
Practical, Dynamic Information-flow for Virtual Machines
Vivek Haldar

Deepak Chandra
Michael Franz

University of California
Irvine, CA 92697
+1-949-824-7308

{vhaldar,dchandra,franz}@uci.edu

ABSTRACT

For decades, secure operating systems have incorporated
mandatory access control (MAC) techniques. Surprisingly, mobile-
code platforms such as the Java Virtual Machine (JVM) and the
.NET Common Language Runtime (CLR) have largely ignored
these advances and have implemented a far weaker security that
does not reliably track ownership and access permissions for
individual data items. We have implemented a system that adds
MAC to an existing JVM at the granularity of objects. Our system
maintains a strict separation between mechanism and policy,
thereby allowing a wide range of policies to be enforced.
Moreover, our implementation is independent of any specific
JVM, and will work with any JVM that supports the JVM Tools
Interface.

1. INTRODUCTION
Language runtimes such as the Java Virtual Machine [14] and

the .NET Common Language Runtime [15] have become popular
targets for application deployment due to their portability and
safety. They provide a number of mechanisms for secure access
control. A common technique is for the code producer to digitally
sign code. When executing the code, the code consumer looks up
a policy mapping code sources to the resources they are allowed
to access on the local site. However, current language runtimes
can neither specify nor enforce fine-grained policies that track
individual resources throughout the execution of a program. For
example, one could specify whether or not a program is allowed
to access the network at all, but not whether it is allowed to send
only the contents of only certain files over the network, and not
others.

As opposed to discretionary access controls that rely on users
to specify a security policy, and also do not control access
throughout an object’s lifetime, mandatory access controls rely on
centrally administered policies that are imposed on every data
item in the system throughout its lifetime. Examples of systems
that need strict information flow controls are payment processing
e-business applications, medical data applications, as well as
upcoming utility computing grids, where computational resources
are remotely “rented” out.

An example of a system that highlights the need for
mandatory access control policies is an extensible application
server. An application server has following two objectives: first, it
should be flexible and extensible. As the needs of deployment
change, one should be able to add functionality to the system.
This is usually done by having an architecture for installing

plugins to extend the functionality of the system. Second, it
should be able to ensure the confidentiality of the secret data that
it may be handling. Confidentiality of information is defined
through access control policies.

Presently, using discretionary policies one can define policies
that either restricts the system to install only trusted plugins, or
else denies the entire program access to secret data. This all-or-
nothing, coarse-grained policy greatly reduces the flexibility of
the system. Instead, we need a way to specify fine-grained,
application-specific policies – for example, policies that say “do
not write sensitive data to a world-readable folder”, or “do not
send sensitive data over the network”.

Mandatory Access Control (MAC) has been extensively
studied in the context of operating systems. Security-conscious
environments such as the military and the government have have
been using strict MAC mechanisms in secure installations [8] for
decades. Recently, mandatory access controls are beginning to
appear in commodity open operating systems such as BSD and
Linux. Projects like TrustedBSD [25] and Security-enhanced
Linux [19] (SELinux) add techniques and tools to specify,
manage and enforce a range of mandatory access controls.

However, while mandatory access controls are becoming
increasingly common in underlying operating systems, language
runtimes like the Java Virtual Machine lack mechanisms to either
specify or enforce information flow constraints. This has created a
semantic gap between the access models of the operating system
and those of the language runtime.

As a solution, we have extended the Java virtual machine
with functionality to perform mandatory access control at the
granularity of objects. Our implementation strictly separates the
enforcement mechanism from the specification of polices. This
allows flexible specification and enforcement of a wide range of
policies. Moreover, our technique is implemented in a VM-
independent manner, in the form of a plugin that will work with
any Java 1.5 compliant virtual machine. We did need to make
some modifications to the system libraries, but these are fully
backward compatible.

The novel contributions of this paper are twofold: to explain
the need for mandatory access controls in the Java virtual
machine, and present its design and implementation. We also
evaluate and discuss the impact of introducing this new access
control mechanism into the JVM. Finally, we compare our
scheme with existing access control techniques for Java, and
discuss the advantages and disadvantages of each.

The rest of this paper is structured as follows: Section 2 gives
an overview and evaluation of current techniques for access
control and information flow in Java, both at the language as well
as virtual machine level, discusses some of their shortcomings,
and motivates the need for mandatory access control in the virtual
machine; Section 3 presents the design rationale for mandatory
access control in a Java virtual machine, using a couple of simple
examples; Section 4 details our implementation and results;
Section 5 discusses open issues and future work; Section 6
presents additional related work and Section 7 concludes.

2. EXISTING SOLUTIONS
Early Java implementations (up to JDK 1.1) had two distinct

security environments. The first environment, a complete
sandbox, was designed to constrain the execution of applets
downloaded from the Web. These applets were considered
completely untrusted. The sandbox disallowed any access to the
local filesystem, as well as any network connections to domains
other than the one from which the applet originated. This sandbox
policy was designed to prevent untrusted code from leaking local
data, and consuming too many network resources. The second
environment had no constraints at all, and was used to run local
code on a machine. Code on the local disk was considered
completely trusted. Thus, this early model was essentially all-or-
nothing, accounting for either completely untrusted or completely
trusted code. It had no gradations between these two extremes.

Later versions of Java (after JDK 1.2) added capabilities to
create more graded security environments, and provide a variety
of more fine-grained security permissions [10]. Instead of being
trusted (local), or untrusted (remote), code was now associated
with principals. A public key infrastructure and cryptographic
signatures were used to bind principals to code. A security policy
specified what permissions code originating from various
principals would get. Permissions included filesystem read and
write permissions, and network socket capabilities. Enforcement
was relegated to a runtime security manager that regulated access
to privileged resources by looking up the permissions possessed
by the object that made the request. For example, a policy may
specify that all code digitally signed by the domain uci.edu is
allowed to read any local file, but to write only under /tmp.

However, there are many useful security polices that the
current Java architecture does not address. Higher level policies
that depend on program state cannot be specified. An example of
such a policy is “do not allow transmitting on the network after
reading from the local filesystem”. Inlined reference monitors [9]
and software fault isolation [24] have been used to enforce
policies such as this. But even those techniques cannot handle
stronger policies that track information within a program. An
example of such a policy is: “any data read from the local
filesystem must not be transmitted on the network”. Note that this
is a finer-grained policy than the earlier one because it permits
sending on the network even after a local file has been read – it
merely forbids sending information that was actually read from
the file.

Another shortcoming of the standard Java security
architecture is that policies can only be specified in terms of
permissions exposed by the Java security API. Another critical
drawback is that once a security check is done, there are no
controls on the propagation of data thereafter. Data confidentiality
policies cannot be expressed or enforced in the current Java
scheme. This is the reason why a policy such as “any data read

from the local filesystem must not be transmitted on the network”
cannot currently be expressed.

At the Java source level, fields and classes can be marked
with access modifiers such as public, private and
protected to limit their visibility to other classes and
packages. While enforced offline by the Java compiler, marking a
field private does not mean that it is inaccessible at runtime.
Private fields can easily be accessed using Java’s reflection
capabilities. Thus, these modifiers should be thought of as an
abstraction tool to hide implementation details, rather than as
tools for strict protection of information.

Some recent research has focused on statically enforcing
information flow at the source level using language-based
techniques. Various language-level techniques can be used to
control information flow [18]. Type-based information flow relies
on programmers inserting security label annotations into source
code. Myers et al. [17] use a type system to enforce information
flow statically. Their Jif compiler is a source-to-source compiler
that checks a Java program with information flow annotations,
type-checks it, and outputs a regular Java program. These are then
statically type-checked: successful type-checking implies the
absence of illicit information flows.

Attempts to statically impose information flow on
bytecode [4] suffer from serious shortcomings, such as the
inability to handle dynamic object creation, and being forced to
make overly conservative assumptions when performing inter-
procedural analysis.

A fundamental shortcoming of static analysis is that it must
work under a closed-world assumption. This means that the
analysis must have access to the whole program, and that the
program that finally gets executed must be exactly the same
program that was analyzed. Any dynamic extensions to a program
invalidate the assumptions used by the analysis. This runs counter
to Java’s model of dynamic class loading, which may occur at
anytime during program execution.

Another disadvantage of static methods is the early binding of
policy and code. The policy one wants enforced must be known at
compile time. This is suitable for well-known policies that rarely
change. However, for policies not known a priori, or when the
same program needs to be executed with difference policies, more
dynamic methods are needed that allow late binding of policy and
code. Most static methods also need access to source code, which
is only rarely the case in most installations. The more frequent
case is that only binaries or compiled bytecode are present, and
some policy needs to be enforced on their execution.

Most static methods for enforcing information flow (such as a
Jflow [17]) require the programmer to annotate source with
special annotations relevant to information flow. This early
binding of policy to code forces the programmer to predict
policies under which the code may run. In most real world
scenarios, this is unrealistic. The policy the code consumer wants
enforced may very well be different than the policy that the
programmer encoded.

Adding mandatory access control to the JVM cleanly side-
steps these problems. Dynamically enforcing MAC policies in a
JVM has the following advantages:

• Since enforcement is dynamic, policies can be late-
bound to code, and can even change dynamically. MAC allows

the tagging of specific data items for the lifetime of program
execution. The binding of code and policy happens at runtime,
when mandatory access tags are assigned to objects.

• The separation of mechanism and policy gives great
freedom in expressing a variety of MAC policies.

• A key advantage of keeping mandatory controls in the
virtual machine is that it is completely transparent to programs
being run in it. No access to source is needed, and the bytecode
format does not need to be changed. Thus our proposed
enhancement is completely backward compatible with the large
existing base of Java bytecode.

• Adding MAC to the JVM also bridges the gap in access
control models between military-grade operating systems that
have long had support for MAC policies, and applications written
in virtual machines that still rely on discretionary controls.
Applications running in a JVM cannot make full use of OS-level
MAC classifications. Adding MAC to the JVM will allow a more
seamless inter-operation between OS-level and program-level
access control for data items.

3. SOLUTION: MANDATORY ACCESS
CONTROL ON OBJECTS

We will illustrate the key concepts of our approach with a
simple running example.

Consider a Java class, SecretProcessor, which reads in
a sensitive local file to process it, and then attempts to write the
data it has read in to a new file in a publicly-viewable folder.

The following is pseudo-code for SecretProcessor.

class SecretProcessor {

 void processSecret() {

 FileReader inSecret = new

 FileReader(secretFile);

 FileWriter outPublic = new

 FileWriter(publiclyViewableFile);

 // this should not be allowed!

 outPublic.write(inSecret.read());

 }

}

The policy we want to enforce on this program is that data
read from sensitive files should be prevented from being written
to publicly viewable files.

To do that, we need to address the following issues:

• What is the granularity and unit of data protection?

• How are access controls enforced?

• How are access controls specified?

To separate mechanism and policy [11], our design keeps the
third aspect distinct from the first two. This keeps our mechanism
from being biased towards a specific policy, and also allows a
variety of policies to be enforced.

Both the Java language [12] and the Java Virtual
Machine [15] are object-oriented. An object is both the
fundamental level of abstraction at which a programmer thinks
while writing Java code, as well the runtime data structure around
which a Java virtual machine is built. Unlike atomic variables that
contain a single data item which may be part of a larger logical
collection of data, objects conveniently encapsulate one or more
logically related data items and code into a single abstraction.
Thus, we consider objects to be the unit of protection in our
design. Hence, access control tags are associated with objects.

Having fixed the unit of protection, the next question is: what
enforcement mechanism should be used to protect it? To answer
this, we must enumerate all the ways in which an object can be
accessed, and interpose our mechanism between the access and
the object. The interposed enforcer must then make a decision
about whether to allow the access depending on the access control
permissions of the object. In the Java virtual machine, all
computation and access to objects takes place using a set of high-
level machine-independent bytecode instructions [15]. Thus, there
is fairly narrow and well-defined interface through which access
to objects takes place. We now focus on the byte-codes that
enable the transfer of information from one object to another.
There are two classes of operations that do this: method calls, and
reading and writing fields. Bytecodes to read and write fields
directly modify data in other objects. Method calls result in
indirect information flow, through parameters and return values.
For example, in SecretProcessor, the read() method call
returns secret data.

We need to specify how an object is initially assigned a tag,
and then, how tags are propagated at runtime. For our example,
we deduce initial tags from a simple mapping between file
locations and their sensitivity. So, for instance, a File object for
a file in folder Secret is marked “sensitive”. Similarly, File
objects for files in a folder called, say Public, are marked
“public”. This policy must be specified by the user.

Once an object gets tagged “secret”, any other object that
reads from it (using a field access, or a method invocation) must
also inherit this tag. Ultimately, all objects that have read
sensitive data will get tagged “secret”.

For the final step, for an output channel (folders, in this case),
we need to specify what level of data it is permissible to output on
that channel. For our example, data tagged “secret” cannot be
written to the Public folder.

Now consider a slightly modified version of the same
SecretProcessor class. This time, the processSecret
method first writes public data to another public file, and then
later writes secret data to a publicly-viewable file. The first write
should be allowed, while the second should be blocked.

class SecretProcessor {

 void processSecret() {

 FileReader inSecret = new

 FileReader(secretFile);

 FileReader inPublic = new

 FileReader(publicFile);

 FileWriter outSecret = new

 FileWriter(anotherSecretFile);

 FileWriter outPublic = new

 FileWriter(publiclyViewableFile);

 // this should be allowed

 outPublic.write(inPublic.read());

 // this should also be allowed

 outSecret.write(inSecret.read());

 // this should NOT be allowed!

 outPublic.write(inSecret.read());

 }

}

Such a policy is enforceable using runtime MAC tags
associated with objects. In this case, an instance of
SecretProcessor is not marked “secret” until it actually

reads secret data (using the call to inSecret.read()). Hence,
the first write is allowed, since the class is not tagged “secret” yet.
However, after reading secret data (using the call to
inSecret.read(), the object gets tagged “secret”, and is
henceforth forbidden from writing to public channels.

This example demonstrates how using runtime MAC tags on
objects can support fine-grained policies. This is in stark contrast
to Java’s existing security mechanisms, based on permissions. An
entire Java program runs under a policy, which is a list of
permissions. For example, a FilePermission grants read or
write permissions to certain sets of files. Similarly, a
SocketPermission allows the program to connect to a
certain host on a certain socket. But note that the permissions are
imposed on the entire program. So, for example, a program can
either be allowed to read secret data, or not at all. Policies that
explicitly track data cannot be expressed. The policy of the last
example, which was “allow reading both secret and public data,
but do not allow secrets to be written to public files”, cannot be
expressed using Java’s existing permission mechanisms.

4. IMPLEMENTATION AND RESULTS
We have built a proof-of-concept implementation of our

scheme as a plug-in that will work with any Java 1.5 compliant
virtual machine. We make extensive use of the JVM Tools
Interface API (JVMTI) that “provides both a way to inspect the
state and to control the execution of applications running in the
Java virtual machine (JVM). JVM TI supports the full breadth of
tools that need access to JVM state” [1]. Note that our

Java Virtual Machine

Policy

“Public” folder

Network

File

Policy enforcement2 - Tracking:
MAC-tags
tracked

through life of
object

3 – Checking:
Does the current

policy allow sending
this information over

the network?

Object

Tag

1 - Tagging:
MAC-tag of object
is deduced from
file

“Private” folder

File
Write

3 – Checking:
Does the current

policy allow writing
this information to

“Public” folder?

Java Virtual Machine

Policy

“Public” folder

Network

File

Policy enforcement2 - Tracking:
MAC-tags
tracked

through life of
object

3 – Checking:
Does the current

policy allow sending
this information over

the network?

Object

Tag

1 - Tagging:
MAC-tag of object
is deduced from
file

“Private” folder

File
Write

3 – Checking:
Does the current

policy allow writing
this information to

“Public” folder?

Figure 1: Overview of tracking mandatory access control tags through the lifetime of an
object in our MAC-enabled JVM

implementation is independent of any specific JVM, and will work
with any JVM that supports the JVMTI API.

Our JVMTI MAC plug-in does the following:

• intercepts field accesses and writes.

• instruments class files at load time to intercept entries
and exits of certain methods.

• instruments the constructor of java.lang.Object
so that we can intercept object creation.

Field accesses and writes, and method entries and exits need
to be intercepted because those are the two means through which
data passes between objects. We also need to intercept object
creation to assign objects their initial tags. JVMTI provides event-
based notifications for field accesses and writes. However,
bytecode rewriting is a more efficient way to intercept method
entries and exits. It allows us to selectively instrument methods of
relevant classes.

An access control tag is associated with every object in the
virtual machine. A tag is a 64-bit long value.

The policy is specified by the following:

• When to allow field reads

• When to allow field writes

• When to allow method calls

• How to propagate tags when any of the above three
happens

Each of these is a predicate over the tags of the two objects
involved. For example, whether an object a can access a field of
another object b will be decided by evaluating
canReadField(tag(a), tag(b)). Currently, this policy
is specified by writing code that evaluates these predicates. These
policy “callbacks” are invoked by our mechanism to enforce a
concrete policy. This clean separation between mechanism and
policy gives us great freedom to use a great variety of policies.
Note that this dynamic mechanism allows us to change policies
between separate runs of the same program – something not
allowed by static type-checking mechanisms.

For example, to implement strict compartmentalization of
data of different tags, we could specify a policy that only allows
field reads and writes, and method calls between objects having
exactly the same tag, and never changes the tag of an already
tagged object. Such a policy would never allow data of different
tags to mix.

For another policy, consider the example from section 3.
There we allow the mixing of secret and public data, but do not
allow secret data to be written to public files. We enforce such a
policy by allowing reads and writes between objects with
different tags, but at the same time propagating the higher tag. So
if a class tagged “public” reads secret data, it too get tagged
“secret”. Until then, that class is allowed to write to public files,
but not thereafter. This dynamic changing of tags allows us to
enforce fine-grained policies such as “allow reading of both
public and secret data, but do not allow writing secret data to
public files”.

To support policies such as that used in the examples of
Section 2, we need to associate access rules with channels. A
channel is simply any input/output stream, such as a network
sockets or a file handle. An access rule associated with a channel
specifies whether data with a particular tag can be output to a
channel, as well as what tag data input from the channel has. For
our example, a simple access rule specifies that data coming from
the Secret folder is tagged “secret”, and that only data marked
“public” can be written to the Public folder.

Such policies also require some support from the Java system
libraries. For example, the java.io.File class needs to tag
data according to the folder it is coming from. A number of other
input classes need to be similarly modified. We have changed
such system classes to support simple channel-based policies. All
these changes are fully backward compatible. No new methods
have been added to the system classes, and their externally
exposed API remains the same as before.

To illustrate these implementation details, consider again the
second example from section 3 (line 6 is split into two statements
for clarity):

class SecretProcessor {

 void processSecret() {

1. FileReader inSecret = new

 FileReader(secretFile);

2. FileReader inPublic = new

 FileReader(publicFile);

3. FileWriter outSecret = new

 FileWriter(anotherSecretFile);

4. FileWriter outPublic = new

 FileWriter(publiclyViewableFile);

 // this should be allowed

5. outPublic.write(inPublic.read());

 // this should also be allowed

6-1. secretChar = inSecret.read();

6-2. outSecret.write(secretChar);

 // this should NOT be allowed!

7. outPublic.write(inSecret.read());

 }

}

 Say an instance of SecretProcessor, sp, invokes the
processSecret method. The flow of execution proceeds as
follows: to start with, sp gets the default tag of “public”; on line
1, inSecret is tagged “secret” since it is opening a secret file
(the java.io.FileReader class was modified to do this); on
line 6-1, sp’s tag changes to “secret” since it has now read secret
data (the instrumentation of method exits does this); since its tag
is now “secret”, sp is now stopped from performing the write on
line 7. Figure 1 gives an overview of this.

To get an estimate of the overhead of adding MAC-tags to
objects, we measured its overhead for some simple
microbenchmarks. The microbenchmark is essentially the
example described in section 2 that does file I/O (reads from one
file, and writes data to another) in a tight loop. We measured the
overhead for both buffered (with 4KB buffers) and non-buffered
(a byte at a time) reads and writes. All measurements were done
on a Pentium IV 1.7 GHz machine with 1 GB of RAM, running
Windows XP, and JDK 1.5 from Sun. We measured the
slowdown compared to running the same program on a JVM
without MAC-support. The slowdown for the non-buffered case
was a factor of 176, and for the buffered case 121.2.

We have not optimized our current implementation for
performance. Our first goal was to get a quick prototype that
would enable us to explore the ideas presented here. We believe
that other techniques, such as load-time bytecode re-writing, will
be much more competitive in terms of performance. We are
currently exploring alternative ways to implement our scheme.

5. DISCUSSION AND FUTURE WORK
There are several avenues for future work. The most

immediate need in our current system is for a policy specification
language. Currently, the policy is simply written out as code that
is called-back from our implementation. In the long run, this is
error-prone and non-portable. We would like to design a policy
specification language that can succinctly capture a wide range of
policies for MAC at the object level.

Another area we would like to investigate is whether the unit
of protection can be meaningfully made finer than an object. The
disadvantage of having objects as the unit of protection is that we
lose precision when an object mixes data of two levels, e.g.
“secret” and “public”. In that case, an object that has is tagged
“secret” cannot release “public” data. This can be addressed by
not treating an object as a single unit, but rather, performing more
fine-grained access control on its fields and variables as well. It is
an open question whether this finer granularity will be worth the
overhead for real programs, or whether objects, even though
coarser-grained, are a sufficient level of granularity.

Another area of future work is interfacing our MAC-enabled
JVM with operating systems that support MAC. In an operating
system that supports MAC at the filesystem level, we could use
MAC labels from the filesystem to imply MAC labels of objects.
For example, a Java File object that read from a file with a
particular label should automatically get the same label. This
would also mitigate the privilege escalation problem, where a
program that uses files of various classification levels must run at
a level at least as high as the highest level among those objects.
When mandatory access controls are extended into the application
manipulating those objects, such as ours, then the same controls
also apply inside the execution environment of the program. To
start with, we would like to interface our virtual machine with
mandatory access controls in operating systems such as
TrustedBSD [25] and Security-Enhanced Linux [19].

Trusted computing [20] systems use trusted paths between
input devices and applications or device drivers to prevent
spoofing as well as eavesdropping. For example, a fully encrypted
an authenticated channel is used between a password-prompt
dialog and the application asking for it. We would like to
implement corresponding functionality inside a virtual machine.
Currently, the dynamic nature of the Java virtual machine makes

is easy to manipulate various aspects of an object at runtime, such
as modify the class hierarchy, or use reflection to interpose
wrappers around method calls—both at runtime. For example,
dynamic method wrappers (also known as dynamic proxies) are
frequently used to add a layer of logging around method calls.
Such techniques could also be used to eavesdrop on the transfer of
confidential data between objects. Implementing a trusted path
mechanism for object communication would be a step towards
solving this problem.

Explicit channels for the transfer of information, such as
assignments or method calls, can be controlled by changing or
monitoring the mechanisms that implement them. However,
information can also be transmitted through covert channels that
do not depend on explicit mechanisms, but the side-effects of
computation [13]. A full-fledged Java virtual machine has many
potential covert channels. Examples include: how often, when and
how long the garbage collector runs. For example, code could be
crafted to purposely trigger the garbage collector. Measuring the
latency of garbage collection could reveal in-formation about the
size and number of objects. This is an instance of using resource
consumption as a covert channel. While mandatory access
controls can control the overt flow of information in a virtual
machine, stemming the flow through covert channels remains an
open question.

6. RELATED WORK
In section 2 we reviewed existing access control approaches

for Java and the Java virtual machine. Here we briefly survey
broader related work in mandatory access control.

Early work in information flow and mandatory access control
(MAC) was performed by Bell and LaPadula [3], who pioneered
the idea of information being classified at multiple sensitivity
levels. Denning extended the Bell-LaPaulda model to use a lattice
for sensitivity labels [6]. Denning was also one of the first to use
static analysis on source code to enforce information flow
properties with very little runtime overhead [7]. Dennis Volpano
formalized the soundness of the analysis that Denning
proposed [23]. Andrew Myers et al [17] were the first to use a
type system to enforce information flow statically. Their Jif
compiler is a source-to-source compiler that checks a Java
program with information flow annotations, type-checks it, and
outputs a regular Java program.

RIFLE [21] is a system that tracks information flow
dynamically. This is accomplished by using a combination of
hardware and software. The underlying hardware architecture is
modified to explicitly track information-flow labels on words. At
load time, binaries are rewritten from the standard instruction set
to a new one that also appends security labels to instructions. This
translation also does a data-flow and reachability analysis on the
binary. This converts implicit flows to explicit flows that can then
be tracked by the architecture.

The major difference between RIFLE and our system is that
our solution is software-only and does not require modifications
to the underlying hardware architecture. However, since RIFLE
analyses native binaries, it can enforce its constraints on a much
wider range of programs, whereas our solution only works for
Java bytecode.

7. CONCLUSIONS
Current access control mechanisms for Java lack support for

mandatory access controls, which are needed when strict
information separation is needed, or when sensitive data is
handled. They cannot enforce policies that explicitly track data
through the virtual machine. Static approaches to controlling
information flow do not handle dynamic policies very well, and
force a very early binding of code and policy. While operating
systems have supported mandatory access controls for a long
time, virtual machines currently do not have any support for it.

As a solution, in this paper, we have presented the design and
implementation of mandatory access controls in a Java virtual
machine. We chose an object to be the basic unit of protection.
This is the natural level of abstraction at which a programmer
thinks while writing Java code, as well the core implementation
structure around which a JVM is built, and seems to be the natural
abstraction for reasoning about information flow in a JVM.

The enforcement mechanism and specification of policy are
kept strictly separate from each other. This allows us to use our
enforcement mechanism with a wide variety of policies. Our
prototype implementation is independent of any specific JVM,
and will work with any Java 1.5 compliant virtual machine. We
have implemented and tested various examples and policies that
demonstrate how MAC-enabled VMs can enforce fine-grained
information-flow policies that current Java security mechanisms
are unable to neither specify nor enforce.

8. ACKNOWLEDGEMENTS
Parts of this effort are sponsored by the National Science

Foundation under grants CCR-TC-0209163 and CCR-ITR-
0205712, and by a generous gift from Sun Microsystems Labs.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and should not
be interpreted as necessarily representing the official views,
policies or endorsements, either expressed or implied, of the
National Science foundation (NSF), any other agency of the U.S.
Government, or those of Sun Microsystems, Inc.

9. REFERENCES
[1] Java virtual machine tools interface.

http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/.

[2] J. Agat. Transforming out timing leaks. In ACM
Symposium on Principles of Programming Languages,
pages 40–53, 2000.

[3] D. Bell and L. LaPadula. Secure computer systems:
mathematical foundations. Report MTR 2547 v2, MITRE,
November 1973.

[4] C. Bernardeschi, N. D. Francesco, and G. Lettieri. Using
standard verifier to check secure information flow in java
bytecode. In Computer Software and Applications
Conference, 2002.

[5] B. N. Bershad, S. Savage, P. Pardyak, D. Becker,
M. Fiuczynski, and E. G. Sirer. Protection is a software
issue. In Proceedings of the 5th Workshop on Hot Topics in
Operating Systems, pages 62–65, Orcas Island, WA, May
1995.

[6] D. E. Denning. The lattice model of secure information
flow. Commun. ACM, 19(5):236–243.

[7] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow. Commun. ACM, 20(7):504–
513, 1977.

[8] Department of Defense. Trusted Computer System
Evaluation Criteria, DOD standard 5200.28-STD. 1985.

[9] Ú. Erlingsson and F. B. Schneider. SASI Enforcement of
Security Policies: A Retrospective. In New Security
Paradigms Workshop, pages 87–95, Ontario, Canada, 22–
24 1999. ACM SIGSAC, ACM Press.

[10] L. Gong. Inside Java 2 Platform Security: Architecture, API
Design, and Implementation. The Java Series. Addison-
Wesley, Reading, MA, USA, 1999.

[11] R. Grimm and B. N. Bershad. Separating access control
policy, enforcement, and functionality in extensible
systems. ACM Transactions on Computer Systems, Feb
2001.

[12] B. Joy, G. Steele, J. Gosling, and G. Bracha. Java Language
Specification. Addison-Wesley, 2000.

[13] B. W. Lampson. A note on the confinement problem.
Communications of the ACM, 16(10):613–615, 1973.

[14] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. The Java Series. Addison Wesley Longman,
Inc., second edition, 1999.

[15] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, 1999.

[16] Microsoft Corporation. Microsoft .NET, 2003.

[17] A. C. Myers. JFlow: Practical mostly-static information
flow control. In Symposium on Principles of Programming
Languages, pages 228–241, 1999.

[18] A. Sabelfeld and A. Myers. Language-based information-
flow security. 21(1), 2003.

[19] S. Smalley, C. Vance, , and W. Salamon. Implementing
selinux as a linux security module. Technical report, May
2002.

[20] Trusted Computing Platform Alliance. TCPA pc-specific
implementation specification
(http://www.trustedcomputing.org), May 2001.

[21] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan,
G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani, and
D. I. August. Rifle: An architectural framework for user-
centric information-flow security. In 37th International
Symposium on Microarchitecture, December 2004.

[22] Volpano and Smith. Eliminating covert flows with
minimum typings. In The 10th Computer Security
Foundations Workshop. IEEE Computer Society Press,
1997.

[23] D. Volpano, G. Smith, and C. Irvine. A sound type system
for secure flow analysis. Journal of Computer Security,
4(3):167–187, 1996.

[24] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. In Proceedings of
the 14th ACM Symposium on Operating Systems
Principles, pages 203–216, 1993.

[25] R. Watson, W. Morrison, C. Vance, and B. Feldman. The
trustedbsd mac framework: Extensible kernel access control
for freebsd 5.0. In USENIX Annual Technical Conference,
June 2003.

