
[TITLE]
 Speculative Virtual Verification: Policy-Constrained Speculative
Execution

[AUTHORS]
 Michael E. Locasto, Stelios Sidiroglou, Angelos D. Keromytis
 {locasto,stelios,angelos}@cs.columbia.edu

[CATEGORY]
 Research Paper

[JUSTIFICATION]

SVV represents the next step in the evolution of hardware-level security
mechanisms. Early approaches to hardware security focused on providing
hardware implementations of cryptographic algorithms. Even contemporary
approaches to this topic, such as the TCPA/TCG, only provide
tamper-resistant hardware modules to store secrets. The state of the art
in this field tries to leverage these stored secrets for attestation, and
attestation is typically used for the purposes of DRM. Such uses provide
a mechanism for a remote entity to control local execution. There are no
mechanisms for the local entity to systematically prevent and control a
remote entity from executing local code. Our work on SVV is an attempt to
provide a unified model for the supervision of machine instructions.

The job of processors has long been to simply execute code, and getting
these components to do exactly that at high levels of performance has
been the focus of research and industry development. As a result, security
is not integrated into the fabric of execution.

One major claim of this paper is that we need to rethink our assumptions
about what it means to execute a program. Systems need to have security
and monitoring functionality built in at the lowest levels. This change
means that the job of performing logical or mathematical operations on
binary strings represents a much more complex task than simply performing
the operation. This new type of execution recognizes the implications and
consequences of an instruction based on its computing context. Such context
includes the sources and destinations of the operands at all levels of the
system hierarchy as well as the instruction's relation to previous and
future statements.

Modern microprocessors provide mechanisms that support both out-of-order
and speculative execution of instructions. The constraints on these
mechanisms are typically driven by data and structural hazards. Our work
on SVV is an extension of these capabilities that enable the hardware to
perform speculative execution based on higher--order constraints. In some

ways, SVV can be thought of as a firewall or filter for machine
instructions.
One major advantage of adopting this approach would be the ability to
re-write potentially harmful instruction streams. This capability would
provide the foundation for automatic remediation.

