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1. Introduction 
 
Access controls including encryption are insufficient to protect computer systems from malicious attack 
today, as is witnessed by the many attacks that can circumvent them.  It is important to examine 
secondary lines of defense once access controls have been breached as well as for insider attacks.  One 
fruitful secondary line of defense is deliberate deception to fool attackers.  Deception could fool attackers 
into going away because they think their attack cannot succeed, or into thinking they have succeeded in 
their goals when they have not.  Deception is particularly useful for high-priority systems like those of the 
military and national infrastructure that must be kept running; then delaying a new kind of attack by 
deceptions may suffice to give time to figure it out and thwart it in real time.  While there are ethical 
concerns about deception, most ethical theories permit deception to prevent a significantly greater harm, 
and destruction of the software of a computer system is a serious harm. 
 
As an example, suppose a user logs in to a system, establishes an Internet connection, and transfers an 
executable file to their directory on the system.  This is not suspicious.  However, suppose they next try to 
transfer a big executable in which the signature of a Trojan horse is apparent.  Rather than refuse this to 
them, which will just encourage them to find another route to get the file onto the system, we could 
deceive them.  We could give a false excuse that the network is down, we could pretend to download the 
file but not actually do so, we could download it but insert random characters into it to make it useless, or 
we could download it and delete it later.  (Rowe, 2004) developed a theory of "generic excuses" for not 
doing something or doing it incorrectly, most of which concerned resource availability like "the network 
is down".  But the network-down deception will not be convincing if the user successfully downloaded a 
previous file.  While the network could have stopped working between the two commands, it is unlikely 
and suspicious, and deceptions are ineffective against a suspicious user.  On the other hand, we could give 
the false excuse that second file is too large to transfer, since that excuse would be logically consistent in 
an unchanging environment.  We would like to find such logically consistent deceptions in a systematic 
way, so that we can choose a convincing deception when a user starts appearing malicious as per an 
intrusion-detection system (Proctor, 2001).   Often more than one deception will be possible, so we also 
need a way to rank possible deceptions. 
 
2. Previous work 
 
Deception is a common social phenomenon (Ford, 1996).  Many people assume that deception is bad and 
should never be done except under dire circumstances (Bok, 1978).  However, in truth people use 
deception all the time for worthwhile ends (Scheibe, 1980; Nyberg, 1993), and it would be impossible for 
societies to function without it in many areas such as law, politics, business, entertainment, and 
psychology (Miller & Stiff, 1993).  Attackers of computer systems use deception themselves in regard to 
their identities and software tools, so it would seem fair to use deception in defending our systems too.  
Deception has the advantage of being a generally surprising defense for computers, and one that can be 
difficult for attackers to perceive. 



 
Deception has been used effectively for “honeypots”, computer systems intended solely for collection of 
data about attacks (The Honeynet Project, 2004).  For defenders to collect useful data, the attacker must 
think that the system is a legitimate one.  To this end, it helpful to create fake files and data on the 
honeypot to suggest that real users have been using it in normal ways, thereby “leading on” attackers 
(Cohen and Koike, 2003).  Such fake data can include passwords to other machines, credit-card numbers, 
and other things which we can confirm are being used.  Other work on computerized deception has 
addressed the creation of fake information for counterintelligence purposes, data that spies are encouraged 
to use so we can track them more easily (Gerwehr et al, 2000). 
 
A variety of models of deception have been constructed, including those in philosophy (Chisholm & 
Feehan, 1977), psychology (Heuer, 1982), counterintelligence (Whaley, 1982), and stage magic (Nelms, 
1969).  Recent years have seen computational models including the descriptive models of (Cohen, 1999), 
the linguistic speech-act model of (DeRosis et al, 2003), agent-based deception-planning models 
(Christian & Young, 2004), reputation-systems assessment of deceptiveness (Barber & Kim, 2001; Yu & 
Singh, 2003), and a simple probabilistic model of (Park & Levine, 2001).  Our previous work built 
probabilistic models of belief in generic excuses for why the attacker could not achieve their goals, plus 
the belief of the attacker in the hypothesis "I am being deceived" which we desire to minimize (Rowe, 
2004); excuses are a versatile strategy for refusing to do things (Snyder, Higgins, & Stucky, 1980).  A 
problem with tracking the degree of belief, however, is that it is very numeric.  It is true that suspicion can 
be quantitative, in that people can easily assess degrees of suspiciousness in activities and people.  But 
people also seem to reason logically (yes/no) as to whether they are being deceived.  Thus it would seem 
useful to develop a theory of deception with a major component of logical reasoning to check logical 
inconsistencies in behavior. 
 
3. Logical modeling of the attacker 
 
3.1 Resources, facets, and parameters 
 
In what follows we assume a computer system is under attack by a reasonably alert attacker who knows 
what they are doing and is trying to achieve particular goals.  These are reasonable assumptions for 
insider attacks as well as state-sponsored or organization-sponsored outsider attacks, and even for some 
sophisticated hackers.  The assumptions do not apply to script-based attacks where deceptions would be 
wasted on an attacker who does not notice or understand them.  However, many good deception 
techniques we recommend, like false error messages about unavailability of resources, will deny access in 
suspicious circumstances and would easily stop scripted attacks. 
 
We thus postulate an attacker of a computer system remembers the resources they used, directly or 
indirectly, in their interaction with it.  For instance, when they successfully download a file from the 
network, this logically implies that the network, the local file system, and the remote file systems are 
working, at least for that particular kind of file.  If later they try to download a similar file and are told the 
network is down, this is a logical inconsistency if the state of the system has not changed, and would 
make them likely suspicious of the normality of our computer system.  This could lead to behavior 
(including retaliation) that is difficult to predict, hard for us to handle, and thus undesirable.  Of course, 
the network could have gone down between the two actions, but that is unlikely in such a short time 
interval.  So our first approach to consistent deception is to make: 

The Statelessness Assumption: The resources of a computer system remain constant in their 
availability status through a session of a user. 

 
We need to enumerate the resources associated with each possible command issued to an operating 
system, as these are the "material" used in attacks (Templeton & Levitt, 2000).  The main categories are: 



• The directories and files of the computer; 
• Peripheral devices to which the computer is attached; 
• Networks to which the computer is attached; 
• Other sites accessible by the networks; and 
• The executables for the commands run by an operating system. 
 
For each of these resources, we have at least five facets of availability: 
• Existence: Whether the resource exists (predicate: exists(X)). 
• Status: Whether the resource is currently working (predicate: working(X)). 
• Authorization: Whether the user is authorized to use the resource (as by passwords and access 

control) (predicate: authorized(X)). 
• Initialization: Whether the preparations and initialization are sufficient for the associated action to be 

done (predicate: initialized(X,A)). 
• Compatibility: Whether the associated action is compatible with the resource (as a text editor trying to 

open an image) (predicate: compatible(X,A)). 
 
Resources also have associated ranges of suitable parameters and these ranges can be inferred.  For 
instance, a successful download of a file of a size of one megabyte from site “foobar” implies that any file 
less than or equal to one megabyte could be transferred from foobar.  But it does not necessarily imply 
that a ten-megabyte file could be transferred because bandwidth or buffer-size limitations could be 
exceeded.  In general, each resource has associated parameter maxima: 
• Files of the computer: Size in bytes, authorization level 
• Peripheral devices to which the computer is attached: Bandwidth in bits per second, size of data in 

bytes 
• The networks the computer is attached to: Size of data in bytes 
    
As an example consider the successful action by user Bob of downloading a file "foobar.doc" of size 
50,000 bytes from "site1" to "site2" via the FTP file-transfer utility at his local network "localnet".  The 
resources necessary to accomplish this are file systems on "site1" and "site2", the network that connects 
them, and the executable for "ftp".  So successful completion of the actions says that: 
• File systems on site1 and site2 exist. 
• File systems on site1 and site2 are working. 
• File systems on site1 and site2 are authorized access by Bob. 
• The network localnet is working. 
• The network localnet is authorized use by Bob. 
• The executable ftp on site1 is working. 
• Bob is authorized to use the executable ftp on site1. 
• The executable ftp on site1 is initialized 
• The executable ftp on site1 is compatible with retrieving files from site2. 
• Localnet can transfer files of 50,000 bytes or less from site2 to site1. 
 
3.2 Using inference rules 
 
Rules can be used to infer the status of a resource based on the status of another resource.  This reduces 
the number of separate facts that need be specified for each action.  Our approach is analogous to that in 
automated debugging of software by finding causal relationships (Zeller, 2002), but we assume an 
attacker will not want to systematically vary parameters to track down precise reasons for failures since 
they have more important things to do.   It has more in common with debugging by looking for 



inconsistencies in source code (Engler et al, 2001) as inferred from the actions attempted, as for instance 
when a program attempts to dereference a variable that has never been initialized.  
 
When a user issues a command and it is successfully completed, that means that each input resource and 
all its facets are working.  It also implies some things about the output resources.  We can formalize this 
as (where "done" means the action was completed successfully without errors): 
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Note that outputs of a successful command are not necessarily working, initialized, or compatible since 
other actions may need to be done first to use them, e.g. a downloaded compressed file. 
 
If the command fails, usually a particular facet is indicated for failure by the message from the operating 
system.  If more than one facet is negated by the failure, usually only one the highest-priority facet is 
indicated.  For instance, Unix will first tell you if a resource does not exist, and then if it does, it will tell 
you if it is working, and then whether you are authorized to use that resource.  So under Unix, if your 
attempt to download fails with the message “Site not available”, we can infer that the site exists and that it 
is not working, but we cannot infer whether the user is authorized to access it.  In general, operating 
systems implement the rules: 
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Note the contrapositive of these says that if X does not exist, none of the other facets are true for it. 
  
We also need rules for accessing indirect resources like remote network sites.  Such sites require 
additional resources like a network connection to access.  In general: 
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Inheritance rules also apply to resource facets and the part-whole relationship.  An example is inheritance 
of "working": If we know that the file-transfer buffer is not working, and it is necessary for file transfers, 
then file transfers are not working by upward inheritance.  Analogously, if we know that file transfers are 
working, then the file-transfer buffer must be working by downward inheritance of the opposite property.  
But both these inferences require a strict interpretation of the part-whole relationship to mean a necessary 
part of the whole, as contrasted with an optional part of a whole like debugging features in a file-transfer 
process.  The other facets of resources also lend themselves to similar inference rules, with the exception 
of "existence" since failure of a software object to exist in the usability sense doesn't mean its components 
don't exist.  Unfortunately, the type-subtype relationship, which is usually a fruitful source of inheritance 
rules, is not helpful here because all objects observed by a user are ground instances at the same level of 
abstraction.  Formally, we can write: 
 



))],(),(_(),([
))],(),(_(),([

))],(),(_(),([
))],(),(_(),([

))(),(_()([
))](),(_()([

))](),(_()([
))](),(_()([

AYcompatibleXYofpartAXcompatibleYAX
AYcompatibleYXofpartAXcompatibleYAX

AYdinitializeXYofpartAXdinitializeYAX
AYdinitializeYXofpartAXinitalizedYAX

YauthorizedXYofpartXauthorizedYX
YauthorizedYXofpartXauthorizedYX

YworkingXYofpartXworkingYX
YworkingYXofpartXworkingYX

¬∧←¬∃∀∀
∧←∀∀∀

¬∧←¬∃∀∀
∧←∀∀∀

¬∧←¬∃∀
∧←∀∀
¬∧←¬∃∀

∧←∀∀

 

 
Unfortunately the negative-conclusion rules are not especially helpful in the direction they specify since 
usually we know about the failure of a whole and want to infer the failure of a part – this is what 
troubleshooting is about.  However, a common additional assumption is that a single "atomic" cause is 
responsible for all observed manifestations since coincidental failures of two or more objects are rare.  
We can express this by: 
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Attacker knowledge can also be expressed as rules.  For instance, if the file-transfer utility always seems 
to "break" when the attacker tries to transfer a file of more than one million bytes, the attacker would 
learn a rule: 
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 This is a classic instance of concept learning where the attacker tries to generalize from a finite set of 
examples to rules that can handle a infinity of cases.  Concept learning, like all learning, cannot be 
guaranteed to be correct: One must take chances in guessing what the proper generalization of the data 
must be.  Nonetheless, we can be quite aggressive in postulating inference rules here because users will 
tend to seek logical explanations of unusual events as they expect computer systems to be consistent. 
 
3.3 Proposing deceptions 
 
Our strategy in defending a computer system is to deceive when the probability of user maliciousness 
exceeds a threshold, and to consistently maintain that deception through the deception.  For maximum 
effectiveness, the deception should also be backwards consistent (consistent with the resource facets 
reported so far).  It should also be chosen so as to appear to prevent completion of the user's inferred 
attack plan.  For instance, if we wish to prevent a rootkit download, we pretend the network is down; if 
we wish to prevent installation of a Trojaned executable, we pretend it is too large to install.  This 
requires some reasoning about attack plans, but ultimate attacker goals are not highly varied (install a 
rootkit, make a site unusable, steal information, etc.) and many attacks are well documented (Chirillo, 
2002).  
 
For each resource and facet, we have several tactics as to how to deceive, building on the general 
principles discussed in (Rowe & Rothstein, 2004): 
• Tell the user the deception and do not do the requested action, as with an error message.  For 
instance, say "network down" on an attempt at a file transfer from another computer.  (Applicable to 
existence, working, authorization, and compatibility facets.) 



• Cause abnormal symptoms to occur and do not do the request action.  For instance, on an attempt 
at a file transfer from another computer, generate strange characters on the screen and terminate early 
without the transfer being made.  (Applicable to working, initialization, and compatibility facets.) 
• Don't do the action, but don't tell the user.  For instance, if the resource is "network1" and the 
facet is "working", then do not transfer any files when asked to download them.  (Applicable to the 
working facet.) 
• Do the action, but do it in a way that makes it worthless.  For instance, make random changes to 
files when transferring them so the user cannot use them.  (Applicable to working, initialization, and 
compatibility facets). 
• Obey the user's orders, but undo the action later.  For instance, transfer files when asked but 
delete them later when user will not notice it as easily.  (Applicable to the authorization facet.) 
• Do the action, but refuse further similar actions by alleging a side effect of the first action.  For 
instance, allow a download of one file, but refuse further downloads with an error message that suggests 
the user "broke" the file-transfer utility.  (Applicable to the compatibility facet.) 
 
The first method involves a phenomenon (error messages) that is more commonly observed on computer 
systems than the others.  Thus we will assume it in the rest of this paper.  However, it may be more 
convincing in the long run to use some of the other methods with small probabilities to better model the 
usual distribution of bugs of a computer system. 
 
3.4 Implementing the finding of consistent deceptions 
 
We have written a program that computes such resource implications for sequences of commands issued 
to an operating system.  It returns a list of the resources they imply, taking into account the range 
restrictions.  For a demonstration, commands were drawn from the 110 in the rootkit-installation model of 
(Rowe, 2004).  Default resources for every command are the agent issuing the command and the 
computer system from which the command is issued; beyond this, resources usually appear as arguments 
to commands.  This program can be used to plan deceptions; those resources and facets not identified in 
the analysis output for a sequence of commands are suitable objects of deception. 
 
For example, consider the sequence of actions by a user: 

1) Login in to system "patsy". 
2) Make an FTP connection to site "hackerhome" using local-area network "homelan". 
3) Download file "secureport.exe" from "hackerhome" across "homelan". 
4) Download file "rootkit.exe" from "hackerhome" across "homelan". 
5) Close the FTP connection. 

Suppose the following a priori probabilities: 
• 0.01: A site is not up. 
• 0.02: A network is not working. 
• 0.005: An executable is not working. 
• 0.2: A user is not authorized to use a site. 
• 0.1: A user is not authorized to use a network. 
• 0.02: A user is not authorized to use the executable. 
• 0.05: A user is exceeding magnitude bounds with a command 
• 0.01: All other failure situations. 

We further assume that the value of a deception is a monotonically increasing product of the above 
number and 1 where K is the number of occasions on which the deception can be used, to reward 
deceptions that are repeated as being more obvious to the user (human perception of quantity is 
logarithmic).  Then the best logically-consistent deceptions assuming statelessness as computed by our 
program are:  

)ln(K+



• 0.52: The user is not authorized to use the site "patsy", in response to step 1. 
• 0.48: The user is not authorized to use the site "hackerhome", in response to step 2. 
• 0.26: Site "patsy" is not working, in response to step 1. 
• 0.24: The user is not authorized to use the network "homelan", in response to step 2. 
• 0.24: Site "hackerhome" is not working, in response to step 2. 
• 0.17: The user is not authorized to log in on site "hackerhome", in response to step 2. 
• 0.12: The file "secureport" is too large to transfer, in response to step 3.  

 
4. Choosing if and when to deceive 
 
4.1 Incorporating probabilities and costs 
 
We can initiate deceptions that are consistent with resource inferences at many times in a sequence of 
commands.  However, some opportunities are better than others because (a) some deceptions are more 
convincing, and (b) some deceptions cause more potential harm to legitimate users who just happen to be 
doing something accidentally suspicious.  We will use a decision-theory model since this has been 
effective in understanding deception in sociobiology (Lachmann & Bergstrom, 2003). 
 
The simplest possible model is shown in Figure 1.   We assume that the user is malicious with probability 

, a malicious user will continue working after the deception with probability , and a legitimate 
user will continue working after the deception with probability .  The first will be obtained from the 
data provided by an intrusion-detection system (Proctor, 2001; Monteiro, 2003).  The latter will be 
personality-dependent and task-dependent, since some users are more determined than others for reasons 
that are not immediately obvious (Lydon & Zanna, 1990).  Assume also the cost of allowing an attack to 
succeed is , and the cost of the deception in terms of preventing a legitimate user from achieving their 
goals is c .  
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Figure 1: The simplest model of the decision to deceive at some point in a co 
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Note this inequality implies that when the deception is completely ineffective in encouraging the 
malicious user to go away, it is never desirable; if it completely ineffective in encouraging the legitimate 
user to go away, it is always desirable; and if the deception no more affects the attacker's goals than the 
legitimate user's goals, the inequality reduces to )/( mllm cccp +>
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For example, suppose our deception is to pretend that the network is down.  This will prevent most rootkit 
installations, and the cost of one of these is maybe 2 hours of system-administrator work to reinstall the 
operating system and close backdoors.  The cost to a legitimate user of the network being down is 
probably 5 minutes of work since in most cases they can copy a portable storage medium to do file 
transfers or they can find another machine to use the Web.  Since a network transfer is essential to most 
rootkit installations, a malicious user will have a low probability of continuing after this deception, say 
0.1.  On the other hand, legitimate users probably have other tasks to accomplish on the system that do 
not involve the network, such as editing files, so their probability of continuing is something like 0.5.  
Hence our criterion formula becomes  or  . [(gpm > 023.0>mp
 
Appendix A shows the results of a survey to estimate some probabilities about an operating system and 
potential deceptions on it.  The survey was administered to seven students and five faculty members at 
our school.  Geometric means (the antilog of the mean of the logarithms) are displayed since the 
quantities reported varied widely in magnitude but could not be 0.  Geometric means of the response 
values for each subject ranged from 0.187 to 0.000002, but ratios of responses between questions were 
much less variable, indicating that conditional probabilities were more consistent across subjects than a 
priori probabilities (that may reflect personality).  It can be seen (questions 2a-2f) that deception is 
considered a reasonably possible explanation for events that are rare on a computer system, with 
conditional probabilities of 0.32, 0.54, and 0.09 for deception with the reported conditions "network 
down", "local network down", and "network messing up files".  So subjects understand that just because 
deception is rare a priori does not mean it is conditionally rare.  It can also be seen that our subjects were 
persistent in trying the same thing again even when it failed three times, so  and  should be close 
to 1; thus for these subjects, we can use the approximation  
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4.2 Refining the deception model 
 
The Statelessness Assumption becomes less tenable the longer the period of time over which it applies.  
One problem with the simple model above is that it implies we should wait as long as possible to deceive 
an attacker.  That is because the longer we wait, the more clear it should be that they are malicious if they 
are; the larger this  is, the more likely the inequality holds, and the larger the expected cost benefit to 
us.  However, it may be dangerous to wait too long to deceive.  (Josang, 2001) suggests that trust and 
distrust are fundamentally different, and distrust grows much more easily than trust; waiting gives the 
attacker time to become distrustful.  (Rowe, 2004) proposes that the believability of a deception in 
response to attacker commands is a product of three factors: the likelihood of the deception event, the 
likelihood that the system engages in deception, and the intrinsic suspiciousness of what the attacker has 
done previously.  So attackers who know they are being suspicious are more inclined to be suspicious of 
events that thwart them, and this increases as a session progresses.  We will postulate that attackers that 
think they are being deceived will not log out because they figure they can find a way around the 
deception, whereas unsuspicious attackers will log out because a deception should be chosen to prevent 
accomplishment of most attacker plans. 

mp

 



This gives us enough constraints to create a Bayesian model (Korb & Nicholson, 2004) of , the 
probability the malicious user remains logged in after a deception that would imply that they cannot 
achieve their goals.  Using Bayes' rule where d is the occurrence of a deception action and c is the 
condition that the attacker believes they are being deceived, 
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, we estimate .  On the other hand, we will assume  is a fixed constant 
independent of circumstances, because deceptions will usually be in regard to features that are not 
essential to a legitimate user. 
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The estimate of can also depend on previous events.  For example, consider the condition "network 
down", which on the computer systems the author uses is approximately 0.02.  But if the network was 
down one hour ago, that increases the probability it is down now.  A down period for the author's network 
has an expected duration of one day.  In general, we can use a Poisson model much like that for M/M/1 
queuing models, where 

mrp

Dλ  is the number of times that the deceptive condition D would occur sometime 
during a day (like an arrival rate for a queue), and Uλ  is the number of times that D would be remedied 
during a day (like the service rate for a queue).    Then if we reported to the user that D was true at some 
time, the probability that D is still true at a time t units later is ; if we reported to the user that 

D was false at some time, the probability that D is still false at a time t units later is .  This 
permits us to assign probabilities to inconsistent reports at different times. 
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Another issue to consider is that as the number of possible deceptions decreases during a session as 
resource availabilities are confirmed, the likelihood of being able to choose a convincing deception 
decreases.  For instance, problems with accessing a Web site are less convincing excuses when the user 
has already had trouble with the network and file systems on several unrelated machines.  This is similar 
to factor of “mobility” in the game of chess, where of two positions with equal piece count and danger, 
the one with more possible moves is preferred because it is less likely to lead to a forced bad move. 
 
4.3 Anticipatory deception 
 
We can use this approach to analyze the idea of anticipatory deception, where we deceive when we are 
only mildly suspicious to enable a more consistent and convincing deception later if we need to.  For 
instance, we can deceive a user by saying the network is down in response to an attempt to transfer an 
innocuous file, in anticipation of a second deception critical to preventing an attack, as when a user 
attempts to transfer a rootkit.  Then the first deception provides consistency of the "network down" 
hypothesis and reduces attacker suspicion.  We assume, if we deceive more than once, that we use the 
same deception both times since deceptions will be rare events and two unrelated deceptions will be even 
rarer and thus particularly suspicious.  Thus it will be important to use "generic excuses" like "network 
down" in deceptions because a broad such excuse can explain failure of many separate things.  (Cohen 
and Koike, 2003) and (Rowe, 2003) proposed detailed decision graphs for particular known attack plans, 
but we would like here to provide methods more independent of the kind of attack.  
 
To analyze this problem we refine our decision model of Figure 1.  Figure 2 shows a situation where a 
user can be deceived twice.  Here we distinguish , the probability the user is malicious at the first 1mp



deception, from , the probability at the second deception.  We similarly distinguish , the 
probability a malicious user will remain after the first deception, from , the probability they will 
remain after the second deception.  We also distinguish  from , and both from  and , 
the probabilities of the malicious or legitimate user remaining when the first deception is not done but the 
second deception is done.  As before, the cost of allowing a malicious attack to succeed is , and the 
cost of preventing a legitimate user from achieving their goals is c .  We can generally make the 
simplifying assumption that 
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since deceptions are designed with attackers in 
mind, not legitimate users, so each occurrence of the same deception is equally likely to make a legitimate 
user give up and go away.  We also can generally assume that and , since the 
"mr2d" case most obviously suggests deception, and apparent deception should make a malicious user 
want to remain logged in. 

2mrp

mp

2d >

1(

mr

m

p

d c 22

1

c

2dmrp

lrp )

mrp>

lmrm p2 −−+

llr clr p)mp )(2llrm cpp 1()1)(1 1mrp 21 p−−+−−

 
We can then calculate expected costs for three strategies for a particular deception D in the course of an 
assumed short period of time shown in Figure 2 (over a longer period of time, use the exponential decay 
formulas of the last section): 

• S1: No deception:  
• S2: Deceive only at the second opportunity: 1)(  
• S3: Deceive at both opportunities: 

mmrm cpp 1(2 +  
Note that it is a poor strategy to deceive only at the first opportunity and not at the second, as this does not 
foil an action necessary to the attack if it is anticipatory, creates a suspicious inconsistency, and risks 
antagonizing a legitimate user, so we ignore this strategy. 
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Figure 2: Analysis of the problem of anticipatory deception. 



Unfortunately there is no general way to simplify the mathematics for comparing the strategies, so one 
must just calculate the formula for each possible deceptive situation.  But we can address some special 
cases.  As before, S2 and S3 will be suboptimal if the malicious user is never fooled, since then 

, , and , hence the first terms of the expressions for S2 and S3 are the entire 
expression for S1.  Usually, however, will be close to 1 because an attacker will find it hard to 
believe if they are paying attention, and will be equal to 1 if the attacker is not paying attention, so S2 will 
be usually undesirable compared S1. 
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4.4 Multi-session reasoning 
 
So far we have assumed that user analysis is done within a session.  However, an attacker could log in 
multiple times to accomplish their attack, as in “low and slow” attacks.  We can make a small change to 
the above model to handle this.  Each pair of sessions can have an associated probability that they are due 
to the same user.  If we are trusting of our identity management, we could take this as 1 when a user logs 
in under the same name and 0 otherwise.  However, attackers may very well masquerade as legitimate 
users, and we need to allow for intermediate probabilities of identity when a user starts doing something 
anomalous; atypicality can be measured by anomaly-focused intrusion-detection systems. 
 
Again we can use the exponential model.   A user logging in again after time t after logging out under a 
different name is likely to be the same user with probability  if they are malicious and zero 
if they are nonmalicious, where 

t
SS

Smepp λ−=

Smλ is the malicious-user "decay" rate and  is the probability that a 
malicious user logging out will immediately log in again.  If R users logged out recently, each with 
probability of maliciousness  and at time before the present, the probability a new user is now 

malicious is   where  is the a priori probability a new user would be 

malicious.  But this is only an initial value; once the new session begins, this probability of being 
malicious will change with user actions as per the intrusion-detection system.  Note we exclude users that 
are still logged in.  Some of these could be conceivably opening separate login windows, but unless 
commands to the operating system are being generated by a software script, which can be detected by 
unusually fast commands, a user cannot do more than one thing at a time. 
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For instance, suppose user “tom” logged in at 10PM and used the file system and the network connection 
to site “foobar” and transferred what looks to be a rootkit, logged out at 10:30PM, and then another 
username logged in at 10:35PM with no one else on the system.  Suppose 1.0=Smλ  for times in 
minutes, , , and4.0=Sp 8.01 =mp 001.00 =mp .  The probability the new user is malicious is thus 

.  Suppose the cost of a successful malicious attack is 20, the cost of 
hurting legitimate user was 1, the probability of an attacker remaining after the particular deception 
"network not authorized" is 0.5, and the cost of a legitimate user remaining after this deception is 0.2.  By 
our simple decision model, 0.195 > g((1*0.8)/(20*.5)) = g(0.08) = 0.08 so this deception is justified. 

195.05.0 =−e*8.0*4.0001.0 +

  
5. Conclusions 
 
We have examined a new approach to defending computer systems, that of having them deliberately 
deceive attackers to waste their time or make them go away.  Many opportunities for effective deception 
are available, so it is valuable to rank them.  Counterintelligence training emphasizes the importance of 
finding discrepancies to consistency (Whaley & Busby, 2002); if we are deceive attackers of a computer 
system, we need to minimize their number.  This requires keeping track of the logical inferences that 



attackers can make to avoid obvious inconsistencies.  But complete consistency is impossible, and we 
must introduce probabilities at some point and solve a decision-theoretic optimization problem. 
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Appendix: Questionnaire and geometric mean of the responses 
 
Instructions: The following questions refer to using computer systems at NPS.  Please estimate the 
probability for each question based on your experience and intuition, using a scale between 0 and 1.  
Because nothing can be absolutely certain, you shouldn't give an answer of 0 or 1 for any of these 
questions.   
 
1a. What is the probability of finding a random computer's Internet connection down on a random day? 
.0416 
 
1b. What is the probability of finding a random computer's local-area network down on a random day? 
.0422 
 
1c. What is the probability that communications defaults are messed up so that binary file transfers across 
the Internet make the files unopenable? .0079 
 
1d. What is the probability that a random computer will say that you are not an authorized user when you 
give it a correct password? .0057 
 
1e. What is the probability that a random computer will deliberately deceive you? .0043 
 
2a. What is the probability that a random system is wrong when it says the Internet is down? .0165 
 



2b. What is the probability that a random system is wrong when it says its local-area network is down? 
.0086 
 
2c. What is the probability that a random system will inadvertently mess up your files in binary transfers 
across the Internet? .0113 
 
2d. What is the probability that a random system will lie to you when it says the Internet is down? .0072 
 
2e. What is the probability that a random system will lie to you when it says its local-area network is 
down? .0032 
 
2f. What is the probability that a random system will deliberately mess up your files in binary transfers 
across the Internet? .009 
 
3a. Supposing you need to download a file as the major part of your job today, what is the probability you 
will log out immediately when the system says the Internet is down or it appears that the Internet is 
down? .0196 
 
3b. Supposing you need to download a file as the major part of your job today, what is the probability you 
will log out immediately when you have tried three times to transfer files and the system says the Internet 
is down or it appears that the Internet is down each time? .1012 
 
3c. Supposing you need to download a file as the major part of your job today, what is the probability you 
will log out immediately when the system says the local area network is down or it appears that the 
Internet is down? .0566 
 
3d. Supposing you need to download a file as the major part of your job today, what is the probability you 
will log out immediately when you have tried three times to transfer files and the system says the local 
area network is down or it appears that the Internet is down each time? .0702 
 
3e. Supposing you need to download a file as the major part of your job today, what is the probability you 
log out immediately when the files you transfer are messed up? .0052 
 
3f. Supposing you need to download a file as the major part of your job today, what is the probability you 
log out immediately when you have tried three times to transfer files and the files you transfer are messed 
up each time?  .0225 
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