
A Vulnerability Taxonomy Methodology applied to

Web Services

Chris Vanden Berghe and James Riordan

IBM Zürich Research Laboratory

{vbc,rij}@zurich.ibm.com

April 2005

Abstract

We present a methodology for taxonifying vulnerabilities based on the likelihood that they
will be present in a certain system. It attempts to capture and formalize the intuition that allows
security professionals to make predictions about likely security problems. The method exploits
the realization that the vulnerabilities present in a system are related to the set of properties
that define the system. By modeling it using a selection of relevant properties and correlating
this with the body of knowledge on historic vulnerabilities and the systems in which they lived,
we obtain a heuristic of the likelihood that these vulnerabilities will reappear in a new system.
The predictive nature of this methodology serves as an early warning for systems before they are
widely deployed. As an example we apply our methodology to Web Services, thereby providing
a tool to focus efforts in securing Web Services.

1 Introduction

Service-oriented architectures are a major evolutionary step in the creation of distributed systems.
J2EE [25] and .NET [18] have embraced this trend and provide tools and support for Web Services
(WS), which are practical implementations of the principles of a Service-Oriented Architecture
(SOA). The architecture introduces a service layer around software components and can be regarded
as the logical next level of abstraction after the componentization of software. Such an abstraction
allows for the creation of rich, highly-distributed applications by enabling dynamic discovery and
loose-coupling of heterogeneous components that span organizational boundaries.

The flexibility of these highly-distributed applications enables new and interesting possibilities.
At the same time it creates numerous security challenges that need to be addressed for the ulti-
mate success of the technology. This need was quickly recognized and has resulted in numerous
standards addressing various aspects of SOA security. Examples include the WS-Security family of
standards [22], SAML [20], XACML [19] and the Liberty Alliance specifications [14]. Each of these
specifications targets some (not necessarily disjoint) collection of the security needs in the service
layer.

By contrast, security concerns regarding implementations and operation have received far less
attention. This disparity is largely rooted in the youth of WS rather than in the relative importance
of the two classes of security failure. There are simply too few deployed and active instances of WS

1



to generate an adequate body of knowledge about real-world security failures and the vulnerabilities
behind them.

Our methodology is predicated upon two principal assumptions: The first is that one can usefully
think of security vulnerabilities as being present in the properties of a system rather than in the
system itself. The second is that we will not see fundamentally new vulnerabilities in SOA but rather
variations of those already present in existing systems. Based on these assumptions, we develop
a general-purpose methodology for generating predictive vulnerability taxonomies and apply it to
WS. Some vulnerability types are more likely to arise than others in such architectures, depending
upon the properties of the individual components.

As a testcase example, we apply our methodology to WS which illustrates how the resulting
taxonomy can used to reason about practical security in WS. It indicates the degree to which the WS
components are prone to several classes of vulnerability, thereby providing insight into an optimal
use of finite resources for securing WS.

The paper is structured as follows. In Section 2 we present the aspects of SOA and WS that are
the most important ones to our work. In Section 3 we give a brief overview of practical security,
which is our security layer of our focus. Section 4 provides some insights into taxonomies in general
and vulnerability taxonomies in particular. Section 5 lays out and explains our methodology for
creating vulnerability taxonomies, using the example of WS. Section 6 details the actual results of
this application to WS. Section 7 presents related work, and Section 8 concludes with a summary
of our findings.

2 Web Services

In this section we present an overview of security-relevant aspects of WS. We start by outlining the
principles of a Service-Oriented Architecture (SOA). This is followed by a description of WS and
its relation to SOA. Finally we discuss the implementation-related aspects of WS.

2.1 Service-oriented architecture

SOA is a software development methodology aimed at improving the manageability of today’s
increasingly complex systems. A good understanding of the methodology’s principles, and the
reasoning behind them, is essential for understanding WS security, because WS is a practical im-
plementation of the more general SOA concept.

Object-oriented and component-based software development methodologies have successively
increased our ability to develop and manage complex applications. They are based upon the ab-
straction of components, which increases re-usability of software functionality. While this notion
is very powerful, interfaces between components tend to be rather tightly coupled and inflexible.
It therefore does not scale to distributed applications spanning organizational boundaries, as they
require that developers understand and control each component in the application. The integration
of components coming from a wide variety of organizations is therefore a daunting task.

SOA can be seen as an extension of the ideas of component-based software development aimed
at increasing the flexibility of application integration. It introduces the concept of a service layer,
which provides a framework to address the complexity of integration in highly-distributed heteroge-
neous systems. Conceptually, SOA represents a model in which loosely coupled pieces of application

2



functionality are published, located, consumed, and combined over a network. Such exposed func-
tionality is called a service. Services adhere to the following principles [17]:

• They deliver some self-contained and composable functionality that is advertised in terms of
the task performed by the service. The focus is on what is performed instead of how it is
performed. In addition, it should be possible to use the service as part of a larger application.

• They are loosely-coupled and can be discovered and invoked dynamically. Traditional appli-
cations depend on tight interconnections of all subsidiary components, therefore changing
existing systems is exceedingly difficult. Loosely coupled systems require less coordination
and allow for more flexible reconfiguration, thereby enabling the use of services across orga-
nizational boundaries.

• They have well-defined interfaces and coarse-grained interactions. Coupling systems is gen-
erally difficult, so it is important to keep interfaces simple and the number of interactions
minimal. This keeps the dependencies between services manageable. In addition, it facilitates
more thorough testing of the service and makes the interactions easier to understand.

• They are network-addressable and location-transparent. The ability to invoke the service over
a network is key to the concept of SOA. It allows applications to use the services best suited
to their needs, independently of their location.

• They are interoperable. This is a necessary characteristic of heterogeneous systems that com-
municate and cooperate. Towards this end, the service consumer and provider must agree on
a mediating protocol and data-format on to which they map their platform-specific charac-
teristics.

2.2 Web Services

WS are practical implementations of SOA principles. The term itself is not very well defined and
is used both in a conceptual and in a technical sense. Conceptually, WS are XML-based SOA that
use standard Internet transport protocols1. In the technical sense, WS refers to specific collections
of standards, tools and practices to implement the WS concept. Different styles of WS exist such
as SOAP Web Services [28], REST Web Services [10] and XML-RPC [27].

SOAP WS are the most common form. Specific to SOAP WS is the use of WSDL [29] as the
service descriptor, SOAP [28] as the messaging protocol and UDDI [21] as the directory protocol.
WS-I [31], an industry organization created with the mission to promote interoperability among
WS, recommends this style of WS (with some additional restrictions) for interoperability reasons.
Many of the higher-layer WS protocols, addressing issues such as workflow, business processes and
security, are built atop these core specifications. The main advantage of this particular flavor of
WS is its wide adoption and availability of supporting tools. The complexity of the protocol stack
is its major disadvantage.

REST Web Services and XML-RPC provide a less complex alternative to SOAP Web Services,
but are also less widespread. REST Web Services adhere to the concepts of the Representational
State Transfer architectural style [10]. In this model, services are seen as resources addressable

1The term “transport protocol” now includes higher level protocols such as HTTP and BEEP

3



by URI’s. Accessing and managing these services is done exclusively through the HTTP verbs
GET, POST, DELETE and PUT, where each one has well-specified semantics. Most of the data
transmitted is in the form of XML.

REST Web Services are very light-weight by design because they only use URI’s, HTTP and
standard resource representations, such as XML, jpeg, etc. They possess additional desirable prop-
erties such as improved performance due to better caching opportunities. XML-RPC, although
often considered as another light-weight protocol for WS, does not adhere to all of the aforemen-
tioned properties of a SOA. For example, XML-RPC does not publish application functionality with
a service abstraction, but is merely a convenient way to open functionality to the Web.

In this paper we focus on SOAP WS because of their wide acceptance. Many of the conclusions
also hold for other WS flavors, as the fundamental concepts are largely shared.

2.3 Web Services implementation

There is no universally accepted set of tools for developing WS or platform for their deployment;
this would indeed defeat much of the purpose of WS. Instead, toolkits exist for many platforms.
Nevertheless, it is safe to say that most WS will be developed in higher-level languages and deployed
in managed-execution environments. Two concrete examples of WS implementations are J2EE [25]
application servers and the .NET framework [18]. They are already widespread and provide good
tool support for SOAP Web Services.

Development toolkits for J2EE and .NET provide wizard-based tools that take care of deploying
the selected functionality as a WS, and even publish the WS with one or more directory services.
The application servers handle message parsing, cryptographic transformations, data-type mapping
and transparent dispatching. Although the specifics differ, both platforms abstract the WS details
away from the applications.

Subsequent discussion of WS implementation-related properties is limited to properties shared
by common implementations, as opposed to aspects of a specific implementation (thus rendering
the results more widely applicable).

3 Our Approach To Practical Security

Our work focuses on the layer of security that addresses real-world vulnerabilities caused by a sys-
tem’s implementation, deployment and management. We refer to this layer as “practical security”.
It occupies a position complementary, yet related to, security specifications (such as those of WS).
Specifications determine the way in which a system should behave, whereas the implementation
determines the way in which it does behave.

Although we are concerned with such concrete and specific vulnerabilities, it makes sense to
speak of them as abstractions. Any reader of a security vulnerability announcement list, such as
Bugtraq [11], will be eventually struck with a certain sense of déjà-vu. On an average day several new
vulnerabilities are published, but only very seldomly something fundamentally new is discovered.
Instead, they are variations that differ only in the specifics, but not in the implicitly-adjudged

underlying reason why the system is vulnerable.
The foundation of our subsequent analysis is that one can think of vulnerabilities as being

manifest in the implicitly-adjudged underlying reason for their existence rather than in the systems
themselves. We therefore propose a model that describes these reasons in terms of a collection of

4



properties. This is analogous to the epidemiological practice of ascribing a disease to a population
rather than an individual. This epidemiology applies to our work in three distinct manners.

• Code analysis and testing resources are limited by both time and cost. As such, they should
be utilized towards maximum effect. Knowledge of what sorts of problem are likely to occur
in which places is thus quite valuable.

• Properties should be seen as characteristics of the complete process of design, development,
use and maintenance of the system. Determination of the property sets is both important and
potentially difficult. The properties that influence the security of a system are not limited to
technical or implementation-oriented properties, such as which development tools are used.
They also include nontechnical issues such as security-awareness of the users of the system.
These properties should ultimately describe the system as completely as possible.

• The influence-map from properties to vulnerabilities is not necessarily injective: indeed, a
group of properties may be required to influence the presence of a vulnerability. For example,
buffer-overflows are commonly attributed to the use of a low-level programming language,
whereas they actually result from the combination of low-level programming languages, lack
of testing, poor development processes, et cetera. Correspondingly, we do not assume strict
causality but merely correlation: the C programming language does not create buffer-overflows
itself, it is just particularly well-suited towards creating them and, therefore, programs written
in C should be checked for buffer overflows.

To predict vulnerabilities of a new technology, we assume that their recurrent nature will continue
with minor variations. For example, we anticipate that code using the standard selection and
predicate language for data in the hierarchical model of XML (XPath) [30] will present problems
similar to those in code using the standard selection and predicate language for data in relational
databases (SQL): XPath-injection is very likely to be a problem in WS.

Based on these considerations regarding practical security, we developed a methodology for
predicting vulnerabilities in systems through taxonification. Before detailing this methodology in
Section 5, we introduce general concepts related to vulnerability taxonomies.

4 Vulnerability taxonomies

Although classification of items and events is a commonplace activity, there is no universal agreement
on the semantics of terms surrounding classification and taxonification. Therefore we commence by
defining these concepts and by providing some general observations about classifications. We then
discuss vulnerability taxonomies in general and vulnerability taxonomies for WS in particular.

4.1 Notes about classifications and taxonomies

Classification refers to both the operation and its result. Marradi [16] defines the operation as being
one of three possibilities:

• an intellectual operation, whereby the extension of a concept at a given level of generality
is subdivided into several narrower extensions corresponding to as many concepts at a lower
level of generality;

5



• an operation whereby the objects or events in a given set are divided into two or more subsets
according to the perceived similarities of one or several properties; or

• an operation whereby objects or events are assigned to classes or types that have been previ-
ously defined.

The first is an a priori classification, in which one starts from a concept and then further refines it
into subconcepts. In this definition “the extension of a concept” refers to its most direct or specific
meaning. The second is an a posteriori classification, in which one starts from the actual objects or
events and proceeds by grouping them according to properties, or taxonomic characters. Each of
these two types of classification produces a hierarchy of classes. The final possibility is the actual
process of assigning the objects or events to these pre-defined classes.

A taxonomy is a “classification, including bases, principles, procedures and rules”. This defi-
nition, introduced by Simpson in his seminal work on the classification of animals [24], is widely
accepted, and is also used in other vulnerability classifications [13]. The definition suggests that a
taxonomy is more than a classification, in the sense that it also describes the principles according to
which the classification is done and the procedures to be followed in order to classify new objects.
A resulting class of a taxonomy is called a taxon (Pl. taxa).

The goal of classification is to turn chaos into regularity. Systematization is necessary to handle
the large amount of information humans are confronted with. The first known attempt to perform
systematic classification dates back to Aristotle (322-287 BC), who worked on the first classification
of animal species. For more than two millennia systematic classification was the exclusive domain
of biological sciences. This changed at the end of the 19th century, when classifications started to
appear in diverse branches of science [13].

The key to building a good taxonomy is the choice of the taxonomic characters according to
which the objects or events will be classified. These taxonomic characters should be relevant and
readily and objectively observable in the objects to be classified [24, 13]. Lough [15] gives an
overview of desirable properties when building a taxonomy. Some of the most widely accepted are:
deterministic, exhaustive, mutually exclusive, objective, and useful. Some of these properties are
partially contradictory, e.g., a taxonomy can be made exhaustive by adding the catch-all category
other, but doing so generally renders it less useful.

An important, yet often overlooked, issue is that there is no such thing as the ultimate taxonomy.
Rather, the form of the taxonomy should be adapted to the intended usage. In practice this means
that the intended usage as well as the scope and viewpoint of the taxonomy should be stated
explicitly. We define scope as the part of the universe to be included in the taxonomy. This
determines what should be classified. An example of scope is all flowers indigenous to a certain

country. Equally important is the viewpoint, which determines how one looks at the things within
the scope and consequently which properties will be relevant. For example, the viewpoints of
a botanist and a florist yield totally different relevant classification properties in a taxonomy of
flowers.

4.2 Notes about vulnerability taxonomies

The perceived similarities between vulnerabilities published on security mailing lists such as Bug-
traq [11] are an indication for the utility of taxonifying vulnerabilities. Although ideally every
report features a distinct vulnerability instance, one can naturally abstract them into classes of

6



vulnerability instances with similar properties. This abstraction facilitates understanding of the
origins of the vulnerabilities, and allows for the development of avoidance and mitigation methods
for such vulnerabilities. The key challenge in the production of a good taxonomy is the selection of
properties that optimally contribute to this understanding.

As discussed, these properties depend on the scope and the viewpoint. A vulnerability taxonomy
implies an implicit limitation of the scope, namely to vulnerabilities. Some examples of scopes that
are further limited are:

• Vulnerabilities in the UNIX operating system [3, 6]

• Cryptographic vulnerabilities [26, 2]

• Application-level vulnerabilities

By setting the scope and the viewpoint of the taxonomy, one also determines which vulnerabilities
to classify as well as how to look at them. For instance, the viewpoint of a developer, a system
administrator or an attacker on a particular vulnerability are quite different.

Several vulnerability taxonomies have been proposed. Those proposed by [1, 5] had the scope of
“vulnerabilities in operating systems”. Subsequent taxonomies differed in scope and viewpoint [3, 4,
6, 9, 13]. A shortcoming of the aforementioned taxonomies is that they do not make their intended
usage explicit, but instead aim at being general-purpose.

There will probably never be a vulnerability taxonomy as universally accepted as Linnæus’s
original classification is in biology for several reasons. The scope of vulnerabilities is highly dy-
namic, since the modes of daily computer usage are evolving rapidly. In addition, the computer
vulnerabilities themselves are inherently difficult to describe, and most often negative terminology
is used in describing them. This is related to the fact that they exist where conceptual models break
down. Finally, the way in which one describes a vulnerability is strongly tied to the viewpoint.

There are at least three realizations common to vulnerability taxonomies:

• Generating a good taxonomy is difficult (see discussion in Section 4.1).

• A taxonomy depends not only on the vulnerabilities themselves but also on the viewpoint
of the taxonomy creator; this viewpoint is generally determined by the intended use of the
taxonomy.

• Related vulnerabilities often manifest themselves in packages that share some common prop-
erty.

Generating a vulnerability taxonomy with the scope of WS incurs the additional difficultly that
the WS themselves are not yet fully deployed. However, it is our central assumption that there is
a sufficient body of knowledge regarding related systems to allow accurate prediction of the classes
of vulnerability that are most likely to be problematic in WS. The key benefit of such a predictive
taxonomy is that it can guide the investment of limited resources in securing WS.

5 Proposed Methodology

Our methodology produces predictive vulnerability taxonomies based on correlation of properties
of system components and their adjudged influence on a selection of historical vulnerabilities. It is

7



predicated on the two principal assumptions introduced in Section 3. Namely that it is meaningful
to think of vulnerabilities as being present in the properties of the system in addition to being
present in a particular version of a particular program and that vulnerabilities in new systems are
mostly variants, in an abstract sense, of vulnerabilities existing in older systems.

We begin with a discussion of correlative properties and the process by which they are selected.
Two inputs drive this process. The first is an architectural refinement of the system being analyzed
into functional components. These components need to be of sufficiently fine granularity to express
possible attack scenarios. They need also be uniform with respect to the selected properties for
each component. The second is a representative collection of vulnerabilities, associated with the
selected properties by the adjudged influence of the properties on the vulnerabilities. Naturally,
the selection of properties, refinement of architecture, and collecting of vulnerabilities are iterative
interdependent steps in the methodology. These inputs allow for the correlation of components
with vulnerabilities through common properties. The result is a table detailing the likelihood of a
vulnerability variant being present in a given component.

In the remainder of this section we detail each of the general steps of the methodology and
illustrate them using the example of WS. Details that go beyond clarification of the methodology
are provided in Section 6.

5.1 Architecture and selection of properties

The predictive capabilities of the produced taxonomy are determined by the accuracy with which
the selected properties describe the system with respect to vulnerabilities. The selection of the
properties is therefore paramount. While there is no predefined and exact means of selecting
properties, we target those with influence on the security of the system. The task is facilitated by the
fact that we merely need coverage rather than a perfect selection. Selection of irrelevant properties
is not a problem, as they will have no effect in the correlation. Selection of strongly corelated
properties is more problematic as it may lead to multicollinearity, resulting in an unproportional
influence of these properties. In this work we endeavor to avoid the problem through utilization of
the basis of this work: we attempt to use our security experience to select properties that are not
causally related. While this heuristic does not have statistical rigor, it does have the advantage of
being tractable.

A complex system is comprised of different components with diverse properties. In order to
capture this with our methodology, it is necessary to refine the analyzed system into components
for which the properties are well defined (e.g., true, false or irrelevant, rather than dependent upon
the subcomponent). In a complex system, different components are prone to different vulnerabilities.
The refinement offers the advantage that we capture not only the sorts of problems the complex
system is apt to have, but also where within the system they are most likely to appear.

It is also useful to list pairs of components as connections, which indicate the composition
or simultaneous presence of two components. These connections have security-relevant properties
themselves, since properties on both the physical connection (e.g., use of encryption) and the logical
connection (e.g., trust relationship) can render the system more or less secure.

We clarify the selection of properties using the example of WS. WS is a complex, highly-
distributed architecture, but as an input into the methodology, a simple refinement suffices. As
depicted in Figure 1, our WS refinement is comprised of a service requester, a directory service, a
service provider, backend systems and the connections between these components. Intermediaries

8



are not explicitly modeled, but are seen as a service provider acting as a service requester.

Figure 1: WS Architectural Refinement

The next step is the selection of the most relevant properties describing these components. We
divide them into two categories: paradigm-related and implementation-related.

The first category contains properties related to the underlying concepts of WS and SOA.
Examples of the properties in this category include support for dynamic discovery and binding of
services, XML-based messaging, and cross-platform support.

The second category involves properties related to actual implementations. These properties
are equally important but less uniformly applicable and more difficult to find; different implementa-
tions have different properties. In order to ensure general applicability of the produced taxonomy,
it is important to choose properties common to most implementations. For example, most WS
implementations use high-level languages and server application containers, which provide system-
level services such as memory and transaction management. As such we consider “use of high-level
languages” a shared property.

The result of this property selection step is a matrix [properties × architecture]. The rows contain
the different properties and the columns contain the different components of the architecture. For
every property and component there is a cell describing the degree to which the property is present
in the component. The different values are “the property is present”, “the property is not present”
or “the opposite property is present”.

5.2 Selection and assessment of vulnerabilities

The next major step of our methodology is the selection of vulnerabilities. Recalling the assumption
that new vulnerabilities will largely be variants of existing vulnerabilities (as opposed to fundamen-
tally new vulnerabilities), it is necessary to identify a representative base of existing vulnerabilities.
With several “new” vulnerabilities discovered on an average day, it is necessary to discriminate. We
set the following three criteria: coverage, relevance and availability of information.

Coverage in this context refers to the need for a broad and complete range of vulnerabilities.
The goal is to estimate the likelihood that variants of the selected vulnerabilities will appear in the
new system. Therefore, it is necessary to ensure that the selection is not too limited. While buffer-

9



overflows account for a major part of the published vulnerabilities, there is no need for proportional
representation of this class of vulnerabilities in the selection.

Our second criterion is relevance. The vulnerabilities should also be relevant to the security layer
of interest. If the layer of interest is practical security for applications, the selected vulnerabilities
will be centered around the application-level. Likewise, vulnerabilities from similar systems will have
a higher chance of being relevant to the new system. For example, vulnerabilities in CORBA [12]
bear greater relevance to DCOM [8] than those of an architecturally dissimilar system.

The final criterion is availability of information about the particular vulnerability. The best
sources for obtaining vulnerability information are security databases and mailing lists, such as
Bugtraq [11]. Nevertheless, the available information is often sparse or obscured, inhibiting under-
standing of the vulnerability. Hence, it is best to select the vulnerabilities with the most complete
information available.

This selection step yields a list of vulnerabilities that needs to be assessed, in order to determine
the influence that each property has on each vulnerability. Many properties will not influence the
likelihood that a vulnerability appears whereas others will either increase it or decrease it.

This assessment is necessarily partially biased, as our method aims to capture the experience of a
security professional. In many cases, the assessment will be trivial as the property is a prerequisite or
conversely an inhibitor of the vulnerability. In other cases, there is no relation whatsoever between
the property and the vulnerability. In cases where the influence is less clear, different professionals
may come to different conclusions. This can be mitigated by having a more fine-grained scoring
system and averaging results or a questionnaire resulting in a standardized score.

The result of this vulnerability selection and assessment step is a matrix [vulnerabilities × prop-
erties]. Each cell qualitatively describes the influence of the property on the vulnerability. Later,
this qualitative description will be mapped onto a quantitative value in order to perform correlation.

In our WS example, we begin with the values “positive”, “none” and “negative”, meaning
respectively more likely, no influence and less likely. For instance, text-based communication, which
facilitates understanding and manipulation of the transmitted data, increases the likelihood of
input validation vulnerabilities; its influence is therefore positive. Similarly, the use of high-level
programming languages and managed computing environments diminishes the likelihood of buffer-
overflow vulnerabilities; their influence is therefore negative.

5.3 Correlation of properties and vulnerabilities

The purpose of this step is to compute an estimate of the likelihood that a variant of a vulnerability
will be present in the different components of the system, by combining the information resulting
from the previous steps; namely the matrices [vulnerabilities × properties] and [properties × archi-
tecture].

To obtain a quantitative estimate, we first assign numerical values to the two matrices. In our
WS example, for the first matrix, we map the three values (“the property is present”, “the property
is not present” and “the opposite property is present”), to the values 1, 0 and -1 respectively.
Similarly, for the second matrix, the three values (“positive”, “none” and “negative”) are mapped
to 1, 0 and -1.

It is now possible to determine the likelihood that a particular vulnerability is present in a par-
ticular component. We do so by means of a simple linear composition with equal weights, obtained
by the multiplication of the two matrices [vulnerabilities × properties] × [properties × architecture]

10



(as show in Figure 2). This results in the desired description matrix [vulnerabilities × architecture].
The values in this matrix are not mathematical probabilities (e.g., they are not bounded) but

rather indications of likelihood, with higher values indicating higher likelihood. For simple compo-
nents, the values indicate the most relevant vulnerabilities for each component. Recall that, the
simultaneous presence of components are modeled as connections between components. In this
case, the meaning of the values is different: they indicate the likelihood that a vulnerability may be
exploited over the link between the components.

As an example, input received over a trusted link is less apt to be validated than that received
over an untrusted link. Therefore the likelihood of an exploit of an input validation vulnerability
over the trusted link is greater. This is especially important for WS, where the most obvious attack
flow (user attacks WS) is not the only realistic attack scenario.

Figure 2: Correlation of vulnerabilities and architecture

5.4 Leveraging existing taxonomies

We now use a similar construction to combine the results of the previous correlation step with
existing vulnerability taxonomies. This combination may be viewed as:

• A summarization of results of the previous step with respect to the viewpoint of the existing
vulnerability taxonomies.

• A specialization of existing vulnerability taxonomies into a vulnerability taxonomy for the
system under study.

A taxonomy can again be represented by a matrix, namely [vulnerabilities × categories]. In this
matrix the rows represent particular vulnerabilities and the columns represent the taxonomy’s
different classes. The cells of the matrix describe whether the vulnerability is an instance of the
class; values are therefore “true” or “false”. Vulnerabilities generally belong to one and only one
class, although this is not uniformly the case.

By mapping the values “true” to “1” and “false” to “0” and normalizing with a weight vector,
we can use a simple matrix multiplication to obtain the desired result: [architecture × vulnera-
bilities] × [vulnerabilities × categories] × [normalizing vector] = [architecture × categories]. The
normalizing vector accounts for the different number of vulnerabilities per class.

For our WS example we used the Bugtraq classification which we selected following our use of
Bugtraq as the source of vulnerability data. It is rather coarse-grained, having only 7 classes, but
is reasonable for our purposes.

11



Figure 3: Correlation of architecture and vulnerability categories

6 Applying our methodology to WS

In this section, we detail application of our methodology to WS and the salient results obtained. We
focus on the details, as the coarse-scale process was already explained in the previous section. We
begin with the architectural model and properties, and continue with the selection of the vulnera-
bilities. We present the produced result matrix and touch on how these results can be validated.
Finally, we highlight the most interesting findings.

The actual values for matrices used in our WS example are presented in Appendix A and Ap-
pendix B. The selected vulnerabilities (identified by their Bugtraq number) were classified according
to their Bugtraq classification.

6.1 Architecture and Properties

Our WS architecture model was introduced briefly in Section 5.1 and is depicted in Figure 1. It is
a coarse-grained model by design, with four functional components and their connections:

• Clients: the service requester such as an ordering system.

• Directory services: the service locator such as UDDI or DNS.

• WS providers: the actual providers of a service (can be clients of other WS providers).

• Backend systems: the backend systems behind the WS providers such as a database.

• Links: components have logical links between them, e.g., WS requesters communicate directly
to WS providers and directory services, but only indirectly to backend systems.

The loopback connection in Figure 1 represents the ability of a WS provider to make requests to
other WS providers, aggregate the results and return them to the service requester.

The property selection follows from the architecture model. We selected 17 properties divided
in two categories: properties related to the WS paradigm itself, and properties related to imple-
mentations of WS systems.

The properties of the first category, derived from the definition of SOA and WS (discussed in
Section 2.1 and Section 2.2), are:

• WS are designed to enable interactions between diverse systems and are therefore considered
cross platform.

12



• WS allow for the dynamic discovery of WS providers through directory services.

• WS support dynamic binding between service requester and provider.

• WS are an implementation of SOA and therefore are service oriented.

• WS use XML-based messaging for communication.

• WS, in contrast to web applications, are especially well suited for machine to machine inter-

action.

• WS are message-centric; messages describe what should be performed instead of how it should
be performed.

• WS are not limited to a particular transport protocol and are therefore transport agnostic.

The second category of properties, related to the implementation of WS, is less clearly defined (as
they are, by definition, implementation dependent). We selected the following properties shared by
the most popular WS implementations:

• WS are typically implemented in systems with a managed execution environment, such as
Java or .NET.

• WS have a highly layered structure.

• WS make heavy use of general-purpose libraries and components.

• Creation, configuration, and deployment of WS is often done via wizard.

• Interaction between the WS components typically takes place over stateless synchronous trans-

port protocols, e.g., HTTP.

• WS are not particularly efficient, e.g., extensive XML parsing.

• The WS standards are highly complex.

• Different connections in the WS architecture have different trust-levels.

For every property and architectural component described above, we assessed the property’s pres-
ence: present, not present, or the opposite property is present. The result of this selection and
assessment architectural properties is shown in Figure 5 of Appendix A.

6.2 Vulnerabilities

The second step in the methodology is the selection of the vulnerabilities that are representative of
the body of knowledge of historical vulnerabilities. We used Bugtraq as the source of the vulnera-
bilities as it is one of the largest publicly available vulnerability databases. We selected a suitable
subset using the criteria set in Section 5.2: coverage, relevance and availability of information.

13



Availability of information was the first criterion used to create our subset. It is important as
vulnerability descriptions are often incomplete and inconsistent. Therefore, we discarded vulner-
abilities whose descriptions did not provide adequate information to understand root causes and
thus to assess property influences.

From the set of vulnerabilities with adequate information, we discarded those that are not
relevant to WS. We therefore focus on software vulnerabilities and, in particular, those in distributed
systems. We discarded, for example, vulnerabilities in physical security systems, such as locks.

From the remaining vulnerabilities we selected a subset so as to retain coverage; representative
vulnerabilities from each different class need to remain in the subset. This resulted in a final set
of 54 vulnerabilities. For each of these vulnerabilities, we categorized the influence of each selected
property on the vulnerability as positive influence, negative influence or no influence.

The result of this selection and assessment of vulnerabilities is shown in Figures 6 and 7 of
Appendix B.

6.3 Result matrix

The final step of the methodology is the combination of the [vulnerability × properties] and the
[properties × architecture] matrices via linear correlation to obtain the [vulnerability × architecture]
matrix. We applied the technique described in Section 5.4, using the Bugtraq classification, to group
the results according to the [classification × architecture]. The result matrix is depicted in Figure 4.

The columns of the result matrix represent the component architecture depicted in Figure 1.
Recall that the functional components are client, web service, directory and backend components,
as well as all the possible connections between these components. The rows represent the different
vulnerability classes as defined by Bugtraq: access validation error, boundary condition error, input
validation error, design error, failure to handle exceptional situations and unknown.

Figure 4: [classification × architecture]

14



6.4 Validation

The predictive nature of our methodology poses some specific challenges for its validation. One
possible approach entails applying it to a well-established technology, without using prior knowledge
of the vulnerabilities in this particular technology. Comparison of our results with the historical
vulnerabilities discovered in this technology allows for validation of our methodology. This approach
is, however, out of scope for this paper as the authors’ interests in this work lies in the early
understanding of applied security problems in WS.

To date, the publicly available data on vulnerabilities in WS is not adequate to validate our
approach. Nevertheless, this technology is maturing rapidly and we expect to have more data
available soon.

In the next section we will discuss the result matrix which indicates both anticipated and
unanticipated, yet retrospectively clear, outcomes. We thereby perform a functional validation
although fully acknowledge that this is by no means complete.

6.5 Discussion of results

There are a number of conclusions one may draw from the result matrix. We focus our discussion
on the most salient of these in the context of real-world WS deployment.

WS often provide an interface that allows for direct interaction with core business processes.
Traditionally these interfaces have been closed to the outside world and consequently run in a
trusted, but not necessarily trustworthy, environment. WS changes this situation by allowing direct
interaction with the core systems, thereby exposing them to a significantly larger range of threats.
Therefore, previous assumptions need be reevaluated.

The result matrix shows consistently high values in the input validation class over all the compo-
nents and connections between the components. This indicates that input validation errors are likely
in all WS components and can be exploited over all the connections between these components.

We discuss two subclasses of input validation: input format and input origin. We conclude
with a discussion of attack flows and the implications derived from the matrix values describing the
connections between components.

6.5.1 Input Format

Unfounded assumptions regarding the format of the input can lead to vulnerabilities. These vulner-
abilities are commonly known as input format validation errors, but input validation is only part
of the reason why these errors exist.

The loosely coupled and composable nature of WS requires input validation at each of the various
stages of the complete WS process. Unfortunately, the fact that form data has different meanings in
different layers of the WS implies that input must also be validated in the different layers. Proper
validation requires data normalization, and order is important: data must be normalized and then
checked (the Nimda worm exploited a series of vulnerabilities that stemmed from the fact that a
validation check was performed before the character encoding normalization was applied).

Good support for input validation is essential in both tools and libraries; currently such support
is limited. For example, the best method for avoiding SQL-injection (the archetypical input valida-
tion error) is the use of prepared statements which has the effect of enforcing separation of control

15



and data channels. The equivalent in the context of WS is XPath-injection, and there is currently
no standard support from “prepared XPath”.

6.5.2 Origin of data

Other unfounded assumptions relate to the origin of the input, as opposed to its format. The
induced vulnerabilities include the direct spoofing of origin, corruption of directory services leading
to an incorrectly contacted party, and cross site scripting. These are caused by inadequate input
validation. The likelihood of each of these vulnerability subclasses is increased by the composable
nature of WS.

We would make special mention of the subclass of vulnerabilities involving bounce attacks
wherein the attacker tricks a trusted party into making a bad request (including cross site scripting).
The likelihood of these is greatly exacerbated by the use of standard libraries for XML handling that
support inclusion of external data sources (such as XInclude and external entities). For example,
the attacker may set his name to the string
<xi:include href="passwords.txt" xmlns:xi="http://www.w3.org/2003/XInclude"/>

which will be interpreted as the instruction to include a password file.

6.5.3 Attack flows

Recall that the matrix values for the connections between components, unlike the values for compo-
nents themselves, do not indicate the likelihood of the connection having a vulnerability but rather
indicate how easily a certain vulnerability can be exploited over that connection. In the same way
that a property or a combination of properties can render a vulnerability more or less likely, there
are properties that make the exploitation of a vulnerability over a certain connection more or less
difficult.

An example property is the nature of the relationship between the communicating components.
When this is a trust relationship, the received input will typically also be trusted and is thus often
not subjected to the proper access controls and not sufficiently validated.

The notion of exploitability of an attack over a certain connection naturally leads to the concept
of attack flows. Before an attack on a component of a system can be staged, the component needs
to be vulnerable to the attack and the path from the attacker to the victim needs to permit the
attack to be launched. This raises the question: from what components can a certain component
be attacked?

Consider the boundary condition error category as an example. These errors are typically caused
by a buffer’s reserved memory being exceeded by unexpectedly long input, which can lead to the
execution of arbitrary code by an attacker. Programs written in C or C++ are prone to this variety
of vulnerability.

WS components are generally written in higher-level languages and executed in managed en-
vironments, and are thus generally not vulnerable to boundary condition errors. One might there
expect that WS, as an entire system, would be similarly invulnerable. This is not the case. The
backend components of the WS architecture are generally written in C or C++ and are hence prone
to boundary condition errors, as one can observe in the result matrix shown in Figure 4. While the
WS component itself may not be vulnerable, it may pass on an attack to the vulnerable backend
component.

16



If we assume that the client is the attacker, then determination of whether such a vulnerability
in the backend system is exploitable, involves determination of whether there exists a suitable path
from the client to the backend. By suitable we understand “having properties that make exploitation
feasible”. As there is no direct path from the client to the backend system, the attack would have
to be staged indirectly through one or more of the other components. The most obvious scenario is
to connect to the WS that, although not vulnerable for the attack in itself, can pass the attack on
to the vulnerable backend.

The data in Figure 4 suggests that this most obvious scenario may not be the most problematic,
since the properties of the connection between the client and the WS make it difficult to exploit
this type of vulnerability over this connection. This is due to a combination of properties, of which
one is the untrusted nature of the connection.

Although more difficult to stage, a scenario in which the attacker uses a path through the
directory service or in which the directory service itself is the attacker is more likely to be successful.
This follows from the relatively high values for these connections in table .

An important realization stemming from this analysis is that one’s initial expectations con-
cerning the vulnerabilities of a system are not always accurate. One must consider not only the
component-wise vulnerabilities but also the paths over which they can be exploited. Furthermore,
it is important to consider all attack flows rather than only that in which the client is the attacker
and/or the web service component is the target.

7 Related work

The key difference between our approach and existing taxonomies (see Section 4) is the taxonomic
character used and the systematic methodology for deriving new taxonomies. Our taxonomic char-
acter is the likelihood that vulnerabilities will appear in a system. This implies that our taxonomy is
predictive, whereas previous work focused on classifying existing vulnerabilities. Our methodology
is systematic: the classes are not selected ad-hoc, but through a well defined process.

Orthogonal Defect Classification [7] is a methodology for analysis of software defects, serving as
an early indicator of the health of the software development process. It is related to the methodology
proposed in this paper as it also involves a systemic analysis of software defects. However, both the
techniques applied and the purpose differ widely. From certain attributes of the detected defects,
e.g., the defect type or defect trigger, statistics are created that are compared to the expectations
on defects in a certain phase of the development process.

Our test case of WS is, to our knowledge, the first taxonomy focusing on WS as a system in
contrast to web applications, which have been addressed as a component by OWASP [23]. The
OWASP vulnerability classes are more specialized (towards web applications) and therefore finer-
grained. For example, the input validation error class of the Bugtraq classification is split into
several classes, such as SQL injection, encoding errors, etc. However, the similarities between WS
and web applications lead us to expect many of these classes to be also relevant for WS.

8 Conclusions and Future Work

In this work we developed a methodology for predicting vulnerabilities in systems. Our methodology
systematizes the déjà-vu feeling a security expert has when confronted with a new system. It assesses

17



the likelihood that variants of historic vulnerabilities will appear, based on the combination of the
properties describing the system. The use of an architectural refinement provides not only an
indication of which vulnerabilities will appear, but also where they are likely to appear. This allows
one to reason about the security of a system before it is widely deployed and to thereby address
security problems at an early stage.

We applied this methodology to WS. This has practical significance because of the importance
of WS despite the current lack of wide deployment. The results of our WS example are promising
and validate our methodology.

The test case application of our methodology revealed two critical steps. On one hand, the
selection of the properties is difficult. There is no well-defined minimal set of properties that
describes a system in all its aspects. Further, for any particular aspect, balance must be achieved
between selecting a set of properties which is rich enough to describe the system yet compact and
clear enough as to remain tractable. On the other hand, the selection of vulnerabilities is not
trivial. Information in vulnerability databases is often incomplete, hindering understanding of the
root causes of the described vulnerabilities.

One limitation of our methodology is the use of a linear mapping with equal weights to derive
likelihoods. Linearity is a strong simplification implying that all properties are equally impor-
tant. Alternative weighing schemes would provide more accurate models, but at the cost of higher
complexity.

Nevertheless, the methodology provides a valuable heuristic for identifying the most likely
sources of insecurity in a system.

References

[1] R.P. Abbott, J.S. Chin, J.E. Donnelley, W.L. Konigsford, S. Tokubo, D.A. Webb, and T.A.
Linden. Security analysis and enhancements of computer operating systems: The RISOS
project. Technical Report NBSIR 76-1041, Institute for Computer Sciences and Technology,
National Bureau of Standards, US, April 1976.

[2] Ross Anderson. Why cryptosystems fail. Proceedings of the ACM Conference in Computer and

Communications Security, pages 215–227, November 1993.

[3] Taimur Aslam. A Taxonomy of Security Faults in the UNIX Operating System. PhD disserta-
tion, Purdue University, US, August 1995.

[4] Taimur Aslam, Ivan Krsul, and Eugene Spafford. Use of a taxonomy of security faults. Pro-

ceding of 19th NIST-NCSC National Information Systems Security Conference, pages 551–560,
September 1996.

[5] R. Bisbey and D. Hollingworth. Protection analysis: Final report. Technical report, Information
Sciences Institute, University of Southern California, US, May 1978.

[6] Matt Bishop. A taxonomy of unix system and network vulnerabilities. Technical Report
CSE-9510, University of California, Davis, US, May 1995.

18



[7] Ram Chillarege, Inderpal Bhandari, Jarir Chaar, Michael Halliday, Diane Moebus, Bonnie Ray,
and Man-Yuen Wong. Orthogonal defect classification a concept for in-process measurements.
IEEE Transactions on Software Engineering, 18:943–956, November 1992.

[8] Microsoft Corporation. Distributed Component Object Model (DCOM). Webpage at http:

//www.microsoft.com/com/tech/DCOM.asp.

[9] Richard DeMillo and Aditya Mathur. A grammar based fault classification scheme and its
application to the classification of the errors of TEX. Technical Report SERC-TR-165-P, Purdue
University, US, November 1995.

[10] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Architec-

tures. PhD dissertation, University of California, Irvine, US, 2000. chapter 5: REpresentational
State Transfer (REST).

[11] Security Focus. Bugtraq mailing list. Webpage at http://www.securityfocus.com/archive/
1.

[12] Object Management Group. Common Object Request Broker Architecture (CORBA). Web-
page at http://www.omg.org/.

[13] Ivan Krsul. Software Vulnerability Analysis. PhD dissertation, Purdue University, US, May
1998.

[14] Liberty Alliance. Liberty alliance project. Webpage at http://www.projectliberty.org/.

[15] Daniel Lowry Lough. A taxonomy of computer attacks with applications to wireless networks.
PhD dissertation, Virginia Polytechnic Institute and State University, US, April 2001.

[16] Alberto Marradi. Classification, typology, taxonomy. Quality and Quantity, 2:129–157, May
1990.

[17] James McGovern, Sameer Tyagi, Michael Stevens, and Sunil Mathew. Java Web Services

Architecture. Morgan Kaufmann, April 2003.

[18] Microsoft Corporation. Microsoft .NET. Webpage at http://www.microsoft.com/net/.

[19] Oasis. eXtensible Access Control Markup Language (XACML). Webpage at http://www.

oasis-open.org/committees/tc_home.php?wg_abbrev=xacml.

[20] Oasis. Security Assertion Markup Language (SAML). Webpage at http://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=security.

[21] Oasis. Universal Description, Discovery and Integration of Web Services (UDDI). Webpage at
http://uddi.org/.

[22] Oasis. Web Services Security (WSS). Webpage at http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wss.

[23] OWASP. The Open Web Application Security Project. Webpage at http://www.owasp.com/.

19



[24] George Gaylord Simpson. Principles of animal taxonomy. Technical report, Columbia Univer-
sity, New York, US, 1961.

[25] Sun Microsystems, Inc. Java 2 Platform, Enterprise Edition (J2EE). Webpage at http:

//java.sun.com/j2ee/.

[26] Paul Syverson. A taxonomy of replay attacks. Proceedings of the Computer Security Founda-

tions Workshop, 1994.

[27] Userland. XML Remote Procedure Call (XML-RPC). Webpage at http://www.xmlrpc.com/.

[28] W3C. SOAP. Webpage at http://www.w3.org/TR/soap/.

[29] W3C. Web Services Description Language (WSDL). Webpage at http://www.w3.org/TR/

wsdl.

[30] W3C. XML Path Language (XPath). Webpage at http://www.w3.org/TR/xpath.

[31] WS-I. Web Services Interoperability Organization (WS-I). Webpage at http://ws-i.org/.

20



A Architecture × properties

Figure 5: The [architecture × properties] matrix for our WS example

21



B Vulnerabilities × properties

Figure 6: The [vulnerabilities × properties] matrix for our WS example (part 1)

22



Figure 7: The [vulnerabilities × properties] matrix for our WS example (part 2)

23


