
 1

 WSF: An HTTP-level Firewall for Hardening Web Servers

Xin Zhao
EECS Department, University of Michigan

1301 Beal Ave, Ann Arbor, MI, 48109
zhaoxin@eecs.umich.edu

Atul Prakash
EECS Department, University of Michigan

1301 Beal Ave, Ann Arbor, MI, 48109
aprakash@eecs.umich.edu

ABSTRACT

Violations of confidentiality and tampering of data at web servers
can cause significant costs and worry to corporations. A web
system usually consists of multiple subsystems: web servers, data
files, authentication services, and application programs that access
database servers. Unfortunately, due to both complexity of
administration, insufficient checks on input data in many CGI
programs, as well as lack of a single place to enforce security
policy, web servers remain prone to external tampering or leakage
of confidential data. This paper proposes WSF (web server
firewall) to help system administers provide perimeter security to
their web systems via a flexible security policy framework. WSF
provides a language for specifying security policy regarding
permitted accesses and enforcing it at the perimeter of a web
server. We show that, with proper policy specification, WSF can
help mitigate many attacks such as buffer overflows via sending
long parameters to CGI programs and SQL injection attacks. WSF
access control model can be used to limit authenticated or
unauthenticated users to only specified CGI programs/web
services and with specified restrictions on parameters. User
behavior statistics provided by WSF can also be tracked and
compiled into per-user security contexts. This history can be used
to heuristically change the access policy according to the user
behavior patterns or to proactively block malicious users.

1. INTRODUCTION
Due to both complexity of administration and insufficient checks
on input data in many CGI programs, web servers remain prone to
external tampering or leakage of confidential data. According to
the 2002 DTI Information Security Breaches survey, 44% of
surveyed companies had suffered web attacks in 2001[18].

To counter web attacks, several schemes have been proposed. For
example, URLScan [16] and mod_security [22], an Apache
plug-in, reject requests that match specified attack signatures.
Access control policy, on the other hand, is usually scattered
around the system and is typically coarse-grained -- primarily
managed via controlling access rights to directories in which CGI
programs must reside. Usually, no administrative controls are
provided to ensure that CGI programs are invoked correctly – that
is usually left to programmers to filter out possible malicious
parameters.

Unfortunately, the above approaches leave a lot to be desired from
the perspective of consistent security policy control across all the
web server components. An administrator rarely has a consistent
view or control of the overall security policy. This paper describes
the architecture of WSF (web server firewall), which helps system
administers provide perimeter security to their web systems via a
flexible security policy framework.

We first describe the threat model we address and then summarize
the extent to which our approach can defend against web attacks.

Threat Model
Like network firewalls, WSF is primarily designed to handle
external threats, rather than insider attacks on a web server. Unlike
network firewalls, WSF is aware of HTTP protocol and is
designed to prevent attacks at that level, rather than at protocol
levels below HTTP. We assume that attackers may attempt to
carry out following types of attacks:

1. Gain unauthorized accesses to executable files: Unauthorized
access to executable files often results from configuration
errors [24]. An example vulnerability is what we will call the
bypass execution problem. CGI programs that are invoked from
a user input by the web server often invoke helper scripts or
programs. The intent of the programmer is that the helper
programs will not be invoked directly by a client. For example,
the main CGI program may authenticate a user and then invoke
a helper perl script that accesses a database with username as
an argument. Unfortunately, if the helper program can be
invoked by a malicious client directly (via the web server, but
without going through the parent CGI program), it can bypass
the user authentication and violate web server security.

2. Take advantage of lack of fine-grained access control:
Programmers may have intended some CGI programs or data
files to be used by only a subset of users. In addition, an
administrator may want to restrict web clients to specified types
of files. If only coarse-grained access control is used, all files in
directory /html are usually accessible by web clients. If some
sensitive files like “.account.txt.swp” or “creditcard.bak” are
left in that directory accidentally, a malicious user can access
them directly from the web browser, which is apparently
undesired. Fine-grained access control helps reduce this risk.
While some existing web servers do support that, we would
like a HTTP firewall to be useful in providing fine-grained
access control.

3. Invoke CGI programs with parameters that violate the
designed specifications: Programmers are supposed to check
for such violations, but often overlook error checking. This
security bug is often exploited by attackers to send parameters
to CGI programs that do not meet the normal length or format
restrictions and cause SQL injection or buffer overflow
attacks[3]. For example, suppose that a CGI program uses the
dynamically generated SQL command to create a new user
account,

INSERT INTO USER(name, id) VALUES($username, 100);

Here, $username is a CGI parameter input by the user via a
web form. The original purpose of this CGI is to create only
one user account. However, if no input validation applies, an
attacker may input “tom’, 99), (‘mary” in the $username field,
the user creation command is then generated as:

INSERT INTO USER(name, id) VALUES(‘tom’, 99),
(‘mary’,100)

 2

Because MySQL allows users to insert multiple records in a line,
this SQL command will allow the attacker to insert two records
instead of one as expected. The reason of this SQL injection attack
is a security bug: the user input validation is insufficient. We
believe that an HTTP firewall should be an additional line of
defense against violation of specifications since the firewall is
under direct administrator’s control.

Level of Protection
While we recognize that WSF is not a panacea, as an application
firewall, it does help to protect against a wide-range of common
vulnerabilities at the HTTP level:

 WSF provides a language for specifying security policy
regarding permitted accesses and enforces it at the perimeter of
a web server. WSF access control can be used to limit
authenticated or unauthenticated users to only specified web
files/services, which helps web system avoid the bypass
execution problem, as well as inadvertent or malicious
execution of unauthorized scripts in executable directories
(even scripts that may be uploaded by an attacker).

 Instead of requiring an administrator to enumerate all possible
malicious input patterns, WSF provides a language for
specifying restrictions on parameters of web applications. With
proper policy specification, WSF can help mitigate many
attacks such as buffer overflows via sending long parameters to
CGI programs and SQL injection with unknown input patterns.

 User behavior statistics can be tracked and compiled into
per-user security contexts. This history can be used to
heuristically change the access policy according to the user
behavior patterns to proactively block malicious users.

Note that IP spoofing attack is not addressed by WSF. The source
IP is of course easy to spoof. However, since HTTP-based web
systems are connection oriented, hijacking a HTTP connection
with a spoofed IP address is usually much harder and can be
detected from abnormal network traffic by network firewalls [12].
We do not consider this attack further in this paper.

Intruders can also subvert a website by compromising the web
server or other system files like /etc/passwd. However, as an
application firewall, WSF does not prevent system-level attacks.
Those attacks can be mitigated by system level security solutions
such as SELinux and LIDS[14, 29].

We also note that WSF can filter incoming HTTP requests at
runtime but, at present, it does not scan for virus or malicious
scripts carried in the files that are uploaded to web servers.
Mod_security has this feature. We believe such a capability could
be added in future versions of WSF without significant impact on
its design or it could be handled by a separate IDS system or a
virus scanner. WSF will, however, prevent execution of malicious
scripts, as pointed out earlier, unless the attacker is able to replace
existing scripts by malicious ones that have identical names and
take same parameters with same formatting restrictions. Use of
cryptographic hashes on scripts could help eliminate this
possibility, but our current version does not support that feature at
present.

Finally, we point out that even though WSF can catch many errors
that may be overlooked in CGI programming, it does not eliminate
the need for safe CGI programming or other good security
practices. We consider WSF to be complementary to them. WSF
should be used as the first line of defense in web server security,
rather than the only form of security.

The rest of the paper is organized as follows. In Section 2, we
describe related work. In Section 3, we illustrate the architecture
and design of WSF. In Section 4, the implementation details are
presented. In Section 5, we evaluate the WSF system. Finally, we
make our conclusions.

2. RELATED WORK
In this section, we describe several related systems that can
potentially protect websites. We also briefly analyze the difference
between these schemes and WSF. Most web protection
mechanisms fall in two primary categories: intrusion
detection/prevention systems and vulnerability assessment
systems.

Intrusion Detection/Prevention Systems
Most intrusion detection/prevention systems deployed to protect a
website work at network level or application level.

Network based intrusion detection systems such as snort [23] can
analyze network traffic to detect web intrusions. However,
network-based intrusion detection is vulnerable to insertion and
evasion attacks[20]. The network IDS needs to model how the
application interprets the operations, but this is almost an
impossible task without receiving feedback from the application.
Minor differences in operations play a major role in how they are
interpreted. For example, request
http://www.someHost.com/dir1\file1 (note the backslash character)
sent to Microsoft-IIS/5.0 will make the web server to lookup file
“file1” in the directory “dir1”. However, if the server is Apache
version 1.3.6, the server looks for a file named “dir1\file1” in the
root directory. In addition, only a few IDS systems use
information about web applications and detect malicious sources
with user behavior statistics. Encrypted web communication
imposes another challenge to network based IDS systems. To
understand encrypted web communications, administrators might
have to deploy another web proxy system for an IDS system,
which further increase the maintenance cost and may reduce
system performance.
Aiming at the problem of network based IDS systems, paper [2]
proposed to collect data real-time transaction information from
web server and forward it to an IDS system. However, it is only a
data collection system instead of a web protection system.
Mod_security[22] is an application firewall deployed in Apache
server that can not only collect data but also analyze incoming
requests and prevent intrusions onsite. However, mod_security
does not prevent unauthorized accesses like bypass execution
problem or execution of old scripts accidentally left in an
authorized directory while WSF does. In addition, mod_security
relies on attack signatures to detect malicious inputs, which is less
effective in preventing malicious inputs with unknown patterns.
David Scott and Richard Sharp proposed the Security Gateway[25]
to support CGI input validation based on application-level security
policies. The difference between WSF and Security Gateway is
that WSF identifies web clients and collects user behavior
statistics that can be used to adjust the access policy heuristically.
Furthermore, Security Gateway does not support access control
and thus cannot prevent attacks such as bypass execution.

WebSTAT [13, 28] detects intrusions against a web server by
analyzing its logs. Like WSF, it also uses behavior statistics to
infer abnormal activities. However, while WebSTAT allows an
administrator to associate actions with the intermediate step of an
attack, it is hard to stop one evil connection but avoiding
interrupting other valid connections, because WebSTAT is
independent of a web server. In addition, WebSTAT detects

 3

Figure 1. The architecture of WSF

malicious inputs with malicious input patterns, which requires
WebSTAT enumerate all possible malicious input patterns. In
reality, the enumeration of malicious input patterns is a tough job.
In contrast, WSF allows an administrator to customize for each
web application what input patterns are valid. The validity
specification is therefore more effective in preventing malicious
inputs with unknown patterns assessment systems.

Vulnerability Assessment Systems
Various vulnerability scanners such as ISS Internet Scanner [11],
Saint[7], NetRecon[8], Retina[26], CyberCop Scanner[27],
LibWhisker[21], Nikto[8, 19] and Nessus[17], can help assess a
web system for many loopholes before bad guys find them.
However, because of lack of detailed information of web
applications, they can only do signature-based checking. However,
that makes them often raise false alarms or fail to detect critical
vulnerabilities[10]. In [10], Forristal and Shipley set up 17 of the
most common and critical vulnerabilities for those scanners to
check. The closest of 6 tested famous scanners was the Nessus
Security Scanner, which failed to detect only 2 of the 17 common
vulnerabilities[10]. To assess the current state of these scanners,
we intentionally put the SQL injection vulnerability described in
Section 1 into our site and used several scanners including Nessus
to check for it. With their standard signature lists, all scanners we
tried failed to find this loophole.

Scanners are severely limited in detecting unauthorized access to
files or scripts, because they have no information about
appropriate access rights. For example, no scanners we tested can
detect the bypass execution vulnerability described in Section 1
because they cannot distinguish between helper programs and real
CGI programs.

3. DESIGN OF WSF
In this section, we present the architecture and design of WSF.
WSF provides three capabilities to assist the protection on web
systems. First, WSF defines a language for specifying policy
regarding permitted accesses and enforces the policy at the
perimeter of a web server. Second, WSF provides a language for
specifying restrictions on parameters of web applications, which
helps mitigate the attacks that subvert web applications via
sending maliciously crafted parameters. Finally, WSF can track
user behaviors and compile behavior statistics into per-user
security contexts, which can be used to adjust security policies to
proactively block malicious users.

3.1 System Overview
As shown in Figure 1, WSF consists of the input and output filters.
Input filter deep inspects the incoming HTTP requests to detect
and prevent invalid web accesses. Output filter collects the status
of outgoing responses. Response status information helps infer
user behavior patterns.

WSF maintains a per-user security context. A security context in
WSF is indexed either by the user’s IP address or by a user ID (if
the user authenticated to the web service). We will defer the
description on how to extract a user ID from web traffic to Section
4.2. The security context contains the user’s past behavior
statistics, such as the number of invalid requests, the number of
failed requests, and the number of requests during a specified
interval. All those behavior statistics are updated by the input and
output filters.

The input filter deploys five engines: security context checking
engine, environment checking engine, access right checking
engine, CGI input validation engine and Attack Signature
Checking Engine. These five engines check the incoming requests
one by one. An incoming request will be forwarded to the
protected web server only if it goes through the checks of the five
engines.

When a new HTTP request is received, the request is first
processed by the security-context checking engine. This engine
only examines the user ID and the IP address of the request to see
if requests from the IP address or the user ID should be blocked.
Administrators can use the security-context checking engine to
temporarily block a user’s access to the web server if their
statistical behavior, recorded in the security context, violates
specified limits (e.g., too many failed requests within a specified
interval). Therefore, the security context essentially works as a
“credit history report” to help WSF monitor a client’s abnormal
behavior pattern and adjust its access policy accordingly to
prevent denial-of-service style attacks at the HTTP protocol level.

If the security context shows that the website is currently
accessible for this client, the request is next processed by the
environment checking engine. Some web attacks are due to
malicious request environment variables like HTTP headers. For
example, the PHPNuke Admin Cookie Variable SQL Injection
attack is launched by putting malicious cookies in HTTP
headers[9]. The environment checking engine helps to filter out
requests with invalid environment variables.

The access right checking engine checks the requested URI
against the access right policy. With the access right control, WSF

 4

can limit authenticated or unauthenticated users to only specified
web files/services and prevent unauthorized access to the sensitive
files that are left accidentally in public web directory. The access
right checking engine provides substantially more fine-grain
control than that in Apache or mod_security. Section 3.2 gives
more details about the access right checking engine.

If the request is intended for a CGI application, the request will be
checked by the CGI input validation engine. The CGI input
validation engine checks the parameters carried in the CGI request
against the input validity specifications. Only requests with valid
inputs can be sent to the web server. The CGI input validation
helps mitigate many buffer overflow attacks and SQL injection
attacks that compromise web systems via sending malicious
parameters to CGI programs. This capability of validating CGI
inputs in WSF goes substantially beyond the filtering capability in
mod_security. We will give more details in Section 3.3

Finally, the attack signature checking engine checks the request
against known attack signature database. By searching attack
patterns in the request, the attack signature checking engine helps
to filter out malicious requests that slip through the checking of
the first four checking engines. The checking of the attack
signature checking engine is optional while other four engine’s
checking is mandatory.

The output filter checks the status of outgoing reply and updates
the behavior statistics in the security context. In addition, the
output filter also helps the input filter to track the user information
and generate the user tracking tag for each source.

The rest of this section presents the three capabilities WSF
provides, respectively.

3.2 Access Control Policy
WSF defines an access control policy language to allow
administrators to explicitly define the access rights to web entries,
including normal data files and CGI programs.

The basic principles we follow are the following:

a) Fine-grain access conrol: Access rights to files/scripts can be
controlled on a user/group basis. A user can be identified by its
IP address or an authenticated user identity, and thus can be
used to permit or deny access to sections of the web site on
basis of both source IP address as well as web identity of
authenticated user.

b) Precedence Rule: More specific access right specifications
have precedence; For example, if the access rights of
/www/html/ and /www/html/subdir1 are different, and there is a
request for /www/html/subdir1/foo.html, the access right on
/www/html/subdir1, rather than /www/html/, will be enforced
for this request.

c) Explicit user to executable mapping: Scripts or executable
programs (defined by suffixes such as .cgi, and .sh) must be
explicitly specified to be trusted and executable in the WSF
policy for them to be invoked by a web request. We follow the
principle in the Clark-Wilson integrity model that an explicit
mapping must be defined between users and trusted
procedures[6].

An access rule is essentially a mapping as follows:

 →Web_Entry Web_User : Access_Right

The web entry defines the object on which the access rule should
apply. It can be a specific file, a class of files with a wildcard
pathname or a directory.

The web user defines the subject that is allowed to access the web
entry. It can be a specific user or a web group. Like a normal
operating system, a WSF administrator can setup a set of web
users and groups. Each WSF user has a user ID that can be
mapped to the user ID of a real web service. All user information
(ID and user mapping) is put in a file called “user_account_file”.
Each group can contain arbitrary web users whose IDs can be kept
in the group member file.

The access right defines the authorization under which a web user
can access a web entry. Currently, possible access rights can be
“accessible” or “executable”. But more access rights can be
added in the future.

Therefore, the access right mapping essentially means: the
“web_entry” can and only can be accessed by the “web_user”
under the “access_right” authorization.

An access policy usually includes three parts:

1. Definition of valid user set and user groups

2. Definition of default accessible file types

3. Definition of access right rules of web entries

The first part defines the valid user set and user groups. It can be
defined as follows:

/*****1: USER&GROUP DEFINITION ******/

<Register_User>

user_account_file /* file used to store web user Identities*/

</ Register_User >

<Group>

 //”cs_group” is the group name

<Group_Name> cs_group </Group_Name>

< Group_Member >

cs_group_file /* file used to store group member IDs */

</ Group_Member>

</ Group >

The names of valid users are put in an account file
“user_account_file” and loaded with WSF module. Likewise, the
user identities of group members are put into the corresponding
group files. The group name “public” is reserved for the group that
consists of all web users, including anonymous users.

The second part contains the default accessible file types in the
web system. It can be defined as follows:

<Accessible_File_Type >

*.html *.htm *.gif *.jpg *.pdf

</Accessible_File_Type>

The accessible file types can be defined by file type extensions or
certain file name patterns. By default, only common web file types
are included, which helps prevent unauthorized accesses to the
sensitive files that are left in the public web directory. Sensitive
files like “creditcard.dat” are inaccessible even if they are in the
public directory because of disallowed suffix. While this
mechanism does not completely prevent access to all sensitive
files, it can significantly reduce the risk of unauthorized accesses
to sensitive files.

The third part specifies the access right of users to web entries. An
access right policy may include multiple access rules. Each rule
defines the access right of one URI entry. A URI entry can be

 5

defined as a specific file, a class of files with a wildcard pathname
or a directory. Wildcards are allowed and only allowed in file
name to represent multiple files with similar name pattern. If an
access rule defined for a directory, this access rule applies to all
files and sub-directories under this directory if they are not
associated with access rules. In other words, if no access rule is
defined for a directory or a file, permissions are inherited from the
parent directory. The access right rules are prioritized as follows:

→ →
→ →

ro o t d irec to ry su b -d irec to ry (leve l1)

su b -d irec to ry (leve l2)... a c la ss o f f iles s in g le f ile
The access rule of root directory has the lowest priority and access
rules of single files have highest priority. Rules with higher
priority have precedence in policy enforcement.

A simple example can illustrate the access right rule format:

/* this rule specifies that only admin user and faculty members are
allowed to access web directory /coursetool */

<WWW_Access_Rule>

<URI> /coursetool </URI>

<ACCESS_RIGHT>

<User> admin </User>

<Group> faculty </Group>

<Right> Accessible</Right>

</ACCESS_RIGHT>

</ WWW_Access_Rule >

By parsing the access right policy file, the access rules are mapped
to a directory tree structure. The root of the tree is the web root
directory; each intermediate node represents a subdirectory under
the web root directory; the leaf nodes represent web files or
subdirectories. Each node is associated with its access right. When
retrieving the access right of a request URI, the access right
checking engine always goes down the tree to find the node that
has closest match with the requested URI. The access right is then
retrieved from the matching node to apply on the request URI.

The CGI programs are treated differently. Each accessible CGI
program must be explicitly specified to be executable. No
wildcard is allowed in the access right rules for CGI programs. By
default, only the CGI programs that are explicitly configured as
executable can be requested to run by web clients. Thus, if a
helper program, say "user_management.pl", is supposed to be only
invoked by other trusted CGI programs, it will not be put in the
access right policy. Any attempts to directly invoke such a helper
program via a URI will then be blocked by WSF.

3.3 CGI Input Validity Specification
Because the inputs to CGI programs are complex, fixed attack
signatures are often not flexible enough to tell a valid input from
invalid ones. For example, to prevent SQL injection attacks, the
stored procedure name “xp_cmdshell” is often regarded as an
invalid input pattern[3]. However, if the web service is developed
to help users to check the syntax of SQL language, “xp_cmdshell”
is a valid input for users to use this service. Under this situation,
fixed signature-based checking may regard the “xp_cmdshell”
query as invalid and raise false alarms. Another example, as
described in Section 1, inputs like “tom’, 99), (‘mary” are often
invalid because they may trigger SQL injection attack. However,
this input pattern may be valid for applications irrelevant to
SQL-based operations. Putting a fixed input pattern as an attack
signature may prevent normal use of web applications.

To deal with this problem, WSF provides a fine-grained way to
specify constraints on inputs of CGI programs. We use an example
to describe how validity specification works: suppose we have a
user login script /cgi-bin/login.cgi, it only allows parameter
transferred with POST method; the expected input at the user
name field is a string composed by 3-8 letters or digits and the
expected valid password is a string composed by 6-15 letters and
digits. No special character is allowed in the username and
password parameters. The validity specification can be defined as
follows:

< Rule>

 <URI> /cgi-bin/login.cgi <\URI>

 < Method> POST <\ Method>

 < Parameter>

 <Name> username </Name>

 <Value> ^[a-zA-Z0-9]{3,8}$ </Value>

 </ Parameter>

 < Parameter>

 < Name> password </Name>

 < Value> ^[a-zA-Z0-9]{6,15}$ </Value>

 </ Parameter>

<SIG_CHECKING> NO </SIG_CHECKING>

</Rule>

Each validity specification rule is bracketed with the <Rule> and
</Rule> pair and consists of three sections: URI, Method,
Parameter sections and an optional SIG_CHECKING section:

The URI section contains the URI of the CGI program. Only if the
requested URI matches the defined URI section, will the input
validation engine checks the rest of the rule. If a requested URI
does not have a matching rule, the request will be blocked directly.

The Method section configures which methods are allowed for this
URI. According to the HTTP protocol specification, besides GET
and POST, other methods like PUT, TRACK are also supported
by many web systems, which can bring vulnerabilities like cross
site script attack[5]. To prevent unnecessary method uses, web
application developers can explicitly define which methods are
allowed. Usually, for sensitive information transfer, only POST
method should be allowed. But developers can configure
additional methods separated with colon.

The Parameter section defines the validity specifications for
parameters of this CGI program. Each possible parameter must
have a Parameter definition. The validity specification of each
parameter consists of two parts: parameter name and parameter
value. The parameter name field is the parameter name to be
checked while the parameter value field shows the valid parameter
value pattern. The valid parameter value pattern is defined with
regular expression. If there is no restriction on a parameter, the
valid parameter value pattern can be empty. Based on the
configured validity pattern, the input validation checking engine
can then check whether the user inputs carried in a CGI request is
valid or not. Note that only parameters listed in this section will be
regarded as valid and checked against the corresponding validity
specification. For those parameters whose names are not on the
valid parameter list, the input validation engine will directly
regard them as malicious. This mechanism effectively prevents
many buffer overflow attacks such as Code Red I and II
attacks[1].

 6

To reduce the risks of mis-configurations, the validity
specifications can be tested with known attack signatures to see
whether known attacks can slip through the protection of validity
specifications. Currently, WSF use signatures extracted from the
Snort attack signature database[4] to check the validity
specification. Attack signatures that can go through the checking
of validity specification often imply that the validity specification
may be too loose. The policy maker will then be prompted for
verification. Offline checking helps to improve system
performance. However, if it is difficult for the administrator to
define a parameter rule to express his demands and exclude the
attack signatures, he can rely on the signature checking by setting
the SIG_CHECKING field to true to make the parameter checked
against the attack signature database.

The above example shows, the rule clearly defines what inputs are
expected by the programmer developers. The CGI program, at a
minimum, must take care of inputs that satisfy the above
specification. Any other unexpected inputs will be blocked by this
specification directly at the firewall.

This validity specification does not prevent hidden value
manipulation attacks in CGI programs. While dynamically
generating a MAC for hidden values can easily prevent the hidden
value manipulation attack, it significantly reduces system
performance[25]. On the other hand, a static analysis tool can
easily find which file uses hidden values and warn administrators
to avoid the use of hidden fields.

3.4 User Behavior Auditing

Figure 2. WSF Security Context

The third capability WSF provides is the user behavior tracking
and auditing. In a WSF system, each client has a security context.
The security context is indexed with the client’s user ID if the
client is an authenticated user. If the client is an anonymous guest,
the security context is indexed with the client’s IP address. As
Figure 2 shows, the WSF security context contains three parts of
user security information:

 Index of the security context (User ID or IP address);

 Behavior statistics;

 Access control decision based on the behavior pattern.

WSF uses the index of the security context, IP address for
unauthenticated user and User ID for an authenticated user, to
locate a user’s security context.

The behavior statistic data part contains cumulative user behavior
patterns, measured over multiple configurable time-intervals on a
per-user basis:

 The number of received requests. This data is collected by the
input filter.

 The number of bytes sent out. This data is collected by the
output filter.

 The number of invalid requests. This data is collected by the
checking engines in the input filter. Any request that violates
WSF security policies will be counted as an invalid request.

 The number of failed requests. This data is collected by the
output filter. Any request with the HTTP status code that does

not fall into the period between 200 and 307 will be counted as
a failed request.

 The number of failed authentication requests. The field helps
to prevent brutal force password guessing attacks. It is
collected by the output filter.

Based on the user behavior statistics, an administrator can specify
dynamic access control policies according to user behavior pattern.
For example, a large amount of failed authentication requests from
a single client may be because this client is mounting brutal force
password guessing attack. The administrator can put a policy to
suspend this client for a period of time if a user has excessive
failed authentication attempts.

Following are examples of malicious behaviors that the user
behavior statistics can help detect:

 Probing of hidden files at a web server by generating possible
file names and trying them out exhaustively. This attack is
indicated by return of many HTTP 404 error codes, which will
be considered failed requests.

 Dictionary attack on user id/password. This attack is indicated
by return of many authentication failures.

 DoS attack by sending a large number of requests in quick
succession over an interval from the same IP address. This
attack is indicated by monitoring lots of requests within short
intervals, including valid ones.

 Stealing of data in a database or overloading a server.
Unusually, large number of bytes fetched by the same user or
IP address within short time is an indicator of this attack.

4. IMPLEMENTATION DETAILS
The prototype of WSF is developed for Apache server. But the
idea of WSF can be adapted to support other web servers. In this
section, we first describe how WSF fits into an Apache server to
protect the web system. Next, we illustrate how WSF identifies a
web client and tracks this user’s behavior.

4.1 Modularized WSF
The Apache modularized architecture processes web traffic using
the same idea as Unix command line filters: ps -ax | grep
"apache.*httpd" | wc –l. The basic idea is to treat the information
processing flow as an information stream. Apache modules can be
inserted into the stream and organized as a module chain. Each
module receives the data from upstream module, processes the
data and then forwards the processed data to the next module in
the chain. By this means, data in the stream can be manipulated
independently from how it's generated.

With the same idea, WSF is implemented as an Apache module to
terminate the incoming request, check it and decide whether to let
the request go to next module. One advantage of deploying WSF
as an Apache module is that the existing Apache code can be
leveraged to reduce the implementation complexity. Another
benefit is that WSF sits behind the SSL module and can monitor
the decoded web traffic.

4.2 User Behavior Tracking
To collect a user’s behavior statistics, WSF first needs to identify
a web client. If the client is anonymous, it usually has lowest
privilege in web entry accessing. WSF only needs to identify it by
the client’s source IP. This client’s behavior statistics can be
collected on the basis of source IP.

 7

On the other hand, if a client is an authenticated web user, it may
have higher privileges in accessing web files and executing CGI
programs than an anonymous user. WSF has to identify the user’s
ID to enforce the corresponding access policy. However, a user’s
identity is usually authenticated and maintained by CGI programs.
How to extract the user’s ID and trace its following behavior is a
challenge. Because a client must go through the authentication
process to become an authenticated user, WSF can extract user ID
by analyzing the user authentication process.

Existing web services usually do user authentication with one of
three major approaches -- user credential, IP source filtering, and
authenticated proxy(only access request from authenticated
proxies and the proxies authenticate end users)[15]. According to
different authentication methods, WSF uses different ways to
extract user information from the authentication communications.
Due to the limit of space, this paper only describes how to extract
user ID if credential-based user authentication scheme is used.

In credential-based user authentication scheme, either via a web
form or methods embedded in HTTP protocol, the user presents
some form of credential -- user ID and password, or a
cryptographic certificate -- to the web service provider as evidence
that he or she is a legitimate member of the user community. The
web server then validates this credential using some user
authentication programs. A successful authentication typically
results in a special cookie that is returned to the client as the user’s
identity for future communication. WSF extracts the user
information just from this user authentication process.

To track the user identity, WSF requires the web administrator to
fill out a login template to tell WSF how to track the user identity.
The login template is as follows:

<USER_LOGIN_TEMPLATE>

<URI> $CGI_URI </URI>

<Parameter>

 < ParameterName> $NAME </ ParameterName>

 < ParameterValue> $VALUE </ ParameterValue>

 ……

 < ParameterName> $NAME </ ParameterName>

 < ParameterValue> $VALUE </ ParameterValue>

</Parameter>

<Name>$USERNAME</Name>

< Success_Flag>

<Cookie> $COOKIENAME </ Cookie>

<Flag_String> $Success_String </Flag_String>

</ Success_Flag>

</USER_ LOGIN _TEMPLATE>

This template tells WSF how the web system authenticates users:

 The URI field shows what CGI program authenticates users.
Some websites integrate all user account related services into a
single CGI program; different services are differentiated with
different parameters such as service ID. To avoid confusion,
WSF also supports using the URI field combined with the
Parameter fields to identify a login service. Hence, Parameter
fields are optional.

 The USERNAME field tells WSF the name of the parameter
that is used to store the user name related to this authentication
process. With this field, WSF can extract the user ID from an
authentication request and track the activity of this user.

 The Success_Flag field shows the flags of a successful user
authentication. A successful user authentication usually results
in a cookie or a webpage with some specific strings. WSF can
search for these flags to determine whether the user creation is
successful or not. The Success_String can be defined using
regular expresses.

With the login template, WSF’s input and output filters cooperate
with each other to track the user information. The input filter
identifies the user authentication requests and extracts user
information from the requests. With the extracted user information,
the input filter generates a login memo to indicate this request is
an authentication request. In addition, the extracted user
information is also saved in the login memo. This login memo is
associated with the login request and will be carried by Apache
throughout the lifetime of this login request.

The WSF output filter, as another block in the Apache information
stream, keeps checking whether an outgoing message carries the
login memo. If it is, the output filter then searches for the
successful authentication flags which are defined in the login
template. If no success flag is found, the output filter regards the
login request as failed. It simply forwards the outgoing message to
the client and update the security context corresponding to the
client’s IP address. If the success flag is found in the response
message, WSF infers that this is a successful authentication. The
user associated with this authentication request becomes an
authenticated user. WSF then generates a unique WSF cookie as
the user identification tag. The WSF cookie will be carried with
this user’s further requests and used by the WSF system to track
this user’s activities. If no valid WSF cookie is located in an
incoming HTTP request, WSF will always regard the request
sender as an anonymous user.

5. SYSTEM EVALUATION
In this section, we first evaluate the effectiveness of WSF system.
Next, we give the scalability evaluation. Finally, we present
preliminary performance evaluation results.

5.1 Security Evaluation
To evaluate the effectiveness of WSF system, we copied all files
on our department website and deployed a parallel website as the
testbed. We mounted the following attacks against the simulated
website:

1. Bypass execution: By searching the files on the website, we
did find some helper perl scripts in the /cgi-bin directory.
They are supposed to be called by other CGI programs only.
However, without WSF system, they can be invoked from a
client’s web browser. By explicitly specifying the executable
files, WSF effectively prevents the bypass execution attack.

2. Random File Access: In the /html directory, we noticed that
there existed some swap/backup file like “.intro.html.swp”
and “foo.bak”. Those files can be read from a web browser
due to the coarse grained access control. With WSF, we can
prevent this attack by specifying the types of accessible files.
By excluding “.bak” and “.swp” files from accessible file
types, WSF can block requests to those files. Furthermore, if
we keep trying to access various potential files, we are
suspended by WSF because WSF detects from the security
context that we sent excessive failed HTTP requests.

3. SQL Injection: In the student resume service, one of our
departmental web services, we detected a loophole that
allowed us to mount the SQL injection attack described in

 8

Section 1. With WSF, we specified the valid specification on
user inputs, which effectively blocked malicious inputs

4. Buffer Overflow: We did not find a buffer overflow
vulnerability on the simulated website. Instead, we
intentionally put an application that vulnerable to buffer
overflow attacks on the website. By exploiting this
vulnerable application, we successfully gained the access of
user “apache”. On the other hand, by specifying input valid
specification, WSF caught the malicious request.

These simulated attacks showed that WSF can effectively mitigate
various web attacks. However, we also noticed that if
mis-configured, WSF also let certain attacks slip through. For
example, in the attack test of random file access, if WSF specified
that “*.*” as accessible type, attackers can still access any files
accidentally left in directory /html. Therefore, WSF does provide
mechanisms to mitigate web attacks, but it is not a fool-proof
solution and still needs right configuration.

The configuration of the WSF protected website does incur some
deployment cost, but most of it is one-time cost since web entries
are not likely changed frequently. If security is paramount, we
believe that the deployment and incremental cost of using WSF is
reasonable, especially given the benefit of long-term control over
preventing sophisticated attacks against a website.

5.2 Scalability Evaluation
One scalability concern is about the memory size used to cache
security contexts. WSF uses a two-level storage to keep the
security contexts: the most frequently visited security contexts are
kept in an in-memory cache while other security contexts are
stored in MySQL database. If a client’s security context is not in
the cache, WSF will load it from the database. With the number of
visiting clients increases, the overhead of maintenance on security
contexts may also increase. However, we believe that the memory
size required to cache security contexts is acceptable: assuming a
website is hit for 1 million (106) times a day and most of the hits
occurs during a 10 hours peak time period. If each visiting client
sends out 5 requests at average before it leaves, there will be 2*105
visiting users in total. Because each security context takes less
than 50 bytes of memory, 10M (107) bytes memory can cache
more than 2*105 users and is enough to hold the security contexts
for all visiting clients, which is quite manageable.

Another scalability concern is about the memory requirement for
caching access right policies and CGI input validity specifications.
Assuming there are 105 web files in the system, under the worst
condition, the administrator does not use wildcard to define access
rights. Each file needs one separate access rule. Since each access
right entry usually takes less than 50 bytes, the total memory used
to cache the access right is less 5M, which is not a big concern for
modern computers. The overhead access right retrieval is trivial
since the searching process is essentially a tree traverse process.

In addition, to maintain a client’s security context, WSF needs at
most two database accesses (load the security context from
database and write it back to database when it is swapped out) per
day, assuming a user’s security context will be cached for one day
if memory allows. The database access cost becomes another
scalability concern. In the scenario described in the above
theoretic analysis, the total database accesses during 10 hours will
be at most 4*105 (2*2*105) times. The average database access
rate will be less than 11.11 times/second. Because modern
databases can handle more than 150 primary key indexed queries
per second[4], we believe that the cost of database access is quite

manageable. The security contexts in memory are hash-indexed,
the cost of access in cache is trivial.

5.3 Performance Evaluation
To evaluate the performance of WSF, we setup the simulation
environment as follows: the web server is a Pentium IV PC with
1.8GHz CPU and 256MB memory with Linux 2.5.75 and Apache
2.0.40 installed. 3 Pentium III PCs with 850MHz CPU and
256MB memory work as web clients. Each client has 8 threads to
send out HTTP request at their best efforts. Each thread sends
2000 HTTP requests in a sequential manner: a request will not be
sent out until the reply of the previous request is received. In the
simulation, we have deployed the access rules for 3394 web files
and validity specifications for 150 CGI programs. The number of
CGI validity specification rules has little effect on performance,
because the rules are indexed with CGI program pathnames and
each CGI program is governed by one rule. In addition, we
defined 8 environment checking rules.

Performance C omparison

0

100000

200000

300000

400000

500000

1 2 4 6 8
Request File Size(KBytes)

T
hr

ou
gh

pu
t(

by
te

s/
s) WSF with

large cache

mod_security

Apache(no
firewall)

WSF with
small cache

Figure 3 Throughput Comparisons

Figure 3 shows the throughput comparison of a web server with
WSF support and without WSF support. We can see that when
request file size is large, the apache server with WSF can achieve
performance comparable to an apache server without WSF.
However, when the requested file size is small, we can easily see
performance penalties. The reason is that WSF is primarily
CPU-bound. Most of its time is spent performing regular
expression matching against client requests and updating behavior
statistic records. When file size is large, the file transmission time
is dominant, the WSF cost is relatively small. If file size is small,
the CPU time used by WSF becomes non-negligible and thus
reduces the apache server performance. However, as our prototype
is completely un-optimized, we believe there is large scope to
improve system performance. For example, Figure 3 also shows
by increasing cache size to hold security contexts, WSF can
achieve higher throughputs. This indicates that the size of memory
allocated for caching security contexts can affect the system
performance significantly. Upon receiving requests from a new
client, the security context checking engine needs to load the
client’s security context from database into cache. If the cache is
full, some clients’ security contexts have to be sent back to the
database. Those database I/O operations thus increase the system
overhead. The larger the cache size is, the higher cache hitting rate
is, and the less database accesses are required. Therefore, large
cache helps to improve the performance of WSF.

 9

6. CONCLUSION
WSF proposes a policy-based framework to provide perimeter
security for those web services. With proper policies, WSF can
help to prevent unauthorized accesses to system sensitive files and
achieve flexible, role-based access control. To prevent attackers
from sending maliciously manipulated requests to CGI programs,
WSF allows administrators to explicitly define the input validity
specification for each accessible CGI program. Instead of inferring
all possible attacks from known attack signatures, WSF checks
incoming requests against the input validity specification, which
simplifies the procedure to determine whether a use input is valid
or not. In addition to the access control and CGI parameters
checking, WSF also tracks user activities and supports
heuristically changes of the access policy according to the
collected behavior statistics, which helps WSF to detect abnormal
user behaviors and proactively block malicious web clients.

Bibliography

1. CERT Advisory, "Code Red" Worm Exploiting Buffer
Overflow In IIS Indexing Service DLL, 2001.
http://www.cert.org/advisories/CA-2001-19.html

2. Almgren, M. and U. Lindqvist. Application-Integrated Data
Collection for Security Monitoring. in RAID '00: Proceedings
of the 4th International Symposium on Recent Advances in
Intrusion Detection. 2001: Springer-Verlag. p.22--36

3. Anley, C., Advanced SQL Injection In SQL Server
Applications, 2002.
http://www.nextgenss.com/papers/advanced_sql_injection.pdf

4. Carr, B., MiniSQL vs. MySQL: Performance, 1999.
http://www.os2ezine.com/v4n2/p-sqlperf.htm

5. Center, C., Microsoft Internet Information Server (IIS)
vulnerable to cross-site scripting via HTTP TRACK method,
2004. http://www.kb.cert.org/vuls/id/288308

6. Clark, D. D. and D. R. Wilson. A Comparison of Commercial
and Military Computer Security Policies. in IEEE Symposium
of Security and Privacy. 1987. p.184-194

7. SAINT Corp, SAINT vulnerability scanner.
http://www.saintcorporation.com/products/saint_engine.html

8. Symantec Corp., Symantec NetRecon.
http://enterprisesecurity.symantec.com/products/products.cfm?
ProductID=46

9. Security Focus, PHPNuke Admin Cookie Variable SQL
Injection Vulnerabiliy.
http://www.securityfocus.com/bid/6890

10. Forristal, J. and G. Shipley, Vulnerability Assessment
Scanners, 2001. http://www.nwc.com/1201/1201f1b1.html

11. ISS, ISS Internet Scanner, 2004.
http://www.iss.net/products_services/enterprise_protection/vul
nerability_assessment/scanner_internet.php

12. Joncheray, L. A Simple Active Attack Against TCP. in
Proceedings of 5th USENIX UNIX Security Symp. 1995.
p.7-19

13. Kruegel, C. and G. Vigna, Anomaly detection of web-based
attacks in Proceedings of the 10th ACM conference on
Computer and communications security 2003 ACM Press:
Washington D.C., USA p. 251-261

14. Loscocco, P. and S. Smalley. Integrating flexible support for
security policies into the Linux operating system. in
Proceedings of FREENIX 2001. 2001.

15. Lynch, C., A White Paper on Authentication and Access
Management Issues in Cross-organizational Use of Networked

Information Resources, 1998.
http://www.cni.org/projects/authentication/authentication-wp.h
tml

16. Microsoft, UrlScan Security Tool.
http://www.microsoft.com/technet/treeview/default.asp?url=/t
echnet/security/tools/urlscan.asp

17. Nessus, NESSUS Scanner, 2004. http://www.nessus.org/
18. BBC News, Web attacks on the rise, 2002.

http://news.bbc.co.uk/1/hi/sci/tech/1930832.stm
19. Nikto, Nikto 1.32. http://www.cirt.net/code/nikto.shtml
20. Ptacek, T. H. and T. N. Newsham., Insertion, Evasion and

Denial of Service: Eluding Network Intrusion Detection.
January 1998, Secure Networks.

21. rfp.labs, libwhisker. http://www.wiretrip.net/rfp/index.asp
22. Ristic, I., Introducing mod_security, 2003.

http://www.onlamp.com/pub/a/apache/2003/11/26/mod_securi
ty.html

23. Roesch, M. S. Lightweight Intrusion Detection for Networks.
in Proc. of the USENIX LISA '99 Conference. November 1999.
p.229-238

24. Rubin, A. D., D. Geer, and M. Ranum, Web Security
Sourcebook. 1997: John Wiley & Sons, Inc.

25. Scott, D. and R. Sharp. Abstracting Application-Level Web
Security. in Proceeding of the eleventh international
conference on World Wide Web (WWW'2002). 2002.
p.396-407 http://www2002.org/CDROM/refereed/48/

26. eEye Digital Security, Retina Network Security Scanner.
http://www.eeye.com/html/Products/Retina/

27. McAfee Security, CyberCop ASaP: Online Vulnerability
Assessment Service from SecureSynergy.
http://www.securesynergyonline.com/content/cybercop_asap/d
efault.asp

28. Vigna, G., et al. A Stateful Intrusion Detection System for
World-Wide Web Servers. in Proceedings of the 19th Annual
Computer Security Applications Conference. 2003. p.34-43

29. Xie, H., LIDS: Linux Intrusion Detection System.
www.lids.org

