
Cryptomorphic Programming:
Towards White-box Security∗

W. Thompson and J. Todd McDonald∗∗

{wthompso, mcdonald}@cs.fsu.edu
Department of Computer Science

Florida State University
Tallahassee, FL 32306

Abstract We provide a theoretical notion of white-box security for
protecting the integrity and privacy of mobile programs. We assume that
protecting the program’s semantic privacy will improve the integrity
protection of a program, thereby improving tamper resistance and the
protection of secret algorithms. We introduce this notion using a Random
Oracle Model and describe our important concept of a random program
via a transformation to further clarify our notion of white-box security. It
is this theoretical notion that is required to achieve provable security for
program protection, with respect to tamper reduction.

Key Words Program Integrity Protection, Tamper Resistance, White-box
Security

1 Introduction

There are a number of reasons why the integrity and privacy of programs need to be
protected. For mobile code the integrity of the program needs to be protected to ensure
functionality and survivability within a distributed environment. Mobile agents would
certainly benefit from some kind of mobile code integrity protection. Likewise, the
privacy of a program is important for proprietary reasons. If the privacy of a program
can be protected then secret algorithms and intellectual property can be hidden to ensure
digital rights management.

We focus our work on software-only solutions for addressing the malicious host problem.
The malicious host problem is a remote execution host that is not trusted, having total
control and visibility of a visiting program, which can tamper with the program. For
instance, Alice constructs a mobile program that she wants to run on a remote host Bob,
with the intention of attaining the output of that program. If Bob behaves maliciously he
could in the worst case alter the program for his own benefit. We call this worst-case
scenario effective tampering.

Our ultimate goal is to reduce effective tampering of the program to blind tampering.
The benefit of blind tampering over effective tampering is that the damage potentiality is

∗ This work was supported in part by the U.S. Army Research Laboratory and U.S. Army Research Office
under grant number DAAD19-02-1-0235.
∗∗ The views expressed in this article are those of the author and do not reflect the official policy or position
of the United States Air Force, Department of Defense, or the U.S. Government.

reduced. For instance, if a mobile agent has been blindly tampered with by a remote host
A it may crash its execution on a subsequent host B. In this case, host B can easily
recover with only a loss of some time, where as if host A effectively tampered with the
mobile agent, host B could execute erroneous code and commit to something it does not
want to commit to or not be able to commit to something it wants to commit to.

Our specific focus within this paper is to provide a theoretical notion for white-box
security to complement our notion of black-box security in [14]. Currently, the notion of
white-box security is vague and there has been little work only within the past few years
for white-box security1 of programs. In fact, there has been little work in theoretical
foundations for mobile program protection overall.

1.1 Related Work

We categorize related work into the following general areas, code obfuscation, mobile
cryptography, and white-box security.

1.1.1 Code Obfuscation

Code obfuscation is the altering of the syntax of a program into a less readable format,
while maintaining the black-box semantics of the program [1, 2, 3, 4, 9]. A good
example of code obfuscation is something a software developer uses often, that is a
compiler. The compiler translates high-level source code into machine code so that the
program can easily run on a computer. In fact, there are a myriad of obfuscation
techniques that are similar to compiler optimization techniques such as variable splitting,
interleaving methods and reducing flow-graphs to name a few [2]. Opaque predicates
have been the main contribution of [2].

The machine code generated by a compiler is usually a binary string of which is tedious
and time consuming to read and understand, in general, to say the least. However,
knowing the architecture in which the program runs on and knowing the program’s I/O
relationship, the program can be successfully reversed engineered into more readable
code such as source code. Moreover, code obfuscation is heuristic-based, and upon
learning the techniques used to obfuscate a program, an adversary can easily reverse the
operations and construct a de-obfuscator. Ultimately, although code obfuscation is
practical it is nowhere near being provably secure [1]. However, there has been some
work to counter the claims of [1], namely that of N. Varnovsky and V. Zakharov [9] who
attempt to provide a formal information-theoretic definition of code obfuscation.

Currently, the most advanced work in code obfuscation research is to address static
analysis [9]. M. Mambo, et. al., [8] compare properties or conditions of a program that
make it easy and hard to analyze a program. It is argued that static analysis of a program
is easier for an adversary than doing dynamic analysis, since the text of a program can be
easily entered into a static analyzer resulting in viewable properties of the program [3].
Moreover, code obfuscation research is meandering towards NP-hard reducibility.

1 Our notion of white-box security includes provable security as opposed to just code obfuscation.

 2

Ideally, one would find an NP-hard problem that can be reduced to a certain class of
program structures [9], for instance, some analysis techniques such as analyzing function
pointers is shown to be NP-hard [13].

1.1.2 Mobile Cryptography

Mobile cryptography attempts to protect the privacy of functions by using mathematical
constructs, in hopes of providing a general means for provably securing programs [7, 12].
Since multi-party computations and secret sharing provide a basis, mobile cryptography
has been around longer than code obfuscation. The most well known mobile
cryptographic scheme is Computing with Encrypted Functions (CEF) using
homomorphism. CEF refers to a process where a function is transformed into a different
function that is embedded into a program, protecting the original intent, yet still produces
a result that can be decrypted only by the originator. Although Mobile Cryptography is
ideal on the surface, it is not practical for a general program, primarily since it is limited
to some mathematical computations.

There is another work by K. Cartrysse and J.C.A. van der Lubbe [6] that discuss perfect
secrecy for mobile code, that can arguably fall under the mobile cryptography category.
Claude Shannon’s notion of a secrecy system for static data is used for mobile programs.
K. Cartrysse and J.C.A. van der Lubbe describe their perfect secrecy notion using three
main components: key space, function space and the output space, with the caveat that
the key space has to be at least as large as the function and output space. Their perfect
secrecy notion is theoretical and they express their concept with an example using one-
time pad for polynomials. Lastly, their notion falls short of the full transformation
process, in that they have no procedure for decrypting the encrypted output.

1.1.3 White-box Security

There is some overlap between code obfuscation and white-box security. We provide a
separation solely based on the notion that code obfuscation is currently not provably
secure, whereas our aim with white-box security is to achieve a more robust means of
formally measuring security. As mentioned above, white-box security is a relatively new
area of program protection. Chow, et. al., [10, 11] were the first to attempt to prevent
extraction of secret keys from an encrypted symmetric cipher algorithm such as DES and
AES. For DES they interleave affine transformations with s-boxes, which attempts to
delinearize permutation operations and xors that make up an affine transformation. For
AES they encode key-independent tables with random bijections.

They argue that their methods will prevent an adversary from easily obtaining the secret
key being used. Unfortunately, there are some attacks that can exploit the nonlinear
properties of s-boxes, such as the statistical bucketing attack and the differential fault
injection attack. Link and Neumann [5] follow up on Chow, et. al.’s work by improving
resistance against the statistical bucketing attack by increasing the size of the matrices
making up DES, and intermixing the s-box input with the left and right input halves for
each round.

 3

1.1.4 Black-box, White-box and Gray-box Security

The following definitions for black-box, white-box and gray-box security have been
informally used within the papers throughout the related work. We not only use them but
also simply reiterate them for clarification:

Black-box security is protecting the privacy and integrity of a program by
not allowing any visibility into the instructions of a program. Since the
goal of black-box cryptanalysis is to gain an understanding of the program
from the program’s I/O, black-box security serves to obscure the I/O
relationship of the program as well.

White-box security protects the integrity of a program by not allowing the
adversary to understand the program when given the internal instructions
of that program2.

Gray-box security is the combination of black-box and white-box security,
that is, providing protection against static and dynamic analysis when used
together.

1.2 Objective

Our objective within this paper is to provide a basis of white-box security that will ensure
provable security with respect to the reduction of effective tampering to blind tampering.
We aim to describe this notion by using a Random Oracle Model. We partially justify
and motivate our Random Oracle Model of white-box security via the transformation of a
primitive program using the random properties of a data cipher as well.

We note that most of the related work regarding program encryption address protecting
against automated static analysis. In our work, however, we want to also address
protecting against non-automated static techniques such as manually inspecting code.
This situation can arise in practice. For instance, mobile code especially in the form of
mobile agents, are not very large for efficiency reasons. An adversary, after successfully
reverse engineering a mobile agent, can visually inspect any part of the code he feels is
important. In addition to each of these attacks individually, in most cases the adversary
uses a combination of static analysis and dynamic analysis. Therefore, we aim to
generalize our protection scheme by addressing as many vulnerabilities as possible.

The remainder of this paper is organized in the following way: We discuss our model,
which we call the Cryptomorphic Programming Model (CPM) in section 2. In section 3
we go over our main notion of White-box security along with a transformation. In
section 4 and section 5 we discuss future work and conclude respectively.

2 Since the instructions can be viewed, the privacy of the program can be debated.

 4

2 Cryptomorphic Programming Model

We build upon our Cryptoprogramming notion [15] and Semantic Encryption
Transformation Scheme (SETS) model [14] by formally evolving our concept of program
encryption transformation. We show an algebraic equivalence between two
cryptomorphic pathways, which go from x, the program’s input, to y, the program’s truly
intended output as shown in Figure 1.

R

21

y y′

x

P′ P

Figure 1, Cryptomorphic Programming Model (CPM).

The CPM in Figure 1 consists of two sets of pathways leading from the initial input x to
the final output y. The first pathway is on the left side of Figure 1, which is a program P
that takes an input x and outputs y. The second pathway, which is predominately on the
right side of Figure 1, consists of taking the same x as input into a transformed program
P′ producing output y′, which then is decrypted into y via recovery procedure R.

2.1 Pathway Equivalence

We now formally describe our two pathways in a cryptomorphic way. For the sake of
clarity we note that since P′ is some transformation of P (rather an encrypted version of
P), there exists an arrow T, representing the transformation from P to P′. We omit this
arrow from the diagram in Figure 1 on purpose to emphasize the individual pathways
from x to y. We show that by going route 2 above in Figure 1, we cryptomorphically
achieve the equivalence to route 1, however, with the help of T.

So, by letting xP = y, xP′ = y′, TP = P′, and y′R = y, we have in Listing 1:

 x

Listing 1, Algebraic Representation

xP′ = y′
xPT = y′
PTR = y′R

xP = y

 of Cryptomorphic Programmatic Equivalence.

5

2.2 Cryptosystem Analogy

In addition to our cryptomorphic pathway equivalence, we show the equivalence of CPM
to a data cryptosystem. As with any data cryptosystem there exists an easy route, namely
that of knowing or having the secret (decryption) key, and there exists a difficult route for
decrypting plaintext into ciphertext. Below in Figures 2 and 3, we describe both of these
routes.

R

T

1

 y y′

 x

P′ P

?

?

2

y y′

x

P′ P

 Figure 2, Route 1 (Easy). Figure 3, Route 2 (Hard).

We can surmise that T is a cryptomorphic transformer of P if there exists a mapping R
such that TR is what we call a cryptomorphic identity operation for xP. Although this is
not a pure identity mapping it is a special kind of mapping that uses the notion of xP and
xP′ as conceptually shown below in Figure 4.

In a very simple case, to illustrate the
concept, we can take a program P that
simply computes: x + 2.
Letting T be +3, that is, T transforms
P into P′: (x + 2) + 3 = x + 5,
R would then simply be –3, which
will allow for y′ to be decrypted to y.

T
xP′

 R

xP

Figure 4, TR, Cryptomorphic Identity Concept.

3 White-box Security

In addition to our black-box security model in [14], we now attempt to add another
dimension, white-box security, to our evolving CPM. The following are our assumptions:
The adversary can observe the operation of the encrypted program P′. Since, our aim is
to protect the original non-encrypted program P, when given the encrypted program P′.
Thus, when the adversary has P′, he should not be able to deduce any part of P that
would gain him greater benefit.

 6

3.1 Random Oracle Model

The Random Oracle Model for encrypting programs describes the highest-level of white-
box security that we seek for protecting the integrity and privacy of a program. We have
an oracle O that encrypts programs, i.e. performs the function of T. The adversary sends
an original non-encrypted program P to the oracle O to be encrypted and the oracle
returns the corresponding encrypted program P′, as shown below in Figure 4 via the top
two arrows labeled 1 and 2. Upon a polynomial many encryptions, the oracle then sends
to the adversary an encrypted program P′, along with its non-encrypted counterpart P as
shown by label 3. The adversary would then have to determine whether or not the
encrypted program P′ is the real encrypted program P′ corresponding to P or if it is a
random program PR as shown by his decision in label 4.

 ^

 ^

Figure 4, Random Oracle Model for White-box Security.

The adversary attempts to make his prediction by returning a bit b ∈ {0, 1}
corresponding to his guess of either PR or P′n+1., as shown in label 4 in Figure 4 and
below in Listing 2. The probability that the adversary is able to predict either the real
encrypted program from a random encrypted program should be less than or equal to ½ +
ε, as shown in Listing 3 to ensure provable security. We let ε be the negligible error
probability. We are now left with the notion of PR. Thus we achieve a computational
indistinguishability.

 Listing 2.

Oracle O

4

3

2

The
Adversary

 P1, P2, …, Pn

b ∈ {0, 1}

 P′1, P′2, …, P′n

 P′ ^

n+1, Pn+1

1

P

P

 PR
n+1 =

 P′n+1

 P′

 ^

 7
 ^

 Listing 3.

r ′n+1 = PR] ≤ ½ + ε

r ′n+1 = P′n+1] ≤ ½ + ε

[P

[P ^

3.2 Definition of PR

Since we know what P and P′ are, we only need to define PR. Thus, the following is the
definition of PR:

Defintion 1: Random Program PR

A random program PR is a hypothetical program that performs a
meaningless operation. In other words, PR is an executable program
where its operations and data are not associated with any context.3

3.3 White-box Transformation

We take the definition of PR one step further by showing a transformation of a primitive
program. This transformation serves to illustrate our notion of PR. We start with a
program P that performs some set of operations. For our purpose, P is abstract. The
main assumptions that we use for the program transformation are the following:

• We do not consider loops per se. We instead reduce our notion of a loop to a
series of conditional statements, since a loop is really made up of one or more
contiguous conditional statements. We then only need to deal with a
unidirectional instruction flow.

• Another assumption that we make is not considering the recoverability procedure

R of the final result as shown above in Figure 1. Since recoverability is clearly
defined by our black-box model in [14], we exclude this property of
cryptoprogramming because we are focusing only on white-box security, namely
that of describing PR.

• Given that our computer or instruction set is abstract or logical, that is, not tied to

any particular architecture, we also do not consider hardware or low-level issues
such as memory faults.

Moving on to our primitive program transformation. Suppose our hypothetical computer
only has the following three types of instructions, where each instruction type consists of
a mnemonic along with its numeric opcode.

• ADD:1 [Adds two numbers]
• MOVE: 2 [Moves contents from one cell4 to another]
• BIZ: 3 [“Branch if zero”, Check to see if a cell is zero]

3 We acknowledge that our definition of PR is informal. However, we build upon this axiomatic notion in
the following sections. Although, in trying to be less ambiguous, envision bits in a computer’s memory
space changing and moving from location to location in a pseudo-random way.
4 A cell represents a memory location. For our purposes it is an abstraction for a memory block and register within a
real computer.

 8

We use the following instruction format:

Opcode Destination Cell Source Cell

The opcode can either be 1, 2, or 3 corresponding to our three instructions above. We
restrict the number of cells to eight, C[0], C[1], …, C[7], where cell C[0] = 0, is a
constant. So, given the following program P in Figure 5, we randomly alter its operations
and cells to produce the encrypted program P′ in Figure 6:

00: // Assign (random) values
01: // into the last seven C’s

10: 1 2 1 // ADD C[1] + C[2] → C[2]
11: 1 3 1 // ADD C[1] + C[3] → C[3]
12: 1 3 2 // ADD C[2] + C[3] → C[3]
13: 2 4 3 // MOVE C[3] to C[4]
14: 1 3 1 // ADD C[1] + C[3] → C[3]
15: 3 3 0 // BIZ (C[3] == 0)
16: 1 5 4 // ADD C[4] + C[5] → C[5]
17: 1 2 3 // ADD C[3] + C[2] → C[2]
18: 2 6 4 // MOVE C[4] to C[6]

19: 0 0 0 // HALT

00:
01:

10: 1 5 2
11: 3 3 0
12: 1 1 4
13: 2 2 7
14: 2 5 2
15: 1 1 4
16: 2 5 4
17: 1 7 0
18: 1 2 4

19: 0 0 0

Figure 5, Original program P. Figure 6, Encrypted program P′.

The program P′ in Figure 6 clearly executes. Henceforth, P′ achieves white-box
randomization illustrating our notion of PR.

4 Future Work

We acknowledge that our formulations of white-box security need more research in order
to reach satisfying levels of practicality. For instance, our main concern regarding our
current notion is being able to encrypt or hide a loop within a program. In briefly
examining the following simple and general loop structure written in a programming
language such as C++:

for (int i = 0; i < n; i++)
{
 // Do something
}

Listing 4, Simple Loop.

We can see in Listing 4, that this loop has an iterator i, which allows the loop to iterate n
times. Our current scope relegates us to heuristic methods for hiding the true intentions
of a loop. For instance, we can alter i by changing the way the loop increments. We can
also change n and increase or decrease the number of loop iterations. Other heuristic
methods consist of obfuscation-like techniques such as inserting dummy code either by

 9

convoluting the loop body or by adding more loops. However, all of these heuristic
methods may increase the complexity or difficulty in decrypting the intermediate result y′
via recovery process R. Ultimately, the overall goal of systematizing CPM for
encrypting programs in general still needs more work.

Lastly, another issue that we would like to address in future work is the convergence of
black and white-box security, that is, ultimately a gray-box solution. Current research
trends address thwarting static-analysis while negating dynamic analysis due to the
difficulty of deducing a program only by unique I/O pairs. However, as mentioned
above, static and dynamic analyses can be combined as well to effectively understand a
program. Given our current notion of black-box security [14] along with a robust notion
of white-box security, we can begin taking steps towards practical solutions to encrypt
programs for improving tamper resistance.

5 Conclusion

We have provided a notion for white-box security via the Random Oracle Model for
encrypting programs. In the Random Oracle Model for white-box program security it is
imperative to define our random program PR. We defined PR as a meaningless program
in that it consists of a random set of operations and data, which has no context
association. We acknowledge that PR is informally defined but we expressed our notion
of PR via a transformation of a primitive program, with the goal of showing the highest
theoretical level of program integrity security.

6 Acknowledgement

We would like to acknowledge Dr. Alec Yasinsac and Dr. Mike Burmester for their
contributions and insightful discussions regarding program protection.

Bibliography

[1] B. Barak, et. al., On the (Im)possibility of Obfuscating Programs, Electronic Colloquium on

Computational Complexity, Report No. 57, 2001.
[2] C. Collberg, et. al., Manufacturing Cheap, Resilient, and Stealthy Opaque Constructs, In Proc. 25th

ACM Symposium on Principles of Programming Languages, pp. 184-196, 1998.
[3] C. Linn and S. Debray, Obfuscation of Executable Code to Improve Resistance to Static

Disassembly, Proceedings of the 10th ACM conference on Computer and communications security,
pp. 290-299, 2003.

[4] F. Hohl, Time Limited Blackbox Security: Protecting Mobile Agents from Malicious Hosts, LNCS,
Springer Verlag, pp. 92-113, 1998.

[5] H. Link and W. Neumann, Clarifying Obfuscation: Improving the Security of White-Box Encoding,
Cryptology ePrint Archive: Report 2004/025, 2004

[6] K. Cartrysse and J.C.A. van der Lubbe, Secrecy in Mobile Code, 25th Symposium on Information
Theory in the Benelux, pp. 161-168, 2004.

[7] M. Abadi and J. Feigenbaum, Secure Circuit Evaluation: A Protocol Based on Hiding Information
from an Oracle, Journal of Cryptology, Vol. 2, No. 1, pp. 1-12, 1990.

[8] M. Mambo et. al., A Tentative Approach to Constructing Tamper-Resistant Software, Proceedings of
the 1997 Workshop on New Security Paradigms, pp. 23-33, 1997.

[9] N. Varnovsky and V. Zakharov, On the Possibility of Provably Secure Obfuscating Programs,
LNCS, Vol. 2890, p. 91, 2003.

 10

[10] S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot, White-Box Cryptography and an AES
Implementation, 9th Annual Workshop on Selected Areas in Cryptography, pp.250-270, Springer
LNCS 2595, 2002.

[11] S. Chow, P. Eisen, H. Johnson, and P.C. van Oorschot, A White-Box DES Implementation for DRM
Applications, Proceedings of ACM CCS-9 Workshop DRM 2002, Vol. 2595 of LNCS, pp. 1 – 15,
Springer-Verlag, 2003.

[12] T. Sander and C. Tschudin, Towards Mobile Cryptography, Proceedings of the IEEE Symposium on
Security and Privacy, 1998.

[13] T. Ogiso, et. al., Software Tamper Resistance Based on the Difficulty of Interprocedural Analysis, 3rd
International Workshop on Information Security Applications, pp. 437-452, 2002.

[14] W. Thompson, et. al., Semantic Encryption Transformation Scheme, International Workshop on
Security in Parallel and Distributed Systems, 2004.

[15] W. Thompson, et. al., Cryptoprogramming: A Software Tamper Resistant Mechanism Using
Runtime Pathway Mappings, Florida State University, C.S. Dept., Technical Report #TR-041021,
2004.

 11

	Cryptomorphic Programming:
	Towards White-box Security(
	
	
	Listing 1, Algebraic Representation of Cryptomorphic Programmatic Equivalence.
	3 White-box Security
	Defintion 1: Random Program PR
	Figure 5, Original program P. Figure 6, Encrypted program P(.
	4 Future Work
	5 Conclusion
	6 Acknowledgement

