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Abstract We provide a theoretical notion of white-box security for 
protecting the integrity and privacy of mobile programs.  We assume that 
protecting the program’s semantic privacy will improve the integrity 
protection of a program, thereby improving tamper resistance and the 
protection of secret algorithms.  We introduce this notion using a Random 
Oracle Model and describe our important concept of a random program 
via a transformation to further clarify our notion of white-box security. It 
is this theoretical notion that is required to achieve provable security for 
program protection, with respect to tamper reduction. 
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1 Introduction 
 
There are a number of reasons why the integrity and privacy of programs need to be 
protected.  For mobile code the integrity of the program needs to be protected to ensure 
functionality and survivability within a distributed environment.  Mobile agents would 
certainly benefit from some kind of mobile code integrity protection.  Likewise, the 
privacy of a program is important for proprietary reasons.  If the privacy of a program 
can be protected then secret algorithms and intellectual property can be hidden to ensure 
digital rights management. 
 
We focus our work on software-only solutions for addressing the malicious host problem.  
The malicious host problem is a remote execution host that is not trusted, having total 
control and visibility of a visiting program, which can tamper with the program.  For 
instance, Alice constructs a mobile program that she wants to run on a remote host Bob, 
with the intention of attaining the output of that program.  If Bob behaves maliciously he 
could in the worst case alter the program for his own benefit.  We call this worst-case 
scenario effective tampering. 
 
Our ultimate goal is to reduce effective tampering of the program to blind tampering.  
The benefit of blind tampering over effective tampering is that the damage potentiality is 
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reduced.  For instance, if a mobile agent has been blindly tampered with by a remote host 
A it may crash its execution on a subsequent host B.  In this case, host B can easily 
recover with only a loss of some time, where as if host A effectively tampered with the 
mobile agent, host B could execute erroneous code and commit to something it does not 
want to commit to or not be able to commit to something it wants to commit to. 
 
Our specific focus within this paper is to provide a theoretical notion for white-box 
security to complement our notion of black-box security in [14].  Currently, the notion of 
white-box security is vague and there has been little work only within the past few years 
for white-box security1 of programs.  In fact, there has been little work in theoretical 
foundations for mobile program protection overall. 
 
1.1 Related Work 
 
We categorize related work into the following general areas, code obfuscation, mobile 
cryptography, and white-box security.   
 
1.1.1 Code Obfuscation 
 
Code obfuscation is the altering of the syntax of a program into a less readable format, 
while maintaining the black-box semantics of the program [1, 2, 3, 4, 9].  A good 
example of code obfuscation is something a software developer uses often, that is a 
compiler.  The compiler translates high-level source code into machine code so that the 
program can easily run on a computer.  In fact, there are a myriad of obfuscation 
techniques that are similar to compiler optimization techniques such as variable splitting, 
interleaving methods and reducing flow-graphs to name a few [2].  Opaque predicates 
have been the main contribution of [2]. 
 
The machine code generated by a compiler is usually a binary string of which is tedious 
and time consuming to read and understand, in general, to say the least.  However, 
knowing the architecture in which the program runs on and knowing the program’s I/O 
relationship, the program can be successfully reversed engineered into more readable 
code such as source code.  Moreover, code obfuscation is heuristic-based, and upon 
learning the techniques used to obfuscate a program, an adversary can easily reverse the 
operations and construct a de-obfuscator.  Ultimately, although code obfuscation is 
practical it is nowhere near being provably secure [1].  However, there has been some 
work to counter the claims of [1], namely that of N. Varnovsky and V. Zakharov [9] who 
attempt to provide a formal information-theoretic definition of code obfuscation.   
 
Currently, the most advanced work in code obfuscation research is to address static 
analysis [9].  M. Mambo, et. al., [8] compare properties or conditions of a program that 
make it easy and hard to analyze a program.  It is argued that static analysis of a program 
is easier for an adversary than doing dynamic analysis, since the text of a program can be 
easily entered into a static analyzer resulting in viewable properties of the program [3].  
Moreover, code obfuscation research is meandering towards NP-hard reducibility.  
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Ideally, one would find an NP-hard problem that can be reduced to a certain class of 
program structures [9], for instance, some analysis techniques such as analyzing function 
pointers is shown to be NP-hard [13]. 
 
1.1.2 Mobile Cryptography 
 
Mobile cryptography attempts to protect the privacy of functions by using mathematical 
constructs, in hopes of providing a general means for provably securing programs [7, 12].  
Since multi-party computations and secret sharing provide a basis, mobile cryptography 
has been around longer than code obfuscation.  The most well known mobile 
cryptographic scheme is Computing with Encrypted Functions (CEF) using 
homomorphism.  CEF refers to a process where a function is transformed into a different 
function that is embedded into a program, protecting the original intent, yet still produces 
a result that can be decrypted only by the originator.  Although Mobile Cryptography is 
ideal on the surface, it is not practical for a general program, primarily since it is limited 
to some mathematical computations. 
 
There is another work by K. Cartrysse and J.C.A. van der Lubbe [6] that discuss perfect 
secrecy for mobile code, that can arguably fall under the mobile cryptography category.  
Claude Shannon’s notion of a secrecy system for static data is used for mobile programs.  
K. Cartrysse and J.C.A. van der Lubbe describe their perfect secrecy notion using three 
main components: key space, function space and the output space, with the caveat that 
the key space has to be at least as large as the function and output space.  Their perfect 
secrecy notion is theoretical and they express their concept with an example using one-
time pad for polynomials.  Lastly, their notion falls short of the full transformation 
process, in that they have no procedure for decrypting the encrypted output. 
 
1.1.3 White-box Security 
 
There is some overlap between code obfuscation and white-box security.  We provide a 
separation solely based on the notion that code obfuscation is currently not provably 
secure, whereas our aim with white-box security is to achieve a more robust means of 
formally measuring security.  As mentioned above, white-box security is a relatively new 
area of program protection.  Chow, et. al., [10, 11] were the first to attempt to prevent 
extraction of secret keys from an encrypted symmetric cipher algorithm such as DES and 
AES.  For DES they interleave affine transformations with s-boxes, which attempts to 
delinearize permutation operations and xors that make up an affine transformation.  For 
AES they encode key-independent tables with random bijections.   
 
They argue that their methods will prevent an adversary from easily obtaining the secret 
key being used.  Unfortunately, there are some attacks that can exploit the nonlinear 
properties of s-boxes, such as the statistical bucketing attack and the differential fault 
injection attack.  Link and Neumann [5] follow up on Chow, et. al.’s work by improving 
resistance against the statistical bucketing attack by increasing the size of the matrices 
making up DES, and intermixing the s-box input with the left and right input halves for 
each round. 
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1.1.4 Black-box, White-box and Gray-box Security 
 
The following definitions for black-box, white-box and gray-box security have been 
informally used within the papers throughout the related work.  We not only use them but 
also simply reiterate them for clarification:   
 

Black-box security is protecting the privacy and integrity of a program by 
not allowing any visibility into the instructions of a program.  Since the 
goal of black-box cryptanalysis is to gain an understanding of the program 
from the program’s I/O, black-box security serves to obscure the I/O 
relationship of the program as well.   
 
White-box security protects the integrity of a program by not allowing the 
adversary to understand the program when given the internal instructions 
of that program2. 
 
Gray-box security is the combination of black-box and white-box security, 
that is, providing protection against static and dynamic analysis when used 
together. 

 
1.2 Objective 
 
Our objective within this paper is to provide a basis of white-box security that will ensure 
provable security with respect to the reduction of effective tampering to blind tampering.  
We aim to describe this notion by using a Random Oracle Model.  We partially justify 
and motivate our Random Oracle Model of white-box security via the transformation of a 
primitive program using the random properties of a data cipher as well.   
 
We note that most of the related work regarding program encryption address protecting 
against automated static analysis.  In our work, however, we want to also address 
protecting against non-automated static techniques such as manually inspecting code.  
This situation can arise in practice.  For instance, mobile code especially in the form of 
mobile agents, are not very large for efficiency reasons.  An adversary, after successfully 
reverse engineering a mobile agent, can visually inspect any part of the code he feels is 
important.  In addition to each of these attacks individually, in most cases the adversary 
uses a combination of static analysis and dynamic analysis.  Therefore, we aim to 
generalize our protection scheme by addressing as many vulnerabilities as possible.   
 
The remainder of this paper is organized in the following way:  We discuss our model, 
which we call the Cryptomorphic Programming Model (CPM) in section 2.  In section 3 
we go over our main notion of White-box security along with a transformation.  In 
section 4 and section 5 we discuss future work and conclude respectively. 
 
 
                                                 
2 Since the instructions can be viewed, the privacy of the program can be debated.  
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2 Cryptomorphic Programming Model 
 
We build upon our Cryptoprogramming notion [15] and Semantic Encryption 
Transformation Scheme (SETS) model [14] by formally evolving our concept of program 
encryption transformation.  We show an algebraic equivalence between two 
cryptomorphic pathways, which go from x, the program’s input, to y, the program’s truly 
intended output as shown in Figure 1. 
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Figure 1, Cryptomorphic Programming Model (CPM). 
 
The CPM in Figure 1 consists of two sets of pathways leading from the initial input x to 
the final output y.  The first pathway is on the left side of Figure 1, which is a program P 
that takes an input x and outputs y.  The second pathway, which is predominately on the 
right side of Figure 1, consists of taking the same x as input into a transformed program 
P′ producing output y′, which then is decrypted into y via recovery procedure R. 
 
2.1 Pathway Equivalence 
 
We now formally describe our two pathways in a cryptomorphic way.  For the sake of 
clarity we note that since P′ is some transformation of P (rather an encrypted version of 
P), there exists an arrow T, representing the transformation from P to P′.  We omit this 
arrow from the diagram in Figure 1 on purpose to emphasize the individual pathways 
from x to y.  We show that by going route 2 above in Figure 1, we cryptomorphically 
achieve the equivalence to route 1, however, with the help of T. 
 
So, by letting xP = y, xP′ = y′, TP = P′, and y′R = y, we have in Listing 1: 
 
 
 
 x

 

Listing 1, Algebraic Representation
 
 

 

 

xP′ = y′ 
xPT = y′ 
PTR = y′R 

xP = y 

 

 of Cryptomorphic Programmatic Equivalence. 
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2.2 Cryptosystem Analogy 
 
In addition to our cryptomorphic pathway equivalence, we show the equivalence of CPM 
to a data cryptosystem.  As with any data cryptosystem there exists an easy route, namely 
that of knowing or having the secret (decryption) key, and there exists a difficult route for 
decrypting plaintext into ciphertext.  Below in Figures 2 and 3, we describe both of these 
routes. 
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               Figure 2, Route 1 (Easy).                                Figure 3, Route 2 (Hard). 
 
We can surmise that T is a cryptomorphic transformer of P if there exists a mapping R 
such that TR is what we call a cryptomorphic identity operation for xP.  Although this is 
not a pure identity mapping it is a special kind of mapping that uses the notion of xP and 
xP′ as conceptually shown below in Figure 4. 
 
 
 
 
 
 
 

 

In a very simple case, to illustrate the 
concept, we can take a program P that 
simply computes: x + 2. 
Letting T be +3, that is, T transforms 
P into P′: (x + 2) + 3 = x + 5, 
R would then simply be –3, which 
will allow for y′ to be decrypted to y. 

T 
xP′ 

  R 

xP 
 

Figure 4, TR, Cryptomorphic Identity Concept. 
 

3 White-box Security 
 
In addition to our black-box security model in [14], we now attempt to add another 
dimension, white-box security, to our evolving CPM. The following are our assumptions:  
The adversary can observe the operation of the encrypted program P′.  Since, our aim is 
to protect the original non-encrypted program P, when given the encrypted program P′.  
Thus, when the adversary has P′, he should not be able to deduce any part of P that 
would gain him greater benefit. 
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3.1 Random Oracle Model 
 
The Random Oracle Model for encrypting programs describes the highest-level of white-
box security that we seek for protecting the integrity and privacy of a program.  We have 
an oracle O that encrypts programs, i.e. performs the function of T.  The adversary sends 
an original non-encrypted program P to the oracle O to be encrypted and the oracle 
returns the corresponding encrypted program P′, as shown below in Figure 4 via the top 
two arrows labeled 1 and 2.  Upon a polynomial many encryptions, the oracle then sends 
to the adversary an encrypted program P′, along with its non-encrypted counterpart P as 
shown by label 3.  The adversary would then have to determine whether or not the 
encrypted program P′ is the real encrypted program P′ corresponding to P or if it is a 
random program PR as shown by his decision in label 4. 

   
     
       ^     

     
     ^ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4, Random Oracle Model for White-box Security. 
 
The adversary attempts to make his prediction by returning a bit b ∈ {0, 1} 
corresponding to his guess of either PR or P′n+1., as shown in label 4 in Figure 4 and 
below in Listing 2.  The probability that the adversary is able to predict either the real 
encrypted program from a random encrypted program should be less than or equal to ½ + 
ε, as shown in Listing 3 to ensure provable security.  We let ε be the negligible error 
probability.  We are now left with the notion of PR.  Thus we achieve a computational 
indistinguishability. 
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3.2 Definition of PR 
 
Since we know what P and P′ are, we only need to define PR.  Thus, the following is the 
definition of PR: 
 

Defintion 1: Random Program PR 
 
A random program PR is a hypothetical program that performs a 
meaningless operation. In other words, PR is an executable program 
where its operations and data are not associated with any context.3 

 
3.3 White-box Transformation 
 
We take the definition of PR one step further by showing a transformation of a primitive 
program.  This transformation serves to illustrate our notion of PR.  We start with a 
program P that performs some set of operations.  For our purpose, P is abstract.  The 
main assumptions that we use for the program transformation are the following: 
 

• We do not consider loops per se.  We instead reduce our notion of a loop to a 
series of conditional statements, since a loop is really made up of one or more 
contiguous conditional statements.  We then only need to deal with a 
unidirectional instruction flow.   

 
• Another assumption that we make is not considering the recoverability procedure 

R of the final result as shown above in Figure 1.  Since recoverability is clearly 
defined by our black-box model in [14], we exclude this property of 
cryptoprogramming because we are focusing only on white-box security, namely 
that of describing PR.  

 
• Given that our computer or instruction set is abstract or logical, that is, not tied to 

any particular architecture, we also do not consider hardware or low-level issues 
such as memory faults. 

 
Moving on to our primitive program transformation.  Suppose our hypothetical computer 
only has the following three types of instructions, where each instruction type consists of 
a mnemonic along with its numeric opcode. 
 

• ADD:1  [Adds two numbers] 
• MOVE: 2 [Moves contents from one cell4 to another] 
• BIZ: 3  [“Branch if zero”, Check to see if a cell is zero] 

 

                                                 
3 We acknowledge that our definition of PR is informal.  However, we build upon this axiomatic notion in 
the following sections.  Although, in trying to be less ambiguous, envision bits in a computer’s memory 
space changing and moving from location to location in a pseudo-random way. 
4 A cell represents a memory location.  For our purposes it is an abstraction for a memory block and register within a 
real computer. 
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We use the following instruction format:  
 

Opcode   Destination Cell   Source Cell  
 
The opcode can either be 1, 2, or 3 corresponding to our three instructions above.  We 
restrict the number of cells to eight, C[0], C[1], …, C[7], where cell C[0] = 0, is a 
constant.  So, given the following program P in Figure 5, we randomly alter its operations 
and cells to produce the encrypted program P′ in Figure 6:  
 
 
 
 
 
 
 
 
 
 
 
 
 
   

00: // Assign (random) values  
01: // into the last seven C’s 
 
10: 1 2 1 // ADD C[1] + C[2] → C[2]
11: 1 3 1 // ADD C[1] + C[3] → C[3]
12: 1 3 2 // ADD C[2] + C[3] → C[3]
13: 2 4 3 // MOVE C[3] to C[4] 
14: 1 3 1 // ADD C[1] + C[3] → C[3]
15: 3 3 0 // BIZ (C[3] == 0) 
16: 1 5 4 // ADD C[4] + C[5] → C[5]
17: 1 2 3 // ADD C[3] + C[2] → C[2]
18: 2 6 4 // MOVE C[4] to C[6] 
 
19: 0 0 0 // HALT 

 

00: 
01: 
 
10: 1 5 2 
11: 3 3 0 
12: 1 1 4 
13: 2 2 7 
14: 2 5 2 
15: 1 1 4 
16: 2 5 4 
17: 1 7 0 
18: 1 2 4 
 
 
19: 0 0 0 

Figure 5, Original program P.        Figure 6, Encrypted program P′. 
 
The program P′ in Figure 6 clearly executes.  Henceforth, P′ achieves white-box 
randomization illustrating our notion of PR. 
 
4 Future Work 
 
We acknowledge that our formulations of white-box security need more research in order 
to reach satisfying levels of practicality.  For instance, our main concern regarding our 
current notion is being able to encrypt or hide a loop within a program.  In briefly 
examining the following simple and general loop structure written in a programming 
language such as C++: 
 

for (int i = 0; i < n; i++)
{ 
 // Do something 
} 

 
 
 
 

Listing 4, Simple Loop. 
 
We can see in Listing 4, that this loop has an iterator i, which allows the loop to iterate n 
times.  Our current scope relegates us to heuristic methods for hiding the true intentions 
of a loop.  For instance, we can alter i by changing the way the loop increments.  We can 
also change n and increase or decrease the number of loop iterations.  Other heuristic 
methods consist of obfuscation-like techniques such as inserting dummy code either by 
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convoluting the loop body or by adding more loops.  However, all of these heuristic 
methods may increase the complexity or difficulty in decrypting the intermediate result y′ 
via recovery process R.  Ultimately, the overall goal of systematizing CPM for 
encrypting programs in general still needs more work. 
 
Lastly, another issue that we would like to address in future work is the convergence of 
black and white-box security, that is, ultimately a gray-box solution.  Current research 
trends address thwarting static-analysis while negating dynamic analysis due to the 
difficulty of deducing a program only by unique I/O pairs.  However, as mentioned 
above, static and dynamic analyses can be combined as well to effectively understand a 
program.  Given our current notion of black-box security [14] along with a robust notion 
of white-box security, we can begin taking steps towards practical solutions to encrypt 
programs for improving tamper resistance. 
 
5 Conclusion 
 
We have provided a notion for white-box security via the Random Oracle Model for 
encrypting programs.  In the Random Oracle Model for white-box program security it is 
imperative to define our random program PR.  We defined PR as a meaningless program 
in that it consists of a random set of operations and data, which has no context 
association.  We acknowledge that PR is informally defined but we expressed our notion 
of PR via a transformation of a primitive program, with the goal of showing the highest 
theoretical level of program integrity security. 
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