
DOWN With Trusted Devices

Mahalingam Ramkumar
Department of Computer Science and Engineering

Mississippi State University, Mississippi State, MS 39762.

Abstract

There is an ever-growing need for “trusted” devices, and conse-
quently, assurances from technology for tamper-resistance, and
read-proofing of secrets stored in such devices. We propose
and investigate a simple security policy -decrypt only when
necessary (DOWN) - and evaluate its implication on the security
of secrets stored in trusted devices. We argue that the DOWN
policy used in conjunction withphysical unclonable functions
(PUF) [1] may be a promising approach for realization of trusted
devices.

While any key distribution scheme (used for securing inter-
actions between trusted devices) would benefit from the use of
the DOWN policy, key pre-distribution (KPD) schemes, particu-
larly random key pre-distribution schemes, benefit substantially.
We argue that the significant gains in security, coupled with the
many inherent advantages of KPDs over PKI, render KPDs more
suitable for trusted devices.

1 Introduction
One of the debilitating side effects of the rapid rate of technolog-
ical advancements is the weakening of “natural bonds of trust”
that develop over time, among human beings. The need forar-
tificial reinforcementsfor trust have been growing steadily over
the past few decades. While there are numerous indications of
this trend, a very obvious example is the fact that a world with-
out photo IDs would be unthinkable at present, while the need
for it was not felt so strongly just a few decades ago!

However, technology also provides techniques for artificial re-
inforcements for the weakening bonds of trust. Cryptography,
perhaps the most commonly usedartificial trust building mech-
anism1, is poised to become more and more an integral part of
our day to day lives.

In spite of wide-spread use of cryptography in most conven-
tional client-server based applications in use today, in the final
analysis, it is still the individual human beings on whom the
onus of “trust” is placed. For instance, end-users (or clients) au-
thenticate themselves to a server using a shared secret (a pass-
phrase). As anybody with access to the private key of the user
can impersonate the user, the end-user istrustednot to disclose

1If we ignore mechanical locks.

her private information. This trust is however not generally mis-
placed. For every user has the motivation (and the responsibil-
ity) to keep their private information, private. More importantly,
disclosure of private information of a user, typically does not
result in a great inconvenience forotherusers2.

1.1 Trusted Devices
With recent advances in technology (mostly around wireless
communications and miniaturization), and the foreseen appli-
cations of the future that are expected as a result, trusting fel-
low human beings is not going to be sufficient. Many evolv-
ing applications will rely on extensive mutual co-operation of a
network of highly interconnected computers. Such co-operative
networks of computers are expected to take over many of the
mundane tasks that humans perform today.

For instance a group of computers working together may “de-
cide” things as trivial as the setting of a thermostat (they may
receive weather forecast directly from computers in the local
weather station), or less trivial things like the appropriate course
of action to avoid a collision (say computers working together
in a car, interacting with computers in cars nearby).

Less futuristic applications may involve large scale deploy-
ments of ad hoc networks of wireless personal communication
devices, where each device may be trusted to perform some
tasks, like forwarding packets and co-operatively building rout-
ing tables, for overall good of the network. A crucial require-
ment in scenarios such as the above is the ability to “trust the
devices”. Trusted devices [2] are expected to possessunflinch-
ing morals3 [3]. Trusted devices will, in general, not trust the
owners or controllers of devices (the human operators) [2]. In
other words, they cannot be directed to do something that vio-
lates the rules they are trusted to obey. Trusted devices however,
need to trust each other.

1.1.1 Trust Between Trusted Devices

To facilitate trust between any two devices, there must exist
some means of convincing each other that they “play by the
rules,” or are “compliant” to some pre-imposed rules. This can

2Even though in theory compromise of an end-user’s password should not
affect anybody else, in practice, this is the starting point of most attacks on
computer systems - which affects many others too!

3For example, thou shalt always route packets; thou shalt not advertise false
routing tables or weather data.

1



be facilitated using a suitable key distribution scheme (KDS).
Only trusted devices would be provided with secrets which
would enable them to authenticate each other. The secrets, how-
ever, have to be provided to a deviceafterascertaining that they
are indeed compliant. In other words, the secrets serve as a
“hook” for compliance. Once secrets are provided to devices,
verification of the existence of secrets (without which mutual au-
thentication would not be possible) indirectly provides a means
for verification of compliance.

1.1.2 Read-Proofing and Tamper-Resistance

Just as human beings are trusted not to reveal their secrets in
client-server applications, trusted devices are trusted not to re-
veal their secrets. To accomplish this, two fundamental as-
surances are required from technology - tamper-resistance and
read-proofing [4].

Tamper-resistance is necessary to ensure that the software con-
trolling the devices (which govern themoralityof a device) can-
not be changed. Read-proofing is necessary to ensure that se-
crets from a trusted device cannot be transferred to untrusted
devices. Gennaro et al [4] provide some interesting insights into
the inter-play between the two very distinct requirements. While
the property of tamper-resistance may be extremely difficult to
achieve, in most scenarios the ability obtaintamper-evidence,
followed byself-destructionwould be sufficient.

Self-destruction of trusted devices doesnot necessarily mean
completephysical destruction of a device - it just implies that the
secrets stored in the device are renderedunusablein the future.
This would prohibit the device from authenticating itself to other
trusted devices, and therefore loose its ability to interact with
other devices.

Trust modules (or more commonly HSM - hardware security
modules) are therefore increasingly relevant in evolving appli-
cation scenarios. In spite of the fact that assumptions of tamper-
resistance and / or read-proofing has been, and perhaps will con-
tinue to be a controversial issue among cryptographers [5]-[7],
there is no denying the fact that they are going to bemanda-
tory in the future with ubiquitous cryptography. After all, ne-
cessity has always been the mother of invention. Motivated by
the pressing need we could very soon expect technology to pro-
vide suitable solutions.

1.2 Theses of the Paper
The theses of this paper is two-fold.

1. The Decrypt Only When Necessary (DOWN) security pol-
icy, when used in conjuction with Physical Unclonable
Functions (PUF) could significantly improve the ability of
trusted devices to protect their secrets.

2. Key pre-distribution (KPD) schemes are more suitable
(than PKI) for practical large-scale deployments of trusted
devices, especially when used in conjunction with the
DOWN policy.

In Section 2 of this paper we provide a brief overview of key
distribution schemes (KDS) with more emphasis on key pre-
distribution (KPD) schemes. In Section 3 we discuss typical
attacks employed for exposing secrets stored in trusted devices,
and possible countermeasures. In Section 4 we introduce the
DOWN policy, and discuss methods for practical realization of
the DOWN policy. The primary advantages offered by the adop-
tion of the DOWN policy are three-fold:
1. It minimizes (or even obviates) the steps needed for a trusted
device to go from “in-use” state to “rest-state.”
2. It provides a guarantee thatnot more than a small fractionof
the secrets stored in trusted devices can be compromised by the
attacker (in which process the device is rendered unusable in the
future).
3. Non-volatile storage doesnot needanyprotection.

While the DOWN policy can be used to protect the secrets of
any KDS, their positive effect on KPD schemes is more dra-
matic. We argue in Section 5, that KPDs, especially random
KPDs [8], used in conjunction with the DOWN policy may be
a better approach for trusted devices (as opposed to PKI). Con-
clusions are offered in Section 6.

2 Key Distribution Schemes

A KDS is a mechanism of distributing secrets to each partici-
pant in a system such that any two (or more generally any group
of) participants can authenticate each other. The process of au-
thentication typically involves discovery of a shared secret be-
tween the participants, which is facilitated by the KDS secrets
provided to each participant (or node). The process of discov-
ery of a shared secret also serves as a mechanism for mutual
confirmation of the claimed identities of the participants.

In general KDSes could be divided into two categories. For
the first category, the secrets provided to each node areinde-
pendent. In other words, secret(s) of a node do(es) not provide
anyinformation regarding the secret(s) ofothernodes. This cat-
egory includes the most commonly used KDSes like Kerberos
(or any KDS based on the Needham-Schroeder symmetric key
protocol [9]), and PKI.

For the second category however, secrets distributed to each
node arenot independent. The secrets are all derived from a set
of secrets chosen by atrusted authority(TA) (who deploys the
network). This category of schemes are referred to as key pre-
distribution (KPD) schemes4. With KPD schemes, a group of
“colluding” nodes could pool their secrets together to compro-
mise the entire system (or obtain secrets ofall nodes). There is
thus a concept ofn-secure KPDs. An-secure KPD can resist
collusions of up ton nodes.

4It could be argued that the “basic” key pre-distribution scheme (where for a
network ofN nodes

(N
k

)
secrets are distributed such that each node getsN − 1

secrets) belongs to the former category. However, as it does not scale well to
large network sizes, it is irrelevant for our discussion.

2



2.1 Key Predistribution Schemes

A KPD scheme consists of a trusted authority (TA), andN nodes
with unique IDs (sayID1 · · · IDN ). The TA choosesP secrets
R and two public operatorsf() andg(). The operatorf(), is
used to determine the secretsSi that are preloaded in nodei.
Any two nodesi andj, with preloaded secretsSi andSj can
discover a unique shared secretKij using apublic operatorg()
without further involvement of the TA.

The restrictions onf() andg() in order to satisfy these require-
ments can be mathematically stated as follows:

Si = f(R, IDi)
Kij = g(Si, IDj) = g(Sj , IDi)

= f(R, IDj , IDi) = f(R, IDi, IDj). (1)

As g() is public, it is possible for two nodes, just by exchanging
their IDs, to executeg() and discover a unique shared secret.
As the shared secret is a function of their IDs, their ability to
arrive at the shared secret provides mutual assurances toi and
j that the other node possesses the necessary secretsSj andSi

respectively. The secrets preloaded in each node is referred to as
the node’skey-ring. We shall represent byk, the size of the key
ring.

KPDs themselves may be divided into two broad categories -
deterministic and random KPDs. Most KPDs [10] - [13] based
on finite field arithmetic belong to the former category. An-
secure deterministic KPD is unconditionally secure as long asn
or less nodes have been compromised. If more thann nodes are
compromised however, theentireKPD is compromised - or the
attacker could discover all theP secrets of the TA and therefore
all secrets of all nodes. However, the concept ofn-secureness
is not an adequate description of random KPDs. For random
KPDs, an attacker, by exposing secrets fromne nodes could dis-
cover shared secrets between arbitrary nodes with a probability
pe.

In general deterministic KPDs based on finite-field arithmetic
are very efficient in terms of number of keys that each node
needs to store (k) in order to achieven-secureness. For example
for Blom’s KPD,k = n+1. However, they are computationally
more expensive - for example, an-secure Blom’s KPD involves
evaluation of an-degree polynomial in a prime field in order to
calculate shared secrets.

Random KPDs [8], [14] - [17] on the other hand generally need
more storage (even though it is stillk = O(n), except for the
scheme in Ref [17] wherek ≈ O(n3)). For instance HARPS

needsk = ne
√

e log
(

1
pe

)
keys to be(ne, pe)-secure. However,

random KPDs are computationally inexpensive - they need only
pure symmetric cryptography primitives like hash functions and
/ or block ciphers (or multiplication is not needed).

3 Protecting Trusted Computers
A trusted computer (usually a computer in a single chip) would
include
1. A CPU,
2. secure volatile RAM (or work bench) where intermediate re-
sults of cryptographic calculations are stored
3. ROM / EEPROM where the software (the operating sys-
tem and software that govern device specific functions) may be
stored, and
4. non-volatile storage for storing secrets.

The ROM / EEPROM could include a cryptographic hash of
its contents to prevent attackers from modifying its content. The
hash could be a HMAC - based on a secret that is stored securely
in the processor or just a public hash function5.

While most computers would have external (outside the chip)
RAM, and various levels of caches on board the chip, for single
chip computers the entire RAM may be inside the chip. Yet, the
onboard RAM could consist of various levels of caches, with
different levels of protection. For instance seperate caches may
be used for instructions and data[18]. Even the data cache could
be split into two categories - one for storing sensitive crypto-
graphic keys and intermediate results of cryptographic calcula-
tions, and another for storing less sensitive data.

The data stored in the non-volatile storage would include KDS
secrets, personal secrets (or a personal key ring) of the user (say
when the trusted computer is a smart card), and other applica-
tion dependent data. All stored data apart form the KDS secrets
would possibly be encrypted with the KDS secret assigned6 to
the computer.

The computer itself may be in-built into a “trusted device.”
For example a trusted device may be a set-top box (STB) for
encrypted video playback. The trusted computer in this case
would perform decryption of encrypted compressed video, and
other circuitry in the device may perform video decompression
(say MPEG-2 decoder), D/A conversion etc.. Alternately, the
computer may just be enclosed in a “tamper resistant” casing
with very little additional circuitry. For example, in devices like
smart-cards, the additional circuitry may be restricted to sensors
and a battery back-up, to detect attempts to open-up the casing,
and perhaps reset all secrets stored in non-volatile memory.

3.1 Attacks and Countermeasures
A series of attacks involving compromising security of smart-
cards, has resulted in a large body of literature investigating the
feasibility of building secure hardware, [6] - [7], [19] - [30],
that could be expected to protect its secrets. Kommerling et al
[21] provide the following classification of attacks [21] on chips

5Using a public hash function would still help in thwarting attacks where the
attacker cannot have precise control over the process that is used for modifying
the ROM / EEPROM.

6The secrets “assigned” to the computer would depend on the KDS in use.
For KDSes based on public-key cryptography, the secrets may begeneratedby
the device itself.

3



to extract buried secrets - non-invasive attacks, invasive attacks,
and semi-invasive attacks.

3.1.1 Non-invasive Attacks

Non invasive attacks are performed without damaging the de-
vice. Typically such attacks involve “eavesdropping” on elec-
tromagnetic radiation emanating from the devices with the in-
tention of gaining clues about the secrets stored inside. Some
non-invasive attacks involve exploitation of security vulnerabil-
ities in software running on devices.

Another category of non-invasive attacks is theglitch attacks,
where the device is made to malfunction (the process to achieve
this could be as simple as shining a powerful light beam on the
surface). The aim of a glitch attack is to effect bypass of security
protections - say to gain access to some unauthorized resource.
Typically this would involve making the program counter of the
CPU jump over a set of instructions which perform authenti-
cation checks. However, glitch attacks could indirectly lead
to compromise of stored secrets by bypassing some protection
mechanisms (say mechanisms that sense intrusions and erase all
secrets stored in non-volatile memory). In other words a non-
invasive attack may be used as a precursor for an invasive attack
that follows.

Non-invasive attacks could be very dangerous - if they could
be successful. In general however, by proper shielding, it may
be easier to guard against non-invasive attacks.

3.1.2 Invasive Attacks

Invasive attacks involve opening up (and usually destroying the
chip in the process) to decipher the secrets. With sophisticated
sensors for tamper-evidence, this could be tackled. Many inva-
sive attacks are also based on inducing faults in memory [22],
[23] and employing differential power analysis [24]. Protection
mechanisms against such attacks have also been investigated
[25].

Another category of invasive attacks involve “scavenging” bits
from “footprints” left behind in magnetic and solid state mem-
ories [26], [27]. Secrets that may have been stored temporarily
even in volatile memory could be scavenged if the secrets had
been stored in a memory location for long periods. “Safe” era-
sure [28] of contents in magnetic and solid state memory (or re-
moving all traces of their footprints) may require many repeated
overwriting operations. The ability of the attacker to scavenge
bits is also significantly enhanced by cooling the device (say by
immmersing it in liquid nitrogen). Another useful technique for
the attacker is to induce a glitch attack that causes the CPU to
“hang” (while sensitive secrets are stored in volatile memory).
The attacker could wait for a long time to ensure that the se-
crets currently in volatile memory leave a deep footprint before
plunging the device into liquid nitrogen.

3.1.3 Semi-Invasive Attacks

Perhaps the most worrisome of current attacker capabilities is
the gamut of available ofsemi-invasiveattacks. Unlike inva-
sive attacks which may provide devices with an opportunity to
detect tampering attempts and reset their secrets, semi-invasive
attacks, especially attacks employing focused ion beams (FIBs)
or particle beam techniques in general - may go undetected [21].

In Ref. [29] the manufacturers claim protection against FIB
attacks by employing an “active shield” consisting of a thin par-
allel grid of signal lines, covering the entire surface of the chip.
Data is constantly transmitted at one end of the lines and eval-
uated at the other end. Any mismatch (which may occur even
if one line is damaged by the FIB) would trigger appropriate
counter measures.

However with improved technology, it may be possible for at-
tackers to have better and better control over the FIBs. Nev-
ertheless, it may still be reasonable to assume that it would be
possible to protectsomeparts of the silicon substrate (or some
lines on the substrate) by not providing a clear line of sight ac-
cess7. Perhaps even multiple layers of “active shields” could be
used. If we can ensure thatonly a fractionof the lines can be
tapped, it may be possible to buildprivatecircuits in such a way
[30] the attacker gains no knowledge (by tapping a few lines).

3.2 Protecting Secrets at Rest
Protecting secrets stored in a device when the device is at rest
(or powered off), is in general significantly more difficult to ac-
complish. It may be possible to employ a much larger number
of sensors that are actively monitoring for intrusions while the
device ispowered-oncompared to the case when the device is
powered-off. The limited battery back-up inside a chip may not
be able to power as many intrusion sensing mechanisms. Even
when intrusions are sensed the limited reaction time (and limited
battery power) may not be enough to perform the many repeated
overwriting operations to erase the secret without a discernible
footprint.

While rest encryption[31], [32], which could help protect se-
crets when the device is at rest, has received substantial attention
for purposes of encrypting databases in order to prevent unau-
thorized access of the contents8, the problem of rest-encryption
for trusted devices is very different. The fundamental difference
is in terms of concerns regardingstorage of the key used for en-
cryptingdata at rest. For rest-encryption of databases, typically
the encryption key is storedoutsidethe database. Obviously, for
rest encryption of the secrets of a trusted device, the keyscan-
not be stored outside the device9, as their security is not guaran-
teed. So the secret used for encrypting the secrets should also be
stored within the trusted device (in non-volatile memory).

When the number of bits to be protected at rest is large, and
if the battery back up in chips can ensure that the attacker may

7It may not be possible to bend beams!
8Say by someone who manages to remove a hardisk from a database server.
9Trusted devices will not trust anybody else to protect their secrets!

4



not be able to extractall bits by tampering with a device the
following approach could be used10.

Before the device is powered off, the stored secrets (sayS) may
be divided into two setsL0 andR0, or S = [L0 ‖ R0], followed
by two Fiestel-like encryption rounds,

L1 = R0, R1 = ER0(L0) L2 = R1, R2 = ER1(L1) (2)

As the sizes ofR0 andL0 may be substantially larger than block
sizes used for encryption, in the equation aboveER0 stands for
a chained mode of some symmetric block cipher, using a key
derived fromR0 - say a cryptographic hash ofR0. Similarly,
ER1(.) represents chained block encryption using a key derived
from R1. The encryption can be easily reversed when the node
is powered back on again as

R0 = DL2(R2) L0 = DR0(L2) (3)

However, even ifany of theT bits of S′ = [L2 ‖ R2] arenot
recoverable after tampering (due to partial erasure of secrets us-
ing the battery back-up as source), the complexity involved in
recovery ofS by an attacker is equivalent to that of breaking
a T -bit cipher! For example, if the size ofS′ is 128,000 bits,
and even if the attacker is able to retreive 127,900 of those bits
from the non-volatile memory, the complexity involved for the
attacker for determiningS is equivalent to that of breaking a
100-bit cipher.

3.3 Physical Unclonable Functions
Silicon PUFs exploit uncontrollable statistical delay variations
of connections and transistors etched on substrates, in each man-
ufactured chip. Even though a manufacturer may fabricate many
chips with identical masks, each chip would have a unique set
of delays in its components, which even the manufacturer will
not be able to measure with a high enough precision. In other
words, each chip (or some components taken together in a chip)
implements an “un-characterizable” (and therefore unclonable),
unique, physical one-way function (POWF). The concept of
physical one way functions was introduced by Ravikanth [35],
analyzed further in [36], and served as the motivation for silicon
PUFs in electronic chips, proposed by Gassend et al [1]. PUFs
were more extensively investigated by Lim [37].

The uniquephysical unclonable function in each chip could
be used along with challenge-response protocols for identifica-
tion of devices. For instance, a chip with PUFH() generates
responses

Ri = H(Ci) (4)

for differentchallengesCi. While the manufacturer has no way
no way to determineH for any chip, he could collect many such
challenge-response pairs (CRPs)(Ci, Ri) before the chip (or de-
vice containing the chip) is distributed11. Later, by randomly

10This is in principle very similar toall-or-nothing[33], [34] encryption trans-
forms.

11More specifically, until a certain stage in the chip manufacturing process.

choosing challenges from the set{Ci} the manufacturer could
verify authenticity of the devices, by checking their responses
against known responses{Ri}.

Suh et al [19] discuss a comprehensive architecture for a
single-chip secure processor that rely on PUFs. The key idea
behind the architecture is as follows. If a user of a device can
share a secret with the PUF in the chip (in the device), then it
permits the user to share a secret with other programs that may
run on the secure processor. The “user” may be the owner of the
chip (say ownerA of chip CA) or evenother users who share
a secret with the PUF inCA (for example usersB andC may
share a secret with the PUF inCA).

“Sharing a secret with the PUF” implies knowledge of one
more CRPs of the PUF. This is achieved by not permitting the
users toexplicitly choose the challenge to the PUFs (the chal-
lenges are modified in a unpredictable fashion by employing
some secure one-way function). This makes it possible to “as-
sign” otherusers (users other than the owner) some challenges
(for which they are provided with the responses apriori). Thus
it is now possible forB andC to authenticateCA even over an
untrusted channel. In addition, the secret shared between the
“remote” users and the PUF is bootstrapped to establish secrets
between the user and the programs running on the secure pro-
cessor.

3.3.1 Rest Encryption with PUF

The possibility of PUFs provides a quantum leap in the ability to
protect secrets stored in devices at rest byeliminating the need
for a reliable battery back-up. The secret used for encrypting
the secrets stored in non-volatile memory could be provided by
the PUF!

For example, the key used for encrypting the secrets could be
Rx = H(X), whereX is a known quantity (may be stored in
the clear in the device or may be a fixed value). When the device
is at rest, there is no way for the attacker to determineRx! When
the device is powered on, the device (or the software running in
the device) could “challenge” the PUF withX and obtain the
responseRx, and then proceed to decrypt the stored secrets!

3.4 “Reasonable” Assurances
In general, it may be possible to better protect secrets if the num-
ber of secrets that have to be protected very well is small. If mul-
tiple secrets have to be protected, the secrets can be encrypted12

with the single highly protected secret. For instance, ahighly
protectedsecret could be stored in special CPU registers - hid-
den even from the OS kernel [18], for performing cryptographic
computations.

Various techniques could be used to ensure that such secrets do
not leave a deep footprint in memory. One such technique is to
make sure that the bits are periodically ones complemented - say
every few milliseconds. However, this should be performed in

12As we shall see soon, this may not be very easy to accomplish.

5



hardware to make sure that this process continues to occur even
if the CPU hangs. Another option may be use memories that
have to be refreshed periodically in response to software signals
generated periodically by the CPU. So if the CPU hangs, the
contents of the memory would be “discharged.”

Similarly, when the device is powered-on it may be possible to
protect some selected areas of volatile memory (in addition to
the highly protected hidden register) by not providing clear line
of sight access, or by employing private circuits [30].

Thus some reasonable guarantees that could be provided by
technology for read-proofing and tamper-resistance are
G0 - Cryptanalytic attacks that employ weaknesses of ciphers
are infeasible [4].
G1 - It is possible to protect some limited areas (a special cache
memory and a volatile CPU register) of volatile storage from
compromise of secretswhile the device is functioning(or it is
not possible for the attackers to tap lines to read the contents of
these parts of the volatile memory, without triggering protection
circuits).
G2 - It is possible to read-proof the contents of one or a few
volatile registers when the device ispowered off(by ensuring
that the secret does not leave a footprint in the memory).
G3 - It is possible (using PUFs) to protect the secrets of a device
stored in non-volatile memory, when the device is powered-off.

4 The DOWN Policy
The DOWN policy is motivated by the fact that most crypto-
graphic operations have some inherentatomicity. At any point
in time only one or may be even part of a secret may be nec-
essary for cryptographic computations. Thus the secrets could
be (stored) encrypted atall times. The secrets, or parts of it are
decrypted only when necessary.

For instance, let us assume that the KDS secret to be protected
is a RSA private exponentr (say of size 1024 bits). Letp repre-
sent the public exponent andn the RSA modulus. Decryption of
a some cipher textC involves modular exponentiation ofC with
r - or P = Cr modn. However, to perform the exponentiation,
only one bit ofr is needed at any point in time (say exponenti-
ation using the square and multiply algorithm). We could thus
keepr encrypted at all times, and decrypt each bit as and when
necessary.

For KPD schemes, the use of DOWN is even more straight-
forward, and natural. For example with a KPD scheme where
each device hask secrets, for every cryptographic operation,
only one of thek keys is needed at any point in time.

The primary motivation for the DOWN policy is the implica-
tion of guarantee G1 - that it may be possible to prevent attackers
from continuously monitoring (reading) contents of some sensi-
tive memory locations. However, itmay be possibleto extract
some information from those portions of the memory using in-
vasive attacks involving scavenging of bits from footprints. Fur-
ther, just like every operation has some atomicity, so does the

operation of going from “in-use” state to “rest” state (or power-
on to power-down). This transition period perhaps provides the
most advantageous exploit for an attacker. An attackers best
strategy would be to disable parts or even the entire sequence of
events involved in the state-transition. Methods to accomplish
them would be perhaps by using FIB techniques to cut-off the
source of power to the processor, sudden freezing of the device,
or glitch attacks that may cause the CPU to hang (followed by
freezing of the device for volatile memory scavenging).

Withoutthe DOWN policy, such an attack may imply compro-
mise of the entire private secrets of the device (say all bits of the
RSA private key). that iscurrently stored in volatile memory.
With DOWN, if proper care is taken - for instance the decrypted
secrets are always stored in thesamememory location in the the
special cache memory (and therefore “overwrite” each other),
the attacker can discover at most 1 of thek secrets (for exam-
ple, the last contents before the cache was flushed), based on
residual information. The attacker canneverexpose more than
one secret from each device (in case of KPDs) or one part of the
secret (say one bit of the private RSA key).

Further, the strength of the “footprint” left behind would de-
pend on the duration [28] for which a secret is stored in a partic-
ular location. With DOWN, secrets are stored in volatile mem-
ory only for very short durations - and therefore should not leave
a clear footprint that could be detected by the attacker. Never-
theless, as mentioned earlier, it may be possible for the attacker
to cause the CPU to “hang” resulting in a deep footprint of the
current contents (which, if the attacker is lucky, may have one
of thek secrets) of the volatile memory.

4.1 Realization of DOWN
Let us assume that we could protect a single secretKV uncondi-
tionally (say stored in a special hidden CPU register - guarantee
G2), we could useKV to encrypt all KDS secrets. Whenever a
secret is necessary, it could be decrypted, used, and deleted from
RAM as soon as it is not needed anymore. However,the process
of encryption usingKV cannotinvolve transfering ofKV to less
protected volatile memory. Thus we are restricted to simple op-
erations like XOR for encryptions (which could be done in the
hidden CPU registers). Obviously, it is not safe to XORmultiple
secrets with the same keyKV , or even use elementary transfor-
mations ofKV (like shifts, which could be performed without
movingKV out of the hidden CPU registers) for this purpose.
For if the attacker determines even one of thek secrets (and he
knows the encrypted secret stored in non-volatile memory) he
can determineKV .

If we could also implement a block cipherE (say 128-bit
block size and 128-bit keys) or a secure one-way functionH
in hardware (say 128-bit output), accessible only to the CPU
(hidden from the OS kernel), then we could generate multiple
secrets from the keyKV . For instance we could generate se-
cretsKi = EKV

(i) or Ki = H(KV ‖ i) for 1 ≤ i ≤ k and
encrypt theithKDS secret with keyKi. If both theithKDS se-

6



cret andKi are of the same length (say 128 bits), we could sim-
ply use an XOR operation for encryption. On the other hand, if
we desire to encrypt each bit (say of a RSA private key) seper-
ately, we could encrypt theithbit bi by using another secure hash
function (implemented in software)h(Ki ‖ bi) that produces a
one-bit output. Of course, it is always possible to encrypt a 1024
bit RSA private key as 8 different 128-bit chunks. In this case,
upto 128 bits of the private key may be “exposed” (in the “se-
cure” cache memory) at any point in time - which is perhaps still
acceptable.

When DOWN is used, rest-encryption isalwaysin effect - even
when the device is functioning! Thus the most important conse-
quence of using DOWN, is thatnon-volatile memory in the chip
does not need any protection.

However, we need storeKV in some “special” non-volatile
memory when the device is powered off, which needs to be pro-
tected. For this purpose, PUF is very handy!

4.2 Realization of DOWN with PUFs
If PUFs are able to provide a secure and unclonable hash func-
tion which could be used efficiently in practice, even the hash
function H (or the block cipherE) used for realization of
DOWN could be replaced with the PUFH. This also simulta-
neouslyeliminates the need for the additional keyKV (or guar-
antee G2 is not required). Each KDS secret can be encrypted
using responses to different challenges by the PUF. TheithKDS
secret can be encrypted withKi = H(i).

In order to ensure that CRPs collected by manufacturers [19]
will not help them discoverKis, the challenges employed by
the device could berandomized. To randomize the challenges
the keyKi could be evaluated as

Ki = H(h(Nu ‖ i)) (5)

whereh() is a secure one-way function (implemented in soft-
ware). The random valueNu may be stored in the clear in
non-volatile memory. The seedNu - the choice of which the
manufacturer has no way of knowing apriori - ensures that the
probability that the manufacturer could have accumulated any
“useful” CRPs is extremely low.

Similar to [19] PUF enabled CPUs in trusted computers would
support an additional “instruction” GETRESP(j) wherej is and
integer. GETRESP(j) returnsH(j). Usually the integerj =
h(Nu ‖ i), 1 ≤ i ≤ k.

At all times, thek secrets are stored encrypted in non-volatile
memory (by XORing with respectiveKis). So there is no ex-
plicit transitionfrom “in-use” to “rest-state”!

4.3 Practical Relization of DOWN
However, it may not bepractical to employ the PUFH for
encryptingall keys. One of the main problems with practical
PUF realizations is that the delays are very sensitive to envi-
ronmental changes. In other words the functionH in each chip

also changes with environmental variations. Thus unless some
corrective measures are taken - like employing error correction
codes (ECC) [38] - it may not be possible toreliably authen-
ticate chips based on the PUF. PUFs could also suffer aging -
drifting of H with use, and over long periods of time.

Such compensatory mechanisms however will reduce the en-
tropy (or the non-determinism) ofH. This would imply use of
PUFs with high complexity (involving a large number of gates)
to realize cryptographically strong one-way functions which at
the same time do not drift with environmental variations. Fur-
ther, the error-correction codes required are typically computa-
tionally very intensive (at least compared to block ciphers or
hash functions).

A practical realization of the DOWN policy could still use
the clonable hash functionH (or block-cipherE) along with
a highly protected secretKV (or guarantee G2 is required).
PUFs could be used exclusively for protecting the keyKV at
rest. For instance, a random challengeX may be chosen and
stored in the clear in non-volatile memory. The secretKV could
be encrypted by XORing it withKx = H(X) or if desired
with Kx = H(H(X)). Thus, at rest,KV could be stored as
KV X = KV ⊕Kx in a hidden non-volatile register. Note that
the non-volatile register need not be read-proof - as for an at-
tacker who can gain access toX, there is no way to obtainKX

while the device is at rest. Even though the non-volatile storage
register does not need to be protected, the non-volatile register
could still be hidden as there is noneedfor the kernel to have
access to the register.

As the PUF is used only once during the boot-up process
and once during the shutdown process, thecomplexityinvolved
(mainly due to ECC) in generating reliable CRPs is not a very
crucial issue. Further, drift of the PUF due to aging should be
less of an issue - as long as aging does not affect the CRPs be-
tween one shut-down and thenextboot-up process! Note that
unlike other applications [1], [19], [39] - [40], of PUF in litera-
ture we do not rely on PUFs toauthenticate a device(in which
case agingwouldbe a serious issue).

For highly resource constrained devices (say wireless sensors)
use of PUFs may not be feasible. However, typically the active
life of such devices may depend on their battery life. Such de-
vices mayalwaysbe powered-on - they may never need to go
into rest-state. When they do go down when their battery runs
out, the secretKV is lost forever, and so are the secrets stored
in the non-volatile memory as they are encrypted withKV . As
PUFs are used only for rest-encryption, such devices donotneed
PUFs.

4.4 Self-Destruction
A trusted computer would be expected to self-destruct whenever
any tampering attempt is sensed. Self-destruction is typically
achieved by erasing all secrets stored in non-volatile memory.

However, as we assume that the non-volatile memoryneed not
be protected- as the secrets stored are encrypted - erasing non-

7



volatile storage does not help. An attacker could “replay” the
contents of the non-volatile storage at any time. In other words,
the attacker has the ability to create a “back-up” of the entire
contents of the non-volatile memory at any point in time and
restore its content later.

The hardware, firmware, the system software in ROM (or EEP-
ROM), are read-only - or things that cannot be changed, and
the secure RAM is volatile, and therefore would “forget” any
changes after the device is powered off. This implies that as
long as the attack does not result in any permanent damage to
the hardware / firmware, the devicecannotself-destruct.

To see this, assume that an attacker attempts an attack, which
is detected by some sensors in the chip. Appropriate actions
are taken to say flush the RAM (which may have one exposed
secret), and then shut-down the device. Ideally, under such cir-
cumstances, the device should be rendered unusable in the fu-
ture, even though it is fully functional. The computer has to set
a “TAMPERING DETECTED” flag somewhere to indicate that
a possible intrusion attempt was sensed, before it powers itself
down. If this is possible, the computer would check the flag
during the next boot-up sequence, and “refuse” to boot. How-
ever, the flag cannot be stored in the non-volatile memory - as
the attacker has the ability to revert its contents back to the state
beforethe attempted attack.

Thus some part of the non-volatile memory should be pro-
tected. It does not need to be read-proof - but only write-proof.
In practice, this implies that an attacker would not be able to
reset the flag without physically destroying the device.

It might be better to use a multiple bit sequence instead of a one
bit register to guard against attacks where an attacker could flip
random bits in in non-volatile memory by irradiation. If multiple
bits are used (and only a specific sequence of bits constitute a
valid entry) it may be significantly more difficult for an attacker
to preciselyresetmanybits (without destroying the chip).

As we use a non-volatile register for storingKV X , this itself
could be used as the flag. When the device is runningKV

is stored in a volatile hidden register. During the boot-up se-
quence,KV X is erased from the non-volatile register andKV

stored in the volatile register. During normal shut-down pro-
cess,KV would be transferred to the non-volatile register as
KV X . Any abnormal shutdown would result in an improper
value ofKV X and render the secrets (and therefore the device)
unusable. AsKV X is stored in a special register, it may not be
difficult to read-proof the register. In other words,KV X can-
not be read without physically damaging the chip. If thisweak
read-proof guarantee holds, then the register may not even be
weaklywrite-proof. Thus the non-volatile register just needs to
beeitherweakly read-proof or weakly write-proof.

5 Choice of KDS for Trusted Devices
There are three basic options for the choice of KDS for trusted
devices - a public key infrastructure (PKI), or a Kerberos-like

KDS, or KPDs. Privacy and practicality constraints dictate that
interactions between any two nodes, for purposes of establishing
mutual trust, should not need external mediators - or trust should
be established in anad hocmanner. This eliminates Kerberos-
like models as a viable alternative. PKI and KPDs however,
cater for ad-hoc mutual authentication. We shall discuss the
suitability of different KPDs first. We shall then compare KPDs
with PKI for this purpose.

6 KPDs with DOWN
The DOWN policy, in general, renders an-secure KPDnk-
secure. Further, as KDS secrets can be stored in unprotected
non-volatile memory, the size ofk might not be a serious is-
sue. However what might influence the performance is the fact
that each cryptographic operation (for instance the process of
mutual authentication of two nodes by arriving at a shared se-
cret) may involve anadditionalk cryptographic operations for
decrypting the stored secrets. As the cryptographic operation is
actually carried out in hardware this may not be a serious issue.
However, the overheads imposed by the need for memory access
(for each time a secret is needed it should be fetched from non-
volatile memory which could be a block based storage device)
could be significant. In addition, there may be context switches
(to a secure kernel mode) whenever a secretKi used to encrypt
theithsecret is queried.

However, it is not always necessary thatall the k secrets are
used foreachcomputation for all KDSes. While this may be
true for PKI (allk parts of the private key need to be used for
every operation that needs the private key) and some KPDs (for
example Blom’s KPD [10]) this is not true for random KPDs like
HARPS [8]. It might therefore be fair, in order to compare rel-
ative merits of different KPD schemes, to use thenumber of se-
crets that actually need to be fetchedfrom non-volatile memory
and decrypted for cryptographic operations, rather than thenum-
ber of secrets actually stored- as unprotected non-volatile mem-
ory storage complexity is not a critical issue. We shall however
restrict our comparison to two KPD schemes - Blom’s scheme
and HARPS.

In a n-secure Blom’s scheme, the TA chooses
(
n+1

2

)
secrets

in ZP (whereP is a large prime), and generates a polynomial
f(x, y) =

∑n
i=0

∑n
j=0 aijx

iyj modP , whereaij = aji are(
n+1

2

)
independent secrets chosen by the TA. Every node is as-

signed a unique public ID. A nodeA which has public IDrA

and receivesgA(x) = f(x, rA) securely (gA(x) hasn + 1 coef-
ficients, corresponding ton + 1 secrets of the nodeA) from the
TA. Two nodesA andB can calculateKAB = KBA = f(rA, rB)
= f(rB , rA) = gA(rB) = gB(rA) independently.

For (P, k, L) HARPS, the TA choosesP secrets. Each node
(with a unique ID) is provided with a subset of those secrets (of
cardinalityk). Thek secrets are further hashed repeatedly many
times (randomly chosen between 1 andL). The indexes of the
secrets assigned to each node, and the number of times each key

8



is hashed is based on a public one-way function, seeded by the
ID of the node. Two nodes, by exchanging their IDs, can execute
the public one-way function to determine the secrets they share
and the corresponding hash depths. The shared secret between
two nodesA andB is derived from all shared keys. For each
shared key, the node with the lower hash depth, hashes its key
the requisite number of times to reach the same hash depth as
the other node.

As a numerical example, for HARPS withP = 15000 (num-
ber of independent secrets chosen by the TA) andk = 1000
(number of secrets stored in each node), the average number of
sharedsecrets between two nodes is roughly 67 (ork2

P ≈ 67).
For Blom’s scheme however, as allk secrets are needed for any
cryptographic operation (to evaluate thek−1 degree polynomial
the coefficients of which are thek secrets). It may be therefore
be fair to compare HARPS withk = 1000 with Blom’s scheme
with k = 67.

For the latter, which needs onlyn + 1 keys to ben-secure,
k = 67 renders Blom’s scheme 66-secure. With DOWN, the
scheme is rendered66 × 67 = 4422-secure. In other words, as
long as 4422 (or less) nodes are compromised (and one secret
exposed from each), Blom’s scheme is unconditionally secure.
On the other hand, when more that 4422 nodes are compromised
the entire KPD is compromised.

For HARPS withP = 15, 000, k = 1000, L = 512, the num-
ber of nodes that an attacker needs to compromise in order to
compromise shared secrets between two nodes with some prob-
ababilitype is
1. Over 20,000 nodes to have the ability to eavesdrop on one in
2 trillion exchanges (orpe = 5× 10−13)
2. Over 40,000 nodes to have the ability to eavesdrop on one in
1 million exchanges (pe = 1× 10−6)
3. Over 200,000 nodes to have the ability to eavesdrop on half
the exchanges (orpe = 0.5)

However, for some cryptographic operations (for instance au-
thentication of a node to the TA, or encrypting other personal
secrets of a user which may in turn be used to encrypt user data),
HARPS may employ all itsk keys. For HARPS (and all random
KPD schemes), it is significantly more difficult for an attacker
to compromise all secrets in a node (which is also the shared
secrets between a node and the TA) than compromising all se-
crets that are shared between twopeer nodes. The ability of
the attacker to achieve this (compromise ofall secrets in a node
by exposing keys fromother nodes) is referred to as “synthe-
sis attack” (while the former attack - determining shared secrets
for the purpose of impersonation of a node for the purpose of
fooling peer nodes - is referred to as “eavesdropping attack.”).

To perform the synthesis attack against HARPS (with proba-
bility of successps) the attacker has to compromise (expose one
secret from)
1. Over 5 million nodes to synthesize one in 10 trillion nodes
2. Over 85 million nodes to synthesize one in a million nodes,
and

3. About 300 million nodes to synthesize every other node (or
ps = 0.5)

As for Blom’s KPD “eavesdropping” and “synthesis” are
achieved simultaneously. Blom’s KPD with 1000 keys (to be
fair, as HARPS uses 1000 keys for this purpose) will succumb
to synthesis attack when less than a million nodes have been
compromised.

HARPS has many other advantages over Blom’s scheme. For
instance HARPS can be readily extended to a tree-hierarchical
deployment - in which each node acts as a TA forits child nodes.
A subset of the nodes keys are provided to the child nodes - how-
ever at higher hash depths. In such a deployment, compromise
of secrets at lower levels of the hierarchy does not affect the se-
curity of higher levels (or keys in child nodes do not provide
any information about keys in parent node) as long as the hash
function is pre-image resistant.

Further, the same secrets used for mutual pair-wise authenti-
cation could also be used for discovery of instantaneous group
secrets, broadcast authentication, and broadcast encryption (or
non-instantaneous establishment of group secrets). In addition,
random KPDs also provide satisfactory solutions for periodic re-
newal. HARPS permitspartial renewal of secrets - which caters
for “seamless” periodic renewal [8].

Furthermore, each elementary cryptographic operation for
Blom’s KPD scheme involves exponentiation (for evaluation of
a k − 1 order polynomial) in a prime field, while each opera-
tion with HARPS keys involve pure symmetric cryptographic
primitives (block cipher or hash function). Thus among KPDs,
HARPS may clearly be the better choice - especially for DOWN
enabled trusted devices.

6.1 HARPS vs PKI
6.1.1 Computational Complexity

As asymmetric cryptography imposes a large computational
burden, this requirement may limit “range” of devices that can
take part in the deployment. While computational complexity
may not be a serious issue with devices that are expected to be
tamper-resistant there may be some highly resource constrained
devices with perhaps lower levels of protection.

While technology for miniaturization has improved substan-
tially, and perhaps to a point where any conceivable device
would have the ability to perform asymmetric cryptography, bat-
tery technology has consistently lagged behind. A chip that is
twice as fast in general consumes more than twice the power as
the slower one to accomplish the same task - or it takes more
energy to do a task faster. While growing confidence and im-
provements in elliptic curve cryptosystems (ECC) may ease the
burden of asymmetric cryptography for signature schemes, they
are not very efficient for encryption [41]. Considering that most
exchanges between trusted devices would involve encryption
rather than signatures, the advantage offered by ECC over RSA
may not be substantial.

9



HARPS needs just a hash function or a block cipher for its
implementation. As HARPS permits hierarchical deployments,
it is possible to include devices that are not well protected in the
deployment by including them in “lower levels” of the hierarchy.

Even under situations where nodes are not resource con-
strained, it would perhaps be worthwhile to direct the increased
complexity necessitated by PKI (compared to KPD) to improve
tamper-resistance and read-proof ability of chips, or perhaps the
storage complexity (size ofk) of KPDs instead.

6.1.2 Bandwidth Overheads

With PKI, two nodes need to exchangesigned public keys
(which may run up to afew thousand bits) before they can au-
thenticate each other. For evolving application scenarios, with
perhaps thousands of nodes within wireless range, contention
for channel access may become a severe problem unless the
bandwidth of exchanges between nodes are kept minimal (to
ensure that the channel use never reaches close to its capacity,
and therefore limiting the problem of contention). Further, for
wireless communications the battery power drained by the trans-
mitter may be substantially larger than the power drained by the
processor and other peripherals - making bandwidth very expen-
sive. Once again, ECC (and most “faster” public key encryption
alternatives) result inexpansion of encrypted data- which is a
severe penalty to pay when bandwidth is at a premium.

For KPDs, on the other hand, two nodes just need to exchange
their IDs before they can authenticate each other.

6.1.3 Secure RAM Requirement

In order to achieve effective protection we might need to keep
the size of “secure” RAM (the protected cache memory accom-
panied by guarantee G1) minimal - we might want to limit the
areas of the chips to which the attacker cannot have a clear line-
of-sight access (to avoid tapping lines using FIB techniques).
Asymmetric cryptographic primitives will in general need more
RAM, and therefore it may be more expensive to protect the se-
crets.

6.1.4 Non-volatile Storage Complexity

PKI would need far less non-volatile storage than KPDs (for
storing KDS secrets). For example, PKI using 1024-bit RSA,
the storage needed is just 1024 bits compared to say HARPS
which would need 128,000 bits if each node has 1000 128-bit
keys. However, as the non-volatile storage need not be secure
if DOWN policy is used (as the secrets are encrypted whenever
they are stored in non-volatile memory), the insecure storage
complexity may not be a big concern.

6.1.5 Dissemination of Public Keys

Another issue with PKI for huge-scale deployments would be
the problem of dissemination of public keys. With billions of
devices, certificate chains [42] needed for mutual authentication
could become very long.

At the core if this issue is the fact that for public key cryp-
tographic schemes one does not have the freedom to “choose”
public keys. The public key is dictated by the choice of the pri-
vate keys. For example, in RSA, the choice of secret primes
p andq would dictate the public valuen = pq. On the other
hand, with KPDs, the “public key” (the ID of a node) could be
chosen by hashing a descriptive string (say “First Name, Last
Name, Affiliation”). The private secrets are assignedafter the
ID is chosen. This could go a long way in easing the problem of
dissemination of public keys.

6.1.6 Multicast Security Primitives

While PKI does not cater for native multicast security primitives
(apart from broadcast authentication using digital signatures),
HARPS caters for different multicast security primitives like
broadcast authentication [43], discovery of conference secrets,
and broadcast encryption [44]. Broadcast encryption could be
very useful for revocation of devices - for example devices sus-
pected of having been compromised, or just devices that have
been lost or stolen. While the ability to perform authenticated
broadcasts is sufficient to perform revocation (by broadcasting
revocation lists as in PKI), each device would need tostorethe
list of currently revoked nodes. However, if broadcast encryp-
tion were used instead, nodes just need to store the latest revoca-
tion secret (which will not be available to revoked nodes). The
current revocation secret would also be used by the nodes in ad-
dition to their shared secret (provided by the KDS) for mutual
authentication. Especially in large scale deployments where a
substantial number of nodes might be revoked at any point in
time, storing revocation lists may not be feasible.

However, broadcast authentication using KPDs may have re-
quire larger bandwidth than PKI. Typically broadcast authenti-
cation with shared keys involves appending HMAC using each
of thek keys [43], [45] of the source node. By relaxing security
requirements, it could be reduced to one bit per HMAC [45] (for
instance just the LSB of the HMAC could be used). This still
may imply that the bandwidth needed may be more for KPD
(compared to say DSA) for this purpose. Nevertheless, in situa-
tions (say mobile ad hoc networks) where broadcast authentica-
tion is crucial, techniques using one-way hash chains [46] (and
delayed disclosure of pre-images [47] - [49]) could be used.

While strict non-repudiation is not possible with symmetric
cryptography, it is indeed possible if the devices aretrusted-
anything that comes out of the trusted device is trusted! For
example, for every HMAC a trusted device calculates, it might
prefix its ID to the data that is hashed. A trusted device cannot
be forced to append the ID of some one else to “forge a signa-
ture.” The HMACs may be based on shared secrets for cases
where the number of verifiers are limited.

6.1.7 Security and Key Renewal

When used in conjunction with the DOWN policy (or the guar-
antee that only one secret or a part of the secret can be compro-

10



mised even by a sophisticated attacker), devices protected using
PKI (say using RSA) are immune to compromises (except that
cryptanalytic attacks are renderedmarginallyeasier).

Thus while PKI might not require periodic renewal for reasons
of security of keys, the cerificates issued to the nodes will have
to be for a limited duration to ensure that revocation lists do
not growindefinitely(certificates of revoked devices will not be
renewed).

However, with KPDs, the assumption is that it may not be prac-
tical for an attacker to tamper with many tens of thousands of
devices (in order to achieve temporary compromises) or mil-
lions of devices to achieve node synthesis (with which an at-
tacker may be able to effect more damages). Periodic renewal
of nodes is also needed for KPDs for reasons of security (to re-
duce attackers motivation even to attempt compromise of tens of
thousands of devices as the secrets would not serve the attacker
for a long time - they are rendered useless after key updates).

While the need for periodic renewal may not be of much con-
cern for communication devices or smartcards which are used
frequently (renewal would involve an one-on-one interaction of
a node with the TA over a public network [8] - say the Inter-
net), it may not be suitable for “unattended” devices. However,
the “unattended lifetime” of such devices is more likely to be
restricted by their battery life rather than the period between
two renewals. In other words, unattended devices might have
to be attended to once in a while - for replinishing their batter-
ies. Therefore, if such devices do not have the ability to perform
one-on-one interaction with the TA for renewal, their renewal
process could be relayed through a longer range communication
device when they are attended to.

With a tree-hierarchical deployment of HARPS, nodes only
need to approach their parent for key renewal. Typically a manu-
facturer of a device may possess the parent node for a particular
device. For devices at lower levels of the hierarchy (say wireless
devices in home equipment) the parent device may be the smart-
card of the owner of the device (the smartcard may be plugged
into a general purpose communication equipment in order to in-
teract with other home devices).

6.1.8 Key Escrow

The main need for escrowing secrets stored in trusted devices
(say in “highly trusted devices”) arises due to the fact that trusted
devices are expected to self-destruct when tampering attempts
are sensed. Obviously, there are bound to be false-alarms.

The owner of the device could have stored all her personal
data, encrypted with some key. The encryption key itself could
be stored along with the data, after encryption with the KDS
secrets. With KPDs for instance, it could mean encryption us-
ing all k secrets. With her trusted computer (say a smart card)
“dead” the user looses access to all her personal data.

If the keys are not escrowed, then there would be no way for the
unfortunate user to retrieve her data. Unfortunately, we would
like the threshold for detecting tampering attempts to be low to

ensure that it is practically impossible for attacker attempts to
go unnoticed.

Another fundamental difference between KPDs and PKI, aris-
ing once again because of the fact that the keys stored in differ-
ent nodes are not independent in the former, is the ability of the
former to escrow keys. In theory, the ability to escrow keys in
all devices by an “authority” implies the ability of the author-
ity to invade on the privacy of the exchanges between nodes.
However, this need not be the case if the trusted devices which
escrow the keys (the parent device) are trusted not to decrypt
content that is not explicitly addressed to it! For instance, the
TA’s device, though it might know the secrets that are neces-
sary to decipher exchanges betweenA andB, would just refuse
to do so. As devices used by the TA (and say all manufactur-
ers of equipment) is not likely to have any resource constraints
their design could be completely open to public scrutiny (un-
like Clipper chips [50] for instance) and still perhaps be highly
tamper-proof.

With KPDs, the users smart card could simply be replaced with
a new one - with the same ID. If trusted devices employ PKI
(say the protected secret is the private RSA key), obviously such
secrets cannot be escrowed in a device that only the “owner” has
acess to (as the point is to protect the secrets even from the owner
of the device). Of course, the private keys of each node could
also be escrowed in the TA’s trusted device - which is a lot less
efficient than escrowing KPD keys (where it is needed anyway).
In other words, the potential need to escrow keys further reduces
the advantage of employing PKI over KPDs for trusted devices.

7 Conclusions
We introduce and analyze a simple security policy - DOWN -
that could significantly improve the ability of trusted devices to
protect their secrets, and therefore our trust in trusted devices.
We argue that DOWN with PUFs may be a good approach for
trusted computers.

While the use of DOWN helps any KDS that could be used for
mutual authentication of trusted devices, KPDs are rendered par-
ticularly attractive in conjuction with DOWN. This is especially
true for the very simple random key pre-distribution schemes
that have caught the attention of researchers lately due to the
growing importance of security in resource constrained environ-
ments. However, we argue that random KPDs like HARPS [8]
may be well suited for securing trusted devices even when re-
source constraint isnot an issue.

One of the main advantages of the DOWN policy is that it
reduces the complexity of state transition (from in-use to rest)
which is perhaps the most vulnerable period of operation of a
trusted device. Further, the DOWN policy also makes it unnec-
essary extend protection non-volatile memory (even an exter-
nal storage like an SD card can be used). The primary disad-
vantage of the DOWN policy is the overheads associated with
additional rounds of decryptions, and access from non-volatile

11



memory needed for decrypting parts of the KDS secrets.

References

[1] B. Gassend, D. Clarke, M. van Dijk, S. Devadas, “Silicon
Physical Random Functions,” Proceedings of the 9th ACM
conference on Computer and communications security, pp
148-160, 2002.

[2] A. Pfitzmann, B. Pfitzmann, M. Schunter, and M. Waid-
ner, “Mobile User Devices and Security Modules: De-
sign for Trustworthiness”; IBM Research Report RZ 2784
(#89262) 02/05/96, IBM Research Division, Zurich, Feb.
1996.

[3] J. Lotspiech, S. Nusser, F. Pestonoi, “Anonymous Trust:
Digital Rights Management using Broadcast Encryption,”
Proceedings of the IEEE,92 (6), pp 898–909, 2004.

[4] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, T. Ra-
bin, “Tamper Proof Security: Theoretical Foundations for
Security Against Hardware Tampering,” Theory of Cryp-
tography Conference, Cambridge, MA, February 2004.

[5] M.G. Zapata, “Secure Ad hoc On-demand Distance Vec-
tor Routing,” Mobile Computing and Communications Re-
view, 6(3), 2001.

[6] R. Anderson, M. Kahn, “Tamper Resistance - a Caution-
ary Note,” Second USENIX Workshop on Electronic Com-
merce Proceedings, pp 1-11, Oakland, CA 1996.

[7] Semiconductor Insights Inc., “Tamper Re-
sistance - A Second Opinion,” available at
http://www.smartcard.co.uk/resources/articles/tamper-
res.html.

[8] M. Ramkumar, N. Memon, “An Efficient Random Key
Pre-distribution Scheme for MANET Security,” IEEE
Journal on Selected Areas of Communication, March
2005.

[9] R. Needham and M. Schroeder, “Using encryption for au-
thentication in large networks of computers,” Communica-
tions of the ACM, 21(12), December 1978.

[10] R. Blom, “An Optimal Class of Symmetric Key Generation
Systems,”Advances in Cryptology: Proc. of Eurocrypt 84,
Lecture Notes in Computer Science,209, Springer-Verlag,
Berlin, pp. 335-338, 1984.

[11] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vac-
caro, M. Yung, “Perfectly-Secure Key Distribution for Dy-
namic Conferences,” Lecture Notes in Computer Science,
vol 740, pp 471–486, 1993.

[12] T. Matsumoto, M.E.Hellman, “New Directions in Cryp-
tography,”IEEE Transactions on Information Theory, IT-
22(6), Dec. 1976, pp.644-654.

[13] D. R. Stinson, T. van Trung, “Some New Results on Key
Distribution Patterns and Broadcast Encryption,”Designs,
Codes and Cryptography,14 (3) pp 261–279, 1998.

[14] C.J. Mitchell, F.C. Piper, “Key Storage in Secure Net-
works,” Discrete Applied Mathematics,21 pp 215–228,
1995.

[15] M. Dyer, T. Fenner, A. Frieze and A. Thomason, “On Key
Storage in Secure Networks,”Journal of Cryptology,8,
189–200, 1995.

[16] M. Ramkumar, N. Memon, R. Simha, “Pre-Loaded Key
Based Multicast and Broadcast Authentication in Mobile
Ad-Hoc Networks,” Globecom-2003, San Fransisco, CA,
Dec 2003.

[17] T. Leighton, S. Micali, “Secret-key Agreement with-
out Public-Key Cryptography,”Advances in Cryptology-
CRYPTO 1993, pp 456-479, 1994.

[18] J.P. McGregor, R. B. Lee, “Protecting Cryptographic Keys
and Computations via Virtual Secure Coprocessing,” ACM
SIGARCH Computer Architecture News archive,33(1),
March 2005.

[19] G. E. Suh, C. W. O’Donnell, I. Sachdev, S. De-
vadas, “Design and Implementation of a Single-Chip
Secure Processor Using Physical Random Functions,”
MIT CSAIL CSG-TR-483, Nov 2004, available at
http://csg.csail.mit.edu/pubs/.

[20] G. E. Suh, C. W. O’Donnell, I. Sachdev, S. Devadas, “De-
sign and Implementation of the AEGIS Secure Processor
Using Physical Random Functions,” to appear, 32nd Inter-
national Symposium on Computer Architecture, Madison,
Wisconsin, June 2005.

[21] O. Kommerling, M. Kuhn, “Design principles for tamper-
resistant smart-card processors,” Proceedings of the
Usenix Workshop on Smartcard Technology, pp. 9–20,
1999.

[22] R. Anderson, M. Kuhn, “Low Cost Attacks on Tamper Re-
sistant Devices,” IWSP: International Workshop on Secu-
rity Protocols, Paris, April 1997.

[23] S. Skorobogatov, R. Anderson, “Optical Fault Induction
Attacks,” Cryptographic Hardware and Embedded Sys-
tems Workshop (CHES-2002), LNCS 2523, Springer-
Verlag, ISBN 3-540-00409-2, pp 2–12.

[24] P. Kocher, “Differential Power Analysis,” Advances in
Cryptology, CRYPTO 1999, Springer LNCS series, Vol
1666, pp 388–397.

12



[25] M.G Karpovsky, K. Kulikowski, A. Taubin, ” Robust Pro-
tection Against Fault-Injection Attacks of Smart Cards Im-
plementing the Advanced Encryption Standard”. T Proc.
Int. Conference on Dependable Systems and Networks
(DNS 2004), July, 2004.

[26] National Computer Security Centre, “A Guide to
Understanding Data Remanence in Automated In-
formation Systems,” September 1991, available at
http://www.fas.org/irp/nsa/rainbow/tg025-2.htm.

[27] R. J. Anderson,Security Engineering: A Guide to Building
Dependable Distributed Systems,John Wiley and Sons,
2001.

[28] P. Gutman, “Secure Deletion of Data from Magnetic and
Solid-State Memory,” Sixth USENIX Security Sympo-
sium, San Jose, California, July 1996.

[29] P. Laackmann, B. Meier, H. Nguyen, Infineon Technolo-
gies, “Revolution In The Smart Card Security,” available
at http://www.epn-online.com/page/11955/revolution-in-
the-smart-card-security-physical-attacks.html.

[30] Y. Ishai, A. Sahai, D. Wagner, “Private Circuits: Securing
Hardware against Probing Attacks,” CRYPTO 2003, Santa
Barbara, CA, Aug 2003.

[31] IEEE P1619 - Standard Architecture for Encrypted Shared
Storage Media, available at http://siswg.org/docs/.

[32] Application Security Inc., “Encryption of Data at Rest:
White Paper,” available at http://www.appsecinc.com.

[33] R. Rivest, “All-or-nothing encryption and and the package
transform,” Fast Software Encryption 1997, LNCS1267,
E. Biham Ed., Springer-Verlag, 1997.

[34] A. Desai, “The Security of All-or-Nothing Encryption,”
Advances in Cryptology, Crypto 2000, LNCS1880, M.
Bellare Ed., Springer-Verlag, 2000.

[35] P.S. Ravikanth, “Physical One-Way Functions,” Ph.D
Thesis, Department of Media Arts and Sciences, Mas-
sachusetts Institute of Technology, 2001.

[36] P. Tuyls, B. Skoric, T. Akkermans, W. Ophey, S. Stallinga,
“Security analysis of physical uncloneable functions,” 25th
Symposium on Information Theory in the Benelux, June
2004.

[37] D. Lim, “Extracting Secret Keys from Integrated Circuits,”
Masters Thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology,
May 2004.

[38] F. M. Williams, N. Sloane,The Theory of Error-Correcting
Codes, North-Holland Press, 1977.

[39] B. Gassend, D. Clarke, M. van Dijk, S. Devadas, “Con-
trolled Physical Random Functions,” 18th Annual Com-
puter Security Applications Conference, San Diego, CA,
Dec 2002.

[40] B. Gassend, D. Clarke, M. van Dijk, S. Devadas, “Delay-
based Circuit Authentication and Applications,” Proceed-
ings of the 2003 ACM symposium on Applied Computing,
Melbourne, Florida, pp 294 – 301, 2003.

[41] P. Karu, J. Loikkanen, “Practical comparison of Fast
Public-key Cryptosystems,” Proceedings of the Helsinki
University of Technology Seminar on Network Security,
2000.

[42] D. Clarke, J-E Elien, M. Fredette, A. Marcos, R.L.Rivest,
“Certificate chain discovery in SPKI/SDSI,” Journal of
Computer Security, vol. 9, no. 4, pp. 285 – 322(38), 2001.

[43] M. Ramkumar, “Broadcast Authentication with Preferred
Verifiers,” submitted to CRYPTO 2005.

[44] M. Ramkumar, N. Memon, “A DRM Based on Renewable
Broadcast Authentication,” to appear, IEEE / SPIE Visual
Communications and Image Processing Conference, Bei-
jing, China, July 2005.

[45] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, B.
Pinkas, “Multicast Security: A Taxonomy and Some Effi-
cient Constructions,” INFOCOMM’99, 1999.

[46] L. Lamport, “Password Authentication with Inse-
cure Communication,” Communications of the ACM,
24(11):770-772, November 1981.

[47] S. Cheung, ”An Efficient Message Authentication Scheme
for Link State Routing”, Proceedings of the 13th Annual
Computer Security Applications Conference, San Diego,
California, December 1997, pp. 90-98.

[48] R.J. Anderson, F. Bergadano, B. Crispo, J.H. Lee, C. Man-
ifavas and R.M. Needham, “ A New Family of Authentica-
tion Protocols,” ACM Operating Systems Review, vol. 32,
n. 4, pp. 9-20, October 1998, ACM Press.

[49] A. Perrig, R. Canetti, D. Song, D. Tygar, “Efficient and
Secure Source Authentication for Multicast,” in Network
and Distributed System Security Symposium, NDSS ’01,
Feb. 2001.

[50] W. Diffie, “The Impact of a Secret Cryptographic Stan-
dard on Encryption, Privacy, Law Enforcement and Tech-
nology,” Sun Microsystems, May 1993, available at
http://www.epic.org/crypto/clipper/diffietestimony.html.

13


