other nodes. A compromised sensor node may thus be able
to affect communication of the entire sensor network.

Wood’s and Stankovic’s paper [14] presents an overview of the DoS threats against sensor
networks such as signal jamming. This paper examines and presents techniques to detect the
following two DoS attacks: physically attacking or capturing sensor nodes to cause denial of service,
and compromising sensor nodes to disrupt routing.

Section 2 presents a cooperative network monitoring approach for detecting DoS caused by phys-
ical attacks. Because of the exposure of sensor nodes, sensor networks are particularly vulnerable
to physical attacks. Tamperproofing sensor nodes may not be feasible in many applications because
of cost, size, and weight constraints. Our approach involves mutual monitoring among neighbor
nodes to detect these attacks, and is resource efficient because it requires only local communication
and computation among neighbor nodes.

Section 3 presents a lightweight scheme for detecting disruptive routers in sensor networks.
These routers can prevent packets from reaching their destinations intact. A main challenge for
disruptive router detection in sensor networks is to address the severe resource constraints for the
sensor nodes. Our scheme is based on probabilistically sending “hints”, which contain packet digests
and local routing information, via different paths (with respect to the ones used for routing the
corresponding packets) to reach the destination. The distinguishing characteristics of our scheme
include its low runtime overhead for routers—which make it applicable to sensor networks—and its
ability to detect various routing misbehavior such as dropping, misrouting, or corrupting packets.

2 Detecting DoS caused by Physical Attacks

Because sensor nodes may be deployed over a large geographic region, and may be unattended,
the threats of physical security are more critical in sensor networks than in conventional wired
networks. Moreover, in many applications, because of the size, cost, and weight constraints for
sensor nodes, and the need for the sensor nodes to be located close to the monitored phenomena,
it is virtually impossible to deploy strong tamperproof measures such as enclosing sensor nodes in
a vault with thick steel walls.

Examples of physical attacks include turning off sensor nodes, moving sensor nodes to a distant
location, and destroying sensor nodes using physical, electrical, or chemical means. An adversary
may also extract sensitive information from sensor nodes such as keying materials, or replace
programs or data stored in sensor nodes with incorrect ones.

Consider a scenario in which an adversary attempts to disable a sensor network by substituting
sensor nodes with nodes that exhibit the same behavior except that they generate incorrect sensor
reports. We argue that it is difficult, if not impossible, to prevent this kind of attack. Although
one may set up a cryptographic key between a sensor node and the base station for message
authentication, the adversary may first compromise the sensor node to obtain its key and disable

2



it, and then instrument a substitute node with the key to emulate the original sensor node. Because
the adversary may perform machining to remove coating materials and use imprinting techniques to
retain the content of RAM after powerdown [13], protecting the confidentiality of keying materials
stored in sensor nodes for an extended period of time may not be feasible. In the following, we
present a network monitoring approach for detecting these attacks.

2.1 A Mutual Monitoring Approach

In this approach, called NeighborWatch, sensor nodes cooperatively monitor each other for avail-
ability. The basic idea is that every sensor node first establishes neighborhood relationships with
other nodes; two nodes are neighbors if there exists a high-quality bidirectional communication
link between them. After that, sensor nodes exchange authenticated heartbeat messages with their
neighbors. If a node fails to receive (fresh) heartbeats from one of its neighbors for a specified period
of time, say td, it will generate an alert message and send it to the base station (or a designated
node), which performs alert correlation and response.1 This scheme has three variants, depending
on the key(s) used for message authentication:

Group keying: All nodes use a shared secret key to authenticate messages from other nodes, a
keying scheme used in TinySec [8].

Node-specific keying: Every sensor node generates a secret (symmetric) key and shares it with
its neighbors.

Link-specific keying: Every sensor node performs key distribution to set up a secret key to secure
communication with each of its neighbors, for example, using [2, 4, 5]. In other words, every
link between two neighbor nodes has its own key.

We assume that sensor nodes are equipped with certain tamper-resistant security measures
such as coatings to prevent probing attacks [13]. An adversary who wants to extract the keying
materials stored on a sensor node will need to destroy or disassemble the node, and it will take at
least ta time units to bring up a substitute node with the keying materials. Moreover, the sensing
and other functions pertaining to the sensor node will not be performed during this time interval.
We also assume that the detection time interval td is less than ta.

2.2 Discussion

Let us consider a series of physical attacks in the increasing order of sophistication. The first attack,
also described in the abovementioned scenario, involves destroying sensor nodes and replacing
them with nodes that generate incorrect sensor reports. This attack can be countered by the
NeighborWatch scheme because the sensor reports generated by the substitute nodes (without the
keys to generate authenticated heartbeat messages) will not be accepted by the other nodes in the
sensor network. The adversary needs to attack all nodes in the connected subnet of the sensor
network, or the neighbors of the attacked nodes will detect the attack and generate an alert.

1An example automated response action is to distribute a new group key to nodes other than the detected missing
ones to secure future communication for the sensor network.

3



In the second attack, the adversary captures a sensor node, extracts the keying data stored in
the node, and instruments substitute nodes with the keying data. When a set of sensor nodes is
attacked, the attack is detected and reported by the neighbors of these nodes that are intact, if
td < ta. A strategy to extend the attack time window without triggering an alert is to take out
nodes in sequence: After attacking a node, say v, the adversary will have td before its neighbors
will detect the missing node. If the adversary can take out these neighbors before td, these nodes
will not be able to generate an alert. In general, the adversary may extend the attack time window
to (k + 1)td if she could take out all nodes that are h hops from v, where 1 ≤ h < k, htd time units
after v is attacked.

Depending on the topology of the sensor network and the relative values of td and ta, the group
keying variant may be able to detect the attack. Consider a linear network topology in which
each node vi has two neighbors, namely vi−1 and vi+1, except the first and last nodes. (A similar
topology is a ring in which all nodes have two neighbors.) Assume that ta < (j+1)td. The adversary
can thus prevent the group keying variant of NeighborWatch from generating alerts by attacking
vi to steal the group key at time t, and replacing vi−j and vi+j with substitute nodes equipped
with the group key at time t + ta. In a denser sensor network in which every node is watched by
a number of other nodes, it may be more difficult to perform this attack. For example, consider a
sensor network that has a two-dimensional grid topology in which there is a node at (x, y), where
x and y are integers. Moreover, Node v(x,y) can communicate directly with eight neighbors v(r,c),
where r ∈ {x − 1, x, x + 1}, c ∈ {y − 1, y, y + 1}, and (r, c) 6= (x, y). In this topology, the number
of nodes that the adversary needs to attack is proportional to the square of ta/td. The second
attack is effective against the node-specific keying variant if ta < 2td, because compromising a node
may reveal the keys used by its neighbors, and enables the adversary to deploy substitute nodes to
emulate them. The link-specific keying scheme is the most secure among the three variants because
compromising a node reveals the keying data only for that node. However, there are additional
communication costs associated with the link-specific variant: for the other two variants, a node
can generate an authenticate heartbeat message and broadcast it to its neighbors. On the other
hand, for the link-specific keying variant, a node needs to generate and send a different heartbeat
message to each of its neighbors.

3 Detecting Disruptive Routers in Sensor Networks

To detect disruptive nodes that exhibit various routing misbehaviors, such as maliciously dropping
packets and unauthorized packet modification, which may cause denial of service, we present a
“hint-based” approach. In this approach, as a packet traverses the network from its source to the
base station (typically, a significantly more resourceful node than the sensors), the source and every
intermediate node probabilistically send a hint of the packet to the destination. Moreover, the hint
specifies a set of nodes that should not be used for routing the hint. The basic idea is that if the
next-hop sensor for the sensor packet is N (as determined by the underlying routing protocol), the
hint should not be routed through N . If N misbehaves, it may not affect both the sensor packet
and the hint. Based on the packets and hints received, the base station may detect misbehaving
nodes in the network. Our approach is lightweight for routing nodes, and thus it is particularly

4



applicable to sensor networks, whose nodes are typically resource constrained.

3.1 Assumptions

1. Communication pattern: The communication pattern involves sensors (sources) sending pack-
ets to a base station (sink).

2. Powerful base station: We assume that the base station is a resource-rich node. For example,
a base station may be a regular notebook computer.

3. Key distribution: Every node shares a (secret) symmetric key with the base station.

4. Alternate path: There is no node in the network whose removal can disconnect the network
(i.e., no cut vertex).

5. Known distance from base station: The base station knows the distance between any sensor
and itself. (Depending on the routing protocol used, this information may be computed from
the routing updates.)

6. Bounded message delay: The total delay (including propagation, queueing, and processing
delays) for a packet to travel from its source to the sink is bounded by α. (Thus, when the
sink receives a sensor or hint packet, it can compute the time that it can safely discard the
packet.)

3.2 Hint-based Detection

Figure 1 depicts an example of our approach: Sensor A forwards a packet p to the base station S,
and N is the next-hop sensor (as determined by the underlying routing protocol). With a specified
probability, A will also send a hint h, which will not be routed through N . Thus, if the node N
misbehaves, it cannot affect both the packet and the hint. If S receives h but not p, it may increase
the suspicion that N is a disruptive router.

Base stationN

A

h

p

S

Figure 1: Hint-based Detection Approach: An Example

5



When a packet traverses the network from its source to the base station, the source and every
intermediate sensor may probabilistically send a hint to the base station. The hint contains (1) a
digest of the packet, used by the destination to verify whether the corresponding packet reaches
its destination and to verify its integrity, (2) its local routing information such as the next-hop
router, and (3) a set of nodes that should not be used for routing the hint (in the protocol we
will describe in this section, the set contains just the next-hop neighbor). The base station may
increase the suspicion that a node X is misbehaving if (1) the base station receives a hint but not
the corresponding packet, and (2) X is in the exclusion list of the hint. Based on the packets and
the hints received, the base station detects and locates misbehaving routing nodes.

3.3 Hint Generation

Suppose the next hop for sending a packet from a node A to the base station (sink) is N . When
node A receives a packet p, A will forward it to N . Moreover, if N is not the base station, then
A, with probability δ, will send an authenticated hint to a neighbor other than N . The purpose of
the hint is to test whether N is a misbehaving node. The hint contains the identities of A and N ,
and a packet identifier sid. The structure of the hint is

〈A,N, sidp, Gkas(A,N, sidp)〉,

where G is a keyed one-way hash function, and kas is a shared symmetric key between A and the
base station S. Note that a node does not generate a hint for a hint that it receives.

The packet identifier is used to associate the hint with the packet p. In the simplest case, one
may combine the source node id and a sequence number as the packet identifier. In this paper, we do
not assume that packets have explicit fields for the sender’s id and the sequence number, which may
not be present in the message format of existing systems. Instead, we use a shared cryptographic
hash function H to generate packet identifiers. Specifically, A uses the concatenation of seqAN and
H(p) as the packet identifier for packet p, where seqAN is a sequence number denoting the number
of packets forwarded from A to N . Note that instead of using seqAN , one may use a random
number to serve as a nonce to counter replay attacks.

To prevent a malicious node from acting only on packets that do not have an associated hint to
avoid detection, we use two techniques to obfuscate the association: encryption and random time
delay. When a node sends a hint, it encrypts the packet identifier using a secret key it shares with
the base station. Thus, the only nodes that can link the hint and the packet using the content of
the hint are the hint-generating node and the base station. Moreover, a random delay is introduced
between the sending times of a packet and the associated hint. This is used to prevent a malicious
node from inferring the relationship between the packet and the hint by using its send time.

3.4 Hint Routing

If a misbehaving node can affect both a packet and the corresponding hints, one may not be able to
detect it. In our protocol, hints are sent using a special communication primitive sendx(D,L, p),
where D is the destination, L is a set of intermediate nodes to avoid in the route, and p is the
packet to send. For our hint-based detection protocol, A sends the hint h to the base station S using

6



sendx(S, {N}, h). For certain routing protocols, realizing sendx() requires no or minor adaptation
of the underlying routing protocol. We will describe several such algorithms and the adaptation
needed, if any.

For constraint-based routing [11], one may specify node exclusion using a route constraint.
When route discovery is performed to find a path from Node A to the base station, the route
constraint for excluding node N will be used to guide the search process.

In [6], multipaths are used to increase the robustness of routing. In particular, the authors
present heuristics for constructing disjoint paths and braided paths (which are partially disjoint
paths) for directed diffusion-type routing schemes. These multipaths may be used to realize sendx()
by routing p through N and routing h through an alternate path.

For routing protocols such as [7], a data sink broadcasts a beacon to its direct neighbors,
which will in turn broadcast it to their neighbors, and so on. Each node will compute its “levels”
(measured by the number of hops from the sink). A level-(k+1) node may send a packet to the
sink by forwarding it to a level-k node, or by forwarding it to its sibling (i.e., another level-(k+1)
neighbor node). The node that receives the packet will then repeat the same procedure until the
packet reaches its destination. These routing protocols can be adapted to implement hint routing.
Assume that A is in level-(k+1), and its next-hop neighbor N is in level k. If A has two level-k
neighbors, A can forward p to N and forward h to the other level-k node with an attached constraint
that it should not route h to N . Otherwise, A may probabilistically forward h to a level-(k+1) node
with an attached constraint that it should not forward the packet to N . That node will then either
forward h to a level-k node that is not N or probabilistically forward it to another level-(k+1)
neighbor node. A “time-to-live” counter may be attached to the hint packet to ensure that it will
either reach its destination or be dropped after a specified number of hops.

3.5 Diagnosis

Based on the packets and hints received, the base station attempts to detect and to locate misbe-
having routers. Here, we present a diagnosis procedure to identify misbehaving routers in sensor
networks.

The base station should never rely on single packets or single sources to draw a conclusion. First,
packets may be lost because of a benign cause such as collisions and traffic congestion. Second, it
is possible that a malicious node may attempt to “frame” a good node X by just sending a hint
with X in the exclusion list. Third, a packet may be discarded by any nodes on the path. If the
base station receives a hint sent by A (for testing N) but not the corresponding packet, it may be
caused by any node on the path from N to the base station. As a result, the base station should
depend on multiple tests/events and multiple sources to detect and to locate misbehaving nodes.

The base station constructs a directed graph, called accusation graph, G = (V,E), where V
corresponds to the set of sensors in the network, and an edge (P,Q) ∈ E corresponds to an
accusation from P to Q. The base station computes these accusations based on the packets it
received during the last period.

Let P be a sensor node in the network. Suppose the base station received n2 distinct hints sent
by P for testing Q (i.e., P forwarded the corresponding packets to Q), and received n1 distinct

7



packets that match those hints. Two thresholds, t1 and t2, define the edges of an accusation graph.
The base station creates an edge (P,Q) in G if the following conditions are met:

• (n2 − n1) > t1

• n1/n2 < t2

Threshold t1 ensures that the difference between the number of hints and the number of correspond-
ing packets is considered “significant” enough for disruptive node detection. Threshold t2 concerns
what the “acceptable” ratio on the number of hints and the corresponding packets pertaining to a
node that can reach the sink is.

Based on the accusation graph, the diagnosis procedure computes a set of suspicious nodes Vs.
Specifically, Vs is the set of nodes that have an in-degree > tacc in G, where tacc is a threshold
number of accusations needed to infer that a node is a disruptive node. We choose tacc as the
maximum number of disruptive routing nodes in the network plus one to prevent the disruptive
nodes from conspiring to cause a good node to be misclassified as bad. A good node may appear in
Vs because there exists a disruptive node downstream (i.e., closer to the sink). Our protocol avoids
that problem by finding a node in Vs that is closest to the base station, and outputs that node as
a disruptive routing node.

3.6 Simulation

To study the detection and false positive rates of the hint-based detection scheme, we have con-
ducted simulations using JProwler [12], a sensor network simulation package.

The simulation consists of the following steps:

1. Every node exchanges messages with other nodes to identify its neighbors.

2. The base station initiates a flooding procedure to compute the distances between the base
station and every node in the network. In this step, the base station broadcasts a message
advertising to its neighbors that it is zero hop from the base station. When its neighbors
receive this message, they increment the hop count and advertise to their neighbors that they
are one hop from the base station, and so on.

3. A set of c source nodes is selected randomly from the network. Each source sends a report
to the base station at a fixed period p. After r reports are sent, the source stops.

4. When a normal node receives a sensor report, it selects a next-hop neighbor probabilistically
and with probability δ sends a hint to the sink. Because communication links in sensor
networks tend to be lossy, an “implicit acknowledgement” scheme is used to increase routing
robustness. When a node A forwards a packet to a node B, A monitors B’s activities to
see if B forwards the packet; if not, A retransmits the packet to B (up to a retransmission
threshold). We call the disruptive nodes in the network “bad” nodes. When a bad node
receives a packet, the node drops it instead of forwarding it to the sink.

8



t1 TP FN FP TN
25 0 0 4 96
50 0 0 2 98
75 0 0 0 100
100 0 0 0 100
125 0 0 0 100

t1 TP FN FP TN
25 53 0 1 46
50 49 3 2 46
75 47 8 2 43
100 32 25 3 40
125 25 34 0 41

Table 1: Varying t1: No bad node (left) and one bad node (right)

5. Based on the sensor reports and hints received, the sink performs the diagnosis procedure
described in Section 3.5 to identify a bad node.

If the protocol incorrectly (correctly respectively) identifies a node as bad, we call this a false
positive (FP) (true positive (TP) respectively). If the bad node(s) removes more than a fraction
f of the sensor reports, and the protocol cannot identify a bad node, we call this a false negative
(FN). If there is no bad node in the network, or the fraction of the sensor reports removed by the
bad nodes is less than f , and the hint-based protocol does not identify any node as bad, we call
this a true negative (TN).

We have conducted a series of experiments to study the effects of varying t1, p, and the number
of bad nodes in the network. In the experiments, we use a sensor network of size 100. The network
lives in a 100 × 100 grid, and consists of the sink, 10 nodes that generate sensor reports and act
as routers, 0 to 4 bad nodes, and 95 to 99 nodes that act as routers only. The sink is located at
coordinate (10,10). Moreover, the bad nodes, if they exist, are placed at the following coordinates:
the first bad node at (25,25), the second at (50,50), the third at (25,50), and the fourth at (50,25).
The rest of the nodes are randomly distributed in the grid.

3.6.1 Varying t1

This experiment examines the effects of changing the threshold t1. Recall that t1 corresponds to a
threshold for the difference between the number of hints sent by a node for diagnosing a particular
neighbor that reach the sink and the number of corresponding packets reaching the sink intact.
In this experiment, we use the following parameters2: r=1000, p=2500 ms, c=10, t2=0.5, f=10%,
δ=5%. For each value of t1, ranging from 25 to 125, we performed the experiment 100 times for
the cases in which there is no bad node and one bad node, respectively. The simulation results are
summarized in Table 1. The results agree with the intuition that one may achieve a higher true
positive rate by selecting a small value for t1. But, choosing a small value for t1 might cause more
false positives.

2Recall that r denotes the number of reports sent by each report-generating sensor node, p the period for re-
port generation, c the number of sensors that generate reports, t2 a diagnosis threshold for the ratio of hints and
corresponding packets received by the sink for diagnosing a node, f the fraction the reports removed by bad nodes
considered to be significant for the purpose of disruptive router detection, and δ the probability for sending a hint
when a sensor node receives a (non-hint) packet.

9



p(ms) TP FN FP TN
250 0 0 0 100
500 0 0 0 100
1000 0 0 1 99
2000 0 0 1 99
5000 0 0 0 100

p(ms) TP FN FP TN
250 24 15 0 61
500 22 6 2 70
1000 36 7 2 55
2000 41 2 3 54
5000 47 4 0 49

Table 2: Varying p: No bad node (left) and one bad node (right)

Num bad nodes TP FN FP TN
0 0 0 1 99
1 36 7 2 55
2 42 16 0 42
3 41 42 3 14
4 47 46 1 6

Table 3: Varying the number of bad nodes

3.6.2 Varying p

This experiment studies the effect of changing the period of sensor report generation. The following
values are used for this experiment: r=1000, c=10, t1=50, t2=0.5, f=10%, δ=5%. For each value
of p, ranging from 250 ms to 5000 ms, we performed the experiment 100 times for the cases
in which there is no bad node and one bad node, respectively. The results are summarized in
Table 2. A higher report generation rate may increase the probability of packet collision and
network congestion. Thus, the smaller the value of p, the more difficult it is to correctly detect bad
nodes.

3.6.3 Varying the number of bad nodes

This experiment studies the more difficult problem of multiple bad nodes in the network. The
following parameters are used: r=1000, p=1000 ms, c=10, t1=50, t2=0.5, f=10%, δ=5%. The
results are summarized in Table 3. Having more bad nodes may increase the probability that the
fraction of packets dropped by them is greater than f . Thus, as the number of bad nodes increases,
the number of true negatives decreases. Also, the number of packets removed by an individual bad
node may decrease with the increase in the number of bad nodes, making it more difficult to detect
them.

3.6.4 Remarks

The simulation results show that the hint-based approach can be quite effective in identifying nodes
that maliciously drop packets and has a low false positive rate, under the conditions of modest
network traffic volume and a small number of bad nodes. As for future work, there are several
directions we plan to pursue, including developing scalable disruptive router detection techniques

10



and protocols for large sensor networks, improving the performance of the detection protocol for
high-volume traffic environments, and implementing and evaluating the detection protocol on an
existing sensor network platform such as Mica motes running TinyOS.

3.7 Related Work

Existing techniques for detecting disruptive routers in a network are either not suitable for sensor
networks or have limitations. In [9], the authors propose a protocol for detecting routers that fail
to forward packets in wireless networks. By exploiting the broadcast nature of wireless networks, a
node may detect whether a neighbor fails to forward packets by monitoring the packets it receives
and the packets it forwards. This technique has weaknesses. When node A forwards a packet
to node B, the packet may not be received by B (e.g., because of packet collision or weak signal
strength). Thus, the technique may fail in some cases. Our approach does not suffer from these
problems because the detection and diagnosis are performed at the end point.

In [1, 3], a technique based on conservation of flow is used for detecting routers that drop packets
to cause DoS. Basically, the neighbors of a node maintain counters to keep track of the amount of
traffic going into and going out of a node, and they exchange information by flooding to determine
whether the node drops many packets. A possible attack not addressed by the flow conservation
technique involves a malicious node modifying packets in transit. Because the amount of traffic flow
is not changed by this attack, the malicious node will not be detected by this technique. On the
other hand, our approach can detect unauthorized packet modification by means of cryptographic
checksums.

In [10], a secure traceroute-based approach has been proposed to detect and locate the source
of routing misbehavior. The scheme assumes that any node can establish a secret key with any
other nodes in the network (e.g., using a public-key infrastructure or a PGP-style web-of-trust
technique). This assumption may not hold for sensor networks because of the resource constraints.
Furthermore, our approach is lightweight for sensors; most of the detection and diagnosis work is
performed by the resourceful base station.

4 Conclusion

Denial-of-service threats are more pronounced for wireless sensor networks because sensor nodes
are resource constrained, the nodes and the communication medium are exposed and unattended,
and these networks rely on the sensor nodes to route packets. We have presented techniques for
detecting two important types of DoS attack against sensor networks—physical attacks against
sensor nodes and compromising nodes to disrupt routing.

Our approaches are particularly suitable for sensor networks because they are lightweight. In
particular, the NeighborWatch scheme requires only local communication and computation among
neighbors for monitoring the availability of sensor nodes. In the hint-based detection scheme, we
exploit the asymmetry in resources between sensor nodes and the base station, and shift most of the
detection burden to the more resource-rich base station. The scheme is lightweight for sensor nodes,
and the more computation- and memory-intensive operations are performed by the base station.

11



Finally, our techniques may also be applicable to other attacks. The NeighborWatch scheme may
be used to detect resource exhaustion attacks against sensor nodes—for example, sending many
requests to a sensor node to drain its energy reserve—symptomatically.

References

[1] K. A. Bradley, S. Cheung, N. Puketza, B. Mukherjee, and R. A. Olsson. Detecting disruptive
routers: A distributed network monitoring approach. IEEE Network, Sept./Oct. 1998.

[2] H. Chan, A. Perrig, and D. Song. Random key predistribution schemes for sensor networks. In
Proceedings of the 2003 IEEE Symposium on Security and Privacy, pages 197–213, Berkeley,
CA, May 11-14, 2003.

[3] S. Cheung and K. N. Levitt. Protecting routing infrastructures from denial of service using
cooperative intrusion detection. In Proceedings of the New Security Paradigms Workshop,
Sept. 23-26, 1997.

[4] B. Dutertre, S. Cheung, and J. Levy. Lightweight key management in wireless sensor networks
by leveraging initial trust. Technical Report SRI-SDL-04-02, System Design Laboratory, SRI
International, Apr. 2004.

[5] L. Eschenauer and V. D. Gligor. A key-management scheme for distributed sensor networks.
In Proceedings of the 9th ACM Conference on Computer and Communications Security, pages
41–47, Nov. 2002.

[6] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly-resilient, energy-efficient multi-
path routing in wireless sensor networks. ACM Mobile Computing and Communication Review
(MC2R), 1(2), 2002.

[7] C. Karlof, Y. Li, and J. Polastre. ARRIVE: Algorithm for robust routing in volatile environ-
ments. Technical Report UCB//CSD-03-1233, Department of EECS, University of California
at Berkeley, Mar. 2003.

[8] C. Karlof, N. Sastry, and D. Wagner. TinySec: A link layer security architecture for wireless
sensor networks. In Proceedings of the Second ACM Conference on Embedded Networked Sensor
Systems (SenSys 2004), Nov. 2004.

[9] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior in mobile ad hoc
networks. In Proceedings of the 6th Annual International Conference on Mobile Computing
and Networking (MOBICOM 2000), pages 255–265, Boston, MA, Aug. 2000.

[10] V. N. Padmanabhan and D. R. Simon. Secure traceroute to detect faulty or malicious routing.
In ACM SIGCOMM Workshop on Hop Topic in Networks (HotNets-I), Princeton, NJ, Oct.
2002.

12



[11] Y. Shang, M. P. Fromherz, Y. Zhang, and L. S. Crawford. Constraint-based routing for ad-hoc
networks. In Proceedings of International Conference on Information Technology: Research
and Education (ITRE ’03), pages 306–310, Newark, NJ, Aug. 10-13, 2003.

[12] G. Simon, P. Völgyesi, M. Maróti, and Á. Lédeczi. Simulation-based optimization of communi-
cation protocols for large-scale wireless sensor networks. In 2003 IEEE Aerospace Conference,
Big Sky, MT, Mar. 8, 2003.

[13] S. H. Weingart. Physical security devices for computer subsystems: A survey of attacks and
defenses. In Ç. K. Koç and C. Paar, editors, Proceedings of the Second International Workshop
on Cryptographic Hardware and Embedded Systems (CHES 2000), volume 1965 of LNCS, pages
302–317, Worcester, MA, Aug. 17–18 2000. Springer-Verlag.

[14] A. D. Wood and J. A. Stankovic. Denial of service in sensor networks. IEEE Computer,
35(10):54–62, Oct. 2002.

13


