
Exploiting Task Delays for Uncheatable Grid Computing

Wenliang Du∗ Michael T. Goodrich† Ankur Kasturiya‡

Abstract

We study the problem of protecting distributed grid computations from the abuses of “lazy” partic-
ipants, who wish to be rewarded for tasks they receive but never actually perform. Unlike previous
techniques, which rely heavily on having the computation’ssupervisor perform a significant amount of
the work or inefficiently replicate the tasks, our approach has low computational overhead for the super-
visor and the participants. We achieve this improvement by utilizing a new paradigm in uncheatable grid
computing—exploiting the delays that exist between various rounds in a grid computation. In addition,
the main idea of one of our utilizations of this paraidgm might at first seem counter-intuitive—we have
the participants check each other’s work. A naive implementation of this approach would, of course, be
susceptible to collusion attacks, but we show that by, adapting efficient solutions to the parallel proces-
sor diagnosis problem, we can tolerate collusions of lazy cheaters, even if the number of such cheaters
is a fraction of the total number of participants. In addition to introducing this new framework for
uncheatable grid computing, we also introduce a number of new checking methods that can be used to
verify if participants do all of their work.

1 Introduction

One of the great success stories of modern distributed processing is grid computing, where a supervi-
sor distributes a large set of parallel tasks to a community of participants, who perform those tasks on
behalf of the supervisor and send back the results. Examplesinclude SETI@home [1], which claims
over five million participants who have collectively performed over 1.5 billion tasks aimed at finding in-
telligent patterns in extraterrestrial signals, and distributed.net, which claims over 300,000 participants
who have collectively searched over 68 billion blocks of cipher-text to perform brute-force inversions of
cryptographic algorithms.

The participants in grid computing environments are typically rewarded with credits, points, cyber-
cash, or some other kind of recognition. For example, SETI@home posts the pseudonyms of the top
1000 users and distributed.net lists on a daily basis the top100 participants and teams. Unfortunately,
even with modest recognitions such as these, grid computations must deal with cheating users. Indeed,

∗Department of Electrical Engineering and Computer Science, Syracuse University. Email:wedu(at)ecs.syr.edu.
†Department of Computer Science, University of California,Irvine. Email:goodrich(at)acm.org.
‡Department of Electrical Engineering and Computer Science, Syracuse University. Email: akas-

turi(at)mailbox.syr.edu.

1

the team leader for SETI@home is quoted [9] as saying that their project spends half of their resources
dealing with cheaters, who comprise roughly 1% of their users. For example, he mentioned that some
users have modified the SETI@home software to make it look like they have performed more work
than they actually did. The problem of dealing with such cheating users becomes even more serious, of
course, when the rewards for participation become more tangible.

This paper is therefore directed at the problem of protecting grid computations from cheating users
who wish to be rewarded for tasks they do not perform (or perform incompletely). This problem, known
as uncheatable grid computing, has been studied recently byseveral researchers [5–7,12], and we review
their contributions in the next section. Roughly speaking,the previous approaches have relied either on
replicating tasks, which adds a significant multiplicativeoverhead for the participants (SETI@home uses
this technique), or on having the supervisor check computations himself, which requires the supervisor
to perform a significant fraction of the tasks.

Our approach takes a radical departure from the previous approaches, in that it is based on a new
paradigm, which has to date not been utilized in mechanisms for dealing with lazy cheaters—we exploit
the delays that are inherantly a part of grid computing environments. Specifically, in this paper, we show
how to exploit grid-computing delays as follows: (i) we propose a parallel fault diagnosis approach,
which allows participants to verify each other over a seriesof rounds in the grid computation; (ii) we
present an improved redundancy scheme to achieve a high degree of resilience against collusion.

By utilizing the new paradigm of exploiting grid delays, we are able to simultaneously achieve im-
proved security and lower overheads for the computation supervisor. This approach matches paradigms
established in program verification, for example, since verifying a computation is much more efficient
than performing the computation itself. For instance, in the Hamiltonian cycle problem, verifying
whether a cycle is a Hamiltonian cycle is much faster than finding a Hamiltonian cycle. For these
computations, replicating tasks to defeat cheating is a waste of CPU cycles. The old paradigm for grid
computation verification is that the supervisor conducts all the verification. Although each such verifica-
tion might be efficient, the overall cost might be very high because the supervisor must verify the results
from all computations of all the participants. To reduce theoverhead for the supervisor in cases where
verification costs are significant, we apply a paradigm that might at first seem counter-intuitive—we
have the participants check each other’s work. Nevertheless, by adapting solutions to parallel fault diag-
nosis, we show that we can efficiently tolerate up to a constant fraction of cheating users, even if these
users collude. To implement this approach, we take advantage of a feature of grid computing that was
not utilized in previous work on uncheatable grid computing: namely, that massive grid computations
are performed in a pipelined fashion in a series of rounds. Thus, provided that our checking algorithms
use few rounds, we can mix in the checking steps for previous tasks with the specifications of new tasks,
thereby achieving low computational overheads for all parties. The challenge, of course, is coming up
with schemes that use few rounds (ours use fewer than 10).

For computations whose verification is as expensive as redoing the computations, the parallel fault
diagnosis approach might be less efficient than the simple redundancy approach, namely assigning mul-
tiple copies of a same task to different participants. Unfortunately, redundancy approaches are subject
to collusion attacks. That is, if a group of cheating participants are assigned all the copies of the same
task, they can still cheat on this task. But, here again, the new approach of utilizing delays can improve
security and efficiency, for we propose a delay mechanism to significantly reduce the damage caused by
collusion, thereby using pipelining to improve the efficiency of the redundancy approach.

2

2 Related Work

As mentioned above, there is a growing interest in solutionsto uncheatable grid computing [5–7,12],
where the challenge is to construct grid computing protocols that defend against participants claiming
credits for the work they have not done.

For defeating such “lazy” cheaters, Golle and Mironov proposed an interestingringer scheme [6],
which is restricted to problems that involve the inversion of a one-way function (IOWF). In their basic
ringer scheme, during the initialization stage, the supervisor randomly selects several inputsxi from a
participant’s domainD. These inputs are calledringers, and they are kept secret with the supervisor.
The supervisor then computesringer imagesfor eachxi, that is, evaluations of the one-way function,
f(xi), on these inputs. Then, in addition to assigning the grid computing tasks inD, the supervisor also
assigns the ringer images to the participant. Not only does the participant need to computef onx for all
x ∈ D and return the results of interest, she also has to return allthe ringers corresponding to the pre-
computed ringer images. The supervisor then verifies whether the participant has found all the ringers
assigned to her or not. If yes, then the supervisor is assuredwith high probability that the participant has
indeed conducted all the computations. Golle and Mironov augment their basic ringer scheme in several
ways, including the introduction of bogus-ringers, which can prevent the participant from knowing the
total number of ringers planted and magic sets, which can prevent direct images from being sent to the
participant. Each of these new schemes adds a new level of security, but they are still restricted to IOWF
computations.

Szada, Lawson, and Owen extend the ringer scheme to deal withother general classes of computa-
tions, including optimization and Monte Carlo simulations[12]. They propose effective ways to choose
ringers for those computations. It is still unknown whetherthe schemes proposed in [12] can be extended
further to generic computations, however, as their constructions are not generic.

Du et al. [5] propose a different approach to achieve uncheatable grid computing. In their scheme, the
supervisor randomly selects and verifies some samples from the task domainD assigned to a participant.
To prevent the participant from cheating on those samples, the participant must commit her computation
results before being checked. A commitment-based samplingscheme based on Merkle tree is proposed
in [5]. This approach has the advantage of being generic, butit places a significant computational burden
on the supervisor in addition to his management role, since in this scheme he must redo some of each
participant’s tasks himself.

Finally, another approach for uncheatable grid computing is to double-check computation results by
simply having other participants redo them entirely. This is the method used by SETI@home, for ex-
ample, to deal with cheating users [9]. Golle and Stubblebine [7] proposed a more efficient scheme
based on using probabilistic redundant execution to implement this approach. Their scheme assumes
that all computations occur in a single round, however; hence, they do not take advantage of additional
improvements that might be possible using pipelining.

There are also some alternative ways to defeat cheating, which have not been specifically addressed in
the literature. For example, one method would be to use tamper-resistant software. In this case, a code
obfuscater would be used to convert task programs to equivalent programs that are much harder to under-
stand and reverse-engineer. Thus, it would become hard for malicious attackers to modify the program
to accomplish what he wants. Nevertheless, the tamper-resistant approach is only heuristically secure,
and many tamper-resistant schemes cannot withstand attacks from really determined attackers [10], in-
cluding groups of colluding cheaters.

3

The problem of uncheatable grid computing is close to another body of literature: the problem of
dealing with malicious hosts in the study of mobile agents [14, 17]. Several practical solutions have
been proposed for this related problem, which include remote auditing [10, 13], code obfuscation with
timing constraints [8], computing with encrypted functions [11], replication and voting [16]. The major
difference between the mobile-agent work and our grid-computing work is the threat model. The mobile-
agent work assumes a general, malicious cheater—a malicious host can do whatever it takes to cheat,
including spending more CPU cycles than the honest behavior. In uncheatable grid computing, however,
we are presented with a different threat model, since it is irrational for a “lazy” participant in a grid
computation to cheat with a cost more expensive than the honest behavior.

In addition to the methods cited above, there are cryptographic protocols, such as Private Information
Retrieval (PIR) [4] and Probabilistically Checkable Proofs (PCP) [15], that can also be used to achieve
uncheatable grid computing. Although such heavy machinerycan provide possible theoretical uncheat-
able grid computing constructions, their expensive computation costs make them inappropriate choices
for grid computing in practice.

3 Problem Definition

We consider a grid computing model in whichuntrusted participantsare taking part. The computation
is organized by asupervisor. Formally, such computations are defined in our model by the following
elements [5]:

• A task function f : X 7→ T defined on a finite domainX. The goal of the computation is to
evaluatef on allx ∈ X. For the purpose of distributing the computation, the supervisor partitions
X into subsets. The evaluation off on subsetD is assigned to participanti.

• A screener functionS. The screener is a function that takes as input a pair of the form (f(x); y)
for x ∈ X, and returns a strings = S(f(x); y), wherey represents the criterion.S is intended to
screen for “valuable” outputs off that are reported to the supervisor by means of the strings.

In addition, in this paper we assume the existence of the following:

• A checker function C. The checker is a function that takes as input a strings that was returned
from the screener function applied to each elementx in the domainD for some participant. It also
takes as input a description ofD and a certificatez that provides additional information on how
the values ins should be tested (e.g.,z could be the set of ringers forD). It returns a good/bad
label for the input task.

If the checker function is light-weighted, it can be evaluated at the supervisor side; however, if the
checker function is also computation intensive, we might also want to out-source it to the grid partici-
pants. In this paper, we have provided solutions to address both situations.

3.1 Models of Cheating

A participant can choose to cheat for a variety of reasons. Wecategorize the cheating using the
following. We assume that each participant is given a domainD ⊂ X, and her task is to computef(x)
for all x ∈ D. From now on, we useD as the domain off for the participant.

4

• Lazy Cheating Model:In this model, the participant follows the supervisor’s computations with
one exception: forx ∈ Ď ⊂ D, the participant usešf(x) as the result off(x). Functionf̌ is
usually much less expensive than functionf ; for instance,f̌ can be a random guess. In other
words, the participant does not compute the required function f on inputsx ∈ Ď. The goal of
the cheating participant in this model is to reduce the amount of computations, such that it can
maximize its gain by “performing” more tasks during the sameperiod of time. If the participants
are getting paid, the cheating participant might be guided by the lure of money. This type of
cheating behavior is a cheating on the task functionf .

To maximize their gains, rational cheaters tend to use minimal cost to falsify the contributions they
have never made. Their behaviors fall into the lazy cheatingmodel. In this paper, we focus exclusively
on detecting thelazy cheatingparticipants.

4 Checking Grid Computations in Pipelined Rounds

In this section, we describe how to extend the parallel faultdiagnosis approach of Beigelet al. [2, 3]
to uncheatable grid computing. Throughout this section, weassume that tasks can be provided with a
checker function for other tasks, which is computationallyeasier than performing the task itself.

In the parallel fault diagnosis problem, we are given a set ofn processors, each of which is either
“good” or “bad.” In a single round, a processor can test another processor or be tested itself by another
processor. If a good processor tests another processor, it correctly returns to a central supervisor whether
the tested processor is good or bad. On the other hand, if a badprocessor tests another processor, it
returns an arbitrary (or even deliberately false) identification of the other processor as being good or
bad. The fault diagnosis problem is to determine all the goodand bad processors using a small number
of parallel testing rounds, assuming that there are fewer thann/2 bad processors (the problem cannot be
solved if there are more than this many bad processors).

We can easily adapt any solution to the parallel fault diagnosis problem to the problem of checking
the results from a grid computation performed byn participants. After a preprocessing round, which
distributes the tasks to then participants and receives their results, we can then simulate the parallel
fault tolerance algorithm by replacing each test of a processor i by a processorj with a test of the
task of participanti by a participantj using the checker function for this task. For example, the 10-
round algorithm of Beigelet al.[2] immediately translates into a 10-round checking algorithm (after the
preprocessing round that commits the results of the tasks).

There are some improvements that we can make to this approach, however, for uncheatable grid
computing. First, in any round, we can allow a participantj to test another taski even if j’s task
is also being tested in that round (such tests are not allowedin the parallel fault diagnosis problem).
This observation lets us immediately reduce the number of rounds in our simulation to 9, since the first
round in the algorithm of Beigelet al. involves the symmetric testing ofn/2 pairs of processors (which
requires two rounds in their algorithm but only one in our simulation). Even so, this simulation algorithm
is probabilistic and only guaranteed to succeed with high probability if n is very large. Thus, we would
like to reduce further the number of rounds and make this algorithm more practical. To achieve these
goals, let us make a simplifying assumption, which is well-motivated for grid computing but not for
parallel fault diagnosis: namely, let us assume that the number of cheating participants is much less
thann/2. The motivation for this assumption is that the pipelined nature of grid computing allows the

5

supervisor to prune away cheating participants as soon as they are discovered (by our testing algorithm);
hence, it is unlikely for large numbers of cheaters to be in the grid (since most of them would have to be
recent joiners).

To design an efficient grid computing testing scheme, we utilize the following lemma from Beigelet
al.

Lemma 1 ([2]) LetG = (V, E) be a graph onn vertices. Let0 < λ, γ < 1. Suppose, for every pair of
subsetsA andB of V such thatA∩B = ∅, |A|+ |B| = λn, and|A|, |B| ≤ 1+γ

2
λn, that there are edges

in E directed fromA to B andB to A. ThenG induces a strongly connected component of sizeγλn on
any subgraph withλn vertices.

This lemma may at first seem obscure, but it is useful for proving the following theorem, which
extends a theorem from the earlier work of Beigelet al. [3].

Theorem 1 LetV be a set ofn vertices, and let0 < γ, λ < 1. LetHd = (V, E) be a graph defined by the
union ofd independent randomly-chosen Hamiltonian paths onV (with all such cycles equally likely).
Then, for all subsetsW of V of λn vertices,Hd induces at least one strongly connected component on
W of size greater thanγλn, with probability at least

1 − en[(1+λ) ln 2+d(α ln α+β lnβ−(1−λ) ln(1−λ))]+O(1),

whereα = 1 − 1−γ
2

λ andβ = 1 − 1+γ
2

λ.

Proof. The proof is an adaptation and correction of a proof of a weaker theorem from Beigelet al.[3]. By
Lemma 1, it is sufficient to show that with the exponentially small probability mentioned in Theorem 1,
there is a subsetW of V of sizeλn that has a partition(A, B), with |A|, |B| ≤ 1+γ

2
λn, such that there is

no edge fromA or B or no edge fromB to A. Let us consider first the probability that there is no edge
from A to B (as the other case is identical). Beigelet al. [3] show that, for a single randomly-chosen
Hamiltonian pathH onV (and two disjoint subsetsA andB of V), the probability that there is no edge
from A to B is

(n − |A|)!(n − |B|)!

n!(n − |A| − |B|)!
.

Thus, the probability that there is no edge fromA to B or no edge fromB to A in Hd is at most

2

(

(n − |A|)!(n − |B|)!

n!(n − |A| − |B|)!

)d

.

There are at most2n choices forW and at most2λn possible ways of partitioningW into subsetsA and
B (actually, there are fewer, but these bounds will suffice forour purposes). Thus, the probability that
there is a subsetW of λn vertices that has a partition(A, B), with |A|, |B| ≤ 1+γ

2
λn, such that there is

no edge fromA or B or no edge fromB to A is at most

2(1+λ)n+1

(

(n − |A|)!(n − |B|)!

n!(n − |A| − |B|)!

)d

.

6

This is maximized whenn − |A| = αn andn − |B| = βn. Applying Stirling’s formula, we can bound
this probability by

en[(1+λ) ln 2+d(α lnα+β ln β−(1−λ) ln(1−λ))]+O(1).

Applying this to our testing problem, we need to set the parameters so that we are guaranteed to have
at leastλn good testers, for using a graphHd for sufficiently larged will guarantee with high probability
that the subgraph of good testers will induce a strongly connected component of size at leastγλn. For
example, we have the following:

Corollary 1 If n ≥ 20, γ = 1/2, λ = 7/8, andd = 8, then any subset of(7/8)n vertices induces a
strongly connected subgraph ofHd of size(7/16)n with probability at least

1 − e−n.

That is, it is very unlikely that we will not have a strongly connected subgraph of the required size. If
we can safely assume that the number of cheating participants is at most 10% of the total (which is ten
times higher than the SETI@home experience), then we can usethis corollary to design the following
five-round testing strategy:

1. Pair up participants and have them test each other. Discard for now any pairs that have an identified
bad test (for one of them must be bad). The remaining pairs must each consist of two good
participants or two bad ones.

2. Pair up pairs of participants from the first round and have them test each other with one test per
participant. Discard for now any groups that have an identified bad test (for two of the four must
be bad).

3. Pair up groups of participants from the previous round andhave them test each other. Discard for
now any super-groups that have an identified bad test (since four of the eight must be bad). LetN
be the number of super-groups.

4. Note that there can be at mostn/5 discarded nodes; hence,N ≥ (n− n/5)/8 = n/10. Moreover,
since each super-group has all good nodes or all bad nodes, the number of all bad super-groups is
at mostn/80 ≤ N/8. Apply theH8 strategy to the super-groups, using Corollary 1. This results in
a strongly connected component (which must be all good nodes) of size at least(7/16)N , which is
at least(7/16)(n/10)8 = (7/20)n. Moreover, there are at most(9/16)N unresolved super-groups,
which is at most(9/128)n super-groups.

5. Split the(7/20)n proven good nodes into two groups: one group of sizen/5 = (4/20)n, which is
sufficient to have each test a discarded node, and another group of size(3/20)n, which is sufficient
to have each test a representative member of an unresolved super-group (since3/20 = 9/60 >
9/128).

Thus, we can test then results from our participants in five rounds, even if 10% of them are colluding
lazy cheaters. If we can further assume that at most 5% of our participants are cheaters, then we can
further improve our protocol to just have three rounds (the above method would require at least 4 rounds
even in this case). Our method is based on an adaptation and improvement of a protocol of Beigelet
al. [2]. Our algorithm is also based on the following corollary to Thereom 1.

7

Corollary 2 If γ = 7/15, λ = 15/16, d = 4, andn ≥ 20, then any subgraph of(15/16)n vertices of a
random graphHd induces a strongly connected component of size(7/16)n with probability at least

1 − d−n/4.

We use this corollary to prove the following protocol works correctly with high probability.

1. Divide the input nodes inton/4 directed cycles of4 nodes each, and in one round have each node
test the next one in the cycle. Discard for now all the nodes inany cycle with a detected bad node
(there can be at most4n/20 = n/5 such discarded nodes. LetN ≥ (n − n/5)/4 = n/5 denote
the remaining cycles, which we view as super-nodes, since all the remaining cycles each consist
entirely of good nodes or of bad nodes.

2. There can be at most(n/20)/4 = n/80 such all-bad cycles, that is, at most5N/80 = N/16 bad
super-nodes. Apply the tests dictated by a randomH4 in one round, viewing theN super-nodes
as the nodes inH4. Note that the number of bad super-nodes is small enough for us to apply
Corollary 2 to show that, with high probability, there will be a strongly connected component
of (7/16)N super-nodes (which must necessarily be all good). That is, we will have at most
(9/16)N ≤ (9/16)n/4 = (9/64)n super-nodes whose classification may be in doubt.

3. Note that at this point there are at least(7/16)4N ≥ (7/4)n/5 = (7/20)n identified good nodes.
Divide these nodes into two groups: one group of sizen/5 = (4/20)n nodes, which are used in
one round to test the previously-discarded nodes, and another group of(3/20)n = (9/60)n nodes,
each of which can test a single super-node in one round (since9/60 > 9/64).

Thus, we can test all then tasks in three rounds if there are at most 5% bad participants(which is five
times the SETI@home experience), assuming we have an effective checker function. We discuss some
possible checker functions below.

5 A Redundancy Scheme with Delays

In this section, we describe how to use pipelining to improvethe efficiency of redundancy-based
uncheatable grid computing schemes.

5.1 The Naive Redundancy Approach

The naive redundancy approach is to replicate thesen tasksw times. Then the supervisor randomly
distributes and assigns thesew ·n tasks to participants1. Golle and Stubblebine studied this naive redun-
dancy approach in [7]. We briefly review their results of the naive redundancy approach. The goal of
this paper is to improve this approach and further reduce thenumber of corrupted tasks.

Assume there arem participants andk of them are colluding. We say that a task iscorruptedif all
the copies of this task is assigned to the colluding group. Let X be a random variable representing the
number of corrupted tasks. Letp = k

m
, andp is the probability that a copy of task is assigned to these

k colluding participants. Thereforepw is the probability that all thew copies of a task is assigned to the
1It is better to make sure that none participant is assigned more than one copies of the same task. However, with such a

constraint, the analysis becomes much more complicated. Therefore, we will not include this constraint in our analysis.

8

colluding participants. Hence, the probability (Pr(X = a)) that exactlya tasks are assigned to these
colluding participants is the following:

Pr(X = a) =

(

n

a

)

pw·a(1 − pw)n−a. (1)

SincePr(X = a) is the binomial distribution with the parametern andpw, the expected value is

Expected Damage= npw = n(
k

m
)w.

To simplify the discussion, we letw = 2 in the rest of discussion, i.e., each task will be conducted by
two different participants. Our results can be generalizedto w ≥ 2.

5.2 The Scheme with Delays

To reduce the damage, the supervisor does not assign both copies of a task at the same time, he
delays the assignment of the second copies until some participants have submitted their tasks. The task
assignment is divided into the following two stages:

1. During the first stage the first copies of the tasks are assigned to the participants. The colluding
group cannot corrupt any task during this stage, because only one copy of all the tasks is assigned,
and the participants do not have any common tasks. If a group of colluders decide to cheat on
some task, they can succeed only if the second copy of the sametask are also assigned to them.
The probability of succeeding in cheating onx tasks ispx. Sincep is usually small, a largex
makes the probability approaching zero.

2. In the second stage the supervisor assigns the second copies of tasks to only those participants who
have completed the assigned tasks and who have already sent back the results. The supervisor does
not assign the second set of tasks as soon as the participant sends the results. The supervisor waits
for d participants to complete their first set of tasks and then assigns the second set of tasks to
thesed participants. Thisd parameter is known as the delay parameter. After the first delay, i.e.,
the supervisor has assigned the first set of the second copy ofthe tasks to the first group ofd
participants, and the supervisor again waits for next groupof d participants to submit their results.

Thus, to reduce the cheating damage, the supervisor can increase the delay parameter. However, the
bigger thed is, the more time participants needs to spend on waiting. That is, there is a tradeoff. We
study the relationship betweend and the damage of cheating below.

5.3 Analysis

We can analyze the probability of cheating of the above mentioned scheme. We assume that the total
number of the participants arem; the number of participants colluding in thesem participants isk; each
participant is assigned same amount of tasks. We also assumethat attackers will only cheat if they see
both copies of a task, i.e., they will not gamble.

9

Theorem 2 If the attackers can only get the second copies after at leastd of them have submitted their
first copies, the expected damage for the collusion ofk participants is the following:

Expected Damage=
k(k − d)n

2m2
(2)

Proof. During the first stage, the probability of a task being assigned to the colluding participants is
p1 = k

m
, as we have a group ofk colluders among them participants.

Suppose we have totalt delay periods,D1, . . . , Dt, in the complete assignment of the second copy of
all the tasks, i.e.k = t ∗ d. The second copy of a particular task could be assigned at each of theset
delay periods, with the same probability1

t
.

Assume that the second copy of a taskU is selected to be assigned in the delay periodsDi. LetP (Di)
represents the probability thatU can be corrupted given that the first copy ofU is already assigned to the
colluding group and the second copy is assigned at the delay periodDi. In the naive scheme, once both
copies are assigned to the colluders, this task is corrupted. However, in our scheme, the first copy of task
U might have already been finished because it might belong to thosei · d participants who have already
submitted their results. In this situation, the colluders cannot cheat onU based on our non-gambling
assumption2. Therefore,U must belong to those un-submitted tasks that are assigned tothe colluding
group, its probability is

P (Di) =
k − i · d

m
.

Since the second copy of taskU can be assigned at any delay periodDi, for i = 1, . . . , t with the
same probability, the total probability thatU can be corrupted given that the first copy ofU is already
assigned to the colluding group is

p2 =
1

t
(P (D1) + . . . + P (Dt))

=
1

t
(
k − d

m
+ . . . +

k − td

m
).

=
k − d

2m
.

The probability for a particular event to get corrupted would then be the following:

p = p1 ∗ p2 =
k(k − d)

2m2
.

Therefore, the expected damage is

Expected Damage= np =
nk(k − d)

2m2
.

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

io
 o

f C
or

ru
pt

ed
 T

as
ks

Ratio of Colluding Participants (k/m)

Naive Scheme
d=1
d=10
d=20
d=25

Figure 1. Expected Damage (n = 1000 and m = 50)

We compare the results of our scheme with the naive redundancy scheme in Figure 1. Our scheme
improves the naive redundancy scheme. Even withd = 1, the expected damage is cut to half compared
to the naive scheme. This is because we are decreasing the number of colluders who can corrupt tasks
after each delay.

From the figure, we know the larger the value ofd, the fewer the number of tasks that can be corrupted.
However, in practice, making the delay exactlyd is not easy, because the supervisor cannot distinguish
who is a cheater and who is not. For the supervisor, it conducts a new round of task assignment once
it receives accomplished tasks fromd participants. If thesed participants are all honest, then this as-
signment is safe. However, it is possible that only one of theparticipants is cheater; this means, to the
cheaters, the effective delay period is just1, not d. Therefore, to maximize their damage (i.e., forcing
the effective delay to be1), the cheaters can adopt a slow strategy, hoping the honest participants can
contribute to the otherd − 1.

However, the economic gain of the above strategy is undesirable. A participant’s economic gain is
decided by the number of tasks it can perform for the supervisor. If in order to cheat, a participant
lowers its task processing rate, the amount of economic gains from the same supervisor is reduced. This
might contradict to the motivation of the cheating. Furthermore, the supervisor can rank the participants
based on their response time. Such ranking can be used for assigning tasks and payment. Thus, it is
disadvantageous for participants to intentionally wait for longer period of time.

In many situations, the number of tasksn is significantly large, and it takes long time to even finish
assigning the first copy of a task. Therefore, once a participant finishes its assigned tasks, it will be
assigned new tasks (still the first copy), rather than the second copy of the old tasks. This way, the delay
factord can be so large that the dishonest participants lose the incentives to cheat.

6 Conclusion and Future Work

We have shown how to use pipelining to allow participants in agrid computation to check each other’s
work, even in the presence of arbitrary collusion among lazycheaters (provided the number of cheaters

2Before the second copy ofU is assigned, cheating onU is risky, because the second copy might not be assigned to this
group.

11

is not too high). We have also shown how to use pipelining to improve redundancy-based uncheatable
grid computing schemes.

There are many directions for future work. For example, it would be interesting to design learning
models and probabilistic weights to score participants on their likelihood of cheating and then tailor
uncheatable grid computing schemes to these scores. Such anapproach may help us improve collusion
resistance further. Likewise, this paper is just a first stepat showing how to exploit delays in grid
computations to improve security and efficiency. We would anticipate that there are many new ideas
that could be combined with this paradigm to achieve additional results in uncheatable grid computing
specifically and in other computer security applications more broadly.

References

[1] SETI@Home: The Search for Extraterrestrial Intelligence Project. University of California, Berkeley. Avail-
able: http://setiathome.berkeley.edu/.

[2] R. Beigel, W. Hurwood, and N. Kahale. Fault diagnosis in aflash. InIEEE Symposium on Foundations of
Computer Science (FOCS), pages 571–580, 1995.

[3] R. Beigel, G. Margulis, and D. A. Spielman. Fault diagnosis in a small constant number of parallel testing
rounds. InACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 21–29, 1993.

[4] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with polylogarithmic
communication.Lecture Notes in Computer Science, 1592:402–414, 1999.

[5] W. Du, J. Jia, M. Mangal, and M. Murugesan. Uncheatable grid computing. InThe 24th International
Conference on Distributed Computing Systems (ICDCS’04), pages 4–11, Tokyo, Japan, March 23–26 2004.

[6] P. Golle and I. Mironov. Uncheatable distributed computations. Lecture Notes in Computer Science,
2020:425–440, 2001.

[7] P. Golle and S. Stubblebine. Secure distributed computing in a commercial environment. In P. Syverson,
editor, Proceedings of Financial Crypto 2001, volume 2339 ofLecture Notes in Computer Science, pages
289–304. Springer-Verlag, 2001.

[8] F. Hohl. Time limited blackbox security: Protecting mobile agents from malicious hosts.Mobile Agents and
Security, Lecture Notes in Computer Science,Springer-Verlag, 1419:92–113, 1998.

[9] L. Kahney. Cheaters bow to peer pressure.Wired Magazine, Feb. 15, 2001.

[10] F. Monrose, P. Wykoff, and A. D. Rubin. Distributed execution with remote audit. InProceedings of ISOC
Symposium on Network and Distributed System Security, pages 103–113, February 1999.

[11] T. Sander and C. F. Tschudin. Protecting mobile agents against malicious hosts, springer-verlag.Lecture
Notes in Computer Science, 1419:44–60, 1998.

[12] D. Szajda, B. Lawson, and J. Owen. Hardening functions for large scale distributed computations.IEEE
Symposium on Security and Privacy, 2003.

[13] G. Vigna. Protecting mobile agents through tracing. InProceedings of the 3rd Workshop on Mobile Object
Systems, June 1997.

12

[14] G. Vigna, editor. volume 1419 ofLecture Notes in Computer Science. Springer, 1998.

[15] R. O. W. Aiello, S. Bhatt and S. Rajagopalan. Fast verification of any remote procedure call: short witness-
indistinguishable one-round proofs for np. InProceedings of the 27th International Colloquium on Automata,
Languages and Programming, pages 463–474, July 2000.

[16] F. S. Y. Minsky, R. van Renesse and S. D. Stoller. Cryptographic support for fault-tolerant distributed
computing. InProceedings of Seventh ACM SIGOPS European Workshop,System Support for Worldwide
Applications, pages 109–114, Connemara, Ireland, September 1996.

[17] B. S. Yee. A sanctuary for mobile agents. InSecure Internet Programming, pages 261–273, 1999.

13

