
Tiny Trusted Third Parties∗

Alexander Iliev
sasho@cs.dartmouth.edu

Sean Smith
sws@cs.dartmouth.edu

April 18, 2005

Abstract

Many security protocols hypothesize the existence
of a trusted third party (TTP) to ease handling of
computation and data too sensitive for the other
parties involved. Subsequent discussion usually dis-
misses these protocols as hypothetical or impractical,
since trusted third parties clearly cannot exist. How-
ever, we believe this assumption is fallacious: the last
decade has seen the emergence of hardware-based de-
vices that, to high assurance, can carry out compu-
tation unmolested; emerging research promises more.
Unfortunately, perhaps as an inevitable consequence
of cost-effective physical security, these devices have
small memory and limited computational power.

In theory, such devices can perform the role of a
trusted third party in real-world problems. In prac-
tice, we have found that these devices are too small to
be applied naively as TTPs for large problems. How-
ever, we have found that we can often build practi-
cal solutions anyway, using collections of these tiny
TTPs carefully integrated. This thinking suggests a
new paradigm in thinking about algorithms, hard-
ware, and complexity.

1 Introduction

Computer security protocols typically consist of com-
putation distributed between two or more parties,
potentially adversarial and with different interests
and motivations. To ensure that this computation
possesses the desired security and privacy properties

∗Review submission, NSPW 2005

(balancing the interests of these participants), design-
ers often posit the existence of a trusted third party
(TTP). If the main parties trust this TTP not to
cheat, then properties and results that might oth-
erwise require delicate cryptographic interaction be-
tween the main parties can be obtained simply by
moving the right computation to the TTP. Often,
the addition of a TTP adds sufficient flexibility and
efficiency to turn the protocol from impractical to
feasible for the real world.

However, many regard the use of TTPs in proto-
cols itself as cheating, on the part of the designer.
What organization or humans are sufficiently trust-
worthy? Even if an organization might be sufficiently
trustworthy right now, what about the future? Con-
sequently, although the addition of a TTP may make
a design feasible from a computational perspective, it
becomes akin to using magic [25] or fairies: a techni-
cal approach not particularly appropriate for the real
world.

Secure Multiparty Computation Theoretical
computer science has developed the tool of se-
cure multiparty computation (SMC) to address this
problem—in theory. SMC enables entities to collab-
orate with others while preserving the privacy of in-
formation they would rather not expose.

The notion of a trusted third party is an important
one for SMC. It serves to define what it means for a
multi-party protocol to be secure. The ideally secure
protocol is one where all the players send their in-
puts to a universally trusted party who computes the
specified function, and then sends each participant
their intended result. Thus all the participants only

1

learn their result and nothing more. In practice, most
work on SMC declares that actually using a TTP is
not reasonable, as there are no real trusted parties.
Instead, cryptographic protocols are developed which
achieve a similar security, but involve only the par-
ticipants and no third parties. The overhead of such
protocols is usually quite high however.

Recently, Malkhi et al. have offered a preliminary
prototype [19], which however has high overhead in
some circumstances, such as programs which access
their (vector) inputs in an input-dependent manner.

Hardware On the other hand, computing devices
designed to be trustworthy for relying parties at re-
mote locations have been designed and built. Such
devices do actually offer a possible incarnation of a
TTP which does not rely on organizational trust, but
only on technological provisions, like strong physical
security and self-authentication mechanisms.

In this paper, we focus on such trustworthy devices
and argue, on the basis of our experience building
them (e.g., [26, 27, 20]) and using them in real ap-
plications, that they are ready to evolve to a form
which may be able to support private computations
at scales interesting on a practical level.

Such devices were also investigated, though only
theoretically, in the series of articles 10-15 years ago
by Goldreich and Ostrovsky on Oblivious RAMs [7,
9].

Tiny TTPs Unfortunately, these trustworthy de-
vices tend to be small in computational power and in
memory. These limitations may even be inevitable;
a TTP armored against an adversary with physical
access might not have a large memory because of the
difficulty of armoring a large device, nor run at high
speed due to the difficulty of dissipating heat.

We have nonetheless designed and implemented
such TTP algorithms working around these low space
requirements. However, we have found that a certain
kind of stream processing is by far the most time-
consuming task performed by a TTP in many SMC
applications.

Thus, we suggest that the evolution of the current
generation of TTPs should be a Tiny TTP, with a

small memory size, small processing units optimized
for fast stream processing, and very fast IO channels.
Such a device should be able to serve as a practical
TTP for efficient secure multi-party protocols on in-
teresting dataset sizes. We also suggest that effective
use of these tiny TTPs requires a new way of thinking
about “secure” computation.

This Paper This paper develops our vision for us-
ing tiny TTPs to build practical solutions to real se-
curity problems. Section 2 presents some background
in hardware-based TTPs, and Section 3 presents
some of our experience using tiny TTPs for big prob-
lems. We then discuss some of the new paradigms
that a systematic exploration of tiny TTPs would
entail: Section 4 projects implications for hardware
architecture, Section 5 projects implications for al-
gorithm design, and Section 6 projects implications
for complexity analysis. Section 7 discusses related
work.

2 Background

We start by considering some background.

Organizational TTPs Traditionally, researchers
tend to imagine a TTP as some organization-based
entity. In many applications, a third party can of-
fer trust mostly on the basis of being in a different,
presumably impartial, organization than the partic-
ipants in the computation. Certification authorities
usually fall into this category—a CA is trusted be-
cause, as an organization, it is impartial about the
secure computations its certificates protect, and it
must remain honest in order to maintain its reputa-
tion. However, there is no technological way in which
a relying party can decide if a given certificate from
a CA was actually generated properly.

This is presumably the kind of TTP that most peo-
ple would not want to mediate their multiparty secure
computations.

Secure coprocessors However there do exist de-
vices which can offer assurance that they are perform-
ing a task as expected, independent of how trustwor-

2

thy their operator is. This is the programmable se-
cure coprocessor (SCop). A secure coprocessor is a
small general purpose computer armored to be secure
against physical attack, such that code running on it
has some assurance of running unmolested and un-
observed [31]. It also includes mechanisms (outbound
authentication, also called attestation) to prove that
some given output came from a genuine instance of
some given code running in an untampered coproces-
sor [24]. The coprocessor is attached to a host com-
puter. The SCop is assumed to be trusted by clients
(by virtue of all the above provisions), but the host
is not trusted (not even its root user). The strongest
adversary against SCop applications is the superuser
on the host (perhaps also armored with a drill).

In the late 1990s, a programmable SCop emerged
as a commercial device. Now in its third genera-
tion, the IBM 4758 [27] was validated to the highest
level of software and physical security scrutiny1 of-
fered then—FIPS 140-1 level 4 [29]. It has an Intel
486 processor at 99 MHz, 4MB of RAM and 4MB of
FLASH memory. It also has cryptographic acceler-
ation hardware combined with FIFOs, enabling fast
streaming and decryption or decryption of data into
or out of the module [18]. It connects to its host
via a PCI bus. In production, the 4758 runs the
CP/Q++ embedded OS; however, experimental re-
search devices can run a version of Linux (as does
the follow-on product from IBM, the PCIXCC [1]).

More Limited TTPs The 4758 and its follow-ons
are too large to be portable and too expensive to be
ubiquitous. However, other emerging research (e.g.,
[30, 17]) and even commercial efforts (e.g., [10, 28])
explore a different approach: shrinking the physical
security boundary to a single chip, such as a portion
of the CPU. This approach can potentially decrease
cost and increase ubiquity—at the expense of making
the TTP even tinier (e.g., limited by the amount of
code and data that can fit into an internal cache).

1Since its release, a few groups have found flaws in spe-
cific application software—but the fundamental platform has
survived unscathed.

3 Experience

We have made extensive use of SCops in implement-
ing a practical Private Information Retrieval system,
which is an important instance of SMC.

All the solutions we have studied and implemented
share some structure, which can be used to design
more efficient SCop architectures, much like graphics
processing benefits from optimized hardware to deal
with a small set of computationally intensive primi-
tives. In this section we outline the structure of these
solutions.

3.1 Private Information Retrieval

The PIR problem is: Alice has a database of items
X = 〈x1, x2, . . . , xN 〉, Bob has an index i ∈ [1..N],
Alice should learn xi without Bob learning i.

Our work focuses on providing practical solutions
with the assistance of a SCop [11, 12]. We assume
that the SCop is small: if the items are of size O(M),
that the SCop can only fit O(M + log N) bits, which
is the minimum required to fit a constant number
of items and indices. The whole database, and any
additional working storage, resides on the SCops host
and is fully accessible to the adversary.

The basic algorithm we use was initially developed
by Goldreich and Ostrovsky in their oblivious RAM
work [9], and later also used by Asonov [2]. The
outline is that the SCop generates a randomly and
obliviously permuted (and of course encrypted) ver-
sion of the database, π(X). The host sees a sequence
of ciphertexts. “Oblivious” means that the permuta-
tion π is completely hidden from the host—as are the
keys necessary for decryption and integrity-checking.
Then, the SCop can service a query for item i from
Bob just by reading in one item, π(X)π(i) from the
permuted database. Since the host does not know
π, he cannot learn i. Each permuted database can
only be used a limited number of times before a new
one, using a new random permutation, needs to be
generated.2

2This is a simplified exposition, we refer the reader to [11,
12] for the full details—as well as how we reduce the internal
space bound.

3

The most time-consuming part of this scheme is
permuting the database obliviously while using only
very little trusted storage. It can be achieved in
O(N log2 N) time using Batcher’s bitonic sorting net-
work [3]. Such networks are an important theme
here–we elaborate on them in the next section.

Since the permutation step is the most time con-
suming, it makes sense to try to optimize it, as we
discuss later.

To give an idea of the performance of our proto-
type, with a database of

3.2 Oblivious Networks

A common theme in our work was the need for the
SCop to perform operations obliviously on a sequence
S of N items residing on the host. Operations include
permuting with a given permutation π, sorting with a
given sorting key k(si), and merging two sorted sub-
sequences. In all cases the obliviousness requirement
is that the adversary (bounded to feasible computa-
tions) does not learn anything about the parameters
of the operation from observing the IO that the SCop
performs.

From other fields of computer science comes the
construct of networks which can perform any of these
tasks. These networks consists of small operators
whose settings are operation-dependent (eg. depend
on the permutation π), wired together in a fixed man-
ner, independent of the operation.

Example: Permutation network A Beneš per-
mutation network can perform any permutation π of
N input items by passing them through O(N lg N)
crossbar switches (the operators), each of which op-
erates on two items, either crossing them or passing
them straight. The crossbar settings differ for differ-
ent π, but the connections between the switches is
fixed for a given input size N . In Figure 1 we illus-
trate a small Beneš network.

A bitonic sorting network is similar to the Beneš,
but it sorts its input, and consists of N

4 log2 N com-
parators, each of which sort two items. The compara-
tors are arranged in log2 N

2 stages.

Straight
Switch

Crossed
Switch

0
1

2
3

2

3

1
0

Figure 1: A Beneš permutation network with 4 in-
puts, performing the permutation 〈2, 3, 1, 0〉. The
dashed lines represent switch settings, which depend
on the permutation. The rest of the network only
depends on the number of inputs.

These networks are useful for our problem because
(1) the SCop can use cryptography to perform a sin-
gle operator on two items resident on the host without
the host learning what the operator did, and (2) by
doing this for all the operators in the network, the
SCop can process the whole dataset without the host
learning anything about the operation, even though
he observes all the item I/O.

More specifically, in the Beneš network case, to
execute a switch the SCop reads in the two items
involved, internally crosses them or not, and writes
them out encrypted under a new key so the host can-
not tell if it was a cross or not. Since the network
consists of 2 lg N stages of switches with N/2 switches
each, and the SCop can execute the switches stage by
stage, he can use one key per stage, thus never need-
ing to store more than two keys at a time during the
permute operation.

4 New Paradigms: Hardware

For all the PIR and PIRW prototypes we built,
the main bottleneck is streaming the whole dataset
O(log N) or O(log2 N) times through the SCop, once
for each stage of the permutation or sorting network
being performed. The computation required to set
up the network, which is O(N log N) time for the

4

Beneš3, but does not involve much I/O, was negligi-
ble in comparison to the time needed to perform the
network.

Looking at our experience with the 4758 secure co-
processor, we suggest a re-design of the device to take
advantage of the regular nature of the most time-
consuming tasks it has to perform: streaming the
dataset through the SCop while performing simple
operations on adjacent items, and re-encrypting the
items. The remaining internal computation can be
fairly weak—and indeed, a custom-designed 2-in, 2-
out crypto switch might even reduce the needed in-
ternal memory to a constant number of blocks of the
underlying block cipher, rather than whole database
items.

We propose two new design principles—making the
main memory and controller of the TTP small, and
adding an optimized unit with a small local RAM to
deal with stream-processing of the dataset.

The 4758 SCop already has a specialized compo-
nent for a streaming operation, which is the DES en-
gine. It can be configured with a key, and set to
stream data from the outside, through a DES oper-
ation and back out, without touching the main CPU
or RAM.

We propose to expand this design with a streaming
processing unit (SPU), which is similar to the 4758
DES engine, and the newer Otello cryptographic en-
gine in the PCIXCC, in that it is optimized to handle
a stream of data and is configurable in a “fast path”
to and from the outside, but it will be programmable.

Also we propose to generalize the 4758 and
PCIXCC notion of a cryptographic engine, and make
that component programmable too. Recent ad-
vances in processor design for symmetric cryptogra-
phy should make it efficient to program block ciphers
in software, as opposed to relying on hardware accel-
eration as is the standard for high-performance cryp-
tography. In particular, one of the main tools im-
portant for implementing block ciphers but missing
from general purpose instruction sets is a general bit-
permutation instruction. Recent work has examined
how such instructions can be provided efficiently [16].

3Setting up the Beneš network consists of computing all the
switch settings for the permutation π, which can be done in
O(N log N) time

The advantages of having a programmable crypto-
graphic processor are many. One is extra flexibility
in using the engine, for example being able to config-
ure it to only process parts of each block of data, and
leave other parts in cleartext. In the SCop scenario,
data intended to be read by the host should be left in
the clear. Another advantage is the ability to install
new block ciphers and modes (such as the ability to
verify integrity and decrypt together, in one pass),
seeing that this area of cryptographic research is far
from static.

One proposed design of the device in outline is
shown in Figure 2.

4.1 An example SPU program

We demonstrate how the SPU could be programmed
in C in Figure 3. The SPU should in general not be
concerned with encrypting and decrypting its data
stream. It may have a hardware-optimized swap func-
tionality, as this is frequently used in oblivious net-
works.

4.2 Relation to Cell processor

Recent Commercial efforts have produced another
radically new special-purpose CPU with a similar
structure to our proposed design—the Cell processor,
targeted at game consoles (the Sony playstation 3).
This consists of a POWER processor element (PPE),
multiple synergistic processor elements (SPE), and a
high-speed element interconnect bus (EIB) [23, 14].
The SPE’s each have a small local memory, which
is not coherent with the PPE’s memory, and they
are intended to deal with processing of streaming
data. The graphics-intensive applications to which
the Cell processor is targeted also share some struc-
ture with oblivious network processing—local pro-
cessing of large volumes of streaming data.

5

Symmetric
Cipher + MAC

Symmetric
Cipher + MAC

acceleration
mod math

RSA,
discrete logslocal

RAM Streaming
Processing unit

Controller RAM

Figure 2: Design of a stream-processing optimized Tiny TTP. The interconnect thickness is proportional to
bandwidth.

5 New Paradigms: Algorithms

5.1 SMC using blinded circuits with
RAM

We are currently experimenting with enhancing two-
party secure computation, using a tiny TTP to pro-
vide RAM to the standard blinded circuit solution.

General solutions to the secure two-party computa-
tion problem usually make use of a circuit representa-
tion of the function f to be computed, such that one
player (say Bob) “blinds” the circuit and the other
(Alice) executes the blinded circuit, without being
able to interpret the values; see eg. [8].

Blinding here means that Bob replaces the usual
bit values (0 and 1) with different random keys for
each wire in the circuit, and replaces the circuit gates
with tables which allow the propagation of these keys
in accordance with the semantics of the gates. Thus,

given the right keys at the input wires, Alice can
compute the corresponding keys for the output wires,
without knowing which bit value any of the keys cor-
respond to.

Recently an actual implementation, Fairplay, of
a general secure two-party computation system has
been constructed [19]. Some functions however im-
pose a large overhead to be represented as a circuit,
in particular if they make use of arrays indexed in an
input-dependent manner4.

We are experimenting with using TTPs to provide
a RAM for circuit-based two-party computation, as
an extension to the Fairplay system. This RAM will
reside on an untrusted host, but be accessed obliv-
iously by a Tiny TTP residing on that host, using
similar mechanisms as our previous PIR work.

4In general circuits impose a high overhead in simulating
indirect indexing, which is the hallmark of RAM machines.

6

size_t ITEMSIZE;

void * temp = alloc (ITEMSIZE);

/* structure to keep track of the expected comparator, so we catch any

substitution or replay attacks */

struct comparator_addr {

int stage; /* which stage of the network */

int idx1, idx2; /* the two item indices */

};

comparator_addr current_addr;

/* called by the controller at the start of every stage */

void stage_init (int stage_num) {

current_addr.stage = stage_num;

}

/* called whenever a whole block is available */

void * process (void * block) {

void * a = block;

void * b = block + ITEMSIZE;

update_addr (¤t_addr); /* advance current_addr to the next comparator

* (ie. this one) */

/* make sure it’s the expected block */

if (stage (a) != current_addr.stage || index(a) != current_addr.idx1 || ...) {

fail ("Incorrect items for comparator");

}

/* the actual comparator */

if (key(a) < key(b)) {

swap (a, b, temp); /* using ’temp’ for the swap */

}

else {

swap (a, a, swap); /* null swap to keep timing the same */

}

return a; /* done with this block, indicate it can be passed on */

}

Figure 3: Sample SPU program. The process function is a callback called whenever a whole block has been
input. The block size is set by the controller in advance. stage_init is called at the start of every stage
of the network. Also at the start of a stage, the controller will configure the crypto engines to deal with
decrypting incoming data and decrypt outgoing data. Then the controller will start the flow of data into
and out of this path.

7

5.2 Private advertising

Online newspapers sometimes expect their users to
register and log in every time they read the paper.
Ostensibly the reason is to enable targeted delivery
of advertisements, based on a long-term record of the
person’s reading habits. Such a dossier is of course
a potential privacy risk, especially if it is exposed to
external parties, through a compromised server (or
laptop!) for example.

We have thought about applying PIR to this
problem—enabling a user to retrieve web pages pri-
vately, but enable the TTP to track the person’s se-
lections and compile ads accordingly. The dossier
would in this case be guaranteed to be used only as
intended, and no-one would learn the user’s interests.

The New York Times has about 25 sections, with
up to 20 articles in each section, and perhaps 5 extra
objects (images, etc.) specific to each article, giving
about 2500 objects in total. Some of these may be
large and need to be split, giving perhaps 5000 items
in the dataset to be privately served. This dataset
size is within the reach of our current PIR prototype,
but would have an average response time of about
8 seconds, per item, which could clearly be exces-
sive considering that multiple items will make up one
page. Thus, a considerably faster implementation (ie.
on a faster device) is needed to enable this applica-
tion.

5.3 Beyond

More generally, this work has already made practical
use of previously “impractical” oblivious RAM work
and largely forgotten Beneš networks, to produce an
arguably practical solution to PIR, and potentially
to increase the feasibility of SMC. What else can be
achieved, if we continue to mine the “impractical” lit-
erature?

6 New Paradigms: Complexity

A major theme in the use of Tiny TTPs is that they
should compute obliviously. Informally this means
that even though the TTP may be using a large data

structure (encrypted) on untrusted storage, the ac-
cess pattern to the structure should look the same
to an adversary no matter what the actual data in
the structure is. Currently there exist general so-
lutions for simulating a RAM program obliviously–
the Oblivious RAMs work by Goldreich and Ostro-
vsky [9], but with considerable overhead—either a
factor of O(log4 N) with high constants, or a factor
of O(

√
N log N) with lower constants.

Thus, an obvious question is whether some specific
problems can be solved obliviously with less overhead
over their non-oblivious solution. We have already
encountered permuting and sorting, where oblivious-
ness imposes a factor of O(log2 N) and O(log N) re-
spectively (using the bitonic sorting network in both
cases).

An interesting question is to investigate the class
of problems which are solved by oblivious algorithms
with small overhead. One example of an algorithm
which is oblivious by nature is the Bellman-Ford
graph shortest path algorithm. It makes a fixed num-
ber of complete passes over the edges of the graph,
so its access pattern is the same (for a given number
of vertices and edges) regardless of the actual graph.

Another interesting question is what is the appro-
priately general model for “things that can be done
securely with a network of tiny TTPs.” If we move
beyond mere encrypted switches, what else can we
do? What other problems lie in this class?

7 Related Work

Cryptographically weak devices Remotely
keyed encryption schemes seek to enable high-
bandwidth encryption (on a host machine) using
long-term keys held in low-bandwidth devices like
smart cards [5]. This work shares the theme of
enabling large computations using a small trusted
space, but is otherwise quite different as it has
no obliviousness requirements, and an adversary
controlling the host can decrypt ciphertext until he
is removed.

In a similar space, Modadugu et al. have devel-
oped a prototype using an untrusted host to help a
Palm Pilot with the computation of generating RSA

8

keys [22].

Secure hardware Research teams at Princeton
(e.g., [21]) and MIT (e.g. [30]) have continued to ex-
plore building CPU-level versions of secure coproces-
sors. An ongoing project at Princeton, NPS, and
USC-ISI explores re-engineering CPU architecture
from the beginning, with security as a principle [15].

Less trusted and less functional TTPs The
construct of commodity servers was introduced by
Beaver to provide a trade-off between a heavyweight
secure computation without any third parties, and
a computation which fully trusts a third party [4].
Commodity servers assist a computation by provid-
ing random but potentially structured input to the
players. The servers do not learn the player’s actual
inputs.

A similar scheme for PIR protocols appears in [6].

Private advertising Juels describes schemes
which seek to combine weaker versions of PIR with
targeted advertising [13]. One of the schemes actually
provides anonymization (ie. hiding the user’s iden-
tity from the server) rather than PIR (which hides
the identity of the item retrieved), and both schemes
assume that the user selects the ad to view based on
his (privately-held) profile, and a selection function
sent by the server.

TCG The Trusted Computing Group (formerly
known as the Trusted Computing Platform Associa-
tion) has specified an architecture that takes a differ-
ent approach: shrinking the physical security bound-
ary to a single chip (the Trusted Platform Module,
TPM) and then integrating this chip into the boot
process of a larger, exposed system.

9

References

[1] T. Arnold and L. van Doorn. The IBM PCIXCC: A
new cryptographic coprocessor for the IBM eServer.
IBM Journal of Research and Development,
48:475–487, May 2004.

[2] D. Asnonov. Querying Databases Privately: A New
Approach to Private Information Retrieval.
Springer-Verlag LNCS 3128, 2004.

[3] Kenneth Batcher. Sorting networks and their
applications. In AFIPS Spring Joint Computer
Conference, volume 32, pages 307–314, Atlantic
City, NJ, USA, April 1968. Thomson Book
Company.

[4] Donald Beaver. Server-assisted cryptography. In
NSPW ’98, Proceedings of the 1998 Workshop on
New Security Paradigms, Charlottsville, VA, USA,
September 1998. ACM.

[5] Matt Blaze, Joan Feigenbaum, and Moni Naor. A
formal treatment of remotely keyed encryption
(extended abstract). In Advances in Cryptology -
EUROCRYPT ’98: International Conference on the
Theory and Application of Cryptographic
Techniques, volume 1403 of LNCS, pages 251–265,
Espoo, Finland, May 1998. Springer-Verlag.

[6] Yael Gertner, Shafi Goldwasser, and Tal Malkin. A
random server model for private information
retrieval, or how to achieve information theoretic
PIR avoiding database replication. In RANDOM
’98: Proceedings of the Second International
Workshop on Randomization and Approximation
Techniques in Computer Science, pages 200–217,
London, UK, 1998. Springer-Verlag.

[7] O. Goldreich. Towards a theory of software
protection and simulation by oblivious RAMs. In
STOC ’87: Proceedings of the nineteenth annual
ACM conference on Theory of computing, pages
182–194. ACM Press, 1987.

[8] Oded Goldreich. Foundations of Cryptography
Volume 2: Basic Applications, chapter 7: General
Cryptographic Protocols, pages 599–764.
Cambridge University Press, May 2004.

[9] Oded Goldreich and Rafail Ostrovsky. Software
protection and simulation on oblivious RAMs.
Journal of the ACM, 43(3):431–473, 1996.

[10] T. Halfhill. ARM Dons Armor: TrustZone Security
Extensions Strengthen ARMv6 Architecture.
Microprocessor Report 8/25/03-01, August 2003.

[11] Alexander Iliev and Sean Smith. Private
information storage with logarithmic-space secure
hardware. In 3rd Working Conference on Privacy
and Anonymity in Networked and Distributed
Systems, pages 201–216, Toulouse, France, August
2004. IFIP, Kluwer Academic Publishers. Workshop
under 19th IFIP International Information Security
Conference–SEC2004.

[12] Alexander Iliev and Sean Smith. Protecting client
privacy with trusted computing at the server: Two
case studies. IEEE Security and Privacy, 3(2),
March 2005.

[13] Ari Juels. Targeted advertising ... and privacy too.
In CT-RSA 2001: Proceedings of the 2001
Conference on Topics in Cryptology, pages 408–424,
London, UK, 2001. Springer-Verlag.

[14] Kevin Krewell. Cell moves into the limelight.
Microprocessor Report, February 2005.

[15] R. Lee, C. Irvine, and T. Benzel. Research Agenda
for Unified Core Mechanisms in Highly Secure
Mobile Platforms. In Security Challenges at the
Foundation: Secure Computing Enabled by
Hardware, Firmware and Low-Level Software.
DARPA Invitational Workshop, 2004.

[16] R. B. Lee, R. L. Rivest, M. J. B. Robshaw, Z. J.
Shi, and Y. L. Yin. Permutation operations in
block ciphers. In Nadia Nedjah and Luiza
de Macedo Mourelle, editors, Embedded
Cryptographic Hardware: Design and Security,
chapter 13. Nova Science Publishers, Hauppauge,
NY, USA, 2004.

[17] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. Mitchell, and M. Horowitz.
Architectural Support for Copy and Tamper
Resistant Software. In Proceedings of the 9th
International Conference on Architectural Support
for Programming Languages and Operating
Systems, pages 168–177, November 2000.

[18] M. Lindemann and S.W. Smith. Improving DES
Coprocessor Throughput for Short Operations. In
Proceedings of the 10th USENIX Security
Symposium, pages 67–81, August 2001. http:
//www.cs.dartmouth.edu/~sws/papers/des.pdf.

[19] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and
Yaron Sella. Fairplay—a secure two-party
computation system. In Matt Blaze, editor, 13th
USENIX Security Symposium, pages 287–302.
USENIX, August 2004.

10

[20] J. Marchesini, S.W. Smith, O. Wild, J. Stabiner,
and A. Barsamian. Open-Source Applications of
TCPA Hardware. In 20th Annual Computer
Security Applications Conference. IEEE Computer
Society, December 2004. http://www.cs.
dartmouth.edu/~sws/papers/acsac04.pdf.

[21] John P. McGregor and Ruby B. Lee. Protecting
Cryptographic Keys and Computations via Virtual
Secure Coprocessing. In 11th International
Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), Workshop on Architectural Support for
Security and Anti-virus (WASSA), October 2004.

[22] N. Modadugu, D. Boneh, and M. Kim. Generating
rsa keys on the palmpilot with the help of an
untrusted server. In RSA Data Security Conference
and Expo, 2000.

[23] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P.
Hofstee C. Johns, J. Kahle, A. Kameyama,
J. Keaty, Y. Masubuchi, M. Riley, D. Shippy,
D. Stasiak, M. Suzuoki, M. Wang, J. Warnock,
S. Weitzel, D. Wendel, T. Yamazaki, and
K. Yazawa. The design and implementation of a
first-generation cell processor. In 2005 IEEE
International Solid-State Circuits Conference, pages
184–186. IEEE, 2005.

[24] Sean Smith. Outbound authentication for
programmable secure coprocessors. In 7th European
Symposium on Research in Computer Science,
October 2002.

[25] S.W. Smith. Magic Boxes and Boots: Security in
Hardware. IEEE Computer, 37(10):106–109,
October 2004. http://www.cs.dartmouth.edu/
~sws/papers/magic_boxes.pdf.

[26] S.W. Smith. Trusted Computing Platforms: Design
and Applications. Springer, 2005. http:
//www.springeronline.com/sgw/cda/frontpage/

0,11855,4-148-22-365207%21-0,00.html.

[27] S.W. Smith and S. Weingart. Building a
High-Performance, Programmable Secure
Coprocessor. Computer Networks, 31:831–860,
April 1999. http:
//www.cs.dartmouth.edu/~sws/papers/sw.pdf.

[28] N. Stam. Inside Intel’s Secretive ’LaGrande’
Project. http://www.extremetech.com/,
September 2003.

[29] National Institute Of Standards and Technology.
Security requirements for cryptographic modules.
http://csrc.nist.gov/publications/fips/

fips140-1/fips1401.htm, Jan 1994. FIPS PUB
140-1.

[30] G. Edward Suh, Charles W. O’Donnell, Ishan
Sachdev, and Srinivas Devadas. Design and
implementation of the aegis single-chip secure
processor using physical random functions. In Proc.
of the 32nd Annual International Symposium on
Computer Architecture, Madison, WI, USA, June
2005.

[31] Bennet S. Yee. Using Secure Coprocessors. PhD
thesis, Carnegie Mellon University, 1994.

11

