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ABSTRACT 

For decades, secure operating systems have incorporated 
mandatory access control (MAC) techniques. Surprisingly, mobile-
code platforms such as the Java Virtual Machine (JVM) and the 
.NET Common Language Runtime (CLR) have largely ignored 
these advances and have implemented a far weaker security that 
does not reliably track ownership and access permissions for 
individual data items. We have implemented a system that adds 
MAC to an existing JVM at the granularity of objects. Our system 
maintains a strict separation between mechanism and policy, 
thereby allowing a wide range of policies to be enforced. 
Moreover, our implementation is independent of any specific 
JVM, and will work with any JVM that supports the JVM Tools 
Interface.  

1. INTRODUCTION 
Language runtimes such as the Java Virtual Machine [14] and 

the .NET Common Language Runtime [15] have become popular 
targets for application deployment due to their portability and 
safety. They provide a number of mechanisms for secure access 
control. A common technique is for the code producer to digitally 
sign code. When executing the code, the code consumer looks up 
a policy mapping code sources to the resources they are allowed 
to access on the local site. However, current language runtimes 
can neither specify nor enforce fine-grained policies that track 
individual resources throughout the execution of a program. For 
example, one could specify whether or not a program is allowed 
to access the network at all, but not whether it is allowed to send 
only the contents of only certain files over the network, and not 
others. 

As opposed to discretionary access controls that rely on users 
to specify a security policy, and also do not control access 
throughout an object’s lifetime, mandatory access controls rely on 
centrally administered policies that are imposed on every data 
item in the system throughout its lifetime. Examples of systems 
that need strict information flow controls are payment processing 
e-business applications, medical data applications, as well as 
upcoming utility computing grids, where computational resources 
are remotely “rented” out.  

An example of a system that highlights the need for 
mandatory access control policies is an extensible application 
server. An application server has following two objectives: first, it 
should be flexible and extensible. As the needs of deployment 
change, one should be able to add functionality to the system. 
This is usually done by having an architecture for installing 

plugins to extend the functionality of the system. Second, it 
should be able to ensure the confidentiality of the secret data that 
it may be handling. Confidentiality of information is defined 
through access control policies.  

Presently, using discretionary policies one can define policies 
that either restricts the system to install only trusted plugins, or 
else denies the entire program access to secret data. This all-or-
nothing, coarse-grained policy greatly reduces the flexibility of 
the system. Instead, we need a way to specify fine-grained, 
application-specific policies – for example, policies that say “do 
not write sensitive data to a world-readable folder”, or “do not 
send sensitive data over the network”. 

Mandatory Access Control (MAC) has been extensively 
studied in the context of operating systems. Security-conscious 
environments such as the military and the government have have 
been using strict MAC mechanisms in secure installations [8] for 
decades. Recently, mandatory access controls are beginning to 
appear in commodity open operating systems such as BSD and 
Linux. Projects like TrustedBSD [25] and Security-enhanced 
Linux [19] (SELinux) add techniques and tools to specify, 
manage and enforce a range of mandatory access controls. 

However, while mandatory access controls are becoming 
increasingly common in underlying operating systems, language 
runtimes like the Java Virtual Machine lack mechanisms to either 
specify or enforce information flow constraints. This has created a 
semantic gap between the access models of the operating system 
and those of the language runtime.  

As a solution, we have extended the Java virtual machine 
with functionality to perform mandatory access control at the 
granularity of objects. Our implementation strictly separates the 
enforcement mechanism from the specification of polices. This 
allows flexible specification and enforcement of a wide range of 
policies. Moreover, our technique is implemented in a VM-
independent manner, in the form of a plugin that will work with 
any Java 1.5 compliant virtual machine. We did need to make 
some modifications to the system libraries, but these are fully 
backward compatible.  

The novel contributions of this paper are twofold: to explain 
the need for mandatory access controls in the Java virtual 
machine, and present its design and implementation. We also 
evaluate and discuss the impact of introducing this new access 
control mechanism into the JVM. Finally, we compare our 
scheme with existing access control techniques for Java, and 
discuss the advantages and disadvantages of each. 



The rest of this paper is structured as follows: Section 2 gives 
an overview and evaluation of current techniques for access 
control and information flow in Java, both at the language as well 
as virtual machine level, discusses some of their shortcomings, 
and motivates the need for mandatory access control in the virtual 
machine; Section 3 presents the design rationale for mandatory 
access control in a Java virtual machine, using a couple of simple 
examples; Section 4 details our implementation and results; 
Section 5 discusses open issues and future work; Section 6 
presents additional related work and Section 7 concludes. 

2. EXISTING SOLUTIONS 
Early Java implementations (up to JDK 1.1) had two distinct 

security environments. The first environment, a complete 
sandbox, was designed to constrain the execution of applets 
downloaded from the Web. These applets were considered 
completely untrusted. The sandbox disallowed any access to the 
local filesystem, as well as any network connections to domains 
other than the one from which the applet originated. This sandbox 
policy was designed to prevent untrusted code from leaking local 
data, and consuming too many network resources. The second 
environment had no constraints at all, and was used to run local 
code on a machine. Code on the local disk was considered 
completely trusted. Thus, this early model was essentially all-or-
nothing, accounting for either completely untrusted or completely 
trusted code. It had no gradations between these two extremes. 

Later versions of Java (after JDK 1.2) added capabilities to 
create more graded security environments, and provide a variety 
of more fine-grained security permissions [10]. Instead of being 
trusted (local), or untrusted (remote), code was now associated 
with principals. A public key infrastructure and cryptographic 
signatures were used to bind principals to code. A security policy 
specified what permissions code originating from various 
principals would get. Permissions included filesystem read and 
write permissions, and network socket capabilities. Enforcement 
was relegated to a runtime security manager that regulated access 
to privileged resources by looking up the permissions possessed 
by the object that made the request. For example, a policy may 
specify that all code digitally signed by the domain uci.edu is 
allowed to read any local file, but to write only under /tmp.  

However, there are many useful security polices that the 
current Java architecture does not address. Higher level policies 
that depend on program state cannot be specified. An example of 
such a policy is “do not allow transmitting on the network after 
reading from the local filesystem”. Inlined reference monitors [9] 
and software fault isolation [24] have been used to enforce 
policies such as this. But even those techniques cannot handle 
stronger policies that track information within a program. An 
example of such a policy is: “any data read from the local 
filesystem must not be transmitted on the network”. Note that this 
is a finer-grained policy than the earlier one because it permits 
sending on the network even after a local file has been read – it 
merely forbids sending information that was actually read from 
the file.  

Another shortcoming of the standard Java security 
architecture is that policies can only be specified in terms of 
permissions exposed by the Java security API. Another critical 
drawback is that once a security check is done, there are no 
controls on the propagation of data thereafter. Data confidentiality 
policies cannot be expressed or enforced in the current Java 
scheme. This is the reason why a policy such as “any data read 

from the local filesystem must not be transmitted on the network” 
cannot currently be expressed. 

At the Java source level, fields and classes can be marked 
with access modifiers such as public, private and 
protected to limit their visibility to other classes and 
packages. While enforced offline by the Java compiler, marking a 
field private does not mean that it is inaccessible at runtime. 
Private fields can easily be accessed using Java’s reflection 
capabilities. Thus, these modifiers should be thought of as an 
abstraction tool to hide implementation details, rather than as 
tools for strict protection of information. 

Some recent research has focused on statically enforcing 
information flow at the source level using language-based 
techniques. Various language-level techniques can be used to 
control information flow [18]. Type-based information flow relies 
on programmers inserting security label annotations into source 
code. Myers et al. [17] use a type system to enforce information 
flow statically. Their Jif compiler is a source-to-source compiler 
that checks a Java program with information flow annotations, 
type-checks it, and outputs a regular Java program. These are then 
statically type-checked: successful type-checking implies the 
absence of illicit information flows.  

Attempts to statically impose information flow on 
bytecode [4] suffer from serious shortcomings, such as the 
inability to handle dynamic object creation, and being forced to 
make overly conservative assumptions when performing inter-
procedural analysis.  

A fundamental shortcoming of static analysis is that it must 
work under a closed-world assumption. This means that the 
analysis must have access to the whole program, and that the 
program that finally gets executed must be exactly the same 
program that was analyzed. Any dynamic extensions to a program 
invalidate the assumptions used by the analysis. This runs counter 
to Java’s model of dynamic class loading, which may occur at 
anytime during program execution.  

Another disadvantage of static methods is the early binding of 
policy and code. The policy one wants enforced must be known at 
compile time. This is suitable for well-known policies that rarely 
change. However, for policies not known a priori, or when the 
same program needs to be executed with difference policies, more 
dynamic methods are needed that allow late binding of policy and 
code. Most static methods also need access to source code, which 
is only rarely the case in most installations. The more frequent 
case is that only binaries or compiled bytecode are present, and 
some policy needs to be enforced on their execution. 

Most static methods for enforcing information flow (such as a 
Jflow [17]) require the programmer to annotate source with 
special annotations relevant to information flow. This early 
binding of policy to code forces the programmer to predict 
policies under which the code may run. In most real world 
scenarios, this is unrealistic. The policy the code consumer wants 
enforced may very well be different than the policy that the 
programmer encoded. 

Adding mandatory access control to the JVM cleanly side-
steps these problems. Dynamically enforcing MAC policies in a 
JVM has the following advantages: 

• Since enforcement is dynamic, policies can be late-
bound to code, and can even change dynamically. MAC allows 



the tagging of specific data items for the lifetime of program 
execution. The binding of code and policy happens at runtime, 
when mandatory access tags are assigned to objects.  

• The separation of mechanism and policy gives great 
freedom in expressing a variety of MAC policies.  

• A key advantage of keeping mandatory controls in the 
virtual machine is that it is completely transparent to programs 
being run in it. No access to source is needed, and the bytecode 
format does not need to be changed. Thus our proposed 
enhancement is completely backward compatible with the large 
existing base of Java bytecode.  

• Adding MAC to the JVM also bridges the gap in access 
control models between military-grade operating systems that 
have long had support for MAC policies, and applications written 
in virtual machines that still rely on discretionary controls. 
Applications running in a JVM cannot make full use of OS-level 
MAC classifications. Adding MAC to the JVM will allow a more 
seamless inter-operation between OS-level and program-level 
access control for data items.  

3. SOLUTION: MANDATORY ACCESS 
CONTROL ON OBJECTS 

We will illustrate the key concepts of our approach with a 
simple running example.  

Consider a Java class, SecretProcessor, which reads in 
a sensitive local file to process it, and then attempts to write the 
data it has read in to a new file in a publicly-viewable folder.  

The following is pseudo-code for SecretProcessor. 

 

class SecretProcessor { 

  void processSecret() { 

    FileReader inSecret = new  

                FileReader(secretFile); 

    FileWriter outPublic = new  

           FileWriter(publiclyViewableFile); 

    // this should not be allowed! 

    outPublic.write( inSecret.read() );  

  } 

} 

 

The policy we want to enforce on this program is that data 
read from sensitive files should be prevented from being written 
to publicly viewable files.  

To do that, we need to address the following issues:  

• What is the granularity and unit of data protection?   

• How are access controls enforced?   

• How are access controls specified?   

To separate mechanism and policy [11], our design keeps the 
third aspect distinct from the first two. This keeps our mechanism 
from being biased towards a specific policy, and also allows a 
variety of policies to be enforced.  

Both the Java language [12] and the Java Virtual 
Machine [15] are object-oriented. An object is both the 
fundamental level of abstraction at which a programmer thinks 
while writing Java code, as well the runtime data structure around 
which a Java virtual machine is built. Unlike atomic variables that 
contain a single data item which may be part of a larger logical 
collection of data, objects conveniently encapsulate one or more 
logically related data items and code into a single abstraction. 
Thus, we consider objects to be the unit of protection in our 
design. Hence, access control tags are associated with objects. 

Having fixed the unit of protection, the next question is: what 
enforcement mechanism should be used to protect it?  To answer 
this, we must enumerate all the ways in which an object can be 
accessed, and interpose our mechanism between the access and 
the object. The interposed enforcer must then make a decision 
about whether to allow the access depending on the access control 
permissions of the object. In the Java virtual machine, all 
computation and access to objects takes place using a set of high-
level machine-independent bytecode instructions [15]. Thus, there 
is fairly narrow and well-defined interface through which access 
to objects takes place. We now focus on the byte-codes that 
enable the transfer of information from one object to another. 
There are two classes of operations that do this: method calls, and 
reading and writing fields. Bytecodes to read and write fields 
directly modify data in other objects. Method calls result in 
indirect information flow, through parameters and return values. 
For example, in SecretProcessor, the read() method call 
returns secret data. 

We need to specify how an object is initially assigned a tag, 
and then, how tags are propagated at runtime. For our example, 
we deduce initial tags from a simple mapping between file 
locations and their sensitivity. So, for instance, a File object for 
a file in folder Secret is marked “sensitive”. Similarly, File 
objects for files in a folder called, say Public, are marked 
“public”. This policy must be specified by the user. 

Once an object gets tagged “secret”, any other object that 
reads from it (using a field access, or a method invocation) must 
also inherit this tag. Ultimately, all objects that have read 
sensitive data will get tagged “secret”. 

For the final step, for an output channel (folders, in this case), 
we need to specify what level of data it is permissible to output on 
that channel. For our example, data tagged “secret” cannot be 
written to the Public folder. 

Now consider a slightly modified version of the same 
SecretProcessor class. This time, the processSecret 
method first writes public data to another public file, and then 
later writes secret data to a publicly-viewable file. The first write 
should be allowed, while the second should be blocked. 

 

class SecretProcessor { 

  void processSecret() { 

    FileReader inSecret = new   



                FileReader(secretFile); 

    FileReader inPublic = new   

                FileReader(publicFile); 

    FileWriter outSecret = new  

           FileWriter(anotherSecretFile); 

    FileWriter outPublic = new  

        FileWriter(publiclyViewableFile); 

    // this should be allowed 

    outPublic.write( inPublic.read() );  

    // this should also be allowed 

    outSecret.write( inSecret.read() );  

    // this should NOT be allowed! 

    outPublic.write( inSecret.read() );  

  } 

} 

 

Such a policy is enforceable using runtime MAC tags 
associated with objects. In this case, an instance of 
SecretProcessor is not marked “secret” until it actually 

reads secret data (using the call to inSecret.read()). Hence, 
the first write is allowed, since the class is not tagged “secret” yet. 
However, after reading secret data (using the call to 
inSecret.read(), the object gets tagged “secret”, and is 
henceforth forbidden from writing to public channels.  

This example demonstrates how using runtime MAC tags on 
objects can support fine-grained policies. This is in stark contrast 
to Java’s existing security mechanisms, based on permissions. An 
entire Java program runs under a policy, which is a list of 
permissions. For example, a FilePermission grants read or 
write permissions to certain sets of files. Similarly, a 
SocketPermission allows the program to connect to a 
certain host on a certain socket. But note that the permissions are 
imposed on the entire program. So, for example, a program can 
either be allowed to read secret data, or not at all. Policies that 
explicitly track data cannot be expressed. The policy of the last 
example, which was “allow reading both secret and public data, 
but do not allow secrets to be written to public files”, cannot be 
expressed using Java’s existing permission mechanisms. 

4. IMPLEMENTATION AND RESULTS 
We have built a proof-of-concept implementation of our 

scheme as a plug-in that will work with any Java 1.5 compliant 
virtual machine. We make extensive use of the JVM Tools 
Interface API (JVMTI) that “provides both a way to inspect the 
state and to control the execution of applications running in the 
Java virtual machine (JVM). JVM TI supports the full breadth of 
tools that need access to JVM state” [1]. Note that our 
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Figure 1: Overview of tracking mandatory access control tags through the lifetime of an 
object in our MAC-enabled JVM 



implementation is independent of any specific JVM, and will work 
with any JVM that supports the JVMTI API. 

Our JVMTI MAC plug-in does the following:  

• intercepts field accesses and writes.  

• instruments class files at load time to intercept entries 
and exits of certain methods.  

• instruments the constructor of java.lang.Object 
so that we can intercept object creation.  

Field accesses and writes, and method entries and exits need 
to be intercepted because those are the two means through which 
data passes between objects. We also need to intercept object 
creation to assign objects their initial tags. JVMTI provides event-
based notifications for field accesses and writes. However, 
bytecode rewriting is a more efficient way to intercept method 
entries and exits. It allows us to selectively instrument methods of 
relevant classes.  

An access control tag is associated with every object in the 
virtual machine. A tag is a 64-bit long value.  

The policy is specified by the following:  

• When to allow field reads  

• When to allow field writes  

• When to allow method calls  

• How to propagate tags when any of the above three 
happens  

Each of these is a predicate over the tags of the two objects 
involved. For example, whether an object a can access a field of 
another object b will be decided by evaluating 
canReadField(tag(a), tag(b)). Currently, this policy 
is specified by writing code that evaluates these predicates. These 
policy “callbacks” are invoked by our mechanism to enforce a 
concrete policy. This clean separation between mechanism and 
policy gives us great freedom to use a great variety of policies. 
Note that this dynamic mechanism allows us to change policies 
between separate runs of the same program – something not 
allowed by static type-checking mechanisms.  

For example, to implement strict compartmentalization of 
data of different tags, we could specify a policy that only allows 
field reads and writes, and method calls between objects having 
exactly the same tag, and never changes the tag of an already 
tagged object. Such a policy would never allow data of different 
tags to mix.  

For another policy, consider the example from section 3. 
There we allow the mixing of secret and public data, but do not 
allow secret data to be written to public files. We enforce such a 
policy by allowing reads and writes between objects with 
different tags, but at the same time propagating the higher tag. So 
if a class tagged “public” reads secret data, it too get tagged 
“secret”. Until then, that class is allowed to write to public files, 
but not thereafter. This dynamic changing of tags allows us to 
enforce fine-grained policies such as “allow reading of both 
public and secret data, but do not allow writing secret data to 
public files”.  

To support policies such as that used in the examples of 
Section 2, we need to associate access rules with channels. A 
channel is simply any input/output stream, such as a network 
sockets or a file handle. An access rule associated with a channel 
specifies whether data with a particular tag can be output to a 
channel, as well as what tag data input from the channel has. For 
our example, a simple access rule specifies that data coming from 
the Secret folder is tagged “secret”, and that only data marked 
“public” can be written to the Public folder.  

Such policies also require some support from the Java system 
libraries. For example, the java.io.File class needs to tag 
data according to the folder it is coming from. A number of other 
input classes need to be similarly modified. We have changed 
such system classes to support simple channel-based policies. All 
these changes are fully backward compatible. No new methods 
have been added to the system classes, and their externally 
exposed API remains the same as before.  

To illustrate these implementation details, consider again the 
second example from section 3 (line 6 is split into two statements 
for clarity): 

 

class SecretProcessor { 

  void processSecret() { 

1.   FileReader inSecret = new   

                FileReader(secretFile); 

2.   FileReader inPublic = new   

                FileReader(publicFile); 

3.   FileWriter outSecret = new  

          FileWriter(anotherSecretFile); 

4.   FileWriter outPublic = new  

       FileWriter(publiclyViewableFile); 

     // this should be allowed 

5.   outPublic.write( inPublic.read() );  

     // this should also be allowed 

6-1. secretChar = inSecret.read(); 

6-2. outSecret.write( secretChar );  

     // this should NOT be allowed! 

7.   outPublic.write( inSecret.read() );  

  } 

} 

   Say an instance of SecretProcessor, sp, invokes the 
processSecret method. The flow of execution proceeds as 
follows: to start with, sp gets the default tag of “public”; on line 
1, inSecret is tagged “secret” since it is opening a secret file 
(the java.io.FileReader class was modified to do this); on 
line 6-1, sp’s tag changes to “secret” since it has now read secret 
data (the instrumentation of method exits does this); since its tag 
is now “secret”, sp is now stopped from performing the write on 
line 7. Figure 1 gives an overview of this. 



To get an estimate of the overhead of adding MAC-tags to 
objects, we measured its overhead for some simple 
microbenchmarks. The microbenchmark is essentially the 
example described in section 2 that does file I/O (reads from one 
file, and writes data to another) in a tight loop. We measured the 
overhead for both buffered (with 4KB buffers) and non-buffered 
(a byte at a time) reads and writes. All measurements were done 
on a Pentium IV 1.7 GHz machine with 1 GB of RAM, running 
Windows XP, and JDK 1.5 from Sun. We measured the 
slowdown compared to running the same program on a JVM 
without MAC-support. The slowdown for the non-buffered case 
was a factor of 176, and for the buffered case 121.2. 

We have not optimized our current implementation for 
performance. Our first goal was to get a quick prototype that 
would enable us to explore the ideas presented here. We believe 
that other techniques, such as load-time bytecode re-writing, will 
be much more competitive in terms of performance. We are 
currently exploring alternative ways to implement our scheme.  

5. DISCUSSION AND FUTURE WORK 
There are several avenues for future work. The most 

immediate need in our current system is for a policy specification 
language. Currently, the policy is simply written out as code that 
is called-back from our implementation. In the long run, this is 
error-prone and non-portable. We would like to design a policy 
specification language that can succinctly capture a wide range of 
policies for MAC at the object level. 

Another area we would like to investigate is whether the unit 
of protection can be meaningfully made finer than an object. The 
disadvantage of having objects as the unit of protection is that we 
lose precision when an object mixes data of two levels, e.g. 
“secret” and “public”. In that case, an object that has is tagged 
“secret” cannot release “public” data. This can be addressed by 
not treating an object as a single unit, but rather, performing more 
fine-grained access control on its fields and variables as well. It is 
an open question whether this finer granularity will be worth the 
overhead for real programs, or whether objects, even though 
coarser-grained, are a sufficient level of granularity. 

Another area of future work is interfacing our MAC-enabled 
JVM with operating systems that support MAC. In an operating 
system that supports MAC at the filesystem level, we could use 
MAC labels from the filesystem to imply MAC labels of objects. 
For example, a Java File object that read from a file with a 
particular label should automatically get the same label. This 
would also mitigate the privilege escalation problem, where a 
program that uses files of various classification levels must run at 
a level at least as high as the highest level among those objects. 
When mandatory access controls are extended into the application 
manipulating those objects, such as ours, then the same controls 
also apply inside the execution environment of the program. To 
start with, we would like to interface our virtual machine with 
mandatory access controls in operating systems such as 
TrustedBSD [25] and Security-Enhanced Linux [19]. 

Trusted computing [20] systems use trusted paths between 
input devices and applications or device drivers to prevent 
spoofing as well as eavesdropping. For example, a fully encrypted 
an authenticated channel is used between a password-prompt 
dialog and the application asking for it. We would like to 
implement corresponding functionality inside a virtual machine. 
Currently, the dynamic nature of the Java virtual machine makes 

is easy to manipulate various aspects of an object at runtime, such 
as modify the class hierarchy, or use reflection to interpose 
wrappers around method calls—both at runtime. For example, 
dynamic method wrappers (also known as dynamic proxies) are 
frequently used to add a layer of logging around method calls. 
Such techniques could also be used to eavesdrop on the transfer of 
confidential data between objects. Implementing a trusted path 
mechanism for object communication would be a step towards 
solving this problem.  

Explicit channels for the transfer of information, such as 
assignments or method calls, can be controlled by changing or 
monitoring the mechanisms that implement them. However, 
information can also be transmitted through covert channels that 
do not depend on explicit mechanisms, but the side-effects of 
computation [13]. A full-fledged Java virtual machine has many 
potential covert channels. Examples include: how often, when and 
how long the garbage collector runs. For example, code could be 
crafted to purposely trigger the garbage collector. Measuring the 
latency of garbage collection could reveal in-formation about the 
size and number of objects. This is an instance of using resource 
consumption as a covert channel. While mandatory access 
controls can control the overt flow of information in a virtual 
machine, stemming the flow through covert channels remains an 
open question.  

6. RELATED WORK 
In section 2 we reviewed existing access control approaches 

for Java and the Java virtual machine. Here we briefly survey 
broader related work in mandatory access control.  

Early work in information flow and mandatory access control 
(MAC) was performed by Bell and LaPadula [3], who pioneered 
the idea of information being classified at multiple sensitivity 
levels. Denning extended the Bell-LaPaulda model to use a lattice 
for sensitivity labels [6]. Denning was also one of the first to use 
static analysis on source code to enforce information flow 
properties with very little runtime overhead [7]. Dennis Volpano 
formalized the soundness of the analysis that Denning 
proposed [23]. Andrew Myers et al [17] were the first to use a 
type system to enforce information flow statically. Their Jif 
compiler is a source-to-source compiler that checks a Java 
program with information flow annotations, type-checks it, and 
outputs a regular Java program.  

RIFLE [21] is a system that tracks information flow 
dynamically. This is accomplished by using a combination of 
hardware and software. The underlying hardware architecture is 
modified to explicitly track information-flow labels on words. At 
load time, binaries are rewritten from the standard instruction set 
to a new one that also appends security labels to instructions. This 
translation also does a data-flow and reachability analysis on the 
binary. This converts implicit flows to explicit flows that can then 
be tracked by the architecture. 

The major difference between RIFLE and our system is that 
our solution is software-only and does not require modifications 
to the underlying hardware architecture. However, since RIFLE 
analyses native binaries, it can enforce its constraints on a much 
wider range of programs, whereas our solution only works for 
Java bytecode. 



7. CONCLUSIONS 
Current access control mechanisms for Java lack support for 

mandatory access controls, which are needed when strict 
information separation is needed, or when sensitive data is 
handled. They cannot enforce policies that explicitly track data 
through the virtual machine. Static approaches to controlling 
information flow do not handle dynamic policies very well, and 
force a very early binding of code and policy. While operating 
systems have supported mandatory access controls for a long 
time, virtual machines currently do not have any support for it. 

As a solution, in this paper, we have presented the design and 
implementation of mandatory access controls in a Java virtual 
machine. We chose an object to be the basic unit of protection. 
This is the natural level of abstraction at which a programmer 
thinks while writing Java code, as well the core implementation 
structure around which a JVM is built, and seems to be the natural 
abstraction for reasoning about information flow in a JVM. 

The enforcement mechanism and specification of policy are 
kept strictly separate from each other. This allows us to use our 
enforcement mechanism with a wide variety of policies. Our 
prototype implementation is independent of any specific JVM, 
and will work with any Java 1.5 compliant virtual machine. We 
have implemented and tested various examples and policies that 
demonstrate how MAC-enabled VMs can enforce fine-grained 
information-flow policies that current Java security mechanisms 
are unable to neither specify nor enforce. 
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