Exploiting Task Delays for Uncheatable Grid Computing

Wenliang Du Michael T. Goodrich Ankur Kasturiya

Abstract

We study the problem of protecting distributed grid compate from the abuses of “lazy” partic-
ipants, who wish to be rewarded for tasks they receive buémaetually perform. Unlike previous
techniques, which rely heavily on having the computatisajservisor perform a significant amount of
the work or inefficiently replicate the tasks, our approaels fow computational overhead for the super-
visor and the participants. We achieve this improvementitiging a new paradigm in uncheatable grid
computing—exploiting the delays that exist between vamounds in a grid computation. In addition,
the main idea of one of our utilizations of this paraidgm ntighfirst seem counter-intuitive—we have
the participants check each other’s work. A naive impleigon of this approach would, of course, be
susceptible to collusion attacks, but we show that by, adgfficient solutions to the parallel proces-
sor diagnosis problem, we can tolerate collusions of lazatérs, even if the number of such cheaters
is a fraction of the total number of participants. In addii®o introducing this new framework for
uncheatable grid computing, we also introduce a humber of clgecking methods that can be used to
verify if participants do all of their work.

1 Introduction

One of the great success stories of modern distributed gsoagis grid computing, where a supervi-
sor distributes a large set of parallel tasks to a commuriipadicipants, who perform those tasks on
behalf of the supervisor and send back the results. Examptesdie SETI@home [1], which claims
over five million participants who have collectively perioed over 1.5 billion tasks aimed at finding in-
telligent patterns in extraterrestrial signals, and thsted.net, which claims over 300,000 participants
who have collectively searched over 68 billion blocks ohaptext to perform brute-force inversions of
cryptographic algorithms.

The participants in grid computing environments are tylpjaewarded with credits, points, cyber-
cash, or some other kind of recognition. For example, SET@d posts the pseudonyms of the top
1000 users and distributed.net lists on a daily basis thd@@pparticipants and teams. Unfortunately,
even with modest recognitions such as these, grid compuatathust deal with cheating users. Indeed,

*Department of Electrical Engineering and Computer ScieBgeacuse University. Emaiedu(at) ecs. syr. edu.

tDepartment of Computer Science, University of Califorhigine. Email:goodr i ch(at)acm org.

iDepartment of Electrical Engineering and Computer Scien@yracuse University. Email: akas-
turi(at)mail box. syr. edu.

the team leader for SETI@home is quoted [9] as saying thatpghgect spends half of their resources
dealing with cheaters, who comprise roughly 1% of their sis€or example, he mentioned that some
users have modified the SETI@home software to make it loakthley have performed more work
than they actually did. The problem of dealing with such tingausers becomes even more serious, of
course, when the rewards for participation become moreahbng

This paper is therefore directed at the problem of protgagind computations from cheating users
who wish to be rewarded for tasks they do not perform (or perimcompletely). This problem, known
as uncheatable grid computing, has been studied recensigMgyal researchers [5—7,12], and we review
their contributions in the next section. Roughly speakthg,previous approaches have relied either on
replicating tasks, which adds a significant multiplicatiwerhead for the participants (SETI@home uses
this technique), or on having the supervisor check commusithimself, which requires the supervisor
to perform a significant fraction of the tasks.

Our approach takes a radical departure from the previousappes, in that it is based on a new
paradigm, which has to date not been utilized in mechanisndaling with lazy cheaters—we exploit
the delays that are inherantly a part of grid computing @mrirents. Specifically, in this paper, we show
how to exploit grid-computing delays as follows: (i) we poge a parallel fault diagnosis approach,
which allows participants to verify each other over a seoesounds in the grid computation; (i) we
present an improved redundancy scheme to achieve a higeedefyresilience against collusion.

By utilizing the new paradigm of exploiting grid delays, we able to simultaneously achieve im-
proved security and lower overheads for the computatioersigor. This approach matches paradigms
established in program verification, for example, sincéfyieg a computation is much more efficient
than performing the computation itself. For instance, ia Hamiltonian cycle problem, verifying
whether a cycle is a Hamiltonian cycle is much faster thanirioppéh Hamiltonian cycle. For these
computations, replicating tasks to defeat cheating is den@sSCPU cycles. The old paradigm for grid
computation verification is that the supervisor condudtthalverification. Although each such verifica-
tion might be efficient, the overall cost might be very higledngse the supervisor must verify the results
from all computations of all the participants. To reduce alierhead for the supervisor in cases where
verification costs are significant, we apply a paradigm thgthimat first seem counter-intuitive—we
have the participants check each other’'s work. Nevertbglgsadapting solutions to parallel fault diag-
nosis, we show that we can efficiently tolerate up to a cons$taction of cheating users, even if these
users collude. To implement this approach, we take advardfg feature of grid computing that was
not utilized in previous work on uncheatable grid computingmely, that massive grid computations
are performed in a pipelined fashion in a series of roundsisTprovided that our checking algorithms
use few rounds, we can mix in the checking steps for previaslsstwith the specifications of new tasks,
thereby achieving low computational overheads for allipartThe challenge, of course, is coming up
with schemes that use few rounds (ours use fewer than 10).

For computations whose verification is as expensive as mgdbie computations, the parallel fault
diagnosis approach might be less efficient than the simplen@ancy approach, namely assigning mul-
tiple copies of a same task to different participants. Uifioately, redundancy approaches are subject
to collusion attacks. That is, if a group of cheating papeits are assigned all the copies of the same
task, they can still cheat on this task. But, here again, dweapproach of utilizing delays can improve
security and efficiency, for we propose a delay mechanisngtofeeantly reduce the damage caused by
collusion, thereby using pipelining to improve the effiagmof the redundancy approach.

2 Related Work

As mentioned above, there is a growing interest in solutionsicheatable grid computing [5-7,12],
where the challenge is to construct grid computing prowtuht defend against participants claiming
credits for the work they have not done.

For defeating such “lazy” cheaters, Golle and Mironov psgzban interestingnger scheme [6],
which is restricted to problems that involve the inversiém @ne-way function (IOWF). In their basic
ringer scheme, during the initialization stage, the suigervandomly selects several inputsfrom a
participant’s domainD. These inputs are callethgers and they are kept secret with the supervisor.
The supervisor then computaager imagesfor eachz;, that is, evaluations of the one-way function,
f(z;), on these inputs. Then, in addition to assigning the gridmating tasks inD, the supervisor also
assigns the ringer images to the participant. Not only deeparticipant need to compufeon z for all
x € D and return the results of interest, she also has to retuthalingers corresponding to the pre-
computed ringer images. The supervisor then verifies whétieeparticipant has found all the ringers
assigned to her or not. If yes, then the supervisor is assuitbdhigh probability that the participant has
indeed conducted all the computations. Golle and Miron@naent their basic ringer scheme in several
ways, including the introduction of bogus-ringers, whiem@revent the participant from knowing the
total number of ringers planted and magic sets, which caveptelirect images from being sent to the
participant. Each of these new schemes adds a new leveluityebut they are still restricted to IOWF
computations.

Szada, Lawson, and Owen extend the ringer scheme to deabthigh general classes of computa-
tions, including optimization and Monte Carlo simulatigh2]. They propose effective ways to choose
ringers for those computations. Itis still unknown whettierschemes proposed in [12] can be extended
further to generic computations, however, as their consbms are not generic.

Du et al.[5] propose a different approach to achieve uncheatahdiecgrnputing. In their scheme, the
supervisor randomly selects and verifies some samples fretask domair assigned to a participant.
To prevent the participant from cheating on those samglegarticipant must commit her computation
results before being checked. A commitment-based samgtingme based on Merkle tree is proposed
in [5]. This approach has the advantage of being generigt plaices a significant computational burden
on the supervisor in addition to his management role, sindkis scheme he must redo some of each
participant’s tasks himself.

Finally, another approach for uncheatable grid computng idouble-check computation results by
simply having other participants redo them entirely. Tkishe method used by SETI@home, for ex-
ample, to deal with cheating users [9]. Golle and Stubbkelpi} proposed a more efficient scheme
based on using probabilistic redundant execution to implerthis approach. Their scheme assumes
that all computations occur in a single round, however; betiey do not take advantage of additional
improvements that might be possible using pipelining.

There are also some alternative ways to defeat cheatinghwlave not been specifically addressed in
the literature. For example, one method would be to use tenegestant software. In this case, a code
obfuscater would be used to convert task programs to egumt/pfograms that are much harder to under-
stand and reverse-engineer. Thus, it would become harddbcious attackers to modify the program
to accomplish what he wants. Nevertheless, the tampestaesiapproach is only heuristically secure,
and many tamper-resistant schemes cannot withstand siftack really determined attackers [10], in-
cluding groups of colluding cheaters.

The problem of uncheatable grid computing is close to amdibdy of literature: the problem of
dealing with malicious hosts in the study of mobile agen® [I7]. Several practical solutions have
been proposed for this related problem, which include remaoditing [10, 13], code obfuscation with
timing constraints [8], computing with encrypted functsdi 1], replication and voting [16]. The major
difference between the mobile-agent work and our grid-aaimg work is the threat model. The mobile-
agent work assumes a general, malicious cheater—a malibiost can do whatever it takes to cheat,
including spending more CPU cycles than the honest behdaiancheatable grid computing, however,
we are presented with a different threat model, since itreional for a “lazy” participant in a grid
computation to cheat with a cost more expensive than theshbedavior.

In addition to the methods cited above, there are cryptdgeapotocols, such as Private Information
Retrieval (PIR) [4] and Probabilistically Checkable P¢@PCP) [15], that can also be used to achieve
uncheatable grid computing. Although such heavy machioanyprovide possible theoretical uncheat-
able grid computing constructions, their expensive compan costs make them inappropriate choices
for grid computing in practice.

3 Problem Definition

We consider a grid computing model in whightrusted participantare taking part. The computation
is organized by aupervisor Formally, such computations are defined in our model by ttieviing
elements [5]:

e A task function f : X — T defined on a finite domain.X. The goal of the computation is to
evaluatef on allz € X. For the purpose of distributing the computation, the super partitions
X into subsets. The evaluation ffon subse is assigned to participaint

e A screener functionS. The screener is a function that takes as input a pair of the {@(z); y)
for x € X, and returns a string = S(f(z);y), wherey represents the criteriort is intended to
screen for “valuable” outputs gf that are reported to the supervisor by means of the string

In addition, in this paper we assume the existence of theviatig:

e A checker function C'. The checker is a function that takes as input a stsitigat was returned
from the screener function applied to each elemeantthe domainD for some participant. It also
takes as input a description &f and a certificate that provides additional information on how
the values ins should be tested (e.gz,could be the set of ringers fdp). It returns a good/bad
label for the input task.

If the checker function is light-weighted, it can be evaadhtit the supervisor side; however, if the
checker function is also computation intensive, we migbb avant to out-source it to the grid partici-
pants. In this paper, we have provided solutions to addmtsdituations.

3.1 Models of Cheating
A participant can choose to cheat for a variety of reasons. céfegorize the cheating using the

following. We assume that each participant is given a doniain X, and her task is to compuféx)
for all z € D. From now on, we us® as the domain of for the participant.

4

e Lazy Cheating Modelin this model, the participant follows the supervisor’'s g@utations with
one exception: for: € D C D, the participant useg(z) as the result off (). Functionf is
usually much less expensive than functinfor instance,f can be a random guess. In other
words, the participant does not compute the required fangtion inputsz € D. The goal of
the cheating participant in this model is to reduce the arhoficomputations, such that it can
maximize its gain by “performing” more tasks during the sgmaod of time. If the participants
are getting paid, the cheating participant might be guidgdhle lure of money. This type of
cheating behavior is a cheating on the task funcfion

To maximize their gains, rational cheaters tend to use nahgust to falsify the contributions they
have never made. Their behaviors fall into the lazy cheatingel. In this paper, we focus exclusively
on detecting théazy cheatingparticipants.

4 Checking Grid Computations in Pipelined Rounds

In this section, we describe how to extend the parallel fdialgnosis approach of Beiget al. [2, 3]
to uncheatable grid computing. Throughout this sectionassime that tasks can be provided with a
checker function for other tasks, which is computationalfigier than performing the task itself.

In the parallel fault diagnosis problem, we are given a set pfocessors, each of which is either
“good” or “bad.” In a single round, a processor can test agofitocessor or be tested itself by another
processor. If a good processor tests another processoitettly returns to a central supervisor whether
the tested processor is good or bad. On the other hand, if prloaessor tests another processor, it
returns an arbitrary (or even deliberately false) iderdtfan of the other processor as being good or
bad. The fault diagnosis problem is to determine all the goatibad processors using a small number
of parallel testing rounds, assuming that there are fewamti2 bad processors (the problem cannot be
solved if there are more than this many bad processors).

We can easily adapt any solution to the parallel fault disghproblem to the problem of checking
the results from a grid computation performed/byparticipants. After a preprocessing round, which
distributes the tasks to the participants and receives their results, we can then simtiee parallel
fault tolerance algorithm by replacing each test of a pregesby a processo) with a test of the
task of participant by a participantj using the checker function for this task. For example, the 10
round algorithm of Beigegt al.[2] immediately translates into a 10-round checking alidponi (after the
preprocessing round that commits the results of the tasks).

There are some improvements that we can make to this apprbaatever, for uncheatable grid
computing. First, in any round, we can allow a participarto test another task even if j’'s task
is also being tested in that round (such tests are not allowée parallel fault diagnosis problem).
This observation lets us immediately reduce the numberwifds in our simulation to 9, since the first
round in the algorithm of Beigedt al. involves the symmetric testing af/2 pairs of processors (which
requires two rounds in their algorithm but only one in ourgliation). Even so, this simulation algorithm
is probabilistic and only guaranteed to succeed with higibability if n is very large. Thus, we would
like to reduce further the number of rounds and make thisrdlgo more practical. To achieve these
goals, let us make a simplifying assumption, which is wetitivated for grid computing but not for
parallel fault diagnosis: namely, let us assume that thebaurof cheating participants is much less
thann /2. The motivation for this assumption is that the pipelinetureof grid computing allows the

supervisor to prune away cheating participants as sooregstle discovered (by our testing algorithm);
hence, itis unlikely for large numbers of cheaters to be éghd (since most of them would have to be
recent joiners).

To design an efficient grid computing testing scheme, wézatthe following lemma from Beigedt
al.

Lemma 1 ([2]) LetG = (V, E) be a graph om vertices. Let) < A,y < 1. Suppose, for every pair of
subsetsd and B of V such thatd N B = (), |A| + | B| = An, and|A|, | B| < 1£2\n, that there are edges
in E directed fromA to B and B to A. ThenG induces a strongly connected component of sizeon
any subgraph with\n vertices.

This lemma may at first seem obscure, but it is useful for prgwhe following theorem, which
extends a theorem from the earlier work of Beigedl. [3].

Theorem 1 LetV be a set ofi vertices, and leb < v, A < 1. LetH,; = (V, E) be a graph defined by the
union ofd independent randomly-chosen Hamiltonian pathd/o(with all such cycles equally likely).
Then, for all subset8/ of VV of An vertices,H, induces at least one strongly connected component on
W of size greater than An, with probability at least

1— en[(l+)\) In2+d(alna+B1In S—(1—-X) In(1-X))]+0(1)

)

wherea =1 — 2 andg = 1 — 2,

Proof. The proofis an adaptation and correction of a proof of a wetileorem from Beigadt al.[3]. By
Lemma 1, it is sufficient to show that with the exponentiatyadl probability mentioned in Theorem 1,
there is a subsét’ of IV of size \n that has a partitioA, B), with |A|, |B| < ”TU\n, such that there is
no edge fromA or B or no edge fromB to A. Let us consider first the probability that there is no edge
from A to B (as the other case is identical). Beiglal. [3] show that, for a single randomly-chosen
Hamiltonian path/Y on V' (and two disjoint subsetd and B of V), the probability that there is no edge
from Ato B is

(n —[A])!(n — |B])!

nl(n —[A] =[B!

Thus, the probability that there is no edge frento B or no edge fronB to A in H, is at most

(n — |AD!(n — | B\
2(wl(n — A — |5) |

There are at mot* choices forl} and at mos2*" possible ways of partitioning’ into subsetsi and

B (actually, there are fewer, but these bounds will sufficeolar purposes). Thus, the probability that
there is a subséV’ of An vertices that has a partitiqd, B), with |A|, | B| < 122 \n, such that there is
no edge fromA or B or no edge fromB to A is at most

(At ((n — | ADY(n - |B|>!>d
al(n —JA[=[B!) -

This is maximized whem — |A| = an andn — |B| = (n. Applying Stirling’s formula, we can bound
this probability by
nl(142) In2+d(a In a5 1n B—(1-X) In(1=A)]+0(1)

Applying this to our testing problem, we need to set the patens so that we are guaranteed to have
at least\n good testers, for using a graphy for sufficiently larged will guarantee with high probability
that the subgraph of good testers will induce a strongly eoted component of size at leastn. For
example, we have the following:

Corollary 1 If n > 20,y = 1/2, A\ = 7/8, andd = 8, then any subset df’/8)n vertices induces a
strongly connected subgraph &f; of size(7/16)n with probability at least

—n

1—e

That is, it is very unlikely that we will not have a stronglyretected subgraph of the required size. If
we can safely assume that the number of cheating partigpsiat most 10% of the total (which is ten
times higher than the SETI@home experience), then we cathisseorollary to design the following
five-round testing strategy:

1. Pair up participants and have them test each other. Risoanow any pairs that have an identified
bad test (for one of them must be bad). The remaining paird sach consist of two good
participants or two bad ones.

2. Pair up pairs of participants from the first round and h#neart test each other with one test per
participant. Discard for now any groups that have an idextibad test (for two of the four must
be bad).

3. Pair up groups of participants from the previous roundtzae them test each other. Discard for
now any super-groups that have an identified bad test (sinreof the eight must be bad). Lat
be the number of super-groups.

4. Note that there can be at mast discarded nodes; henc¥, > (n —n/5)/8 = n/10. Moreover,
since each super-group has all good nodes or all bad no@esythber of all bad super-groups is
at mostn /80 < N/8. Apply the Hg strategy to the super-groups, using Corollary 1. This tesul
a strongly connected component (which must be all good nadesze at least7/16) N, which is
atleast7/16)(n/10)8 = (7/20)n. Moreover, there are at mo$t/16) N unresolved super-groups,
which is at most9/128)n super-groups.

5. Split the(7/20)n proven good nodes into two groups: one group of size= (4/20)n, which is
sufficient to have each test a discarded node, and anothgy gfsize(3/20)n, which is sufficient
to have each test a representative member of an unresolpedgroup (sincg/20 = 9/60 >
9/128).

Thus, we can test theresults from our participants in five rounds, even if 10% einthare colluding
lazy cheaters. If we can further assume that at most 5% of adicjpants are cheaters, then we can
further improve our protocol to just have three rounds (th@va method would require at least 4 rounds
even in this case). Our method is based on an adaptation girduement of a protocol of Beigeit
al. [2]. Our algorithm is also based on the following corollaoylthereom 1.

7

Corollary 2 If v = 7/15, A\ = 15/16, d = 4, andn > 20, then any subgraph dfi5/16)n vertices of a
random graphH, induces a strongly connected component of §iZé6)n with probability at least

1—d™4,
We use this corollary to prove the following protocol worksectly with high probability.

1. Divide the input nodes inta/4 directed cycles ot nodes each, and in one round have each node
test the next one in the cycle. Discard for now all the nodemincycle with a detected bad node
(there can be at mogt/20 = n/5 such discarded nodes. L&t > (n — n/5)/4 = n/5 denote
the remaining cycles, which we view as super-nodes, sindbeatemaining cycles each consist
entirely of good nodes or of bad nodes.

2. There can be at mogt/20)/4 = n/80 such all-bad cycles, that is, at mésy/80 = N/16 bad
super-nodes. Apply the tests dictated by a rand®dnmn one round, viewing théV super-nodes
as the nodes irH,. Note that the number of bad super-nodes is small enoughsfoo apply
Corollary 2 to show that, with high probability, there wileta strongly connected component
of (7/16)N super-nodes (which must necessarily be all good). That ésywll have at most
(9/16)N < (9/16)n/4 = (9/64)n super-nodes whose classification may be in doubt.

3. Note that at this point there are at le@at16)4N > (7/4)n/5 = (7/20)n identified good nodes.
Divide these nodes into two groups: one group of sizé = (4/20)n nodes, which are used in
one round to test the previously-discarded nodes, and angtbup of(3/20)n = (9/60)n nodes,
each of which can test a single super-node in one round (8jfite> 9/64).

Thus, we can test all the tasks in three rounds if there are at most 5% bad particigartieh is five
times the SETI@home experience), assuming we have anieffettecker function. We discuss some
possible checker functions below.

5 A Redundancy Scheme with Delays

In this section, we describe how to use pipelining to imprawe efficiency of redundancy-based
uncheatable grid computing schemes.

5.1 The Naive Redundancy Approach

The naive redundancy approach is to replicate thetesksw times. Then the supervisor randomly
distributes and assigns thesen tasks to participants Golle and Stubblebine studied this naive redun-
dancy approach in [7]. We briefly review their results of tlave redundancy approach. The goal of
this paper is to improve this approach and further reduceatineber of corrupted tasks.

Assume there are: participants and: of them are colluding. We say that a taskcruptedif all
the copies of this task is assigned to the colluding group.X_.&e a random variable representing the
number of corrupted tasks. Lgt= % andp is the probability that a copy of task is assigned to these
k colluding participants. Thereforg” is the probability that all thes copies of a task is assigned to the

it is better to make sure that none participant is assigne® than one copies of the same task. However, with such a
constraint, the analysis becomes much more complicateztetdre, we will not include this constraint in our analysis

8

colluding participants. Hence, the probabilih#/(X = a)) that exactlya tasks are assigned to these
colluding participants is the following:

n a w\n—a
Pr(X =a) = <a>pw (L—p")" . 1)
SincePr(X = a) is the binomial distribution with the parameteandp®, the expected value is

k
Expected Damage np” = n(—)".
m
To simplify the discussion, we let = 2 in the rest of discussion, i.e., each task will be conducted b

two different participants. Our results can be generaltpad > 2.
5.2 The Scheme with Delays

To reduce the damage, the supervisor does not assign bosaofpa task at the same time, he
delays the assignment of the second copies until some ipartis have submitted their tasks. The task
assignment is divided into the following two stages:

1. During the first stage the first copies of the tasks are asditp the participants. The colluding
group cannot corrupt any task during this stage, becaugenael copy of all the tasks is assigned,
and the participants do not have any common tasks. If a grogplluders decide to cheat on
some task, they can succeed only if the second copy of the &mkare also assigned to them.
The probability of succeeding in cheating ortasks isp”. Sincep is usually small, a large
makes the probability approaching zero.

2. Inthe second stage the supervisor assigns the secore@dpasks to only those participants who
have completed the assigned tasks and who have alreadyesérihle results. The supervisor does
not assign the second set of tasks as soon as the particgrals the results. The supervisor waits
for d participants to complete their first set of tasks and theigasghe second set of tasks to
thesed participants. Thigl parameter is known as the delay parameter. After the firstydeé.,
the supervisor has assigned the first set of the second coihe dasks to the first group of
participants, and the supervisor again waits for next gedupparticipants to submit their results.

Thus, to reduce the cheating damage, the supervisor caasethe delay parameter. However, the
bigger thed is, the more time participants needs to spend on waitingt iBh#here is a tradeoff. We
study the relationship betwee@rand the damage of cheating below.

5.3 Analysis

We can analyze the probability of cheating of the above maeti scheme. We assume that the total
number of the participants are; the number of participants colluding in theseparticipants is:; each
participant is assigned same amount of tasks. We also agbatattackers will only cheat if they see
both copies of a task, i.e., they will not gamble.

Theorem 2 If the attackers can only get the second copies after at léasthem have submitted their
first copies, the expected damage for the collusiondrticipants is the following:

k(k — d)n

Expected Damage
2m?

2)
Proof. During the first stage, the probability of a task being assihto the colluding participants is
p1 = % as we have a group éfcolluders among the: participants.

Suppose we have totablelay periodspD;y, . .., D,, in the complete assignment of the second copy of
all the tasks, i.ek = t x d. The second copy of a particular task could be assigned at@abeset
delay periods, with the same probabili}ty

Assume that the second copy of a té&ls selected to be assigned in the delay peribdd_et P(D;)
represents the probability theitcan be corrupted given that the first copylbis already assigned to the
colluding group and the second copy is assigned at the delxydy);. In the naive scheme, once both
copies are assigned to the colluders, this task is corruptedever, in our scheme, the first copy of task
U might have already been finished because it might belongoseth d participants who have already
submitted their results. In this situation, the colludessmmot cheat o/ based on our non-gambling
assumptioh Therefore,U must belong to those un-submitted tasks that are assigrtée tolluding
group, its probability is

Since the second copy of tagkcan be assigned at any delay peribg fori = 1,...,t¢ with the
same probability, the total probability th&t can be corrupted given that the first copylbis already
assigned to the colluding group is

p = F(PDY+ ...+ P(D)
1 k-d k—td
= ¥<T+"'+T)'
 k—d
T 2m

The probability for a particular event to get corrupted vebiliien be the following:

k(k —d)
P = pPr1xp2= Tom?
Therefore, the expected damage is
Expected Damage np = M;d)
2m

10

T T
=== Naive Scheme

Ratio of Corrupted Tasks

o 13 o o o

@ = & > 3
T

o
N

o
-
T
\

o

7 | . ;
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ratio of Colluding Participants (k/m)

Figure 1. Expected Damage (n = 1000 and m = 50)

We compare the results of our scheme with the naive redugdsrieme in Figure 1. Our scheme
improves the naive redundancy scheme. Even with 1, the expected damage is cut to half compared
to the naive scheme. This is because we are decreasing tHeenofrcolluders who can corrupt tasks
after each delay.

From the figure, we know the larger the valuelpthe fewer the number of tasks that can be corrupted.
However, in practice, making the delay exactlis not easy, because the supervisor cannot distinguish
who is a cheater and who is not. For the supervisor, it cosdaictew round of task assignment once
it receives accomplished tasks frafrparticipants. If thesé participants are all honest, then this as-
signment is safe. However, it is possible that only one ofpthticipants is cheater; this means, to the
cheaters, the effective delay period is jushotd. Therefore, to maximize their damage (i.e., forcing
the effective delay to be), the cheaters can adopt a slow strategy, hoping the hoadstipants can
contribute to the othet — 1.

However, the economic gain of the above strategy is und#siraA participant’s economic gain is
decided by the number of tasks it can perform for the superviff in order to cheat, a participant
lowers its task processing rate, the amount of economicsdeom the same supervisor is reduced. This
might contradict to the motivation of the cheating. Furthere, the supervisor can rank the participants
based on their response time. Such ranking can be used fgniagstasks and payment. Thus, it is
disadvantageous for participants to intentionally waitlémger period of time.

In many situations, the number of taskss significantly large, and it takes long time to even finish
assigning the first copy of a task. Therefore, once a paantifinishes its assigned tasks, it will be
assigned new tasks (still the first copy), rather than thersicopy of the old tasks. This way, the delay
factord can be so large that the dishonest participants lose thatiies to cheat.

6 Conclusion and Future Work

We have shown how to use pipelining to allow participantsgnid computation to check each other’s
work, even in the presence of arbitrary collusion among td@maters (provided the number of cheaters

2Before the second copy &f is assigned, cheating dn is risky, because the second copy might not be assignedsto thi
group.

11

is not too high). We have also shown how to use pipelining tprove redundancy-based uncheatable
grid computing schemes.

There are many directions for future work. For example, itlddoe interesting to design learning
models and probabilistic weights to score participantshairtlikelihood of cheating and then tailor
uncheatable grid computing schemes to these scores. Swagperach may help us improve collusion
resistance further. Likewise, this paper is just a first steghowing how to exploit delays in grid
computations to improve security and efficiency. We woultcgmate that there are many new ideas
that could be combined with this paradigm to achieve adugtioesults in uncheatable grid computing
specifically and in other computer security applicationsertwroadly.

References

[1] SETI@Home: The Search for Extraterrestrial IntelligeriProject. University of California, Berkeley. Avail-
able: http://setiathome.berkeley.edu/.

[2] R. Beigel, W. Hurwood, and N. Kahale. Fault diagnosis iftagh. InIEEE Symposium on Foundations of
Computer Science (FOCS$)ages 571-580, 1995.

[3] R. Beigel, G. Margulis, and D. A. Spielman. Fault diagisds a small constant number of parallel testing
rounds. INACM Symposium on Parallel Algorithms and ArchitecturesA@Ppages 21-29, 1993.

[4] C. Cachin, S. Micali, and M. Stadler. Computationallyvpte information retrieval with polylogarithmic
communicationLecture Notes in Computer Sciend®92:402-414, 1999.

[5] W. Du, J. Jia, M. Mangal, and M. Murugesan. Uncheatabid gomputing. InThe 24th International
Conference on Distributed Computing Systems (ICDCSiteges 4-11, Tokyo, Japan, March 23-26 2004.

[6] P. Golle and I. Mironov. Uncheatable distributed constiains. Lecture Notes in Computer Science
2020:425-440, 2001.

[7] P. Golle and S. Stubblebine. Secure distributed computh a commercial environment. In P. Syverson,
editor, Proceedings of Financial Crypto 200%olume 2339 of_ecture Notes in Computer Sciengages
289-304. Springer-Verlag, 2001.

[8] F. Hohl. Time limited blackbox security: Protecting migbagents from malicious hostMobile Agents and
Security, Lecture Notes in Computer Science,Springdayet419:92-113, 1998.

[9] L. Kahney. Cheaters bow to peer pressuiéred MagazingFeb. 15, 2001.

[10] F. Monrose, P. Wykoff, and A. D. Rubin. Distributed exéon with remote audit. IfProceedings of ISOC
Symposium on Network and Distributed System Secpaityes 103—113, February 1999.

[11] T. Sander and C. F. Tschudin. Protecting mobile agegésnat malicious hosts, springer-verlaggecture
Notes in Computer Sciencg419:44—-60, 1998.

[12] D. Szajda, B. Lawson, and J. Owen. Hardening functiamddrge scale distributed computation&EE
Symposium on Security and Priva@p03.

[13] G. Vigna. Protecting mobile agents through tracingPceedings of the 3rd Workshop on Mobile Object
SystemsJune 1997.

12

[14] G. Vigna, editor. volume 1419 dfecture Notes in Computer Scien&pringer, 1998.

[15] R. O. W. Aiello, S. Bhatt and S. Rajagopalan. Fast vatfan of any remote procedure call: short withess-
indistinguishable one-round proofs for np.Rroceedings of the 27th International Colloquium on Auttama
Languages and Programmingages 463—-474, July 2000.

[16] F. S. Y. Minsky, R. van Renesse and S. D. Stoller. Crygaphic support for fault-tolerant distributed
computing. InProceedings of Seventh ACM SIGOPS European WorkshopyS$gateport for Worldwide
Applications pages 109-114, Connemara, Ireland, September 1996.

[17] B. S. Yee. A sanctuary for mobile agents.Sacure Internet Programmingages 261-273, 1999.

13

