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Abstract

Non-Unifiability of Encrypted Term$NUET) has been continuously advocated over the past decade for
cryptographic protocol security. In this paper, we extend the definitfddWET to suit newer protocol de-
sign features, and newer scenarios. We present implementation gugdiaehieveNUET in the context
of the new features and environments. We also prove that previodtsrestablished assumingUET such
as type-flaw attack prevention (and thus decidability) are also valid for teeneonsiderations when our
redefinedNUET is properly implemented in a protocol.

Keywords — Cryptographic protocols, Passwords, Constructed keys, Infersystems, Non-unifiability,
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1 Introduction

Suppose we have two encryptiop¥]x and [Y]x in a protocol specification Then, placing unique
constants (say 1 and 2) inside them[ias\|x and[2, Y] x will make it impossible to replay one claiming as
another. That means, regardless of what is substituted famdY", the encryptions can be uniquely identified
and they are said to ben-unifiable

This property ofNon-Unifiability of Encrypted Term@NUET) in protocols was suggested as a prudent
engineering practice for protocol design in the classical work by AbadiNeedham [AN94, Principle 10].
Following Abadi and NeedhamUET was advocated or used at many places in the literature (e.g. [Low96Db,
Aur97, HLS00, GTOOb, RS03, BP04, RS05]). The most significathi@de papers is recently by Ramanujam
and Suresh in which they prove tHdUET ensures decidability of protocol security for trace-based security
properties, and prevents type-flaw attacks [RS05].

However, all the above works including [RS03] have considered lmagjmographic protocol features
such as atomic keys and assume perfect protocol run environments aiayptions are unbreakable and
unforgeable. “Real-world” protocols such 8SL andSET employ newer features such as non-atomic keys
and weak human passwords [FKK, MV97]. Also, with the knowledge aferecryptographic vulnerabilities,
attackers are endowed with new powers to break encryptions and fakaencryptions.

![t]x denoteg encrypted withk.



These are the issues we consider in this paper: we extend the definiNbEdT to suit the newer features
and environments. We suggest implementation guidelines for protocol dessgiisfy the extended defini-
tion. We prove that the so satisfied requirement is sufficient to preveetflsgy attacks on cryptographic
protocols and consequently, ensures the decidability of protocoligecur

This paper is structured as follows: 8ection 2 we expand on the above points and present a background.
In Section 3 we present our framework to be used in subsequent sections aftheddJET. In Section 4
we prove our main result on type-flaw attacksSkection § we provide implementation guidelines to achieve
the newNUET in the standard model, and in a model that allows weak human passwords.skmntle section
we also present a study of the effectJET in the presence of non-standard attacker inference rules. We
sum up with aConclusionthat includes a discussion of non-free term algebras in protocol sitfis and
how they could influence the results established thus far.

2 Background

Consider the Woo and Lamy protocol [WL94]:

Msgl. A— B: A

Msg2.B — A: Np

Msg3.A — B: [A,B,NB];(AS)

Msg4.B — S : [A,B,[A,B,Ng| ];_;L(B,S)

sh(A,S)
Msg5.5 — B: [A’B’NB]E(B,S)
(Notation We use uppercase letters for variables and lowercase for ground;{e¥, ..., X, represents

concatenation of term&; to X,,; [X ]} represents{ encrypted with” using a symmetric keying algorithm.
sh(X,Y) represents a shared-key between ag&ngdY’.)

We will abbreviate the Woo and Lam, protocol toW. 7; and use it as a running example in this paper.
This protocol belongs to a special class of protocols that contain messag@ions by participants that they
cannot decrypt (in Msg 3 abové is not expected to decrypt the message, but to simply use it to construct
Msg 4). Ramanujam and Suresh in [RS05] explicitly state that their resultscaralid for this class of
protocols. They in fact exemplify the invalidity on th¥ 7 protocol. To demonstrate the strength of our
results, we use thigery example in our paper to show that our results are also applicable for tlasseof
protocols.

Below we explain two important features in “real-world” protocols that faliside the scope of Ramanu-
jamet al's (and many other’s such as [HLSO00]'s) results.

2.1 Constructed keys, and Passwords

Ramanujanet al.s results state that their results are only applicable to protocols that emplojcdteys,
but not composed keyS€omposedor Constructedr non-atomi¢ keys are keys that are formed using shared
secrets and other data exchanged as part of the protocol itself. &wpés[a, [n,];] can be used as a key.
Many times, the “authentication force” in terms encrypted with constructed keg not just in the fields
inside the encryptions, but also in the terms inside the keys.

In Section 3 we redefindNUET by requiring constants to be placed inside keys as well (if it is a constructed
key). Our protocol model is based on Millen-Shmatikov’s constraint sgliéchnique that explicitly employs
constructed keys. Hence unlike previous results, they are valid everesence of constructed keys. In
Section 5we present an example protocol that employs constructed keys anchshoitvcan be attacked if
our newly redefinedNUT is not followed.



Messages should also not be tagged with constants when a protocol gsifpgiemented with a weak
password [CMAFEQ3, Low04]. For example, consider the following ragss
[217 na};)asswd(a,s)
Now if an attacker guessessswd(a, s), he can decrypt the message using that guess and check the tag
“21" to verify that guess. He does not even need to kmgWThus, tags facilitate such direct guessing attacks.
In Section 5we show thalNUET can also be adopted by rearranging terms, without using artificial con-
stants that aid guessing attacks.

2.2 Non-standard attacker inference rules

All published works that suggestddUET only considered standard attacker inference rules that adopt
the perfect encryption assumption. Perfect encryption assumption impdiearttattacker can neither break
existing encryptions nor create fake encryptions.

However, nothing is perfect in this world and encryption is no exceptionekample, the rule

[m,n]” F [m];” (F denotes the relatioimfer ).

holds when usingCBC (Cipher Block Chaining) method for symmetric key encryption provided is a
whole number of blocks [Boy90, SG92]. Here, an attacker is able toeched;” without actually possessing
m or k. In Section 5we show how an attacker can attack e w; protocol using this rule even when the
protocol implementNUET as suggested in previous works. We then present alternative wayhigvec
NUET depending on the inference rules in effect to avoid such attacks.

3 The Framework

Our formal protocol model is based on the constraint solving model of M#lematikov [MS01]. The
model uses symbolic terms which is ideal for our results which involve unifitathe start off by introducing
the term algebra, protocol mod®&UJET, and constraint solving.
3.1 Term Algebra

Messages are constructed using operators that are applied freetynsn te

Definition 1. A termis one of the following:

Variable We assume that every variable appearing in a protocol specification asighaint
of a term, can be attributed to a particular type. We denote the type of a va¥iable

astype(V).

Constant Atomic values and numbers. E.g., name of the attaekeoncen,, numbers 1, 2,
3 etc.

[t1, ta] Pair of termst; andtsy, using the pairing operator. We will writg,, ¢, t3] for

[t1, [t2, t3]], to avoid notational clutter.

pk(X) Public-key of ageniX. It is assumed that the corresponding secret key is not sent
as part of any message in the protocol. Therefore, the attacker cam@rrypt
messages encrypted with his public-key.



h(t) Hash oft, whereh is a one-way hash function.

[t t encrypted withk using an asymmetric encryption algorithrh.is any term, not
necessarily a public-key.

[t t encrypted withk using a symmetric encryption algorithhacan be any term.

sigr(t) Public-key signature of terrhvalidated using key:. According to assumptions,
private keys are never revealed, so the attacker can only constyoatiges with
his own private key.

A ground termis any term that does not contain a variable. We use uppercase letterarifables and
lowercase letters for constants and ground terms. Note that every groéocpossibly use special variables,
such adVisg 3 in theW. 7, protocol. SinceB cannot decrypt the term, this is represented as a variable of a
special type (for the proofs and results in this paper, it suffices to singsilynae that such variables have a
special type. We do not need to formalize those types).

We assume that the attacker possesses an initial set of terms such as pishtieakey, pk (¢), the names
of some principals, nonces he can generate and so on.

When we refer to encryption in general (not specifically asymmetric or syriaeve will ignore the
superscripts<>’ and ‘—’. So, t encrypted withk will be written simply agt|;. We now define theubterm
relation on terms:

Definition 2. Lett,t1, ¢y andk be terms. Then, theubtermrelation denoted as is defined as the smallest
relation on terms such that,

1.t C ¢

2. tC [ty to] ft Tty VELC to;
.t [flpiftct VT k;

4. tCpk(t)iftC t;

5.tc h()iftct;

6. tC sigy(t)iftCt' VT k;

Wewillwritet e T if tT°t/ At eT.

In point 3 abovet C k& might sound unusual, but it is crucial for our proofs since our termbaigallows
constructed keys (See Lemma 3).
3.1.1 Unification

We now talk about unification.

Definition 3. A substitutiory is denoted as = {z,/V1,...,z,/V,} such thatt represents the substitution
of x for all occurrences oV in a termt wheneverz/V € o. FurtherVz/V € o, V is a variable and: is
either a variable, ground term or a constant.



Definition 4. Lett,t' be two terms. Them, ¢’ are said to beunifiable denoted: ~ ¢’ (readt unifies with
) iff ot = ot’ for some substitutiomr. o is called theunifier. A unifier p is called themost general unifier
(mgu) if every other unifiee, is an extension of; specificallyoc = po.

Further,

[tl,tg] i~ [tll,té] if ¢4 %t&/\tg%té,

pk(t) =t if (' =pk(t")Nt~t")V (tisavariable,

(] ~t if (' =[t"lw ANt=t"NE~E")V (' isavariable,
h(t) =t if (' =h(t")ANt=t")V(tisavariablg,

sigp(t) ~t if (' =sig(t")Nt=t"NE~E")V(tisavariable.

3.2 Protocol Model

In this section we introduce the protocol model. The basic model is denigetdthe idea of semi-bundles
introduced in [Son99] with the underlying framework derived from tharsirspace model [THG98].

Definition 5. A strandis a sequence of communication points catedesdenoted asny, ..., nx). A node
consists of dermand asign The term of a node (denoted aserm(n)) can be any term constructed from
the term algebra. The sign of a node (denotesi@gn)) is either 4" or * —'. Thus, strants = (ny,...,ng)
can be represented é&t, ..., +t;) wheret; is the term on the node; fori = 1 to k.

Roles in protocols are modeled parametric strands For example, role3’ in the W. 7y protocol can be
represented in the parametric strand form as:

roleg = (= A, +Np, =X, +[A, [B, X]| 3 (5,s), —[4; [B, NBll(5,9))-

A parametric strand is instantiated int@@ami-strandusing a substitution for some of the variables in the
parametric strand, by an honest agent. These substitutions indicate tlagjetiteknows the value for that
term. For example, aboveyle g can be instantiated by an agebitusing

ol = {ny/Np,b/B, s/S}
and
a{}roleB = (—=A, +np, — X, +[A, [b, X]];(b,s)v —[A, [b, nb]];(m)y

A typical honest substitution is denoted wherex is the agent’s identity. A set of semi-strands is a
semi-bundlgethe set of all honest substitutions for a semi-bundle is derm;éédWe will denote the set of
encryptions in a semi-bundl€ as Encr(S), hashes agfash(S) and signatures aSig(S). We will tend
to ignore the subscripts in* and ag when we refer to substitutions in general, not of a specific strand or
semi-bundle respectively.

We will say that a substitution is “well-typed” if variables in all the elements of thesstution are instan-
tiated with ground terms of their corresponding types; for example, a nan@ble N 4 being instantiated
with a nonce valueri,” wheren, € Nonce. More generally,

well-typed o) iff Vo/V € o.x isground = z € type(V).
We assume that an honest agent always follows a well-typed substitution:

Assumption 1.
Vol € ol . well-typed o”)



3.3 NUET — Non-Unifiability of Encrypted Terms

We now explain our notion dllon-Unifiability of Encrypted Terms and define it formally. The require-
ment is quite simple. In a given protocol specification (set of parametrisdstyano two encryptetiterms
should be unifiable unless they are textually equid other words, there is no common substitution for
variables in two textually distinct terms, that will make the terms equal. Formally,

Definition 6. Let S be a semi-bundle such thét= ¢" St whereSt is a set of parametric strands. Théhis
NUET-satisfyingand.S is NUET-complyingiff

Vi, ta € St ((t1 = [th]k, Ata = [thlk,) V (t1 = h(t)) A ta = h(th)) V (t1 = sigk, (1)) A ta = sigy, (t5))

At # t2) = t1 % to. (1)

vVt € St.t = [t'],” = k is nota variable (2)

Condition 1 is sufficient to prevent type-flaw attacks in presence of atoeyis. Kn presence of constructed
keys, we would need the additional Condition 2 (See Theorem 1, Case 3).

NUET is quite easy to achieve in protocols. Since the requirement is that terms $igontwh-unifiable
unless they are textually equal, it is possible that this requirement is natuchigvad by a protocol with-
out any special modifications. However, even in protocols that do nisbs®dUET naturally, they can be
modified slightly to satisfNUET. A simple technique is to use distinct constants (such as numbers) inside
textually distinct terms of parametric strands. This would ensure that thecptotdll be NUET-satisfying
This is explained in more detail with examplesSaction 5

3.4 Attacker Capabilities

Attacker capabilities are modeled as operators on sets of terms to analytteesige or hide terms. Let
® be the set of attacker term set operatofscaptures standard inference rules, namely pairing, splitting,
encryption, decryption as well as hashing, and signatures.

Definition 7. The set of attacker term set operatcbsis defined asb = {®gpa12, Poyntnz } With @01, =
{¢split7 gbpdem Qbsdec}a (I)synthz = {¢pair7 ¢penca ¢senc’ Qbhashv ¢sig}7 and,

Gsplit(S) = SUnyIf [z,y] € Gpair(S) =S U [z, y]if z,y € S,
Gpdec(S) =S Ux if [z] phe) € S Ppenc(S) =S U x|, if 2,y €S,
(z)sdec(S) =SUx [ }H,yES d)senc(s):SU[ ]yH if x,yGS,
Ohash(S)= S U h(z) If.rGS (25519( ) :SUSngk(e)( )ifoS.

The question as to whether a tetroan be generated by the attacker usinig formulated using théake
operation,F:

Definition 8. Thefakeoperation is defined such that (T') is the smallest set formed from a set of ground
termsT’, closed unde®. Furthert € F(T) iff there existspy, ..., ¢, € ® suchthat € ¢, (... (¢1(T))...).

2Here, by “encryption” we mean any cryptographic function applicatimt,necessarily symmetric-key and public-key encryp-
tions.



3.5 Constraints and Satisfiability

As stated before, a semi-bundle is a collection of partially instantiated stratiidhe nodes in a semi-
bundle can be merged into an interleaving. Since a semi-bundle has finite nahromles, there can be
finitely many such interleavings from a semi-bundle.

A constraint sequenaman be drawn from each interleaving such that every element in a seEguegmesents
aconstraintstating that a message expected by an honest agent has to be computedttactter using his
initial knowledge, messages sent by honest agents until that point acadabilities.

A typical constraint is representedsas : T denoting that-“m should be obtainable using onT where
o€ is the attacker’s substitution. i.en, : 7' < o°m € F(o°T).

A constraint sequence gatisfiableif there is a consistent substitution of ground terms to variables such
that the attacker can generate every message on every constraintequiease. A semi-bundle is said to be
completablego abundleif a constraint sequence drawn from one of the interleavings of the semildis
satisfiable using some consistent substitution.

Definition 9. Let C be a constraint sequence amtlbe the attacker's substitution. Then, we say #iat
satisfie”, oro¢ + C,iff VYm : T € C.om € F(o°T).

Definition 10. If Ym : T € C' . m is a variable, theld' is called asimpleconstraint sequence.

A simple constraint sequence is always solvable as long as the attackat least one constant. We,
assume that the attacker possesses at least one ground term fovariadnle occurring in a protocol, with
the same type. Therefore, the attacker can always do a well-typed stibwstionr such a sequence:

Assumption 2. Let C' be a simple constraint sequence. Thén, o - C' A well-typed o).
3.6 Constraint Satisfaction

We now introduce theonstraint satisfaction proceduiiey Millen-Shmatikov [MSO01] to determine if a
constraint sequence is satisfiable. The algorithm for the procedumetét) is given in Appendix A. The
algorithm uses a set eéduction rules R.

A reduction rule is always applied B to the first constraint of a constraint sequence that does not have
a variable on the left side, called tletive constrainbf P. An application of a rule- € R on a constraint
sequence’ with the current substitution© is represented as,

r(C;0%) = (C';07),
where (' is the new constraint sequence anfd, the new substitution. A list of all reduction rules i
considered by is in the AppendiX. P applies ruleelim to eliminate all stand-alone variables on the right
side, before applying any other rule.

Definition 11. Let C be a constraint sequence afig = {C1, ..., C,}, a set of constraint sequences gener-
ated byP from C. ThenC is solvableiff there exists a sequence of reduction rules that reduce the sequence
such that the resultant sequence is a simple constraint sequence. Formally

o FCif I, et e Rur( (1 (Cr09))..) = (Cri o) AT T Cy Ao = oS U T,

whereo{ = { } andC,, is a simple constraint sequence.

3Note that we denote the application of rules in a functional notation, althougfality they are only relations.



Note that the above definition assumes that solving a constraint sequiersiegP is equivalent to testing if
o‘m € F(oT),Vm : T € C. This has been formally justified by Millen-Shmatikov in [MS01] who proved
thatP is terminating, sound and complete.

Definition 12. Two constraint sequencésandC’ areequivaleniff whenevers® - C, o€ - C’. A constraint
sequence isormalfor P iff the active constraint is not of the forf , ¢2] : 7" for somet; andts.

Lemma 1. Every constraint sequence has an equivalent normal constrairerses)

Proof. Let C' be a constraint sequence. ket : T € C be the active constraint & for C' such thatn =
[t1,t2] for somety, t, and leto© be the attacker’s substitution. Then appty’” onC such thatrpa"((]; o) =
(C';0¢). Then, because’®” is sound [MS01, A.3]g¢ - C' = o¢ I- C’. ThereforeC andC’ are equivalent.
Apply %" as many times as possible 6hto obtain a normal constraint sequer¢é By induction,C' and
C" are equivalent.

L]

3.7 Security properties and Attacks

An attack is a violation of a security property, not known to exist in a normalaf the protocol. We
assume that a security property can be “embedded” into a semi-bundlesting fer violation of the property
is equivalent to finding out if a constraint sequence from the semi-busdiatisfiable. This is particularly
true for trace properties such as secrecy and authentication. For lexatfofation of secrecy can be tested
by embedding a “test strand” containing a node with a secret term (un@ead) and a-+’ sign into a semi-
bundle and then testing the semi-bundle for solvability.

Our main result is general and is valid for any trace property that cambedded into a semi-bundle as
above since it is based around the general definition of solvability of stitast” semi-bundle.

We however define &ype-flaw attackusing the property of well-typed introduced in Section 2.2. We
will say that a type-flaw attack exists on a semi-bundle if a constraint sequerm the semi-bundle was
solved with an ill-typed substitution, and the constraint sequence canssibpobe solved using a well-
typed substitution. Formally,

Definition 13. Let C be a constraint sequence from a semi-buttiéendo© be the attacker’s substitution. We
say that aype-flaw attacks possible orf iff

(o€ + C A —well-typed o)) A (B . o€ F C A well-typedo®)).
4 Main Result

We now prove that if a semi-bundle UT-complyingthen there are no type-flaw attacks on the semi-
bundle.

Proof Outline. Our proof utilizes the reduction proceduPe We consider a possible constraint sequence
C that can be generated from the given semi-burdiéVe then examine the reduction rules that could be
possibly applied to satisf¢’ and which affect the current attacker substitution. We show that whien
NUT-complying the application of those rules implies that the attacker substitution remains wedl; tiyjix
was initially well-typed. This implies that i€’ was solved using an ill-typed substitution, the ill-typing only
occurred after all the reduction rules were applied’bhy P.

The resultant constraint sequence, when no more rules can be ajpléedimple constraint sequence.
According to Assumption 2, such a sequence can always be satisfiedvel-typed attacker substitution.

8



Therefore, whenevet' was satisfied with an ill-typed substitution, it can also be satisfied using a weltityp
substitution. This proves that there is no type-flaw attacls'on

There are two other crucial parts in our proof. Firstly, we prove thaneler two (non-variable) terms of a
NUT-complyingsemi-bundle are unified, the unifier is a well-typed substitution. This is rattaéglstforward
since terms in &UT-complyingsemi-bundle are unifiable only when obtained from the same corresponding
term in their parametric strands. Further, both of those terms would be ingtanticth honest instantiations,
which are always well-typed from Assumption 1. Therefore, a unifietifose would be well-typed. This is
proved in the following Lemma:

Lemma 2.
Let S = a?St such thatSt is NUT-satisfyingand S is NUT-complying ThenVt,t’ € Encr(S) U
Hash(S) U Sig(S), Jo . ot = ot’ = well-typed o).

Proof. We prove through induction.

1. SinceS is NUT-complying lett; = o7 X andty = o X. Then,30 .0t = oty = Jo .00l X =
ook X. From Assumption 1yo" € ol . well-typedo"). Letof X be ground and? X = X. Then
oot X = ol X, andoch X = o X. Thereforeg C of and well-typeds). Similarly, if o4 X is ground
andof X = X, then well-typedo).

2. Lett; = o[ X, Y] Aty = 0B [X,Y]. Then,3o . ot = oty
= Jo. (001X = 0db X) A (00hY = 00obY) (from def 4)
= Jo. (0ol X =00b X)ANTo . (00Y = 00hY)
= well-typed o) A well-typed o) (From (1))
= well-typed o).

3. Lett; = [tll]kl Nitg = [té];@. Then,do . ot; = oty
= Jo. (ot) = oth) AN Jo . (ck1 = oka) (from def 4)
= well-typed o) A well-typed o) (From (1))
= well-typed o).

4, Lett; = h(tll) Nty = h(té) Then,Jo . ot1 = oty
= Jo . (ot} = ot}) (from def 4)
= well-typed o) (From (1))

5. Lett; = sigy, (t]) A ta = sigy,(t5). Then,Jo . oty = oty
= Jo . (ot] = oth) A Jo . (ck1 = cko) (from def 4)
= well-typed o) A well-typed o) (From (1))
= well-typed o).

O

Secondly, note thaflUT guarantees that terms are non-unifiatuhdy when they belong to the semi-bundle
(or subterms of the semi-bundle). Therefore, the above result on ifieruamaining well-typed is true only
under the condition that attacker inference rules (here the reductic) alfeays decompose a term set to add
subterms of the existing terms. For example, a reduction[tulé]; + [t1]x. would reduce the right side of
the active constrairit’, by adding a ternfi1 ], if 7' contained som@, to]x. Here,[t1]x IZ [t1, t2]x. Therefore,

if [t1]x is unified with the left side of the constraint, the resultant substitution is netssecily well-typed,
since[t1]; does not belong to the semi-bundle and was not created by an honestldgece, our scheme is



valid only for those inference rules which reduce a term set to obtainrsuhtée. reduce a term sétto 7’
so thatyvt € T, t C t” for somet” € S.

The following Lemma states that all the reduction rule®ireduce the term set of a constraint so that the
resultant term set contains only subterms of the original term set:

Lemma 3.
Vre Ror(Ce,m :T,Csi0) = (Coym : T, Cs;0) NT CT = vVte T'\T,H e T.tCt.
Proof. The only rules wher&@ c T’ arersPhit rrdec gndysdec,
1. Inthe case of*P! where[ty,ts] € T, T' \ T = {t1,t2} andty C [t1,t2] andty T [t1, ta];
2. Forrr®e T'\ T = t, wheret C [t]4() and[t]u() € T;

3. Similarly, forrs?¢, we have two constraints replacing the active constraint, 7’ U [t];”. k : T and
m : T Ut U k. For the first constrainf]” \ 7' = {}. For the second constrairk; \ 7' = {t, k} where
t T [tle andk T [t 4.

O

We now state and prove the main result.
Theorem 1. Let S be a semi-bundle. I§ is NUT-complying there cannot be a type-flaw attack.$n

Proof. Let C' be a constraint sequence frasrando© be the attacker’s substitution. $f is NUT-complying
then, we want to prove that,

o+ C = (30 .0 F C Awell-typedo®)).
Firstly, sinces® I C, by Definition 11, let™(... (r}(Cy;0%)) ...) = (Cp; 0%), for somer™, ... r! € R,
and substitutiomw wherep - C,,, with ¢ = of, U p.
We first prove thats, is well-typed. We show thatr € R.r(C;o0) = (C';0'), well-typedo) =
well-typedo’). Sinces$ = { } is well-typed, it follows inductively that¢, is well-typed.

Case 1 VT/ c {T]oair7 Thash7 Tpenc’ rsenc7 rsig’ Tsplit7 Tpdec;,rsdec} ] T(C; 06) — <Cl; 0_5/>7 with o€ =
0. Therefore, well-type@*) = well-typed o).

Case2 Whenr = r", let r**(Cc,m : T,Cs;0°) = (1C<,7Cs;7 U o) wheret =
mgu(m, t),t € T; A reduction rule is always applied to the active constraint. By the
definition of active constraintyn is not a variable. AlsoP eliminates all stand-alone
variables fromT" using rule €lim) before applying any other rules iR. Thereforet is
not a variable. Assume without loss of generality thats a normal constraint sequence
(Lemma 1). Therefore, from Definition 18, is not a pair. From Lemma 8t € T'.t C t/,
for somet’ € S and sinceS is NUT-complying rm = 7t = well-typedr) from
Lemma 2. Now sinceg® = o¢ U 7, well-typed©) and well-typedr), it follows that
well-typedo¢) = well-typed o).

Case 3 Whenr = r#ub letrkseb(C m : [t]; UT,Cs;0¢) = (tCc,mm Tty UTT, 7C5 T U
o). Herer = mgu(k, pk(e)). From Condition 2 oNUT, & is not a variable. Therefore,
k ~ pk(e) = 3IX . k = pk(X) for someX. From the term algebrafpk(X), X is
a principal name. Sinceis a principal name (the name of the attacker), well-typéd
Hence, well-typetr<) = well-typed o).

“Recall thatk C [t], by Definition 2.
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Frnally sinceC,, is a simple constraint sequence, from AssumptioB2, well-typed p') A p' = C,,. Let
o =05 Up. From abovedr!,... ;7" € R.r"(...7 (Cy;0%)...) = (Cp;0f) andp’ = C,,. Therefore
from Definition 11,0¢ + C. Further, since well- type{d;) and well-typedy’), it follows that well-typedo* )
Thereforeg® - C = (30¢ . 0¢ F C Awell-typedo®)).

Hence, the result.

5 Implementing NUET

As suggested in previous workdJJET can be achieved by inserting constants inside encryptions. How-
ever, this has to be done carefully and consistently. Proper placemeohstants is crucial since arbitrary
placements will not guarante¢UET. For example[a, 1, Ng]x and[B, n,, 2|k both contain unique con-
stants but are still unifiab® In the following Lemma we prove that placing constants at the beginning of
every concatenation ensundtJET.

Lemma 4. Let S be a semi-bundle and I¢4 (¢1) and f(t2) be two terms inS. Let¢; = [c1,t}] andts =
[, t5]. Theney # c2 = fi(t1) % fa(ta).

Proof. Let us supposéi (1) ~ fa(t2) is true. Then, by definitiort; ~ t, is also true. i.e,
Jdo .oty = oty = Jo.olc1, t1] = olea, ta] = Jo . [e1,0t1] = [ea, ota] = ¢1 = c2, @ contradiction.
Therefore,f1(t1) # fa(t2).
O

With this result, we now demonstrate the placement of tags and the applicatiom efsoilts on the fol-
lowing protocol:

Msgl. A — B : [A, B]

Msg2. B — A: [1,NB];€(A)
Msg3. A — B : 2, Na ;5
Msg4.B — A:[3,A NB][_),NA]
Msg5. A — B : [5, A, NBlig 4 ny

We have created this artificial protocol by incorporating constructed keynessages 4 and B(N 4] and
[6, A, Ng]). Notice the use of tagd* and ‘6’ inside the encryption keys which prevents the attack below:

Msgl.a — b: [a,b]
Msg2.b — a: [1, nb]pk(a)
Msg3. I(a) — b : [2,pk(e )];C(B)
Msg4.b — I(a) : [3,a, nb];k(e)
Msg5. I(a) — b: [4,a, nb][:nb}.
The attack works by using a type-flaw in Msg @k(¢) in place of N4) and extracting:, in Msg 4 by
the attacker since it is now encrypted with his own public-key. This attackatdre avoided by excluding
tags inside constructed keys and this observation was never made inugrexooks. Ramanujarat al.s
paper explicitly states that their condition only mandates non-unifiability ofypited subterms in a protocol

*with a unifiero = {[a, 1]/B, [na,2]/N5}.
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which is sufficient only for atomic keys. As the attack above demonstrate=) & constructed key contains
no ground terms, the attacker can unify the key with his own public key amdogxhe contents inside the
encryption.

The above representation for the protocol is in the form of parametriodstralet both the roles in the
protocol be namedoleA androleB. Changing them to semi-strands using a consistent substitutjpaad
ol whereo! = {a/A,b/B,n,/Na} ando = {b/B,n,/Ng} we obtain,

roleA = (+[a,b], —[1, NB| 1, +[2, na]ﬁg(B), —[3,a, NB]h_)(4,na,NB)7 +[5,a; NBlj (6 a.np5))
roleB = (=[A, b], +[L, ] 1t 4y, =2, Nal gz 135 Ay ]300 v gy — 155 A 1] 6,4,

Let St = {roleA, roleB} andS = {olroleA, of'roleB}. Assuming well-typetr”) and well-typedo)),
we can now conclude from our main result tisaits devoid of type-flaw attacks, sinég is NUET-satisfying
and therefores' is NUET-complying

5.1 Password protocols

As explained earlier, constants should not be placed inside passworghbtons as they enable direct
guessing attacks. However, constants are not required to adtiglk@, as terms may as well be arranged so
as to satishNUET. A simple solution is to make sure that every concatenation in a semi-bundlevgtares
(secret) ground atomic value such as a nonce.

Consider the termu,, K a]passwd(a,b) @NA[K B, 7] passwd(a,)- ThESE terms are unifiable, although they are
textually distinct. However, a simple rearrangement of these terfng & 4 | passwd(a,b) @NA[16, KB passwd(a,b)
would ensure that they are non-unifiable. Essentially, the condition whathieved by placing constants at
the beginning is now achieved by replacing them with ground atomic terms.

The existence of at least one such atomic value inside password engsyptie been demonstrated to be
unavoidable for password protocols [Gon93]. The reason beingttizd absence of such a requirement (and
in the absence of any other redundancies), it would be impossible toroanfacessful decryption.

5.2 Non-standard inference rules

The above theory on placement of constants is only valid when considdendard inference rules. For
example, consider thé_ 7, protocol tagged with constants to BRJET-satisfying

Msgl.A—B: A

Msg2.B — A: Np

Msg3.4A — B: [A, B, Ng, 1]5(,4,5)

Msg4.B — S: [A,B,[A, B, Np, l]sHh(A,s)’Q];L
Msg 5.5 — B: [A, B, Ng,3]5 5.

(B,S)

Although tags have been placed at the end of every concatenationptbegirstill satisfieSNUET going
by a similar argument in the proof of Lemma 4. However, a type-flaw attack ipesHible on this protocol:

Msgl.a —b:a

Msg 2.0 — a : ny

Msg 3.i(a) — b: [y, 3] /*Inplace of[a, b, np, 1gp(q,s) */

Msg 4.b — i(s) : [a, b, [nb, 3], 2] sh(p.s)

Msg 5.i(s) — b : [a,b, [y, 3]|snp,s) 1+ using CBC inf rule on Msg 4. */

12



The attack works because, the attacker induces a type-flaw in Msg &duncks Msg 4
([CL, b, [nba 3]7 2]sh(b,s)) to obtain Msg 5 [(a7 b, [nb7 3”sh(b,s))-

The attack works despite our proof on absence of type-flaw attackesepce oNUET, since it involves
a decomposition rule that decomposes a term set to create a non subteersearhikbundle. Consequently, it
affects the attacker substitution by introducing an ill-typed substitution. Itdaliside the scope of Lemma 2
since it involves a term that was not present in the original semi-bundietefim was produced by a rule not
considered in Lemma 3 to prove that all rules only produce subterms thmtadhjgexisted in the semi-bundle.

This attack can be easily avoided by placing constants placed at the begifeveyy concatenation. We
would like to point out however, that such tagging is not an epicure fanfdtence rules. For example, a
similar rule forCBC encryptions is possible by taking advantage ofsh#ix propertyas opposed to prefix
property used by the previous rule):

[m,n]x b [n]k

In presence of such a rule, placing constants at the end of everateoiation ensures type-flaw attack
protection as terms produced by the rule can never be unified with existing teproduce ill-typed unifiers.

Generally speaking, constants have to be so chosen so as to make unifigttiexisting terms impossible
when non-standard inference rules are in effect. Note that no secdmspare is needed when considering
rules as below:

{la, [x,b]];", [c, [x,d]]",a,b,c,d} Fxwherea # cVb#d

This rule was shown to be possible by Coppersraitlal. when usingRSA method for asymmetric key
encryption [CFPR96].

Such a rule does not affect our results in any way since the rule ontlupes a subterm of the existing
semi-bundle (essentially retaining the validity of Lemmas 2 and 3). Thereforepecial care needs to be
taken when such rules are in effect.

6 Conclusion

In this paper we redefinddUT and formally proved that it prevents type-flaw attacks in broader sicsnar
We have shown example protocols, scenarios and attacks that fall otitsideope of the previous results.
Of particular interest is the demonstration that our results are equally valgtdtocols such as thél m;
protocol that fall outside Ramanujagt al.'sand other results.

Note that our result is also essentially a decidability result for protocolscandbe considered as an
extension of Ramanujaet al’s results to broader scenarios. Ramanugnal. follow a different approach
for decidability by modeling protocol execution traces using finite state autonaatbtwo counter machines.
In the end they show that, in presence of tagging, analyses can onlgthietesl to well-typed runs (which
is known to be decidable). Thus, they prove that tagging ensures atteck®ssible only in a well-typed
system, demonstrating that they are not type-flaw attacks. In other vaop®of of absence of type-flaw
attacks is sufficient to conclude decidability of security for protocols drounded scenarios. This is exactly
what we proved in this paper. Our results are also stronger in anothse se they clearly demonstrate
under what class of attacker inference rules the decidability propeltis.hd@his was never considered by
Ramanujarret al.

Decidability results on unbounded scenarios seal the problem of pta®carity for trace based proper-
ties. The results enable the protocol designer to check whether a gristaoorect by simply following the
condition for decidability and verifying the protocol (with single instancerpt) using an analysis tool such
as the constraint solver. This is a matter of few seconds.
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The use of the constraint solving model as our framework allows us tonmeag concepts (such as place-
ment of constants) clearly, since it is based on a symbolic analysis appiwstccorrelates replay of terms
with unification. This is not easy in other approaches based on the sipand Famework that start their
analysis with ground instances of the protocol (e.g. [THG98, GT00a]).

Previous works based on the constraint solving model only used it téogetomls to analyze protocols on
bounded scenarios [CE02, BMV03, CMAFEOQ3]. However, the modelaiso be used as a general framework
for proofs on unbounded scenarios, as is done in this paper. Theerbadeling of protocol roles is the same
in both the standard strand space framework and in the constraint solvire).mdwety differ in the attacker
model — While the strand space framework models the attacker using penstratads, the constraint
solving method models them using term set operators and equates them todicyeduction procedure.
The net capability of the attacker is the same in both the approaches.

There are two important extensions to our theory that we are currentlstigagng at this point. The first
concerns relaxing the free term algebra assumption by allowing for tipesauch aXOR andPr oduct s
that contain algebraic properties such as cancellation (@.@.a © b = b). Our proof strategy in pres-
ence of those operations is the same as in this paper with the additional intrestegato how the attacker
substitution is affected when a constraint is eliminated using unification. Ouisaionfind out if for every
attacker substitution, there exists an equivalent well-typed substitutionatisfies a constraint even when
cancellation operations are considered. This remains to be seen.

Secondly, we have only considered trace based properties suchrasysand authentication but would
like to examine other properties such as anonymity and non-repudiationlag keresults in this paper are
still more general than previous works for trace based properties &aweea single proof regardless of the
properties under consideratfywhile other works require separate proofs for each property.
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A Reduction Procedure P [MSO01]:

C :=initial constraint sequence

c:=0

r epeat

| et ¢* =m : T be the constraint i@’

s.t.m is not a variable

i f ¢* not found
out put Satisfiable!
apply rule(elim)to ¢* until no longer applicable
VreR
i f risapplicable ta”
(C";0"y :=7r(C;0)
create node witld’; addC — C’ edge
(Cio) :=pop
push (C’; ")
until enptystack

16



B Set of Reduction Rules, R

r“(Ce,m:T,Cs;0)

rPUT (O, [my,mo] : T, Cs;0°)
rhaSh(C’<, h(m):T,Cs;0°)
rPere(Ce, [m)y : T,Cs; 0°)
rsf”C(C<, ml; :T,Cs;0)
r9(Cc, Sigyp ) (m) : T, Cs;0°)

rsplit(C’<’ m: [tla t2] ) T C>7
T,pdec C

7Cc,7Cs;7U o) wherer = mgum,t) At € T,
C<7m1 Tm2 TC>7 >:

)
m: [t] o VT, Cs;0°)

(
rkSUb(C<,m [t] UT Cs;09)

C<,m tlUtQUT Cs;0°;

Ceym:tUT,Cs;0°;

7Cc,mm : 7T[t], UTT, 7Cs; 7 U 0°),
wherer = mgu(k, pk(e)), k # pk(e);

(Ceyk:Tym:TUtUk,Cs;0°).

(
(
(
(
<C<,k T m:T,Cs;0°;
(
(
(
(

rdec(Co m : [t];7 UT, Cs;0°)
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Justification for NSPW

This paper focusses on decidability and completeness results for argplag protocols with considera-
tions of newer protocol features and newer protocol environments.

Cryptographic protocols are being vigorously studied over the lastdéec®nly recently the area has
attained a level of maturity and consolidation. Many useful tools have beiéirsbch as model checkers,
theorem provers and special purpose analyzers to analyze crgplogprotocols [Low96a, Mea96, Son99,
MSO01]. Useful frameworks such as the strand space frameworkbearme developed which aid in both tool
construction and proofs by hand [THG99]. In this process, some wellvk problems have been “solved”.
For example, security properties such as secrecy which were probeutalecidable on unbounded scenarios
have been shown to be decidable when protocols follow simple restrictiomessage construction such as
NUET.

The latest trend in the literature has been research into tools and resultgteited protocol features and
relaxed assumptions about the environment, such as cryptographicahiliies [Mea04]. Tools are being
developed, and decidability results are being published with these caatsiasr Following this new shift of
paradigm in protocol analysis, we have presented a largely usefill feisprotocols, redefining a previously
used condition plus identified several issues in its implementation. We redéfi@gaeviously advocated
condition of NUET on protocols to suit the new features and environments. We have praemntther the
redefined condition, the protocol security problem for trace basedigeproperties remains decidable in the
context of new features and some of the environments. We obtained thiisbheslemonstrating the absence
of type-flaw attacks undeMUET.

We would like to emphasize through our work that this is the direction in whictopob analysis should
proceed. Tools such as model checkers are useful to find attackerfgnin bounded models), but cannot be
used to prove that a protocol is correct on unbounded scenarios.

To quote Dijkstra’s famous observation,

Program testing can be used to find errors, but not to prove the absafrarrors.

Protocols are programs too. An end user would naturally be more satistied toprotocol that is provably
correct, not merely an assurance of its security by demonstrating thefldidcovered flaws by tools. Using
our results, a protocol designer can design a protocol folloMbgET and verify a bounded instance of the
protocol using a tool and conclude its security. As mentioned earlier, thismattar of few seconds.

Thus, we beleive that our paper is well qualified for consideration in tiN#ve Security Paradigms Work-
shop. It presents a clear shift in the analysis paradigm through coatsareof new features and environments
for cryptographic protocol analysis as well as a shift of focus fromdyzing protocols for attacks using tools
towards evolving provably secure protocols. We believe our results méth@rage active discussion on the
application of our results to other features such as non-free term afyabd non-trace based security prop-
erties. We also hope that the discussion will clarify any concerns alhwuesults and our implementation
guidelines.

On a final note, we would like to thank the organizers of the NSPW 2005ifar ¢onsideration of our
paper for includsion in the workshop.

Sincerely

Sreekanth Malladi, PhD, Assistant Professor, University of WisceSsiperior
Carol Taylor, PhD, Instructor, University of Idaho.
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