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1 Introduction

The model-driven-approach [32] to software construction promises to improve
software quality and reduce costs through automatic construction of software
from (visual) models. Visual modeling is slowly becoming a common practice
for software developers, so the hope is that practitioners will be comfortable
with using visual models to design their software. (In this paper, we use the
unqualified term modeling to mean visual modeling.)

The force of common practice is defining the model-driven-approach in terms
of the Object Management Group’s Model Driven Architecture or MDA. The
core of the MDA is UML 2.0 [26]. Neither UML 2.0 (henceforth UML) or MDA
treats security as much more than a service; there are no models for security
per se.

This raises the question of what security-specific aspects of software devel-
opment, if any, need coverage in this paradigm. This paper argues that there
are security-specific issues that cannot be modeled well with existing features
of MDA. These issues need adequate coverage in model-driven approaches.

One of the most significant security-specific aspects of software development
not covered by the MDA is the security protocol. Security protocols are se-
quences of allowable interactions between principals. A principal is an entity
that participates in a security system. Security protocols are not necessarily
about cryptography; one of our examples will model a security protocol that
involves no cryptography at all.

The UML candidates for visual modeling of security protocols all have short-
comings. Existing alternatives outside of UML also have similar problems, for
various reasons. Some of these difficulties are visual modeling issues and others
are semantic issues. One of the most critical semantic requirements for mod-
eling security protocols is the ability to define all traces of a protocol with a
single model as opposed to being able to describe any trace with a single model.
Explicit definition of all traces is necessary because each bad trace has the po-
tential to become a security flaw. A highly desirable visual modeling feature is
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event-based modeling, as opposed to state-based modeling. The distinction is
that state-based modeling is best for designing reactive behavior while event-
based modeling is best for designing interactive behavior. State-based modeling
requires us to work with internal computational aspects, such as states or trig-
gers, to construct the traces of a protocol. An event-based modeling paradigm
lets us work directly with the external events and traces of a protocol.

2 Motivation

The core purpose of visual modeling, as opposed to other forms of modeling,
is presentation and understanding. Formal verification, machine-generated im-
plementation, and other automatic processing are probably done better with
text-based models. So our interest is in security protocol modeling that has
good visual properties for presentation and understanding, without sacrificing
soundness that supports translation into text-based models. This leads to the
following criteria for security protocol modeling:

• The visual formalism should be event-based. It should focus on interaction
patterns between principals and abstract away from details of internal
computations. The importance of this is underscored by the fact that
existing security protocol modeling tools use event-based visual models,
rather than state-based models.

• The visual formalism should support composition in a natural way, so that
models can be constructed from components that identifiably correspond
to the principals of the protocol.

• The visual formalism should be comprehensive. It should be capable of
defining all traces of a protocol by means of a single diagram.

• The visual formalism should be concise. Defining a complex protocol
should not require an explosion of modeling details. (An event-based
visual formalism can fail to be concise.)

• The visual formalism should have a well-defined syntax and semantics.

With these criteria (event-based, composable, comprehensive, concise, well-
defined) we can assess the suitability of the various MDA/UML models for
security protocol design and analysis. We can also investigate the usefulness of
other modeling approaches that are not part of the MDA suite.

2.1 UML Candidates

To model security protocols in UML, we must use one or more of the available
modeling mechanisms: actions, activities, interactions, state machines, or use
cases. Use case models are high-level requirements tools and use the other
visual modeling techniques to describe behavior, so they are not candidates for
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modeling any but the most rudimentary concepts of security protocols. UML
Actions include constructs such as BroadcastSignal, ReadVariable, and WriteLink;
they correspond to individual events, methods, messages, or calls. Thus, they
are also not suited to modeling complete security protocols.

UML Activities organize UML Actions into structures that resemble Petri
nets. UML Activities employ control- and data-flow relationships in their Petri-
net-like structures, which is less desirable when the issue is protocols and we
wish to avoid details about internal computations.

UML Interactions are similar to ITU Standard Z.120 Message Sequence
Charts, or the older UML 1.x Sequence Diagrams: a collection of vertical life-
lines with message flow between the lifelines shown horizontally. Both UML In-
teractions and ITU Message Sequence Charts have semantic problems. Damm
and Harel have provided a well-defined semantics for these kinds of diagrams,
in a visual modeling technique called Live Sequence Charts [9]. All of these
“sequence-diagram” modeling paradigms have the critical strength of being
event-based: they model sequences without internal computational detail. That
is, they model behavior directly in terms of protocol traces. Unfortunately, they
all have limited usefulness in modeling security protocols because each diagram
defines only a subset of the traces of a protocol. The nature of these diagrams is
that they visually enumerate traces and lack the power of set theory or process
algebra to explicitly define all possible traces of a combination of principals. For
example, suppose we use the BPA 1 process algebra of Bergstra and Klop [1] to
define P = a ·P , the process P that does event a and then acts like process P . If
the expression traces(P ) means the set of all traces of process P and the symbol
_ denotes concatenation of traces then we can use set theory to explicitly define
all of the traces of P = a · P as

{〈〉} ∪ {〈a〉_tr | tr ∈ traces(P )}

while the corresponding “sequence-diagram” enumeration approach is equiva-
lent to the symbolic listing of each possible trace

〈〉, 〈a〉, 〈a, a〉, . . .

As soon as there is a modest variation in the pattern of the traces, this enu-
meration approach begins to break down. In contrast, process algebra or set
theory provides us a complete definition in a single model but still allows us to
unwind the model to see or check any trace. The visual modeling equivalent of
set theory or process algebra is needed to solve this problem.

UML State Machines would appear to offer some promise. They are based
upon (but are not the same as) the object-oriented version [13] of Harel’s ele-
gant statechart [12] visual formalism. Since statecharts are a well-defined visual
model, UML State Machines should be able to define completely any security
protocol, with a single model. Unfortunately, UML State Machines have some
problems: 1) received events are modeled by a different mechanism that sent
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events, 2) the semantics are run-to-completion which poses problems for model-
ing some forms of recursion (Tenzer and Stevens provide good examples of this)
[34], and 3) some of the events are not atomic [22]. Some of these problems
are avoided by the concept of UML Protocol State Machines. UML Protocol
State Machines are like UML State Machines without UML Activities. That is,
a UML Protocol State Machine only has triggers associated with its transitions
while the more general UML State Machine also has UML Activities associated
with its transitions. The effect of this is that a UML Protocol State Machine
can describe one side of an interaction between two security principals: either
the sequence of requests a principal can make or the sequence of responses that
that a principal can provide. This is sufficient for constraining interfaces but
not for modeling a complete security protocol.

From these circumstances we can conclude that UML is not well-suited to
modeling security protocols. This leads us to examine other visual modeling
techniques outside of UML, to see if they are better tools for modeling security
protocols.

2.2 Existing Visual Models Outside of UML

We have already mentioned Live Sequence Charts as a well-defined event-based
modeling technique. The problem of needing more than one diagram to define all
of a protocol remains. Another possibility is a visual representation of labeled
transition systems. A labeled transition system or LTS is a triple (Γ, A,→)
where Γ is a set of configurations, A is a set of events, and → is a ternary relation:
→ ⊆ Γ×A×Γ. Intuitively, the relation → represents the transitions from one
configuration to another; 〈γ, a, γ′〉 ∈ → is usually written as γ

a
→ γ′. Labeled

transition systems are ideal for machine representation and processing of event
systems. The problem with labeled transition systems as a visual modeling
paradigm is the same problem that lead to the development of statecharts: “the
unmanageable, exponentially growing multitude of states, all of which have to
be arranged in a ‘flat’ unstratified fashion” [12]. They are not concise. Current
LTS work is turning to algebraic treatments to overcome this difficulty. Petri
nets were developed by Carl Petri [27] for formal modeling of concurrency,
nondeterminism, and communication. Petri nets are well-defined formally and
have a large body of literature. They are useful for a wide range of problems
including workflow and performance modeling. The difficulty with using them to
model security protocols is the presence of computation details: initial markings,
places, transitions, and data flow. They are not event-based. Another difficulty
is that Petri-net-based models are not naturally composable in terms of security
principals.

Port state machines, a formalism developed by Mencl [22], have removed the
semantic difficulties associated with UML State Machines, while retaining the
semantic clarity of statecharts. Furthermore, port state machines also address
modeling details needed for object-oriented programming, which the original
statecharts lack. However, because of this and their state-based nature, port
state machines have too much computational detail for modeling security pro-
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tocols. They are not event-based.
Harel’s original statecharts are a good candidate for modeling security pro-

tocols, because they lack the extra details needed to model object-oriented pro-
gramming issues. They are semantically sound and can define an entire protocol
with a single diagram. Statecharts also have excellent visual modeling charac-
teristics. They are not event-based and require consideration of states and
transitions as well as the events they model. We would prefer a more directly
event-based modeling paradigm.

Walters has designed RDT [36] as a formal visual language based on activity
diagrams. RDT is designed foremost for visual clarity, just what is needed for
visual modeling of security protocols. It would be a good candidate but it uses
an LTS form of depicting behavior, so it is not event-based.

Another alternative we have not considered up to now is a graphical form
of process algebra. Process algebras are event-based but avoid the explosive
complexity of labeled transition systems by means of algebraic operators. Pro-
cess algebras view processes as abstract trace generators and provide means for
composing processes to define more complex trace generators.

Cleaveland, Du, and Smolka developed Graphical Calculus of Communicat-
ing Systems (GCCS) [7] as part of the Concurrency Factory tool [8]. The GCCS
visual notation is based on Milner’s CCS [25] process algebra but the diagrams
are visual depictions of labeled transition systems. GCCS diagrams have the
same visual limitations as basic labeled transition systems: they are not concise.

Cerone developed Visual Process Algebra or VPA [5], a modeling technique
based on combinations of the CCS, CSP [17], and Circal [24] process algebras.
The VPA approach models processes as boxes with ports to indicate communi-
cation and thus has the potential to be event-based. Unfortunately, VPA uses
an LTS or state-machine approach within each box to model the behavior of the
corresponding process. For security protocol modeling we would really prefer
an approach that avoids labeled transition systems altogether.

Gilmore and Gribaudo [11] extended the DrawNET tool to model the PEPA
[16] stochastic process algebra. The DrawNET tool is oriented towards perfor-
mance modeling; the graphical representation of process algebra retains the
Petri nets of the underlying tool, so the DrawNET representation is not really
well-suited to modeling security protocols.

The gCSP (for graphical CSP) tool, developed by Hilderink, Jovanovic, et
al. [15, 18] is the most ambitious graphical form of process algebra to date.
Processes are denoted as circles in gCSP. Lines connecting the processes de-
note composition via the various operators of CSP. A surprising omission is
the graphical modeling of events and their ordering within a sequential process.
That is, even though gCSP can cleanly show sequential processes P and Q in
parallel P || Q, it cannot show the events that make up sequential process P (or
Q). This is not a difficulty for control applications that gCSP has been applied
to, but it is critical for modeling security protocols.

From a security protocol modeling perspective, the gCSP notation is in-
teresting because it presents a contrast to the graphical modeling paradigm
proposed in this paper. Process algebras are strongly compositional. It is dif-
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Figure 2: Complex Composition in gCSP

ficult to present complex process algebra relationships graphically. Figures 1
and 2 illustrate this difficulty in the gCSP notation. Figure 1 shows the process
algebra fragment P ;Q||R which is an ambiguous term specifying the sequential
(via the ; operator) and parallel (via the || operator) composition of processes
P,Q and R. Figure 1 (a) shows how this ambiguity can be drawn in gCSP.
Figure 1 (b) shows how this ambiguity can be resolved by drawing cycles to add
arcs for all relationships. This is problematic in complex compositions since the
diagram tends to become a fully connected graph. The gCSP notation has a
clever solution to this, shown in Figure 1 (c), where a smaller circle is used on
one side to denote the precedence. The notation is well-defined and capable of
automatic simplification. However, in complex situations, the notation becomes
difficult to read, as shown by Figure 2. However, it is the lack of explicit events
that renders gCSP unsuitable for security protocol modeling.

2.3 Security Protocol Modeling Tools

Another possibility is the (visual) modeling provided by security-protocol-specific
tools. Most of the these tools have visual modeling components and it is possible
that we may find a satisfactory (from the visual modeling perspective) language
or technique there. Considering these tools will also clarify our emphasis on
presentation and understanding as opposed other purposes such as verification
or analysis. Clearly the existing tools are effective for those other purposes.

The Security Protocol Engineering and Analysis Resource (SPEAR) tool [30]

6



provides multidimensional protocol analysis. Multidimensional protocol analysis
combines several non-visual modeling approaches in order to get a more com-
plete picture of the security of a cryptographic security protocol. The SPEAR
tool incorporates multidimensional protocol analysis under a graphical user in-
terface. Unfortunately, SPEAR uses message sequence charts to visually model
security protocols. Its graphical language is not comprehensive.

The Common Authentication Protocol Specification Language (CAPSL) and
MuCAPSL, its group multicast protocol version, is a formal language for spec-
ifying cryptographic security protocols [23]. CAPSL is well-defined, concise,
comprehensive, and compositional. CAPSL models can be translated into many
forms and several cryptographic protocol analysis tools have CAPSL support.
Unfortunately, there is no visual form of CAPSL per se.
The Convince tool is a pioneer effort in visual modeling of cryptographic security
protocols [19]. Convince uses a text-based formal language based on BGNY [3]
logic. Unfortunately, the characteristics of BGNY do not carry over into the
visual modeling language, which is essentially a version of UML. In particular,
protocol steps are modeled visually using message sequence charts.

One security protocol analysis tool that does use a distinct security-specific
visual language is the NRL Protocol Analyzer (NPA) [21]. NPA has its own
text-based language NPATRL (pronounced “N Patrol”) that models a wide
range of security protocol requirements. NPATRL is an event-based language
for expressing trace properties. It uses familiar logic operators and one tem-
poral operator to define logical properties of events or traces. The NPA tool
has a corresponding tree-structured language for visual modeling of NPATRL
specifications [6]. The visual language is event-based, concise, and well-defined.
Our motive for looking further is that the visual NPATRL language is a trace-
property-language while we are looking for a protocol-definition language. That
is, the visual NPATRL language does not define the traces of a particular pro-
tocol, but the properties (i.e. requirements) of a good protocol. We are looking
for a language that can define protocols as they operate, good or bad.

3 The GSPML Alternative

We have seen that the general purpose features of UML are inadequate for mod-
eling security protocols. More well-defined visual paradigms including gCSP are
also not suited to modeling security protocols. The visual interfaces to current
security protocol modeling tools also do not use better forms of modeling.

We propose GSPML as an alternative. (At the time this paper was written,
GSPML did not stand as an acronym of any particular name.) The goal of
the GSPML alternative is to provide a visual modeling language suitable for
the security-specific problem of protocol modeling. The emphasis is on a solid
visual model with complete syntax and semantics, rather than tool application
via the specific semantics. Given a well-defined visual modeling language, a
variety of formal techniques could be used, including many with semantics that
differ from the semantics of GSPML (e.g. NPATRL, CAPSL, strand spaces
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Figure 3: Basic Boxes of GSPML

[10, 33], or a general LTS).
The GSPML alternative is well-defined, event-based, compositional, com-

prehensive, and concise. This is demonstrated by the diagram at the end of
this paper (see Figure 11) that defines a complete model of the Yahahlom cryp-
tographic security protocol. This diagram fits on a single page but defines all
possible traces of the protocol interacting with a Dolev-Yao intruder. So a single
GSPML diagram can define not only all the correct behavior of a protocol but
also its behavior under many attacks.

Our presentation here in Section 3 does not define a semantics for the
language but provides an introduction and demonstrates the applicability of
GSPML. The meaning of well-formed GSPML diagrams is compatible with
several forms of process algebra but it is not necessary to understand process
algebra in order to understand the GSPML presented in this paper. It is neces-
sary to understand that GSPML models are arrangements of nested rectangles
or boxes that define trace generating processes.

In GSPML, every trace-generating process is defined by either a process
box or a process box name. (For the rest of this paper we will use the term
process and box interchangeably.) There are two major distinctions between
boxes: sequential boxes and concurrent boxes, as in Figure 3. A sequential box
has rectangular corners and models sequential processes. A concurrent box has
round corners and models concurrent processes. A process box name (or more
simply, box name) may only appear as a label for a box, or inside a process
region of a box. A process region may have only one box or box name in it.
Sequential boxes also have event regions that contain the events of a GSPML
model. When all of the events in the event region of a sequential box have
occurred then the sequential box is replaced by or becomes the box contained
or named in the process region below the event region.

We present the details of GSPML by examples of its use. We give two
examples: first a cryptographic security protocol and then a non-cryptographic
security protocol.

3.1 The Yahalom Protocol

Our example of a cryptographic security protocol is the Yahalom protocol [4].
The GSPML model is based on the CSP process algebra model presented by
Ryan, Schneider, et al. [29]. Readers interested in process algebra modeling
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a.b.a.na

Session(a, b, kab, na, nb)

a.b.{a.kab}ServerKey(b).{nb}kab

j.a.{b.kab.na.nb}ServerKey(a).m

a.b.m.{nb}kab

b.j.b.{a.na.nb}ServerKey(b)

STOPServer

J

j.a.{b.kab.na.nb}ServerKey(a).{a.kab}ServerKey(b)

Figure 4: A GSPML Model of One Run of the Yahalom Protocol

9



of security protocols, as opposed to exposition of the GSPML language, should
consult their work.

The Yahalom protocol is used to establish a session key kab between two
principals A and B, via a server J . Figure 4 shows a simple GSPML diagram of
a single run of the protocol, where principal A initiates a session with principal
B. The protocol run is simplified in the sense that the principals are assumed
to be somehow prepared to synchronize on each other’s nonces and the session
key, in advance of the protocol run. That is, each event contains precisely the
nonces na, nb and session key kab to make this run work. None of the three
named boxes in Figure 4 is defined as being prepared to deal with any possible
well-formed nonce or session key.

The goal of Figure 4 is to introduce the protocol, not model it. That is, the
GSPML of Figure 4 is playing the role of the usual message sequence diagram
used to introduce a cryptographic protocol. So Figure 4 shows that GSPML
can be used for explanation as well as definition of security protocols.

Figure 4 provides a good non-trivial first example of GSPML. The two out-
ermost (unnamed, round-cornered) boxes are concurrent boxes that model the
concurrent interaction of the principals A and B and the server. Each concur-
rent box has two process regions. The outermost concurrent box has the next
inner concurrent box in one of its process regions and a sequential box named J

in its other process region. The sequential box J contains the events that model
the protocol steps of the server in a single run of the Yahalom protocol. The
second concurrent box contains the sequential boxes named A and B defining
the corresponding protocol steps for the initiator and responder.

Each event in a sequential box is denoted by a small circle, called an event
symbol, on the left boundary of the box’s event region. The top-to-bottom order
of the event symbols defines the sequential order of the events for that box. So
the events of sequential box A at the top of Figure 4 are

a.b.a.na

j.a.{b.kab.na.nb}ServerKey(b).m

a.b.m.{nb}kab

Sequential boxes communicate or share their events via interface port symbols
on enclosing concurrent boxes. Concurrent boxes with interface port symbols
are parallel boxes that define communication between their components. An
interface port symbol is a small rectangle placed on the boundary between the
process regions of a parallel box.

Shared events are connect by synchronization lines. The synchronization
lines shown in Figure 4 are an example of concrete synchronization lines because
they connect event symbols directly. They are also directed synchronization lines
because they have an arrow at the head of the line. The event at the head of
a directed synchronization line is the destination event and the event at the
tail is the source event. Directed synchronization lines depict transmission or
communication events. (GSPML also has undirected synchronization lines but
they are not used in this model.) Synchronization lines may be drawn anywhere
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that provides clarity while connecting the events, but must pass through the
interface port symbol that defines the parallel combination.

Events in GSPML may have compound names. The event itself is atomic but
various information about the event can be represented using a “dot” separator,
as in x.y between the name components x and y.

In Figure 4’s model of a run of the Yahalom protocol, the events have com-
pound names with the first component indicating the sender for that event and
the second component indicating the receiver of the event, not to be confused
with the source and destination event symbols of the synchronization line. For
example, the first event of box A is the compound event a.b.a.na: a transmission
from source a to destination b of the message a.na. The directed synchroniza-
tion line from event a.b.a.na in box A to the unnamed destination event in box
B tells us that the unnamed destination event has the same name as the source
event symbol. This models the reception of the named event transmitted by
box A.

Figure 4 also contains directed synchronization lines connecting events with
different names at source and destination. For example the second event of
box A is named j.a{b.kab.na.nb}ServerKey(a).m while the source event in box
J is named j.a{b.kab.na.nb}ServerKey(a).{a.kab}ServerKey(b)

. This aliasing indi-
cates that the source and destination events have different interpretations of
the same event. In this case, the initiator (modeled by box A) cannot read the
last component {a.kab}ServerKey(b)

because it does not have ServerKey(b) so it
interprets that component as simply as a sequence of bits m.

We can tell which event happens first in the diagram of Figure 4 by noticing
that second event of the B box happens at the same time as the first event
of the J box, so box J ’s first event cannot start the protocol. As the diagram
shows it, the first event in the protocol must be the shared first event of boxes A
and B : transmission of the message a.na from a to b. (It is not always necessary
that a unique event in a GSPML diagram be the first event; the first event can
be one of several possibilities.)

The Yahalom protocol works as follows: principal A wishes to establish
a session with principal B and initiates a run of the protocol by sending its
identity a and a nonce na to principal B. This is shown by the synchronization
of the first event a.b.na communicated from the A box to the B box in Figure
4. Box B then sends a, na and its own nonce nb, encrypted under the key
ServerKey(b) to the server. This is show in Figure 4 by the synchronization
of the second event of the B box with the first event of the J box. The third
step of the protocol has the server (box J) send principal B’s identity b, both
nonces na, nb, a session key kab, and a message {a.kab}ServerKey(b) to principal
A. This is shown in Figure 4 by the synchronization of the second event of the
J box with the second event of the A box, where the initiator sees the message
{a.kab}ServerKey(b) simply as a bit string m.

In Figure 4 the end of the protocol run is shown by the J box becoming the
(constant) process box STOPServer, while the A and B boxes become param-
eterized Session boxes that denote the start of a session between principals A
and B.
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The constant box STOP is a process box that never performs events. It
maybe considered to have an interface with visible events, but it never performs
them. Thus STOP generates only one trace: 〈〉. STOP does not represent
normal termination but deadlock or a blocked process. In Figure 4, the constant
box is called STOPServer to indicate that it has exactly the same interface as
the Server box.

3.2 A Complete GSPML Model

Defining a complete model of the Yahalom protocol will explain more of the
GSPML language and demonstrate that it is event-based, comprehensive, con-
cise, well-defined, and composable. Our complete model follows the Dolev-Yao
structure where the intruder acts as the network connecting the principals. The
complete GSPML model is shown as Figure 11 at the end of the paper, but
we do not use that figure to explain GSPML. Instead, the model is presented
beginning from a top-level view. Then components of the complete model are
explained, proceeding from simpler constructions to more complex. This will
demonstrate the abstraction capabilities of GSPML. The form of our explana-
tion is to introduce different language elements by example. The meaning of
each language element is explained first and then the protocol modeling struc-
ture is explained based on the meaning.

3.3 High-Level Model Structure

Figure 5 shows a top-level view of the model of Figure 11, with principals A
and B as abstract concurrent boxes UserAlice and UserBob, the server as the
abstract concurrent box Jeeves, and the intruder as abstract sequential box
Yves. Abstract boxes have no internal regions for events or processes. This use
of abstract concurrent and sequential boxes shows the high-level structure of
the model without the internal details.

The basic structure of Figure 5 is a parallel box synchronizing the sequential
Y ves box with the nested interleaving boxes that model UserAlice, UserBob

and Jeeves. The boxes contained in the process regions of the interleaving
boxes are interleaved, since there is no interface port symbol on the boundary
between them. The events of the boxes contained in the two process regions of
an interleaving box are not synchronized. For example, if the boxes UserBob

and UserAlice each contained an event named a and both boxes performed an a

event, then the traces of the interleaving concurrent box containing them would
include two a events, not one. Even though the synchronization lines connect
to the interior of both UserAlice and UserBob, we can tell that they do not
communicate directly because the synchronization lines do not go through an
interface port symbol on the region boundary between them.

Figure 5 shows that none of the boxes UserAlice, UserBob, or Jeeves com-
municates directly but that the three interleaved boxes are connected, via the
outer parallel box, with the intruder box Yves. The heavier synchronization
lines connecting the boxes are abstract synchronization lines because they do
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UserBob

Jeeves

Y ves

Y ahalom

Figure 5: Yahalom: The Top-Level Structure

not connect to specific events but are capped with an event symbol. The capped
termination of an abstract synch line indicates that the shared event on that end
is within some greater level of detail inside the applicable box. These abstract
synchronization lines are similar to the abstraction technique presented by Hen-
derson, et al. [14] but with a different semantics. Abstract synchronization lines
in a GSPML diagram, used as shown in Figure 5 have no meaning but provide
a reminder of the communication pattern in the more concrete models. In a
software tool these abstract synchronization lines would be place holders for the
concrete lines of a more detailed view. In Figure 5 there are arrows suggesting
the direction of communication, but these arrows add no meaning. In Figure 5
the abstract synchronization lines suggest that box Yves participates in every
communication event, from any of the principals.

There are other uses of abstract synchronization lines that do have a well-
defined meaning, for example as used in Figure 11 at the end of this paper. In
the diagram of Figure 11, the abstract synchronization lines are used to combine
concrete synchronization lines to reduce visual clutter. The distinction is easy
to see because the synchronization lines in Figure 11 connect to specific events.

3.4 Intruder Structure

Figure 6 shows the complete structure of the intruder box Yves. Figure 6 is an
example of an external choice box indicated by a square external choice symbol
on the left end of the boundary between its process regions. An external choice
box offers a choice of either of its two boxes to its environment. The first event
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m

Y ves(close(KnownFacts ∪ {m}))

m : KnownFacts ∩ Messages

Y ves(KnownFacts)

Y ves(KnownFacts)

Figure 6: Yahalom: The Intruder

of the combination determines the choice of box.
In Figure 6 the events are named m because the intruder may or may not

be able to interpret the components of an event name. In Figure 6 this nota-
tion shows that the intruder box Y ves can copy and store details about any
event communicated between the principals. This is shown by the parameter-
ized box name Y ves(KnownFacts ∪ {m}). The set KnownFacts models not
only the events seen by Y ves but also any event components that Y ves may
be able to separate and combine with components from other events. The set
KnownFacts also includes any event components that Y ves may be able to
encrypt or decrypt, according to keys it already knows or learns from seeing
protocol events.

The use of external choice indicates that the intruder is prepared to partic-
ipate in any events that any of the three other principals offers. It can either
“copy” them into KnownFacts and pass them along, receive transmitted events
but not relay them, or spontaneously generate bogus events that are based on
the elements of KnownFacts.

Because the intruder’s events are in distinct sequential processes, the in-
truder box does not have to make its traces of send events correspond to the
traces of receive events it saw. The box following a receive event (incoming
arrow) has the parameter close(KnownFacts ∪ {m}) that models the intruder
accumulating facts in KnownFacts. The close function models the parsing,
decrypting, encrypting and recomposing of events seen by the intruder. Defini-
tion of the close function is outside the scope of the GSPML language, but is
represented by the parameterized box name. Use of the parameter means that
there is a distinct intruder box for each possible value of the parameter.

The other part of the intruder box uses KnownFacts∩Messages to model
faithful transmission as well as malicious replay and the substitution of well-
formed but spurious messages by the intruder.

The meaning of the intruder’s GSPML structure is that box Y ves must
receive any event “sent” by any principal but it is not required to relay that
event and may perform arbitrarily many send events before receiving an event
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1

b.j.b.{a.na.nb}ServerKey(b)

j.a.{b.kab.na.nb}ServerKey(a).{a.kab}ServerKey(b)

Server(ks)

a, b ∈ Agent; na, nb ∈ Nonce

Server(kab)

kab ∈ KeysServer

Jeeves

Figure 7: Yahalom: The Sever Process Jeeves

from a principal.
The sequential intruder box Y ves of Figure 6 is able to handle many events

from many protocol runs because it is recursive. The box participates in one
event of one protocol run, by its choice mechanism. After the single protocol
event, it uses recursion to become another box that is prepared to make all of
the same choices again. Recursion is defined by box names, rather than graph-
ical notation. That is, the intruder box is recursive because its box name Y ves

appears within the process regions of a box named Y ves. (In our prototyping
to date, we have found that purely visual modeling of general recursion is prob-
lematic.) GSPML uses the numbered circles to indicate boxes where recursion
is intended. In Figure 6 circle number 2 indicates the recursion back to box
Yves.

3.5 Server Structure

The next figure, Figure 7, shows the full definition of the server box Jeeves. This
box demonstrates several features of GSPML that we have not seen yet, includ-
ing two generalized or indexed boxes. The outer concurrent box is a indexed
interleaving box. It is a concurrent interleaving box because it has no interface
port on the boundary between its process regions. The double line separating
the two process regions tells us that it is an indexed interleaving box. The upper
process region of an indexed interleaving box has a specification for the index
set and the lower process region contains a parameterized box describing the
processes that are interleaved. The meaning of the box Jeeves is that for each
possible key kab ∈ KeysServer, there is a box Server(kab) interleaved with all
the other boxes. The index parameter kab distinguishes the structural difference
between each interleaved box.

In Figure 7, the parameterized box within the interleaving is itself an indexed
box, an indexed external choice box. Because it is an indexed external choice
box, box Server(kab) allows its environment to choose from an indexed set of
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boxes. A indexed external choice box is depicted by the double square external
choice symbol in its upper left corner. The index set is the double index a, b ∈
Agent;na, nb ∈ Nonce. This double index shows that the indexed external
choice box named Server(kab) offers a choice of boxes over all possible pairs
of agents and pairs of possible nonces. The first event of box Server(kab)
chooses one sequential box that then performs the appropriate protocol run.
This particular construction defines the server as being prepared to make any
well-formed run, once.

The innermost sequential box of Figure 7 is essentially the same as the
server box shown in Figure 4. It gives the order of the protocol steps followed
by the server in a single run, with all values fixed. The box containing this
single server run uses indexed external choice, over all possible pairs of agents
and all possible pairs of nonces, to define a collection of server boxes that can
conduct a single run for a fixed key kab, with any pair of users applying any
pair of nonces. This construction models the server being prepared to engage
in any run it is requested to participate in. The outer indexed interleaving box
models the condition that the server Jeeves may be engaged simultaneously in
many protocol runs, each with a different session key, including some bogus runs
initiated by the intruder Yves.

3.6 User Structure

The model is completed by boxes for each of the users. In order to model a
protocol of this kind, each user should be able to play either role, initiator or
responder. Figure 8 shows the high-level structure of a user, either Alice of
Bob. Each user is composed of two boxes, one for the user’s role as a protocol
run initiator and one for its role as a responder. The role modeling boxes are
composed into a single user, via an interleaving box, to model the possibility of
that user being engaged simultaneously in several protocol runs in either role.

Within the high-level structure of a user, the model defines the initiator
and responder runs over all possible combinations of principal names, session
keys, and nonces. We examine the structure of the responder role first, because
it is simpler. The lower part of Figure 9 shows the box for the responder
role, for user Alice. The lower part of Figure 9 does not introduce any new
GSPML notation. The structure of the Responder(a) box is similar to the
structure of the server box Jeeves shown in Figure 7: an outer interleaving box
that allows a responder to be engaged simultaneously in several runs of the
protocol, each distinguished by the responder’s choice of nonce na in the second
step of the protocol. One implication of this construction is that a Responder
may be engaged in several protocol runs, each run having identical values of
a, b, nb, and kab. While a properly implemented protocol will not do this for a
legitimate run, an intruder might try it. A good protocol model will be able
to reflect this and support the investigation of its consequences. The indexed
external choice box that defines Responder(a, na) within the interleaving box
gives us a choice of every possible responder process, over session keys kab,
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UserAlice

Initiator(a, na)

Responder(b, nb)

UserBob

Initiator(b, nb)

Responder(a, na)

Figure 8: Yahalom: High-Level Structure of Both Users

initiator nonces nb
2, and initiator names b. There is no recursion here, once the

names, nonces, and session keys are fixed; the responder runs until a session
is established, as shown by the process name Session(b, a, kab, na, nb) in the
process region of the innermost box.

The most complex component of our complete model is the initiator role. It
introduces one new GSPML construct, the menu choice box. Menu choice boxes
offer a choice of first events, from a single box, rather than a choice of boxes.
The menu choice box of Figure 9 is named Initiator(a, na) and it is contained
inside indexed interleaving box Initiator(a). Menu choice is denoted by the
double diamond event choice symbol. Above the event choice symbol there is a
single event name env?b : Agent that denotes a choice of event b of type Agent,
received from the environment env of the box . Other than this one new box,
the rest of Figure 9 uses notation already explained. Notice this initial event is
not connected via a synchronization line.

The added complexity in the initiator arises because of the need to model
an initiator’s ability to start legitimate protocol runs entirely as a consequence
of its own decision. That is, the intruder Yves should not be able to force
any user to start a legitimate protocol run. Otherwise, the intruder either has
mind control powers over the human user or has obtained control of the user’s
host. An intruder in either of these situations has no reason to try to break this
session key establishment protocol. So the initiator has to use menu choice to

2When Alice is responder, the subscripts are reversed.
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Alice(a)

n ∈ NonceInitA

Initiator(a)

a.b.a.na

Initiator(a, na)
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env?b : Agent

Session(a, b, kab, na, nb)

a.b.m.{nb}kab

j.a.{b.kab.na.nb}ServerKey(a).m

n ∈ NonceRespA

Responder(a)

kba ∈ Key; b ∈ Agent; nb ∈ Nonce

Responder(a, na)

b.a.b.nb

a.j.{b.nb.na}ServerKey(a)

b.a{b.kab.}ServerKey(a).{na}kba

Session(b, a, kba, nb, na)

Figure 9: Yahalom: The Single User Alice
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allow its environment (i.e. the human user) to chose the responder.
The outer structure of the Initiator box in Figure 9 is similar to the respon-

der’s structure. An interleaving box models concurrent runs of the protocol
using different initiator nonces na. Within the interleaving of runs defined by
possible nonces the menu choice box models the initiator’s choice of responder.

Within the process region of this menu choice box that selects a user b

we find a simple sequential box for each possible choice of user received from
channel env. This simple sequential box transmits the applicable nonce to the
chosen user’s responder. The process region of this simple sequential box uses
an external choice box to select the box that finishes the initiator’s part of a
single run, given the nonce nb chosen and returned by the responder b. Once
the responder has chosen a nonce nb the rest of the initiator becomes a single
run via a sequential box, just like the server and responder boxes seen earlier.

3.7 Modeling a Non-Cryptographic Protocol

We can demonstrate the versatility of GSPML by modeling a non-cryptographic
security protocol, and use this second example as an opportunity to introduce
further GSPML notation. In contrast to the preceding example of the Yahalom
protocol, information flow security protocols do not involve cryptography. Intu-
itively, an information flow security protocol involves a resource that is shared
between two environments High and Low. The resource is supposed to provide
shared service to both High and Low but prevent information from flowing from
High to Low.

The problem is not as easy as it looks and is still a research topic. One
of the most difficult parts of the problem is defining absence of information
flow. There are simple definitions of an information-flow-secure resource shared
between High and Low that are clearly effective but inhibit or preclude func-
tionality. For example, if the allowable security protocol provides no services to
the High environment, then the shared resource in question will be information
flow secure. The difficulty is getting a less restrictive definition of an allowable
protocol that still has acceptable information flow properties. GSPML can both
define allowable information flow and model the protocols.

We now define information flow security, for a simple service protocol. The
definition of information flow security is taken from Ryan and Schneider [28].
The definition is not the best proposed by Ryan and Schneider [28] but is chosen
because it can show GSPML notation we have not seen yet. Readers interested
in information flow security can refer to McLean [20].

The most significant difference in this example is that we are now modeling
a relation between two GSPML models. In our case, the relation is equivalence3

between the unnamed box of Figure 10(a) and the unnamed box on of Figure
10(b).

The new feature of GSPML used in this example is that both parts of Fig-
ure 10 use a hiding box. A hiding box makes events inside it invisible to its

3For definitions of information flow security, the specific kind of equivalence is significant,
but a discussion of that would detract from our main point.
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environment. A hiding box is distinguished by its strikethrough symbols; the
strikethrough symbols indicate the events that are to be hidden in the enclosed
box. Outside the hiding boxes of Figure 10 events alow and blow are visible but
events ahigh and bhigh are visible. Inside the hiding box, all four events are
visible when they take place.

Another difference in GSPML notation of Figure 10 is that the synchroniza-
tion lines are not directed. This shows that the direction of communication
or synchronization is not significant in this diagram. The synchronized events
happen together in each connected box, but there is no sense of source and
destination.

The box construction on the right side of Figure 10 is using synchronization
with the constant box STOPH to block H (i.e. High) events in the box Protocol.
When boxes are synchronized via a parallel box but the combination reaches a
point in its execution where one of them is not prepared to synchronize then
the combination blocks. In this case, since box STOPH has precisely all the H

events of box Protocol only L events happen in the combination.
Figure 10 uses the process box Protocol to define the service itself and the

two models containing copies of Protocol to define information flow security
for the service. Essentially, the GSPML of Figure 10 defines information flow
security for Protocol as the condition that any trace of Protocol with the H
events hidden (i.e., Figure 10(a)) is the same as any trace of Protocol, with
its H events blocked and then hidden (i.e., Figure 10(b)). The implications of
this definition may be understood by considering that an arbitrary intruder box
may be inserted as synchronized with the Protocol box inside each model of
Figure 10; thus there is potential for different behavior to be visible between
the two parts of Figure 10. For example, an intruder added to Figure 10 can
use the external choice semantics of Protocol to choose the second inner box of
Protocol (the one that does bhigh) but then only request event ahigh, resulting
in a failure.

Adding specific details to the protocol (i.e. the Protocol box) is a key step
in modeling information flow security. The example uses two simple events
a and b while a more realistic example might use events like create-channel,
start-channel, stop-channel, clear-channel and delete-channel for a multilevel
boundary controller. Some specifications of Protocol will define sets of traces
(and failures) that result in equality and others, sometimes surprisingly, will not.
The process of designing a suitable information flow security protocol involves
trade offs between the specification of Protocol, the protocol itself, and the pair
of enclosing security definition boxes.

Figure 10 also demonstrates the compositional nature of GSPML models.
If the service defined by the box named Protocol is to have another security
property besides information flow security, then the box named Protocol can
be removed unchanged from the hiding and blocking equivalence and placed in
a model for that property.

20



1

1

1

1

1

1

1

1

1

1

alow

ahigh

bhigh

Protocol

STOPH

Protocol

blow

Protocol

Protocol

Protocol

blow

bhigh

alow

ahigh

Protocol

Protocol

Protocol

Protocol

Protocol

(b)

(a)

Figure 10: Modeling an Information-Flow-Security Protocol
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4 Conclusions

Our first conclusion is that visual modeling does not magically make complex
security issues simple. The two examples were chosen because they are as com-
plex and realistic as can be presented in a brief paper. The GSPML depiction
cannot remove inherent complexity from a security protocol, but it can present
security protocols in a clear visual form.

Some complex concepts can be understood more quickly by visual means.
Visual descriptions are sometimes preferable to text-based notation. GSPML
provides those benefits for security protocols.

Our second conclusion is that GSPML is a modeling language that meets the
security protocol modeling criteria: event-based, compositional, comprehensive,
concise, and well-defined. There is no other visual modeling technique that
satisfies all of these criteria. The current Model Driven Architecture does not
provide security-specific modeling facilities and its general modeling facilities
fail to satisfy one or more of the security protocol modeling criteria. There are
well-defined visual formalisms outside of the UML that could be used to model
security protocols: labeled transition systems, Harel’s original statecharts, and
Petri nets. However, each of these three is also lacking according to at least one
criterion.

A comment on our second conclusion is that all of the modeling approaches
considered in Sections 2.1 and 2.2 are useful and in some cases superior to
GSPML, for applications other than security protocol modeling. For instance,
a lack of states and other internal computational details makes GSPML less
suitable for modeling object-oriented implementations. GSPML is for modeling
and defining protocols visually. Other than through some visual form of the
rank function approach [31], GSPML is probably not suited to verification or
analysis of protocols but should be used as a front-end for a protocol analysis
tool as considered in Section 2.3

Our third conclusion is that, from a visual modeling point of view, the idea of
a security protocol should be generalized to any form of interaction between se-
curity principals. The proposed notation should be security or protocol specific,
rather than specialized to only cryptographic protocols.

Our final conclusion regards the application of GSPML. Security protocol
design and modeling is usually considered a security specialist responsibility and
outside the expertise of a general software developer. Why then would we need
a modeling language just for security protocols? There are three reasons: 1)
security specialists benefit from visual modeling, as demonstrated by the visual
components of the tools described in Section 2.3 above, 2) a visual presentation
may be more useful to software developers who have to implement the security
protocol and thus serve as a bridge from security specialist to other developers,
3) many security protocols fail because they are used in new or different envi-
ronments; GSPML models may reveal the impact of the new environment more
clearly than a text-based model.

The diagrams of GSPML are compatible with several forms of process alge-
bra. That is, the semantic differences in various process algebras are not great

22



enough to require substantially different diagrams. In our experience, we have
used GSPML to visually depict security protocol models of both classical CSP
and PEPA stochastic process algebra semantics. It should be possible to use
CCS [25] or ACP [2, 1] semantics for GSMPL diagrams. All three process al-
gebras are Turing complete, so there is no real issue of expressiveness in one
semantics over another.

Our future work on GSPML will include further prototyping and application,
to validate the syntax and semantics. We will also continue to analyze the
visual aspects of the language, to improve the balance [35] between language
complexity and the complexity of visual models drawn in the language.
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Figure 11: Yahalom: The Complete Protocol Model


