
Speculative Virtual Verification:
Policy-Constrained Speculative Execution

Michael E. Locasto Stelios Sidiroglou Angelos D. Keromytis
Network Security Lab, Department of Computer Science, Columbia University

{locasto, stelios, angelos}@cs.columbia.edu

Abstract

A key problem facing current computing systems is
the inability to autonomously manage security vul-
nerabilities as well as more mundane errors. Since
the design of computer architectures is usually
performance-driven, hardware often lacks primi-
tives for tasks in which raw speed is not the pri-
mary goal. There is little architectural support for
monitoring execution at the instruction level, and no
mechanisms for assisting an automated response.

We propose speculative virtual verification (SVV),
a model for the speculative execution of code based
on complex security and safety constraints. We in-
troduce architectural enhancements to support this
framework, including the ability to supply an auto-
mated response by rewriting the instruction stream.
Finally, since SVV is a novel approach to executing
software, we briefly consider some important chal-
lenges for SVV-based systems.

1 Introduction

Software faults and vulnerabilities continue to pose
significant problems to achieving reliable and se-
cure software. The lack of comprehensive and low-
cost protection mechanisms presents a critical prob-
lem for computing systems. It is unlikely that static
analysis techniques or improved programming prac-
tices will provide a complete solution to the types
of errors that threaten system stability or create ex-
ploitable vulnerabilities. Even systems that dynam-
ically monitor process execution often impose a no-
ticeable performance cost. Furthermore, these sys-
tems may reinvent the same primitives because the

hardware does not supply them. However, even
if such capabilities existed, system security is of-
ten a matter of policy; these utilities would need
some level of flexibility to be applicable and re-
main useful in a wide variety of diverse and evolv-
ing environments. Finally, systems lack the capabil-
ity to respond intelligently to both attacks and non-
malicious faults.

The ability for computing systems to detect and
correct faults and vulnerabilities would greatly im-
prove their stability and security. The main con-
tribution of this paper is the proposal of a set of
architectural components that provide a basis for
such systems by speculatively executing the entire
instruction stream. In much the same way that a
superscaler processor speculatively executes past a
branch instruction and discards the mis-predicted
code path, we propose that processors operate on
the instruction stream in two phases. The first phase
executes instructions, optimistically “speculating”
that the results of these computations are benign.
The second phase makes the effects of the specu-
lated instruction stream visible to the OS and appli-
cation software layers and potentially rewrites the
instruction stream if it has been deemed harmful.

1.1 Speculative Execution

Speculative execution is a technique used in mi-
croprocessors to execute the instructions in a code
branch before the evaluation of the branch condi-
tional is finished. The need to perform speculative
execution arises in pipelined processors because the
conditional instruction that the branch depends on
has proceeded deeply into the pipeline but has not1



been evaluated by the time the processor is ready
to fetch additional instructions. While a complete
discussion of the strategies for dealing with branch
predication is beyond the scope of this paper, a basic
overview of the subject and pointers to other mate-
rial are available in [10, 6]. Our proposal differs
from these techniques by introducing another layer
of speculative execution in which the acceptance of
a particular execution path is not based on the eval-
uation of a branch conditional, but rather a higher-
order constraint on a set of instructions.

1.2 Motivation and Feasibility

We are motivated by work on constructing an em-
ulator [23] to supervise program execution in re-
sponse to exploits and errors. Unfortunately, us-
ing an emulator incurs a sizable performance hit be-
cause the emulator executes every program instruc-
tion in software. The first way to ease this bur-
den, which was adopted in [23], is to only emulate
the portions of the program demonstrated to be vul-
nerable, thereby reducing the time that is spent in
the emulator. The second approach is to eliminate
the emulation penalty altogether by executing the
process directly on the CPU. Unfortunately, adopt-
ing this approach currently means relinquishing the
monitoring capabilities that the emulator provides.
Therefore, we advocate adding monitoring mecha-
nisms to processors so that a certain level of safety
is relatively inexpensive. In order to address more
complex attacks, we also propose that execution can
be delegated to the software emulator if needed.

Arguing for the widespread adoption of fundamen-
tal changes to hardware is a controversial proposi-
tion. We believe the hardware necessary to sup-
port our system is easily implementable. Indeed,
large parts of the system are already present in mod-
ern processors to support thread level speculation
(TLS). The design parameters of general-purpose
microprocessors have traditionally been driven by
raw performance. Instead, we advocate design pa-
rameters aimed at more high-level feature support.

2 System Design

The core features of SVV form a two level moni-
toring environment. The first level includes hard-
ware mechanisms for monitoring instruction execu-
tion (bounds checking, taint-tracking [26], SRAS
[13], transfer control validation [12], etc.). The
second level of monitoring is provided by the Pol-
icy Constraint Unit (PCU) and the Virtual Emulator
Registration Unit (VERU). Instructions are filtered
by the PCU according to some policy constructed
by the programmer, compiler, or runtime profiling.
The policy could range from filtering on a partic-
ular class of instructions (integer vs. load/store) to
more complex constraints that require keeping state.
The design of a constraint language to express these
policies is future work. The VERU stores an address
for code that should be executed if the PCU iden-
tifies a sequence of instructions that require more
resources than the hardware can easily provide. Fi-
nally, the Verification Buffer (VB) and the Instruc-
tion Rewrite Unit (IRWU) provide some basic sup-
port for an automatic response capability.

2.1 SVV Execution Model

The execution model for SVV (see Figure 1) is sim-
ilar to normal program execution. Instructions are
fetched, decoded, issued to functional units (possi-
bly out of order), executed, and gathered in a re-
order buffer (ROB) to be committed in program or-
der. However, at each stage, instructions are filtered
by the PCU and monitored by hardware-level secu-
rity mechanisms. Additionally, the VB accumulates
completed instructions as they leave the ROB and
commits them only if they pass the monitoring tests.

Instructions proceed through the pipeline in three
major scenarios. First, the instruction may be harm-
less. In this case, it proceeds normally to the ROB,
graduates when appropriate, moves to the VB, and
is committed. Second, an instruction may be harm-
ful as determined by the monitoring mechanisms
(e.g., it is actually tainted input data, or will write
input data to the code area of the process address
space) or the PCU. In this case, the IRWU flushes
the scope of the harmful instruction and constructs
a ’safe’ version of the flushed code. The proces-2



sor then executes this alternate instruction stream,
including a return to the normal path of execution.
The third scenario enables an emulator to be loaded
on the CPU and supervise code execution. If the
PCU decides that a particular sequence of instruc-
tions requires more complex supervision, it can in-
voke execution of this emulator. Note that there
is no requirement for the software invoked by the
VERU to be an emulator. The VERU simply holds
an address and transfers control to the code at this
address. Such an approach enables a more general
response mechanism than software emulation. For
example, the VERU may transfer control to an OS
routine that kills the process, or suspends the pro-
cess and transfers it to an isolated host for analysis,
auditing, intrusion detection, or debugging.

2.2 Scope of SVV

The single largest obstacle for SVV is a three part
problem and involves determining the scope of su-
pervision. First, even though SVV is meant to run
continuously, some applications (especially those
working in a power-constrained environment) may
wish to avoid the overhead associated with constant
monitoring. In addition, hardware is fundamentally
limited in the number of virtual execution contexts
it can support concurrently. Finally, it is likely that
the basic monitoring mechanisms, while capable of
stopping large classes of attacks, may be unable to
cope with more sophisticated attacks (some forms
of DoS, multi-step attacks, information leaks, im-
properly set permissions, phishing attacks, etc.) or
analysis tasks that require a large amount of state
(anomaly or intrusion detection via data mining).

To address the latter two problems, we use the
VERU to register a software emulator that can per-
form high-level monitoring of an instruction stream.
An emulator has the flexibility to be more intrusive
and is easily customizable. This hybrid approach
to monitoring is more promising than an approach
based solely on hardware or software. To address
the first problem, SVV can be selectively invoked.
Control over this invocation can be handled by the
OS (a new system call to invoke or halt the SVV
hardware) or the compiler (new assembly instruc-
tions can delimit an SVV monitored code region).

2.3 Automated Response

Automating a response strategy is difficult, as it is
often unclear what a program should do in response
to an error or attack. A response system is forced
to anticipate the intent of the programmer, even if
that intent was not well expressed or even well-
formed. Ideal computing systems would recover
from attacks and errors without human intervention.
However, the state of the art is far from mature, and
most existing response mechanisms are external to
the system they protect. Some simply crash the pro-
cess that was attacked (and do nothing to fix the
fault, thereby ensuring that the system is still vul-
nerable when it is rebooted). Other systems may
restrict network connectivity or resource consump-
tion. SVV includes the ability to rewrite a vulnera-
ble sequence of instructions without recompilation.
This mechanism is general enough that a wide va-
riety of response techniques can be implemented,
such as: data structure repair [5], failure oblivious
computing [21], and error virtualization [23]. The
rewritten instruction stream can be propagated to
the code section of the process address space to pro-
tect future execution. The new instruction sequence
could be applied (with OS support) to the on-disk
binary as a rudimentary patch.

Furthermore, compilers can be augmented to pro-
vide “alternative execution paths” to some code
sections. These alternatives can be driven by ex-
plicit program code, programmer annotation, purely
compiler-generated, taken from profiling informa-
tion for the application, or gathered by the processor
itself from previous runs of the same code block as
a form of machine learning.

3 Related Work

SVV draws on ideas from computer architecture,
fault-tolerant computing, and computer security.
We examined some hardware support [24] for an
x86 emulator (STEM) that supervise the execution
of vulnerable code slices [23]. The approach of
SVV is akin to systems [22, 20, 19] that utilize
a secondary host machine as a sandbox or instru-
mented honeypot: work is offloaded to this host and
affects the primary host as little as possible. The3



�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������ROBINT

INT
FP DIV
FP MUL

IRWU

VB

READ EXECUTE WRITE COMMITVERIFY

PCU &
monitoring (e.g., taint−tracking)

fetch/decode

reg file

Figure 1: High-level execution model for SVV. Here, a simplified pipeline for a superscaler processor is
modified to add an extra verification stage as well as policy-driven hardware-based monitoring mechanisms.
The IRWU can optionally rewrite the instruction stream and cause the new version (stored in the VB) to be
executed. Traditional hardware components are shown as full rectangles, new components are rounded. Not
shown is the VERU, which holds the address for an emulator capable of higher-level supervision.

work most closely related to ours is Oplinger and
Lam’s proposal [18] for using TLS to improve soft-
ware reliability. Their key idea is to execute an
application’s monitoring code in parallel with the
primary computation and roll back the computation
“transaction” depending on the results of the moni-
toring code.

Evers et al. [6] investigate the predictability of
branches and provide an overview of various branch
prediction schemes that have been proposed to ame-
liorate the cost of incorrect predictions. Wang et
al. [27] explore an interesting result: about 50% of
mispredicted branches do no affect correct program
behavior.

3.1 Secure Hardware

Incorporating security mechanisms in hardware has
traditionally been limited to providing implementa-
tions of cryptographic algorithms. McGregor and
Lee [16] also investigate protecting cryptographic
secrets. Recent efforts such as Cerium [3] and
XOM [14, 14, 15] focused on providing a trusted
computing base (TCB) and tamper-resistant archi-
tecture that can attest to the validity of a particular
computation [9]. Of a more focused scope is Lee et
al.’s proposal [13] of a hardware–based return stack
(SRAS) to frustrate buffer overflow attacks. Suh

et al. [26] propose hardware extensions to thwart
control-transfer attacks by tracking “tainted” input
data (as identified by the OS). If the processor de-
tects the use of this tainted data as a jump address
or an executed instruction, it raises an exception.

3.2 Execution Supervision Environments

Virtual machine emulation of operating systems or
processor architectures to provide a sandboxed en-
vironment is an active area of research. Virtual ma-
chine monitors (VMMs) are employed in a number
of security–related contexts, from autonomic patch-
ing of vulnerabilities [22] to intrusion detection [8].
MiSFIT [25] is a tool that constructs a sandbox by
instrumenting applications at the assembly language
level. Program shepherding [12] works on uninstru-
mented IA-32 binaries and validates branch instruc-
tions to prevent transfer of control to injected code.

Other protection mechanisms include compiler
techniques like Stackguard [4] and safer libraries,
such as libsafe and libverify [1]. Tools exist to ver-
ify and supervise code during development or de-
bugging; of these tools, Purify1 and Valgrind [17]
are popular choices.

In work inspired by the ideas fundamental to artifi-
1http://www.rational.com/products/

purify_unix/index.jtmpl4



cial system diversity [7], Holland, Lim, and Seltzer
[11] introduce the idea of automatically generating
randomized architectures to support system secu-
rity. Since synthesizing the hardware for such ev-
ery such generated architecture is an untenable ap-
proach, they recommend using VMMs to provide
the necessary execution environments.

3.3 Recovery and Repair

A key feature of SVV is the use of instruction
stream re-writing as a basic building block for an
adaptive response mechanism. Other recent work
that examines repair mechanisms includes failure-
oblivious computing [21] and data structure re-
pair [5]. Candea and Fox propose a different ap-
proach: design software systems such that they em-
ploy crashing as the normal halting mode and use
recursive microreboots to safely restart [2].

4 Conclusions

We have described the architectural components
needed to support a new execution model for secure
and reliable computing: speculative virtual verifi-
cation (SVV). This model complements previous
work on trustworthy and tamper-resistant comput-
ing architectures but is not meant as a replacement
for the capabilities such systems provide. There are
a wide variety of challenging problems to be ad-
dressed in the construction, testing, and deployment
of SVV. We intend to study these issues and imple-
ment SVV in a variety of execution environments,
including x86 emulators, the Java Virtual Machine,
and simulators for the MIPS and ARM architec-
tures.

There is no silver bullet for system security, and
SVV is not meant to address all possible attacks.
However, we believe that the current arms race
between attackers and system designers is un-
winnable. As a fresh start, we advocate modifying
general-purpose processors to (a) provide implicit
supervision functionality, (b) export a policy-driven
monitoring mechanism, and (c) provide the foun-
dation for an automatic response capability via in-
struction stream rewriting.

References

[1] A. Baratloo, N. Singh, and T. Tsai. Transparent
Run-Time Defense Against Stack Smashing At-
tacks. In Proceedings of the USENIX Annual Tech-
nical Conference, June 2000.

[2] G. Candea and A. Fox. Crash-Only Software. In
Proceedings of the 9th Workshop on Hot Topics in
Operating Systems (HOTOS-IX), May 2003.

[3] B. Chen and R. Morris. Certifying Program Execu-
tion with Secure Processors. In Proceedings of the
9th Workshop on Hot Topics in Operating Systems,
pages 133–138, May 2003.

[4] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and
Q. Zhang. Stackguard: Automatic Adaptive De-
tection and Prevention of Buffer-Overflow Attacks.
1998.

[5] B. Demsky and M. C. Rinard. Automatic Data
Structure Repair for Self-Healing Systems. In
Proceedings of the 1st Workshop on Algorithms
and Architectures for Self-Managing Systems, June
2003.

[6] M. Evers, S. J. Patel, and Y. N. Patt. An Analysis of
Correlation and Predictability: What Makes Two-
Level Branch Predictors Work. In Proceedings of
the 25th International Symposium on Computer Ar-
chitecture, June 1998.

[7] S. Forrest, A. Somayaji, and D. Ackley. Building
Diverse Computer Systems. In Proceedings of the
6th Workshop on Hot Topics in Operating Systems,
pages 67–72, 1997.

[8] T. Garfinkel and M. Rosenblum. A Virtual Ma-
chine Introspection Based Architecture for Intru-
sion Detection. In 10th ISOC Symposium on Net-
work and Distributed Systems Security (SNDSS),
February 2003.

[9] T. Garfinkel, M. Rosenblum, and D. Boneh. Flexi-
ble OS Support and Applications for Trusted Com-
puting. In Proceedings of the 9th Workshop on Hot
Topics in Operating Systems, pages 145–150, May
2003.

[10] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, 3rd edition, 2003.

[11] D. A. Holland, A. T. Lim, and M. I. Seltzer. An
Architecture a Day Keeps The Hacker Away. In
Proceedings of the Workshop on Architectural Sup-
port for Security and Anti-Virus (WASSA), October
2004.5



[12] V. Kiriansky, D. Bruening, and S. Amarasinghe.
Secure Execution Via Program Shepherding. In
Proceedings of the 11th USENIX Security Sympo-
sium, August 2002.

[13] R. B. Lee, D. K. Karig, J. P. McGregor, and Z. Shi.
Enlisting Hardware Architecture to Thwart Mali-
cious Code Injection. In Proceedings of the Inter-
national Conference on Security in Pervasive Com-
puting (SPC-2003), Lecture Notes in Computer Sci-
ence, Springer Verlag, March 2003.

[14] D. Lie, C. Thekkath, and M. Horowitz. Imple-
menting an Untrusted Operating System on Trusted
Hardware. In Proceedings of the 19th ACM Sym-
posium on Operating Systems Principles (SOSP),
October 2003.

[15] D. Lie, C. Thekkath, M. Mitchell, and P. Lincoln.
Architectural Support for Copy and Tamper Resis-
tant Software. In Proceedings of the 9th Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS IX), 2000.

[16] J. P. McGregor and R. B. Lee. Protecting Crypto-
graphic Keys and Computations via Virtual Secure
Coprocessing. In Proceedings of the Workshop on
Architectural Support for Security and Anti-Virus
(WASSA), October 2004.

[17] N. Nethercote and J. Seward. Valgrind: A Pro-
gram Supervision Framework. In Electronic Notes
in Theoretical Computer Science, volume 89, 2003.

[18] J. Oplinger and M. S. Lam. Enhancing Software
Reliability with Speculative Threads. In Proceed-
ings of the 10th International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems(ASPLOS X), October 2002.

[19] H. Patil and C. N. Fischer. Efficient Turn-time
Monitoring Using Shadow Processing. In Proceed-
ings of the 2nd International Workshop on Auto-
mated and Algorithmic Debugging, 1995.

[20] J. C. Reynolds, J. Just, L. Clough, and R. Maglich.
On-Line Intrusion Detection and Attack Prevention
Using Diversity, Genrate-and-Test, and Generaliza-
tion. In Proceedings of the 36th Hawaii Inter-
national Conference on System Sciences (HICSS),
2003.

[21] M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu,
and J. W Beebee. Enhancing server availability
and security through failure-oblivious computing.
In Proceedings of the 6th Symposium on Operating
Systems Design and Implementation (OSDI), De-
cember 2004.

[22] S. Sidiroglou and A. D. Keromytis. A Network
Worm Vaccine Architecture. In Proceedings of the
IEEE International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enter-
prises (WETICE), Workshop on Enterprise Secu-
rity, pages 220–225, June 2003.

[23] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and
A. D. Keromytis. Building a Reactive Immune
System for Software Services. In Proceedings of
the USENIX Annual Technical Conference (To ap-
pear), April 2005.

[24] S. Sidiroglou, M. E. Locasto, and A. D. Keromytis.
Hardware Support For Self-Healing Software Ser-
vices. In Proceedings of the Workshop on Architec-
tural Support for Security and Anti-Virus (WASSA),
pages 37–43, October 2004.

[25] C. Small and M. Seltzer. MiSFIT: A Tool for Con-
structing Safe Extensible C++ Systems. IEEE Con-
currency, 6(3):33–41, 1998.

[26] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Se-
cure Program Execution via Dynamic Information
Flow Tracking. In Proceedings of the 11th Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS-XI), October 2004.

[27] N. Wang, M. Fertig, and S. J. Patel. Y-Branches:
When You Come to a Fork in the Road, Take It. In
Proceedings of the 12th International Conference
on Parallel Architectures and Compilation Tech-
niques, September 2003.

6


