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Abstract

Existing methods for transporting program code in a type-safe man-
ner either make use of a type-safe virtual machine representation, or
transmit machine code along with a verifiable proof of its safety. High-
level representations sacrifice potential flexibility in the choice of source
languages, whereas low-level representations sacrifice potential porta-
bility in the execution environment. We motivate and describe another
alternative, that of transmitting a recipe for generating a compiler
along with the transported program code.

1 Introduction

In recent years, various ways have been developed for encoding computer
programs so that their safety is insured. The most well-known of these is
the Java Virtual Machine [Gos95], which defines a virtual processor that is
only capable of “safe” operations. Java source programs are compiled into
the language of the Java Virtual Machine for transport to the user’s system.
Once received, a JVM program is verified to insure that it is well-formed,
and then executed, either by interpreting the virtual machine code or by
re-compiling it to native machine code using a Just-In-Time (JIT) compiler.
The Microsoft Intermediate Language (MSIL) virtual machine operates in
a similar manner for C# and other similar languages.

An additional benefit of representing code using a virtual machine is that
the code potentially becomes portable to a number of different platforms.
Code made portable in this manner is sometimes called mobile code.
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There are other methods for insuring the safety of transported programs.
Proof-Carrying Code [Nec98] transports programs in native machine code,
along with a logical proof of their safety (at least partially constructed by
the compiler). The code recipient then checks the proof (in considerably
less time than was required to construct it) before executing the program.
Typed Assembly Language [MCGW98, MWCG99] takes a similar approach,
but uses a framework based on type systems rather than on logical for-
malisms. Shao et al [STSP05] describe another type-theoretic framework
for maintaining safety proofs through the compilation and code transport
process.

Slim Binaries is another approach to solving both the safety problem and
the platform portability problem. Instead of transporting compiled code, a
slim binary program consists of a compressed representation of the original
source program. There are several potential advantages to this approach:

Compression Compressed abstract syntax trees [FHKS02] can be stored
and transmitted using less space than other formats (such as JVM
byte code or compressed JVM byte code).

Guaranteed-valid static semantics Dictionary-based compression meth-
ods operate by maintaining tables of frequently-occurring strings in the
source text, and transmitting dictionary lookup indices instead of the
text itself. When transmitting compressed abstract syntax trees, the
source programming language’s static semantic rules (variable scop-
ing rules, type compatibility rules, and the like) constrain the set of
dictionary entries valid at any given point in the source text. Using
these constraints during dictionary construction, we can insure that
only valid programs (according to the static semantics) can be trans-
mitted. This eliminates the need for a validation step on the receiving
end.

Information for just-in-time compilation Just-In-Time compilation al-
lows program optimization to take into account the current dynamic
behavior of the program, as well as aspects of the specific target ma-
chine (such as architecture variant, cache size, and cache line size) on
which the code will run. If a low-level intermediate language is used
to transmit the program, some information about the program useful
for optimization may require a great deal of effort to reconstruct, and
some may be unavailable. When compressed abstract syntax trees are
transmitted, however, all necessary information can be computed by
the compiler, and preserved for profile-based re-optimization.
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A disadvantage of such a high-level representation is that the implemen-
tation of the compiler or interpreter used by the code consumer is strongly
coupled to the implementation details of the code producer. At the very
least, a code representation based on the original source code is not immune
to changes in the source language. Additionally, dictionary compression
making use of the static semantics makes the code consumer sensitive to
changes in any part of the defined semantics accepted by the source com-
piler; this would make it necessary to redeploy the receiver if the semantics
(and therefore the transmitter) is changed in even minor ways.

While virtual machine code representations are less sensitive to such
changes, they are not immune. Furthermore, while a single virtual machine
representation can be used to express code generated from a number of
different source languages, most virtual machine representation are designed
with a specific language or class of languages in mind. This limits the
suitability of most virtual machine representations for expressing languages
that differ in, for example,

• Strict vs. lazy evaluation

• Object model (single vs. multiple inheritance, class-based or prototype-
based, object methods vs. multi-methods)

• Other type system and object representation aspects (boxed vs. un-
boxed primitive values, etc.)

• Exception-handling model

• Space complexity of tail recursion [Cli98]

These restrictions serve to make most virtual machine representations
into Procrustean beds that limit the efficiency of programs written in lan-
guages that differ significantly from the representation’s anticipated use.

2 Mobile Compilers

One approach to making such systems more flexible is to actually transport
the just-in-time compiler to the client system. This can take a number of
different forms:

Virtual machine extension instructions In this scheme, an ordinary
virtual machine representation is used, with a portion of the virtual
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instruction space left undefined. The meaning of these instructions
is determined by a plug-in extension component for the just-in-time
compiler.

Transportable compiler plug-ins Plug-ins can also be used to perform
the entire just-in-time compilation task. In this case the plug-in is
responsible for the interpretation of the entire stream of transported
code.

Compiler generation Instead of transporting a just-in-time compiler, we
can instead transport a semantic description from which a compiler
can be generated. This idea is the primary topic of this research, and
is explored further below.

3 Firewalling Just-In-Time Compilers

Plug-ins can be a source of unsafe or malicious code, and compiler plug-in
extensions doubly so. In addition to insuring that a just-in-time compiler
plug-in itself does not perform any unsafe operations, it is also necessary
restrict the compiler from generating unsafe or malicious target code when
it compiles the transported program.

The safety of the plug-in itself can be guaranteed by transporting it using
a virtual machine or other safe representation. To ensure the safety of the
generated code, however, it is necessary to firewall the plug-in by treating
its output as potentially unsafe, requiring that it supply a verifiable safety
proof before executing it. One way of doing this is to generate a Proof-
Carrying Code or Typed Assembly Language proof along with the target
object code.

PCC and TAL verifiers are generally smaller and simpler programs than
just-in-time compilers. Therefore, even in situations where the just-in-time
compiler is not transported, this technique can be used to reduce the size of
the trusted computing base (TCB), the set of code that needs to be audited
to ensure confidence in its safety.

4 Semantic Descriptions

Formal semantics makes use of mathematical formalisms to describe the
meaning of computer programs and of computer programming languages.
Formal definitions of programming-language semantics are used as a way for
language designers to unambiguously communicate programming language
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designs to language implementers and users, and for generating language
implementations. They can also be used as part of a formal system for
proving the correctness of programs written in the language.

A large number of programming language semantic frameworks have
been designed, though only a small number of these have had any kind of
widespread practical use. Following Mosses [Mos01], and Zhang and Xu
[ZX04], these frameworks can be roughly categorized as follows:

Operational Semantics Operational semantic frameworks model program
semantics as a set of intermediate states that represent a possible way
for arriving at the program’s result. Given the abstract syntax tree of
a program as the starting state, the rules of an operational semantic
description tell how to transition between intermediate states until the
program terminates.

The best-known variants of operational semantics are Plotkin’s Struc-
tured Operational Semantics (SOS); Kahn’s Natural Semantics (oth-
erwise known as “big-step” operational semantics); and Gurevich’s
Abstract State Machines.

Denotational Semantics Denotational semantic frameworks model the
denotation of programs and parts of programs using abstract math-
ematical functions, often using typed λ-notation. In addition to the
original Scott-Strachey form of denotational semantics, frameworks in
this category also include Bjørner and Jones’s VDM Semantics and
Moggi’s Monadic Semantics.

Axiomatic Semantics Axiomatic semantic frameworks model programs
via boolean formulas asserting constraints. The axiomatic Hoare logic,
Algebraic Semantics, and Dynamic Logic frameworks are generally
considered to be more appropriate for correctness proofs and static
checking than for compiler generation.

Hybrid approaches Various approaches exist that combine two or more of
the above approaches, such as Action Semantics, Algebraic Operational
Semantics, Modular Monadic Semantics, and Modular Monadic Action
Semantics.

5 Action Semantics

Action Semantics [Mos92] was developed by Peter Mosses and David Watt
to be a pragmatically useful language for describing the semantics of “real”
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programming languages. While Action Notation is similar in many ways to
denotational semantics, mapping programs and program fragments to deno-
tations, it makes use of combinators called actions which can be viewed oper-
ationally. Action Notation is more accessible than other semantic notations;
the intent of the designers was to make the same semantic specifications use-
ful to language designers and language implementors, and understandable
by programmers.

Specifications in action notation have been developed for several practi-
cal programming languages, including Pascal [MW93], Standard ML [Wat97b],
and the Java subset JOOS [Wat97a]. Action Semantics was also used in the
definition of ANDF [HT94].

Action notation is designed to be modular, allowing different language
specifications to be composed of common “building-block” modules when
they share common language constructs [DM03].

The original action notation (AN-1) is defined within an algebraic frame-
work known as Unified Algebra [Mos89]. A revised form of the notation,
AN-2, is defined within the Casl [Mos00] algebraic framework.

6 Generating Compilers from Action Notation Spec-
ifications

For our purposes, the most interesting use for formal programming lan-
guage semantics is the automatic generation of language implementations.
In particular, our primary goal is to be able to transport language com-
pilers to target machines by shipping semantic descriptions rather than
executable code. Such semantic descriptions would be completely target
machine-independent, and cannot themselves execute malicious code.1 The
high-level, declarative nature of semantic descriptions would also allow de-
signers of domain-specific and general-purpose programming languages to
use the system part of a “language-design workbench,” allowing them to
prototype the new language semantics without having to develop code gen-
erators.

Previous research projects in the late 1980s to mid 1990s have developed
semantics-directed compiler generators based on Action Semantics.

1Descriptions that amount to “denial-of-service” attacks, where the input program is
transformed into endlessly-growing intermediate forms, may still be possible.
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6.1 Peter Lee’s MESS System

Peter Lee’s MESS system [Lee89] generated a compiler front end and “com-
piler core” from specifications of the context-free syntax and semantics of
a programming language. The semantic framework used, called high-level
semantics, was developed by Pleban and Lee [LP87] in order to overcome
various shortcomings of traditional denotational semantics. Inspired by the
approach taken by action semantics, high-level semantics divides the seman-
tic specification into macro-semantic and micro-semantic levels, with the
micro-semantic specification serving to define the semantics of the macro-
semantics. Differing micro-semantic specifications (with the same interface
signature) could be used to generate compilers producing various low-level
codes (which could then be interpreted), or used to construct a code gener-
ator.

6.2 Jens Palsberg’s Cantor System

Jens Palsberg’s Cantor system [Pal92] generates a compiler (generating
SPARC assembly code) from a programming language specification in action
notation. The Cantor compiler generator, written in Perl, read a language
specification (in a LATEX-syntax form of action notation) and generated a
compiler (as a Scheme program) that accepted an abstract syntax tree as
a Scheme S-expression, expanded the program into an action denotation,
and generated assembly code from the denotation. Run-time speed of the
generated code was about two orders of magnitude slower than that of an
ordinary compiler.

The correctness of the entire system was proven (by hand) within the
Unified Algebras framework.

6.3 Bondorf and Palsberg’s System

Bondorf and Palsberg [BP93] developed a compiler for actions using the
first Futamura projection, applying a partial evaluator (Similix) to specialize
an interpreter for program denotations in action notation. This yielded a
compiler which took an expanded action (the result of applying a language
specification to an abstract syntax tree) to produce compiled output in the
form of a Scheme program. The compile time of compilers generated this
system was considerably better than that of Cantor, though the generation
of the compiler took much longer. Performance of the generated code was
comparable to that of Cantor output.
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6.4 Peter Ørbæk’s Oasis System

Peter Ørbæk’s Oasis system [Ørb93, Ørb94] was designed as an improve-
ment over Palsberg’s Cantor. While similar in structure, Oasis incor-
porated additional analysis phases to annotate the expanded actions and
enable the code generator to produce more efficient code. As a result, the
execution time of the generated code was within a factor of 1.7 compared
to the output of gcc (without optimizations).

6.5 Kyung-Goo Doh’s Transformation

In [Doh95], Kyung-Goo Doh describes a two-level type analysis which can
be used to determine what parts of an action can be statically determined
at compile time. This analysis can be used to partially evaluate language
specifications, eliminating unnecessary actions from the output of generated
compilers.

6.6 Brown, Moura, and Watt’s Actress System

The Actress system [BMW92, MW94, Bro92] consists of a number of mod-
ules for analyzing actions, performing transformations on them, and gener-
ating C code. The transformations implemented by Actress are said to be
better at eliminating unnecessary transient values and bindings than Doh’s
method. Run-time performance of Actress output is not as good as that of
Oasis-generated programs, largely because it does not incorporate the same
degree of traditional optimizations specifically geared towards generation of
efficient code.

6.7 Kent Lee’s Genesis system

Kent Lee’s Genesis compiler generator [Lee00, Lee99] has a similar structure
to the other systems. Before generating code, Genesis compilers transform
the action denotation intermediate representation into a subset of full action
notation called postfix actions which more closely matches the characteristics
of a stack machine or RISC architecture. The result of this transformation
is used to generate JVM byte codes.

7 Research Program

As outlined above, the overall goals of this research program are to make
possible a mobile code transport system that:
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• Transports programs in a compressed source format, but does not
require redeployment when the source language evolves.

• Does not “ghettoize” languages that are not close matches to the ones
in the narrow design space for which it was designed.

• Preserves a guarantee of type safety for compiled programs.

Towards that end, it will concentrate on the following areas.

7.1 Automatic Compressed AST Generation

For the most part, compiler generation from semantic definitions is con-
cerned with implementing the dynamic semantics of a language, i.e., mod-
eling the computation of the program. However, semantic frameworks such
as action notation are also capable of expressing static (compile-time) se-
mantics. Doh and Schmidt [DS92] discuss a method for extracting static
type inference rules from an action semantic specification. Watt’s seman-
tic specification of Standard ML [Wat99] includes both static and dynamic
semantics.

The inclusion of static semantics in a language specification and the
automatic extraction of typing rules from such a specification can be applied
to the problem of keeping the producer and consumer of compressed abstract
syntax trees synchronized. If the AST encoder, decoder, and compiler are
generated from the same semantic definition it can be assured that they will
always construct the same compression dictionaries on the transmitting and
receiving ends.

7.2 Generation of Just-In-Time Compilers

As discussed above, previous work [Ørb93, MW94, Lee99] has demonstrated
the implementation of various optimizations and transformations on pro-
grams represented as action denotations. The research program will inves-
tigate which of these transformations are cost-effective in the context of a
just-in-time compiler, and identify others. It will also identify transforma-
tions that can be performed as the JIT compiler is being generated, rather
than during the compilation of generated programs.

7.3 Preservation of Type Safety Proof Information

It is anticipated that a mobile code transport system and JIT compiler
based on semantics-based compiler generation will require a large trusted
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code base, potentially larger than that of common JIT compilers for the
Java Virtual Machine [AW02]. The research program will investigate tech-
niques for generating and preserving type safety proof information in the
generated just-in-time compilers, allowing the use of a “JIT compiler fire-
wall” to minimize the size of the TCB.

7.4 Representation Level Transformations

Because the meaning of the transported code is determined by the associated
semantic description, the representation can be used to express the entire
continuum of high-level to low-level representations. This means that an
offline tool could, for example, take a program in a high-level language
(along with a semantic specification of the language in which it is written)
and produce a pre-optimized low-level representation of the program, along
with a new semantic description for the low-level language used.
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