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ABSTRACT 

Static analysis techniques for detecting illegal information flows 
have great potential, but they are extremely costly – far too costly 
to perform on-line in a just-in-time compilation context. On the 
other hand, it is exactly in the context of downloadable machine-
independent code that such techniques are the most useful. We 
were able to reconcile this conflict by performing the information-
flow analysis off-line. Proof-carrying code techniques are then 
used to transport the analysis results, in a manner that can be 
verified on-line at a relatively modest cost by the code consumer. 
Our approach operates directly on Java bytecode and can 
therefore be easily retrofitted even for existing Java programs for 
which no source code is available. 

1. INTRODUCTION 
High-level language runtimes and virtual machines are 

becoming increasingly popular platforms for development. More 
and more code is now being targeted at these language runtimes 
that execute some form of safe, platform-independent bytecode.  
The most prevalent examples of this are the Java Virtual Machine 
(JVM) [1], and the more recent .NET Common Language 
Runtime (CLR) [2]. Such code platforms offer several advantages 
over native code.  The virtual machine performs a number of 
static and dynamic checks to ensure a basic level of code safety – 
type-safety, and control flow safety. Type safety ensures that 
operators and functions are applied only to operands and 
arguments of the correct types. A special case of type safety is 
memory safety, which prevents reading and writing to illegal 
memory locations – for example, beyond the bounds of an array – 
and thereby also provides separation between different processes 
without the need for hardware-based memory management [3]. 
Control flow safety prevents arbitrary jumps in code (say, into the 
middle of a procedure, or to an unauthorized routine). These basic 
properties of safe code are enforced by a combination of static 
(e.g. bytecode verification) and dynamic (e.g. array bounds 
checks) techniques. Thus, safe code does away with a major 
source of errors and vulnerabilities in current systems that stem 
from unsafe memory operations in C – such as buffer overruns 
and format string attacks. 

While virtual machines provide a portable and safe 
development target, their current security mechanisms are geared 
towards discretionary controls only. These are imposed to limit 
access to critical system resources. However, once access to a 

resource is gained, there are no mechanisms to track the usage 
and ensure that it respects the security constraints of the system.  
Essentially, the entity is trusted to handle the resource properly.  
As a system gets large and complex, it becomes increasingly hard 
to ensure its trustworthiness.  It may be breached because of an 
unintentional programming error or because of type-safe but 
malicious code. 

In this paper, we present a static analysis to explicitly track 
the flow of information through a program at a fine-grained level. 
Our analysis works on Java bytecode, and given security 
annotations on security-sensitive variables, checks for the 
presence of illegal flows of information in the program. There are 
several analyses for checking information-flow properties at the 
source level on Java [14] and other languages. However, it is not 
always practical to assume the presence of source code. A lot, if 
not most, deployed Java code exists as bytecode. Also, the code 
consumer cannot be certain of the properties checked by such an 
analysis without actually getting the source and repeating the 
analysis itself. 

Static analysis, however, is too costly to perform when code 
is dynamically compiled at runtime. To mitigate this, we safely 
transport the results of our analysis. We annotate the analyzed 
bytecode with the results of the analysis in such a way that they 
can be easily and quickly verified at the target site before being 
used. Our analysis is an iterative dataflow analysis, and could, in 
the worst case, take time quadratic in the size of the program. 
Thus, providing results in a manner that is easily verifiable saves 
precious time while doing dynamic compilation at the consumer’s 
end. A code producer can now convince a code consumer that the 
code satisfies certain information-flow properties, while not 
requiring the consumer to repeat the entire expensive analysis.  

To further motivate our approach, consider the following 
three scenarios: 

Scenario 1 – Downloaded program manipulating sensitive 
data: Consider a Java applet from an untrusted (or partially 
trusted) site that computes tax returns.  The program has access to 
private information such as Social Security Numbers (SSN) and 
salary information, and it needs to communicate with its “home 
base” to consult tax tables and to charge the user's credit card for 
the service. How can we be sure that it isn't also leaking the user's 
SSN, salary, and bank account information? Clearly, in current 
Java systems, we cannot. 



This scenario highlights a very common problem faced by 
users today: they use programs that manipulate various sensitive 
information items on their behalf, and yet, they are given no 
mechanisms to control how these programs handle their data. 
They essentially have to trust the program to behave correctly, 
and not leak secrets to untrusted sources. 

Scenario 2 – Java program handling sensitive databases: 
Consider a Java program connecting to two databases, one of 
which contains sensitive information, and another that contains 
public information. Even though data from the sensitive database 
is probably marked as such, once it has been read into a Java 
program, this meta-information is lost and becomes un-
enforceable.  Nothing prevents the program from reading rows 
from the sensitive database, and writing them into the public 
database. In general, detecting “channels” in Java programs in the 
current situation requires auditing of source code. 

Scenario 3 – Application server handling sensitive user 
input: Consider a web application server that presents a web form 
for user input. Some of the information is sensitive and hence sent 
over the wire using an SSL connection. But at both ends, there is 
no distinction between the sensitive information so secured and 
the rest of the data – both in the server and the client's browser, 
this information lives side by side and is potentially vulnerable to 
programming errors or malicious code. Our information-flow 
analysis can provide labeling of sensitive data, and separation of 
such data from non-sensitive data. 

Analyzing information-flow properties at the bytecode-level 
allows us to get some guarantees about a large existing body of 
code without source-level access, or requiring source-level 
changes. 

The rest of this paper is organized as follows: Section 2 gives 
an overview of current techniques for access control and 
information flow control at the source level, and in language 
runtimes; Section 3 presents our static analysis; Section 4 explains 
how we safely transport the results of our analysis; Section 5 
discusses the status of our implementation and future work; 
Section 6 presents related work and Section 7 concludes. 

2. EXISTING SOLUTIONS 
Early Java implementations (up to JDK 1.1) had two distinct 

security environments. The first environment, a complete 
sandbox, was designed to constrain the execution of applets 

downloaded from the Web. These applets were considered 
completely untrusted. The sandbox disallowed any access to the 
local filesystem, as well as any network connections to domains 
other than the one from which the applet originated. This sandbox 
policy was designed to prevent untrusted code from leaking local 
data, and consuming too many network resources. The second 
environment had no constraints at all, and was used to run local 
code on a machine. Code on the local disk was considered 
completely trusted. Thus, this early model was essentially all-or-
nothing, accounting for either completely untrusted or completely 
trusted code. It had no gradations between these two extremes. 

Later versions of Java (after JDK 1.2) added capabilities to 
create more graded security environments, and provide a variety 
of more fine-grained security permissions [4]. Instead of being 
trusted (local), or untrusted (remote), code was now associated 
with principals. A public key infrastructure and cryptographic 
signatures were used to bind principals to code. A security policy 
specified what permissions code originating from various 
principals would get. Permissions included filesystem read and 
write permissions, and network socket capabilities. Enforcement 
was relegated to a runtime security manager that regulated access 
to privileged resources by looking up the permissions possessed 
by the object that made the request. For example, a policy may 
specify that all code digitally signed by the domain uci.edu is 
allowed to read any local file, but to write only under /tmp.   

However, there are many useful security polices that the 
current Java architecture does not address. Higher level policies 
that depend on program state cannot be specified. An example of 
such a policy is “do not allow transmitting on the network after 
reading from the local filesystem”. Inlined reference monitors [5] 
and software fault isolation [6] have been used to enforce policies 
such as this. But even those techniques cannot handle stronger 
policies that track information within a program.  An example of 
such a policy is: “any data read from the local filesystem must not 
be transmitted on the network”.  Note that this is a finer-grained 
policy than the earlier one because it permits sending on the 
network even after a local file has been read – it merely forbids 
sending information that was actually read from the file. 

Another shortcoming of the standard Java security 
architecture is that policies can only be specified in terms of 
permissions exposed by the Java security API. Another critical 
drawback is that once a security check is done, there are no 
controls on the propagation of data thereafter. Data confidentiality 
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Figure 1: Overview of our mobile code pipeline 



policies cannot be expressed or enforced in the current Java 
scheme. This is the reason why a policy such as “any data read 
from the local filesystem must not be transmitted on the network” 
cannot currently be expressed.   

At the Java source level, fields and classes can be marked 
with access modifiers such as public, private and 
protected to limit their visibility to other classes and 
packages. While enforced offline by the Java compiler, marking a 
field private does not mean that it is inaccessible at runtime.  
Private fields can easily be accessed using Java's reflection 
capabilities. Thus, these modifiers should be thought of as an 
abstraction tool to hide implementation details, rather than as 
tools for strict protection of information. 

Myers’ Jflow system [14] uses a Java-based source language, 
Jif, with security labels on variables. A type system is imposed on 
these labels, and successful type checking of a program implies 
the lack of any illicit flows in it. It is uncommon to have access to 
the source of most deployed programs. The vast majority of these 
are simply packaged as Java bytecode. Moreover, the lack of an 
easily checkable proof of the analysis means that the code 
consumer has to trust the entire Jif compiler. 

3. ALGORITHM 
3.1 Background 

Variables have associated security labels that indicate the 
sensitivity of the information they hold. We assume that these 
labels form a lattice.  

Information is said to flow from x to y if the value of y is 
derived in any way from the value of x. 

A leak is said to happen when information flows from a 
variable to another one with a lower security label. 

There are two ways a program could leak information. The 
most direct way is through an explicit flow – this is when there is 
a direct flow of information from one variable to another, for 
example, through an assignment, or by getting the result of an 
arithmetic operation.  

Another way to leak information is by using control flow. For 
example, consider the following code snippet, where x is secret, 
and y is public: 

if (x == 0) then y = 1 else y = 2; 

print y 

In this example, even though there is no direct assignment 
from x to y, the value of y can be easily used to infer the value of 
x. Such flows of information are caused by conditional control 
flow, and are called implicit flows. 

3.2 Analysis 
We present our analysis here for three-address code. To 

perform this on Java bytecode, we first convert it to three-address 
code, and then back to Java bytecode. These transformations are 
explained in greater detail in the next section. 

The label of a variable at any point in the flow graph indicates 
the security level of the value it holds. This is used to prevent 
explicit flows.  

Aside from labels associated with variables, we also attach a 
security label with each basic block in the control flow graph of 
our program. We call the former variable labels, and the latter 
block labels. Both labels are drawn from the same lattice of 
security labels.  

The block label models the information that is implicitly 
present at a location in the control flow graph because of 
conditional jumps on the values of variables. This is used to 
prevent implicit flows. 

We use the following notation: for a variable x, x denotes its 
security label. For labels x1, x2, … xn, x1 + x2 + … + xn denotes the 
least upper bound of those labels.  

We assume that methods have been provided with security 
signatures that specify the security labels of its parameters and its 
return value. For every method, our analysis checks whether the 
method satisfies its own security signature. While doing this 
analysis, at method calls it checks if the parameters for the call 
are compatible with the signature of the method called, and 
assume that the return value has the label given in the signature. A 
parameter is compatible if its security label is at most as sensitive 
as the label specified in the signature. For example, a method 
taking a “secret” parameter could also take a “public” parameter, 
but not vice versa. 

Our data flow analysis iterates over two kinds of values: 
variable labels, and block labels. It terminates when they have 
stabilized. We associate two sets and a block label with each basic 
block B in the control flow graph under consideration: 

• IN(B) = {x1:l1, x2:l2,…, xn:ln}: the IN set for the data 
flow analysis. This is a mapping from variables to their 
security labels – variable xi has security label li. The IN 
set for a block represents the mapping that holds at the 
entry of the block. 

• OUT(B) = {x1:l1, x2:l2,…, xn:ln}: the OUT set for the 
data flow analysis. This is also a mapping from 
variables to their security labels, just like the IN set, but 
it holds at the exit of a block. 

• L(B) = {l1:B1, l2:B2,…, ln:Bn}: This is a list of security 
labels, along with a pointer to the basic block 
containing the jump instruction that caused each label to 
be set. We need this information for declassification. 
We use the notation L(B) to denote the least upper 
bound of all the labels in L(B). 

Initially, the IN and OUT sets for each block are empty, and 
all variables and blocks are marked with the least-restrictive 
element of the security-label lattice (public). We assume that the 
formal parameters of the method being analyzed have been 
labeled with security labels. These labels form the IN set of the 
entry-block of the control flow graph of the method. 

After this initial setup, we perform a standard iterative data-
flow analysis which terminates when the IN and OUT sets and 
block labels have stabilized.  

On every iteration of the dataflow analysis, and for every 
basic block, we perform the following actions: 

• Compute the IN set of this block from its immediate 
predecessors: The OUT sets of all the immediate 



predecessors of the current block are merged to form 
the IN set of the current block. If a variable x occurs in 
only one of the OUT sets, then it is simply carried over 
to the IN set. If a variable x occurs in multiple OUT sets 
with labels l1, l2, …, ln, then it is put in the IN set with 
label l1 + l2 + … + ln. 

• Compute the block label of this block from the block 
labels of its immediate predecessors and post-
dominator information (this is where we explain 
declassification): The block label of the current block 
label is computed as follows: it is simply the union of 
the block labels of all the immediate predecessors of the 
current block, except when the same label l:B occurs in 
multiple predecessor block labels. In that case, we 
check if the current block post-dominates B. (A block 
B1 post-dominates another block B2 if every path from 
B2 to the exit of the control flow graph goes through 
B1). If it does, then we can safely declassify the security 
label l for this block, and remove it from the current 
block label.  

• Propagate labels through the block and compute the 
OUT set: At the beginning of a block, the OUT set for 
that block is initialized with the IN set. We go through 
the basic block instruction by instruction, and for each 
instruction “x = y op z” in the block, we compute the 
label of x as follows: x = y + z + L(B). The labels y and 
z are looked up in the OUT set. Finally, we are left with 
a mapping from variables to their respective security 
labels. This mapping holds at the exit of the block. This 
is the OUT set for that block. 

Figure 2 gives an example of our analysis performed on a 
simple control flow graph. At the entry block, the variables c and 

d are marked “secret”, and everything else is “public”. The 
example shows how other variables get tainted secret, and how 
implicit flows are modeled using block labels. 

We now give a brief sketch of the proof of correctness of our 
analysis. Given that initially the method’s formal parameters are 
explicitly labeled with security labels, all we need to show is that 
every variable to which a value of label l flows is also marked 
with a label at least as sensitive as l. This is straightforward: for 
the case of explicit flows, we can easily see (by construction in 
our analysis) that the left-hand sides of expressions are labeled the 
least upper bound of variables on the right-hand side and the 
block label. For the case of implicit flows, we elevate the label of 
a block if control flows to it as a result of a conditional jump, and 
henceforth every value computed in that block is also labeled at 
least as sensitive as its block label. Hence, we see that security 
labels are faithfully propagated by our analysis. 

4. TRANSPORTING RESULTS SAFELY 
We now explain how we annotate Java bytecode with an 

easily and quickly (in time linear to program size) verifiable proof 
that it satisfies the information flow properties that our analysis 
checked for.  

We annotate Java bytecode with the following: 

• The bytecode for each method is annotated with where 
its basic block boundaries lie. We assign a unique 
number to each block. 

• Each block is then annotated with the final stabilized 
values of it’s IN and OUT sets, and its block label. 

• Each method is annotated with the post-dominator tree 
for its control-flow graph. 
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Figure 2: our information-flow analysis on a sample control flow graph. 



Given these annotations, we now explain how they can be 
quickly verified in one pass over the bytecode. 

For each block B, we first verify that it’s IN set is correct. For 
the entry set, the IN set is directly derived from the security labels 
associated with formal parameters, so we simply check that the IN 
set of the entry block is compatible with the labels of parameters. 
For all other blocks, we compute a new IN set for the block from 
the OUT sets of all its immediate predecessors. This is done in 
exactly the same way as is done by the analysis. Finally, we 
check that the annotated IN set is stricter than the newly 
computed IN set. Similarly, we also compute a new block label of 
this block in the same way as in the analysis. Then we check than 
the annotated block label is stricter than the newly computed 
block label. 

To verify the OUT set of a block B, we compute a new OUT 
set (starting with the annotated IN set) by sequentially going 
through the instructions in the block. Then we check that the 
annotated OUT set is stricter then the newly computed OUT set. 

To compute the block labels, we need post-dominator 
information. We transport this is an annotation for every method. 
To verify that the post-dominator information is correct, we use 
the technique of [16], which given a control flow graph and a 
post-dominator tree, verifies in linear time that the post-dominator 
tree is correct. 

We now give a sketch of the proof of correctness of the above 
verification procedure. We need to show that a malicious 
adversary cannot modify the annotations in a way that can violate 
the property proved by the static analysis:  

(1) every variable to which a value of label l flows is also 
marked with a label at least as sensitive as l.  

Essentially, we want to show that if an adversary “lies” about 
an annotation, it will be caught by our verification procedure. For 
the entry block of the procedure, it’s IN set can be trivially 
checked as it should have labels at least as sensitive as those of 
the formal parameters of the method under consideration. We call 
an annotated IN set of a block correct if the label of every 
variable in it is at least as strict as that computed by taking the 
unions of the OUT sets of all the immediate predecessors of the 
block. Similarly, an annotated OUT set is correct if every variable 
in it is at least as sensitive as that in the OUT set as computed by 
the analysis. For our annotations to be incorrect there must be at 
least one block for which either the IN or OUT set is incorrect. 
This is because if the IN and OUT sets of every block are correct, 
and we can trivially check the correctness of the IN set of the 
entry block, then by the correctness of our static analysis 
algorithm, this program does not violate (1). 

5. STATUS AND FUTURE WORK 
We have currently implemented the analysis framework. We 

have based our implementation on the Soot framework [27]. We 
use Soot to parse Java bytecode into Soot’s Jimple representation. 
Jimple is a conversion of Java bytecode to three-address code. We 
perform our analysis on Jimple.  

The proof generator and verifier are currently under 
development. We will need to “translate” our proof from Jimple 
back to Java bytecode in order to transport it. This can be done by 
simply converting all temporaries in three-address Jimple to local 
variables in the final bytecode. 

There are several other broad avenues of future work we 
would like to consider. 

Another approach to tackling the information-flow problem is 
to use dynamic techniques, such as mandatory access [28]. Such 
approaches have one very significant advantage over static 
techniques: they can be bound to code very late – at execution 
time. This gives them a great deal of flexibility. For example, 
different executions of the same program could be run under 
varying security policies.  

The disadvantage of dynamic methods when compared to 
static techniques is that they lack a clean mechanism to safely 
declassify information. This is because dynamic techniques only 
know about one execution path, whereas static methods can 
reason about all execution paths taken to reach a certain program 
point. This leads to “label creep”, where security labels on objects 
keep moving up, often making programs unusable. 

We have also designed and implemented a system that does 
mandatory access control in the Java virtual machine at the level 
of objects [28]. We now want to investigate how this dynamic 
approach and the static approach presented in this paper can be 
meaningfully combined to get the best features of each. For 
example, we could annotate bytecode with verifiable information 
about points where it is safe to declassify information. Such a 
hybrid technique will have all the advantages of dynamic 
techniques, but will also be able to make informed decisions at 
runtime about where it is safe to declassify certain information. 

Currently, we expect the user to provide security labels the 
formal parameters of methods. This is a very cumbersome and 
error-prone approach. We would like to find a way in which the 
user could specify tags in a high-level manner. For example, one 
could specify tags at a package level. So, all method parameters 
of classes in java.io are public, or all classes in 
com.taxform are secret, except the ones explicitly marked 
public. 

All current approaches to securing information flow terminate 
the program (in the case of dynamic techniques), or reject a 
program (in the case of static techniques) when they find that the 
program leaks information. This behavior is of little use to the 
user or programmer because she doesn’t know either what 
particular piece of information is getting leaked, or where it’s 
getting leaked. Could we try to identify the source of the 
information getting leaked? For example, could we inform the 
user that the information getting leaked is from the file 
/etc/passwd? Such information would be useful in making the 
decision of whether to let the program continue running, or 
terminate it right away. 

Another useful piece of information to report would be not 
only what information is getting leaked, but how much of it is 
getting leaked. For example, even legitimate programs leak 
information about passwords when they check whether a user-
provided password matches the correct password. Quantifying 
leaks is also useful for specifying high-level policies such as 
saying that a program is safe as long as it only leaks 1/n bits per 
execution. 

Covert channels: Explicit channels for the transfer of 
information, such as assignments or method calls, can be 
controlled by changing or monitoring the mechanisms that 
implement them. However, information can also be transmitted 



through covert channels that do not depend on explicit 
mechanisms, but the side-effects of computation [7]. Examples 
are: 

• Timing channels: measuring how long a computation 
took can reveal something about the data it was 
operating on [8]. A subset of timing channels are 
termination channels, where the termination of a 
program reveals information [9].   

• Power channels: measuring the power consumption of 
a CPU (or a peripheral, such as a smart card) can be 
used to infer the bits being computed. 

• Resource channels: information could be leaked by 
monitoring the consumption (or exhaustion) or various 
resources, such as a CPU or memory.   

A full-fledged Java virtual machine has many potential covert 
channels.  Examples include: how often, when and how long the 
garbage collector runs. For example, code could be crafted to 
purposely trigger the garbage collector.  Measuring the latency of 
garbage collection could reveal in-formation about the size and 
number of objects. This is an instance of using resource 
consumption as a covert channel.  While our technique can 
control the overt flow of information in Java bytecode, stemming 
the flow through covert channels remains an open question.  

Note, however, that a virtual execution environment can 
randomize a number of its activities to stem the flow of 
information from covert channels. For example, it could insert 
random delays into the execution of individual bytecode 
instructions. It could even randomize its heap allocation and 
garbage collection to defeat attacks that observe the heap or 
garbage collection delays. Such randomization is easier to do in a 
virtual machine, as opposed to native code running on bare 
hardware. This is because of the higher-level nature of a virtual 
machine, and because all code is executed under complete control 
of the virtual machine. 

6. RELATED WORK 
Early work in information flow and mandatory access control 

(MAC) was done by Bell and LaPadula [10], who pioneered the 
idea of information being classified at multiple sensitivity levels.  
Denning [11] extended the Bell-LaPaulda model to use a lattice 
for sensitivity labels. Denning was also one of the first to use 
static analysis on source code to enforce information flow 
properties with very little runtime overhead [12].  Volpano 
formalized the soundness of the analysis that Denning proposed 
[13].  Andrew Myers et al [14] used a type system to enforce 
information flow statically.  Their Jif compiler is a source-to-
source compiler that checks a Java program with information flow 
annotations, type-checks it, and outputs a regular Java program.  
This work is closest to ours.  However, our analysis is 
significantly different as we analyze Java bytecode (and not Java 
source programs) for information flow properties.  This enables us 
to analyze and check commercial off-the-self Java programs and 
legacy code.  Another significant difference is that we can 
annotate bytecode with a compact, easily-verifiable proof of the 
results of our static analysis. This will enable code consumers to 
easily check the validity of the information flow properties of the 
code without repeating the entire (computationally-intensive) 
analysis.   

RIFLE [15] is a system that tracks information flow 
dynamically. This is accomplished by using a combination of 
hardware and software. The underlying hardware architecture is 
modified to explicitly track information-flow labels on words. At 
load time, binaries are rewritten from the standard instruction set 
to a new one that also appends security labels to instructions. This 
translation also does a data-flow and reachability analysis on the 
binary. This converts implicit flows to explicit flows that can then 
be tracked by the architecture.   

The major difference between RIFLE and our system is that 
our solution is software-only and does not require modifications 
to the underlying hardware architecture. However, since RIFLE 
analyses native binaries, it can enforce its constraints on a much 
wider range of programs, whereas our solution only works for 
Java bytecode. 

Bernardeschi and et.al [26] use type-based abstract interpreta-
tion, which is very similar to bytecode verification, to prove in-
formation flow safety of java bytecode. They, like Denning, han-
dle implicit flows and use immediate post-dominator to reduce the 
security label of the execution context. Our approach for analyz-
ing the program for information flow safety is similar. We, unlike 
them, also transport the result of our analysis in ways that is eas-
ily checkable by the code consumer — eliminating the need to do 
expensive analysis every time before execution of the program. 

Much work has been done to annotate Java bytecode in order 
to reduce the overhead of optimization and code-generation at the 
consumer’s end. Krintz and Calder [17] add various annotations 
to Java class files with the goal of reducing compilation overhead 
in a dynamically optimizing compiler. Some of the annotations 
are: counts of local variable uses, to aid the register allocator; 
indicating which methods are likely to get inlined multiple times, 
to save some initial work that is done for every inlining; and 
method priority annotations, to guide the dynamic optimizer’s 
choice of which methods to optimize more aggressively. In [18], 
Jones and Kamin present a scheme for annotating Java class files 
with virtual register assignments in order to facilitate register 
allocation. The annotation-aware JIT (AJIT) system [19] also 
adds annotations to Java class files that are the results of various 
time-consuming optimizations. They add annotations for null-
check elimination, array bound check elimination, virtual register 
assignment, and memory disambiguation. 

Note that these are optimizations that do not affect program 
semantics, only performance. Their common feature is that they 
serve as “effort-directing” information for a just-in-time (JIT) 
compiler. This allows them to be used safely at the code con-
sumer without verifying them first. 

Stork et. al have used a mobile code format based on abstract 
syntax trees (ASTs) [21] as a base for safe transportation of anno-
tations. In [22], they show how to annotate ASTs with the results 
of escape analysis, and then verify them. The major difference is 
the intermediate format to which these annotations are added. 
They add annotations to a mobile code format based on abstract 
syntax trees, which is a much higher level representation than the 
bytecodes we have considered here. 

In broad terms, our work is a very specific case of the much 
more general concept of proof-carrying code (PCC) [20]. Like 
PCC, a computation-intensive “proof-generator” emits a small 
certificate (the annotations) that is verified at the code consumer’s 
end in one linear pass. Also like PCC, the verifier, which is small 
itself, does not need to trust the program that generates annota-



tions. This keeps the trusted computing base small. However, the 
full generality of PCC was not needed in this case, where a sim-
ple, specific solution existed. 

The work that comes closest to that presented here is stack-
maps [23], as used in Java 2 Micro Edition(J2ME). Stackmaps 
allow the costly Java bytecode verification procedure to be split 
into two phases – a costly off-device pre-verification phase that 
augments class files with stackmaps, and a quick on-device verifi-
cation phase that checks the stackmaps in one linear pass. Also 
called “lightweight verification” stackmaps were first proposed in 
[24], and further formalized in [25]. The Java bytecode verifica-
tion procedure, though not an optimization, is also an iterative 
data flow analysis. Stackmaps are also essentially “frozen” data 
flow results, as are our annotations. 

7. CONCLUSION 
Access control mechanisms in current language runtimes lack 

support for expressing and enforcing fine-grained information-
flow policies. Such policies are needed to enforce the correct 
handling of sensitive data. As a solution, we present a static 
analysis on Java bytecode that certifies its information-flow 
properties. Moreover, to make checking information-flow viable 
in a JIT-compiled environment, we also present a scheme for 
annotating Java bytecode with the results of our analysis in way 
that is easily and quickly verifiable at the target site.  
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