
Assessing risk of distributed systems with vulnerable
components

Davide Balzarotti
Politecnico di Milano
Dip. di Elettronica e

Informazione
Via Ponzio 34/5, I-20133

Milano, Italy

balzarot@elet.polimi.it

Mattia Monga
Università degli Studi di Milano

Dip. di Informatica e
Comunicazione

Via Comelico 39, I-20135
Milano, Italy

mattia.monga@unimi.it

Sabrina Sicari
Università di Catania

Dip. di Ing. Informatica e delle
Telecomunicazioni

Viale Andrea Doria 6, I-95125
Catania, Italy

Sabrina.Sicari@unict.it

ABSTRACT
This paper discusses how information about the architecture
and the vulnerabilities affecting a distributed system can be
used to quantitatively assess the risk to which the system
is exposed. Our approach to risk evaluation can be used to
assess how much one should believe in system trustworthi-
ness and to compare different solutions, providing a tool for
deciding if the additional cost of a more secure component
is worth to be afforded.

Keywords
Distributed system, security, risk assessment method, risk
analysis

1. INTRODUCTION
The issue of software security is increasingly more rele-

vant in a world where most of our life depends directly on
several complex computer-based systems. Today the Inter-
net connects and enables a growing list of critical activities
from which people expect services and revenues. In other
words, they trust these systems to be able to provide data
and elaborations with a degree of confidentiality, integrity,
and availability compatible with their needs. Unfortunately,
this trust is often not based on a rational assessment of the
risk to which the system could be exposed. Users tipically
know only the interface of the system and they have too little
information for evaluating, for example, the confidentiality
of their credit card number: it could be even transmitted on
an SSL armored link, but this does not help if on the other
side it will be stored on a publicly available database! Sur-
prisingly, the designers of the system are often in a similar
situation. In fact, software systems are increasingly assem-
bled from components that are developed by and purchased
from third-parties and used as black boxes. Web services,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NSPWNew Security Paradigms Workshop
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

for example, give to software engineers the ability of build-
ing complex applications by assembling third-parties com-
ponents that expose a web interface[6], an extreme case of
components off the shelf (COTS) software.

Thus, black box components make clear that nobody has
enough information for evaluating how secure is every sin-
gle computation. However, several public services exist (for
example, BugTraq[1]) that publish known vulnerabilities of
commercial components. The problem this paper wants to
discuss is whatever this information can be used to assess
how secure is a system built by assembling vulnerable com-
ponents. In the following we propose a quantitative ap-
proach to measuring risk based on the knowledge of:

• the architecture of the whole system, in terms of com-
ponents connected by network links;

• the vulnerabilities of components and links and a
measure of their “exploitability”.

Risk evaluation can be used to assess how much one should
believe in system trustworthiness, but also– more interestingly–
to compare different solutions. In fact, designers have often
the option of using different components, or different links.
A quantitative risk assessment is key in providing a tool for
deciding if the additional cost of a more secure component
is worth to be afforded.

The paper is organized as follows: in Section 2 we de-
scribe our approach to evaluate the risk associated with a
given architecture, in Section 3 we present an example of ap-
plication, in Section 4 we discuss related works, and finally
in Section 5 we draw some conclusions and sketch future
work.

2. OUR APPROACH TO RISK ASSESSMENT
The goal of risk assessment is to determine the likelihood

that identifiable threats will harm, weighting their occur-
rence with the damage they may cause. An ideal risk as-
sessment required enumeration of all possible failure modes,
their probability of happening and their consequences. Un-
fortunately, this information is rarely available in its glory
detail and, when it is, it is very difficult to analyze it in
order to draw sensible considerations.

We aim at both (1) reducing the complexity of risk anal-
ysis and (2) using information that can be managed, dis-
cussed, and agreed by high-level designers of a distributed

system. For this reason we consider a distributed system as a
composition of black-box elements communicating through
directed link. We call architecture of the system the directed
graph < C, L > in which C is the set of all black-box com-
ponents and L the set of all directed links. A link (c1, c2)
means that c1 may send input to c2.

Moreover, we consider each element ∈ C∪L as vulnerable.
A vulnerability is a flaw or weakness in a system’s design,
implementation, or operation and management that could
be exploited to violate the system’s security policy [8]. The
RFC definition adds also that

“Most systems have vulnerabilities of some sort,
but this does not mean that the systems are too
flawed to use. Not every threat results in an at-
tack, and not every attack succeeds. Success de-
pends on the degree of vulnerability, the strength
of attacks, and the effectiveness of any counter-
measures in use. If the attacks needed to ex-
ploit a vulnerability are very difficult to carry
out, then the vulnerability may be tolerable. If
the perceived benefit to an attacker is small, then
even an easily exploited vulnerability may be tol-
erable. However, if the attacks are well under-
stood and easily made, and if the vulnerable sys-
tem is employed by a wide range of users, then
it is likely that there will be enough benefit for
someone to make an attack.”

In other words, a potential risk is associated to every vul-
nerability. Its actual degree depends on the value of the
system, the context in which is deployed, and the state of
the art of the attacker techniques.

2.1 Measuring risk
The ultimate goal of this research is the development of

a generic risk analysis method for a distributed system. As
discussed earlier, analysis is a complex process and requires
a very detailed understanding of a number of different as-
pects. We start to investigate the term risk and to define
a quantitative measure that expresses and characterizes the
behavior of system that is a composition of many heteroge-
neous components. Risk is measured by means of a function
of two variables: one is the damage potential of the hazard
(H) and another one is the level of exploitability (E) by
which we consider the difficulty to make an attack.

The meaning that we give to the term exploitability, E,
is a general value that includes both the exploitability and
reproducibility of an attack. At the same time we also at-
tribute to damage potential (H) the meaning of total damage
taking into account also the number of affected users.

Risk = f(H, E) (1)

We want to evaluate the total risk of a system composed
by a number of components with different single values of
risk. What is needed is an approach to gathering and man-
aging risks from various subsystems in an organized and
consistent manner.

Our approach consists of three steps:

• At step 1: According to one of the issues of a good
risk analysis we evaluate H and E for every component
taking into account context, architectural and topolog-
ical information. Actually, building a context model is

a useful and effective method to determine the scope of
assessments. We represent the system with a graph.
It is worth notice that H is particularly sensitive to
context information while the exploitability is more
sensitive to the topology of the system.

• At step 2: We introduce the dependencies among
identified vulnerabilities and so we analyze the effect
on H and E. In this case, E changes and H has the
same values of step 1. In this phase exploitability of
each vulnerability influences all dependent vulnerabil-
ities. We design a new graph of dependencies among
vulnerabilities.

• At step 3:The total risk related to each vulnerabil-
ity inside the system is calculated in automatic way,
in agreement with the need explained in [4]. We use
our implementation of an analytic relation, that is ex-
plained in next section. Therefore, once we have iden-
tified a primary set of threats for each component, we
can propagate the risk on the whole system. We take
into account that each vulnerability could be exploited
thanks to the previous exploitation of one of the vul-
nerabilities on which it depends.

So, according to our analysis, the damage potential is sen-
sitive to context architectural and topological information,
because the assets change; instead exploitability changes in
function of dependencies among vulnerabilities. So, it is pos-
sible to separate analysis and monitoring of this two terms.
Our target is to define a method that allows to evaluate
the risk of every component in the system by means of a
deep investigation; taking into account different factors in
incremental way. Actually, step by step new information
is added.In a distributed dynamic system, when two com-
ponents interact to achieve certain functionality there is an
impact on the property, in this case, on the level of risk of
the enclosing system.

2.2 Risk assessment in a complex system
Consider the system depicted in Figure 1. We will use

this simple example to show our approach to risk assess-
ment. The system can be described as a graph S =< C, L >
where C = {P, Q, R} is the set of components and L =
{(P, Q), (Q, R), (R, Q), (R, P)} is the set of links between
components. A number of flaws affecting the software com-
posing the system is know: let’s them form the set F =
{p1, q1, q2, r1, x1, y1, z1, z2}. Components are exposed to the
set of vulnerabilities VC = {(P, p1), (Q, q1), (Q, q2)(R, r1)},
where an element (υ, ν) means that the component υ is sus-
ceptible to be subverted thanks to the flaw ν. Links are
exposed to the set of vulnerabilities VL = {((P, Q), x1),-
((Q, R), z1), ((Q, R), z2), ((R, Q), z1), ((R, Q), z2), ((R, P), y1)},
where an element (υ, ν) means that the link υ is susceptible
to be subverted thanks to the flaw ν. The set of all vul-
nerabilities is V = VC ∪ VL. To ease notation, we denote
element(ν) ∈ C ∪ L the element of S to which the vulnera-
bility ν applies.

Initially, one has to assess how easy and repeatable is to
exploit every single vulnerability to gain control of a com-
ponent or a link in the given architecture. We call this the
exploitability E0(ν) of the vulnerability ν in the system S.

∀ν|(υ, ν) ∈ V assess E0(ν)

ONMLHIJKP

X

����
��

��
��

�

ONMLHIJKQ Z
,,ONMLHIJKR

Y

__?????????

ll

Figure 1: System architecture and flaws

E : V 7→ N

where N is a total ordered set of degrees of exploitabil-
ity; we will use N = {x|0 ≤ x ≤ 10} where 0 means “not
exploitable at all”. This evaluation will be driven by the
knowledge we have about the vulnerability itself and the
constraints the architecture imposes on its exploitability. In
fact, when a component or a link is part of a complex system,
its vulnerabilities are typically more difficult to be exploited
compared to the case when one has the total control of it.

However, the architecture of the system imposes depen-
dencies among vulnerabilities. For example, we need to un-
derstand if it is easier to exploit a vulnerability of a compo-
nent given that an input link attached to it was already com-
promised or a component attached to any of its input links
was already compromised. Dependencies among vulnerabil-
ities can be represented as a new graph G =< V, D >. We
denote with E(α|β) the exploitability of α given that β was
already exploited. The edge (β, α) ∈ D if E(α|β) ≥ E0(α),
i.e., if it is easier to compromise element(α) when one has
compromised element(β)

∀ν, α ∈ V ∧ ν 6= α : assess E(ν|α)

Property 1 (Complexity).
The number of the exploitabilities to assess is ≤ |V |2 In
fact, every vulnerability needs an exploitability evaluation
(|V | figures needed). Moreover, the graph G has at most
|V | · (|V | − 1) edges.

Thus, in general one has to assess |V |2 exploitabilities.
However, most of the vulnerabilities are usually indepen-
dent, and the numbers one has to guess is typically closer
to |V | than |V |2. Moreover, in the following it will be clear
that only ordering is important, i.e. absolute values of ex-
ploitabilities have no meaning: it is only a convenient way
to express the relative easiness of acquiring control of an ele-
ment thanks to one of them. Figure 2 shows an exploitability
assessment for the example system: the dependencies among
|V | = 10 vulnerabilities impose the assessment of 24 ex-
ploitabilities. The assessment depicted in Figure 2 does not
take into account that each vulnerability could be exploited
thanks to the previous exploitation of one of the vulnerabili-
ties on which it depends. Therefore, E0 should be iteratively
updated by considering the easiest (i.e., the maximum) way
of exploiting an incoming vulnerability in the dependencies
graph. In turn each incoming vulnerability could be ex-
ploited by controlling the affected element or leveraging on
the dependency itself: the most difficult (i.e., the minimum)
constraints the value.

E0 E1 E2

p1 6 7 7
q1 5 6 6
q2 2 6 6
r1 6 6 6
x1 2 2 2
y1 9 9 9
z1 3 3 3
z2 6 6 6

Table 1: Exploitability update

∀ν ∈ V, (ν, γ) ∈ D : E(ν) = max(E0(ν), min(E(ν|γ), E(γ)))
(2)

Our methodology consists in iteratively applying the pre-
vious formula for each vulnerability, until the system con-
verge to an equilibrium. Table 1 shows a possible sequence
of iteration and the corresponding equilibrium.

Property 2 (Convergence). At each iteration the ex-
ploitability can only be updated with a greater value. More-
over, it is upper bounded by the maximum value of the in-
coming dependencies edges. Therefore no “oscillations” are
possible and the algorithm always converges.

Property 3 (Order). Only the relative order of ex-
ploitability values is important: in fact, only max and min
operators are used in our formula, and no arithmetical func-
tions are ever applied.

Risk assessment could be effectively used to evaluate de-
sign choices. For example, making links not exploitable at
all (by protecting them with logical and physical defenses)
would virtually change nothing.

3. AN EXAMPLE
In this section we introduce a numerical example based

on an hypothetical Insecure Airlines web site. For the sake
of simplicity we maintain the same simple architecture rep-
resented in fig.1.

According with the new airline scenario, Node P repre-
sents the company web server, node Q represents the database
containing the flights information, and node R is a web ser-
vice that manages the frequent flier accounts. Links X and
Z connect the web server to the database and the frequent
flier services respectively. Link Y allows some automatic
script on the database to update the mileage of a customer
account.

We associate the following vulnerabilities to the system
components:

V1 (node P) SQL injection. An authenticated user can
submit a malicious query that allows him to read or
modify any row in the database.

V2 (node Q) Buffer Overflow. The CGI page that load and
display the flight information copies the flight number
into a small static buffer without checking for possible
buffer overflow.

V3 (node Q) A race condition in a local command allows
an attacker to read any file in the web server machine.

WVUTPQRSz1, 3

6

yy

7

��

6

��

WVUTPQRSq1, 5
7 -- WVUTPQRSr1, 6
5

mm

9

��

6

��
WVUTPQRSp1, 6

6

ii

6

yyWVUTPQRSx1, 2

5

LL

7 -- WVUTPQRSq2, 2

7

LL

WVUTPQRSy1, 9

7

KK

WVUTPQRSz2, 6

5

SS

7

FF

7

99

Figure 2: Dependencies graph among vulnerabilities

V4 (node R) Weak authentication. The access to each fre-
quent flyer account is protected by a numeric PIN of
4 digits.

The threat that a malicious user could sniff1 the traffic
between two components is represented introducing three
more vulnerabilities: V5 (for X link), V6 (for Y link) and V7

(for Z link).
The following table summarizes the dependencies between

each vulnerability:

Vuln. E0 V1 V2 V3 V4 V5 V6 V7

V1 2 - 10 - 10 - -
V2 0 5 - - - - -
V3 0 - 3 - - - -
V4 4 8 - 10 - 7 10
V5 7 - - - - - -
V6 7 - - - - - -
V7 7 - - - - - -

We do not have enough space to justify the choice of every
value in the table, but in order to provide an idea of what
is behind the numbers, we can consider the case of V2. The
second column represents E0(V2), that is the exploitabil-
ity of V2 given that none of the other vulnerabilities have
been previously exploited by the attacker. In our case the
value is zero. In fact, it is not possible for a malicious user
to directly exploit the buffer overflow since the input the
attacker should manipulate comes directly from the flight
repository. For this reason, if the attacker would be able to
insert a malicious row into the database, he could then force
the web server to display that information taking control of
the machine. This dependence is shown in the third column:
E(V2|V1) = 5.

Figure 3 shows the Vulnerability Dependence Graph rep-

1We do not consider spoofing and man-in-the-middle attacks
in order to do not complicate the example.

resentation of our system. Applying our algorithm to the
graph, after a couple of iterations, the system converges to
the following fixed point:

E(V1) = 7
E(V2) = 5
E(V3) = 3
E(V4) = 7
This result can seem obvious due to the simplicity of the

example but in a real scenario that can involve dozen of
components, also for a skilled user can be very difficult to
figure out the solution just looking at the graph.

Anyway, the evaluation of the risk in a distributed en-
vironment is just the first step in a more complicate and
interesting process. In fact, one of the main purpose of our
approach is to allow user to locate, analyze, and compare
the impact of security solutions on the whole system under
analysis.

In the case of Insecure Airlines, a security manager can
propose different solutions in order to mitigate the total risk
of the system. Since security solutions are usually expensive,
it is very important to reduce any possible waste of money.
For this reason the possibility to quickly simulate and ex-
plore the impact of multiple actions allows the user to choose
the right solution in order to guarantee a good security level
according to business requirements.

In our example, the only way to log into the database
is by knowing the password (that is stored into the web
server host). The file containing the password can be read
thanks to the race condition vulnerability present in one of
the programs installed on the host. Suppose the security
manager proposes the following possible solutions:

• Solution A: Update the vulnerable program with a
more secure one.

• Solution B : Fix the buffer overflow vulnerability. So,
no one can have the chance to perform the race condi-
tion attack.

_^]\XYZ[V1, 2

5

xx

8

��

_^]\XYZ[V5, 7
10mm

_^]\XYZ[V2, 0

3

��

_^]\XYZ[V4, 4 _^]\XYZ[V6, 7
7mm

_^]\XYZ[V3, 0

10

LL

10

88

_^]\XYZ[V7, 7

10

KK

Figure 3: Vulnerabilities Dependence Graph

• Solution C : Encrypt the communication between the
web-server and the database to make a sniffing attack
much more difficult.

Translating these three solutions in numbers, the first is
equivalent to setting V3 and its dependencies to zero, the
second to setting V2 and its dependencies to zero, and the
last one to setting V5 to one.

Running again our algorithm in the three different scenar-
ios, we obtain the following results:

Scenario V1 V2 V3 V4

Base 7 5 3 7
Solution A 7 5 0 7
Solution B 7 0 0 7
Solution C 2 2 2 7

The previous table shows that the firs solution does not
affect the rest of the system. The second solution makes the
system more secure since it removes the possibility to exploit
V3. Nevertheless, an attacker can still exploit V1 modifying
the database at his will. The third solution seems the better
one, since it makes very hard to exploit three of the four
initial vulnerabilities.

Of course, in order to decide which one is the best solu-
tion, the exploitability is not the only factor that must be
taken into the account. It is necessary to combine the ex-
ploitability with the damage potential and evaluate in which
scenario the total risk of the system is smaller.

4. RELATED WORKS
Risk, trust, security requirements mapping, component

interdependence, are concepts that are linked together and
have been widely discussed in literature.

Baskerville [3] describes the evolution of different methods
to measure risk that sometimes could be used together to
improve the result accuracy. Even though software security
risk is extensively discussed in risk management method-
ologies [13, 5, 2], among information security experts there
appears to be no agreement regarding the best or the most
appropriate method to assess the probability of computer
incidents [12].

We started our investigation analyzing the STRIDE/DREAD
theory [10] and proposing a simplified way to combine to-
gether the assessment values. We then took into account the
problem of risk aggregation that represents a key point to

enable modular reasoning in distributed environments that
involve multiple and erogenous components.

Software components have received a great deal of inter-
est from both industries and academia as the component
based software development paradigm promises maximum
benefits of component reusability and distributed program-
ming. A software component is independently developed
and delivered as an autonomous unit that can be composed
to become part of a lager application. The component inter-
dependence is often ignored or overlooked [4] leading to in-
correct or imprecise models. In order to avoid this problem,
one must specify more complete models taking into account
interconnections among system components. In agreement
with this point of view [7, 12, 4] presented models for as-
sessing security risks taking into account interdependence
between components.

Even though there is no easy way to assess risks and
choose the damage values, there are various approaches that
provide methodologies by which the risk evaluation can be
made more systematic. In particular,[12] develops a scheme
for probabilistic evaluation of the impact of the security
threats and proposes a system for risk management with
the goal of assessing the expected damages due to attacks
also in terms of the cost. [7] defines security requirements for
transactions and provide mechanisms to measure likelihood
of violation of these requirements. Unlike us, the authors
base the evaluation of risk on transaction traces combining
security requirements, context information and risks pre-
sented by various components. [11] proposes a framework
to characterize compositional security contracts of software
components.

The mismatches of security properties of different compo-
nents may have serious consequences and so exposing secu-
rity properties is very important when different developers
produce different components in a system[9].

At the same time, there is a need to automate the mod-
eling phase in the risk assessment and analysis process. G.
Biswas, K.A. Debelak and K. Kawamura [4] proposed the
use of qualitative modeling techniques based on deriving be-
havior from structural descriptions and causal reasoning to
aid automating and enhancing the risk analysis. Hierarchi-
cal schemes are used for describing component structure and
system functionality is derived from a set of primitive func-
tions and parameters defined for the domain. The authors
want to (1) incorporate uncertainty analysis using proba-
bilistic schemes or belief functions for estimating risk prob-

abilities, and (2) use causal reasoning and qualitative mod-
eling for consequence analysis. We introduced an automatic
evaluation of the total exploitability of each vulnerability
that will then influence the value of total risk. In agreement
to [4] the information computed by the model to calculate
the risk could be used as effect analysis and decisional sup-
port.

5. CONCLUSIONS
Risk analysis of large distributed systems is still a hard

problem for security managers since it requires a perfect
balance of skills, experience, and “black magic” to be solved.

This paper presented a quantitative approach to evaluate
risk in a distributed environments based on the knowledge
of the system architecture and the list of vulnerabilities of
links and components.

The choice of dividing the analysis into three steps sim-
plifies the study of the problem allowing the security de-
signer to acquire and manipulate risk information step by
step in an incremental way. Starting from an architectural
description of the system (in terms of links and components)
we build a Vulnerability Dependencies Graph that empha-
sizes the dependencies among each vulnerability. We then
propose an equilibrium condition that can be iteratively ap-
plied to propagate exploitability values from one node of the
graph to the others.

Even though the number of values that must be initially
assigned to each vulnerability can be fairly high, we strongly
belief that our system simplify the risk analysis process. In
fact, since we never use any arithmetic operation to com-
bine exploitabilities, we only requires (and preserve) that
the initial values respect some kind of ordering criterion.

Finally, our algorithm can be used to automatically evalu-
ate different security solutions, enabling a security manager
to perform a “what if” analysis in order to analyze the im-
pact of a local modification on the security of the whole
system.

We are currently experimenting by applying our approach
on real world examples, in particular focussing on systems
based on web services. In principle, our approach is inde-
pendent from the level of abstraction one uses to analyze a
system, thus we are planning to extend our analysis to the
relationship between hierarchical assessments.

6. REFERENCES
[1] http://msgs.securepoint.com/bugtraq/.

[2] Christopher Alberts, Audree Dorofee, James Stevens,
and Carol Woody. Introduction to the Octave
approach.

[3] Richard Baskerville. Information system security
design methods: Implications for information systems
development. ACM Computing Survey, 25(4):375–412,
1993.

[4] Gautam Biswas, Kenneth A. Debelak, and Kazuhiko
Kawamura. Application of qualitative modelling to
knoweledge-based risk assessment studies. IEA/AIE
’89: Second International Conference on Industrial &
Engineering Applications of Artificial Intelligence &
Expert Systems-ACM, pages 92–101, 1989.

[5] B.Jenkins. Risk analysis helps establish a good
security posture; risk management keeps it that way.
whitepaper, pages 1–16, 1998.

[6] Harvey M. Deitel, Paul J. Deitel, B. DuWaldt, and
L. K. Trees. Web Services: A Technical Introduction.
Prentice Hall, 2002.

[7] Zaid Dwaikat and Francesco Parisi-Presicce. Risky
trust: Risk-based analysis of software system.
Proceedings of the first workshop on Software
Engineering for Secure Systems SESS05.

[8] Network Working Group. Internet security glossary.
http://rfc.net/rfc2828.html, May 2000. Request
for Comments: 2828.

[9] Jun Han and Yuliang Zheng. Security characterization
and integrity assurance for software components and
component based system. 1998 Australasian
Workshop on Software Architectures(AWSA’98), pages
83–87, 1998.

[10] Michael Howard and David Leblanc. Writing secure
Code. Microsoft Press, 2003.

[11] Khaled Khan, Jun Han, and Yuliang Zheng. A
framework for an active interface to characterize
compositional security contracts of software
components. 2001 Australian Software Engineering
Conference (ASWEC01)-IEEE Computer Society
Press, pages 117–126, 2001.

[12] Gunter P. Sharp, Philip H. Enslow, Shamkant B.
Navathe, and Fariborz Farhmand. Managing
vulnerabilities of information system to security
incindets. ACM International Conference:5th
international conference on Electronic commerce,
pages 348–354, 2003.

[13] Thomas Siu. Risk-eye for IT security guy. Gsec, pages
1–20, 2004.

