
Analyzing Java Bytecode for Secure Information Flow –
and Safely Transporting It

Deepak Chandra
Vivek Haldar

Michael Franz
University of California
Irvine, CA 92697

{dchandra,vhaldar,franz}@uci.edu

ABSTRACT

Static analysis techniques for detecting illegal information flows
have great potential, but they are extremely costly – far too costly
to perform on-line in a just-in-time compilation context. On the
other hand, it is exactly in the context of downloadable machine-
independent code that such techniques are the most useful. We
were able to reconcile this conflict by performing the information-
flow analysis off-line. Proof-carrying code techniques are then
used to transport the analysis results, in a manner that can be
verified on-line at a relatively modest cost by the code consumer.
Our approach operates directly on Java bytecode and can
therefore be easily retrofitted even for existing Java programs for
which no source code is available.

1. INTRODUCTION
High-level language runtimes and virtual machines are

becoming increasingly popular platforms for development. More
and more code is now being targeted at these language runtimes
that execute some form of safe, platform-independent bytecode.
The most prevalent examples of this are the Java Virtual Machine
(JVM) [1], and the more recent .NET Common Language
Runtime (CLR) [2]. Such code platforms offer several advantages
over native code. The virtual machine performs a number of
static and dynamic checks to ensure a basic level of code safety –
type-safety, and control flow safety. Type safety ensures that
operators and functions are applied only to operands and
arguments of the correct types. A special case of type safety is
memory safety, which prevents reading and writing to illegal
memory locations – for example, beyond the bounds of an array –
and thereby also provides separation between different processes
without the need for hardware-based memory management [3].
Control flow safety prevents arbitrary jumps in code (say, into the
middle of a procedure, or to an unauthorized routine). These basic
properties of safe code are enforced by a combination of static
(e.g. bytecode verification) and dynamic (e.g. array bounds
checks) techniques. Thus, safe code does away with a major
source of errors and vulnerabilities in current systems that stem
from unsafe memory operations in C – such as buffer overruns
and format string attacks.

While virtual machines provide a portable and safe
development target, their current security mechanisms are geared
towards discretionary controls only. These are imposed to limit
access to critical system resources. However, once access to a

resource is gained, there are no mechanisms to track the usage
and ensure that it respects the security constraints of the system.
Essentially, the entity is trusted to handle the resource properly.
As a system gets large and complex, it becomes increasingly hard
to ensure its trustworthiness. It may be breached because of an
unintentional programming error or because of type-safe but
malicious code.

In this paper, we present a static analysis to explicitly track
the flow of information through a program at a fine-grained level.
Our analysis works on Java bytecode, and given security
annotations on security-sensitive variables, checks for the
presence of illegal flows of information in the program. There are
several analyses for checking information-flow properties at the
source level on Java [14] and other languages. However, it is not
always practical to assume the presence of source code. A lot, if
not most, deployed Java code exists as bytecode. Also, the code
consumer cannot be certain of the properties checked by such an
analysis without actually getting the source and repeating the
analysis itself.

Static analysis, however, is too costly to perform when code
is dynamically compiled at runtime. To mitigate this, we safely
transport the results of our analysis. We annotate the analyzed
bytecode with the results of the analysis in such a way that they
can be easily and quickly verified at the target site before being
used. Our analysis is an iterative dataflow analysis, and could, in
the worst case, take time quadratic in the size of the program.
Thus, providing results in a manner that is easily verifiable saves
precious time while doing dynamic compilation at the consumer’s
end. A code producer can now convince a code consumer that the
code satisfies certain information-flow properties, while not
requiring the consumer to repeat the entire expensive analysis.

To further motivate our approach, consider the following
three scenarios:

Scenario 1 – Downloaded program manipulating sensitive
data: Consider a Java applet from an untrusted (or partially
trusted) site that computes tax returns. The program has access to
private information such as Social Security Numbers (SSN) and
salary information, and it needs to communicate with its “home
base” to consult tax tables and to charge the user's credit card for
the service. How can we be sure that it isn't also leaking the user's
SSN, salary, and bank account information? Clearly, in current
Java systems, we cannot.

This scenario highlights a very common problem faced by
users today: they use programs that manipulate various sensitive
information items on their behalf, and yet, they are given no
mechanisms to control how these programs handle their data.
They essentially have to trust the program to behave correctly,
and not leak secrets to untrusted sources.

Scenario 2 – Java program handling sensitive databases:
Consider a Java program connecting to two databases, one of
which contains sensitive information, and another that contains
public information. Even though data from the sensitive database
is probably marked as such, once it has been read into a Java
program, this meta-information is lost and becomes un-
enforceable. Nothing prevents the program from reading rows
from the sensitive database, and writing them into the public
database. In general, detecting “channels” in Java programs in the
current situation requires auditing of source code.

Scenario 3 – Application server handling sensitive user
input: Consider a web application server that presents a web form
for user input. Some of the information is sensitive and hence sent
over the wire using an SSL connection. But at both ends, there is
no distinction between the sensitive information so secured and
the rest of the data – both in the server and the client's browser,
this information lives side by side and is potentially vulnerable to
programming errors or malicious code. Our information-flow
analysis can provide labeling of sensitive data, and separation of
such data from non-sensitive data.

Analyzing information-flow properties at the bytecode-level
allows us to get some guarantees about a large existing body of
code without source-level access, or requiring source-level
changes.

The rest of this paper is organized as follows: Section 2 gives
an overview of current techniques for access control and
information flow control at the source level, and in language
runtimes; Section 3 presents our static analysis; Section 4 explains
how we safely transport the results of our analysis; Section 5
discusses the status of our implementation and future work;
Section 6 presents related work and Section 7 concludes.

2. EXISTING SOLUTIONS
Early Java implementations (up to JDK 1.1) had two distinct

security environments. The first environment, a complete
sandbox, was designed to constrain the execution of applets

downloaded from the Web. These applets were considered
completely untrusted. The sandbox disallowed any access to the
local filesystem, as well as any network connections to domains
other than the one from which the applet originated. This sandbox
policy was designed to prevent untrusted code from leaking local
data, and consuming too many network resources. The second
environment had no constraints at all, and was used to run local
code on a machine. Code on the local disk was considered
completely trusted. Thus, this early model was essentially all-or-
nothing, accounting for either completely untrusted or completely
trusted code. It had no gradations between these two extremes.

Later versions of Java (after JDK 1.2) added capabilities to
create more graded security environments, and provide a variety
of more fine-grained security permissions [4]. Instead of being
trusted (local), or untrusted (remote), code was now associated
with principals. A public key infrastructure and cryptographic
signatures were used to bind principals to code. A security policy
specified what permissions code originating from various
principals would get. Permissions included filesystem read and
write permissions, and network socket capabilities. Enforcement
was relegated to a runtime security manager that regulated access
to privileged resources by looking up the permissions possessed
by the object that made the request. For example, a policy may
specify that all code digitally signed by the domain uci.edu is
allowed to read any local file, but to write only under /tmp.

However, there are many useful security polices that the
current Java architecture does not address. Higher level policies
that depend on program state cannot be specified. An example of
such a policy is “do not allow transmitting on the network after
reading from the local filesystem”. Inlined reference monitors [5]
and software fault isolation [6] have been used to enforce policies
such as this. But even those techniques cannot handle stronger
policies that track information within a program. An example of
such a policy is: “any data read from the local filesystem must not
be transmitted on the network”. Note that this is a finer-grained
policy than the earlier one because it permits sending on the
network even after a local file has been read – it merely forbids
sending information that was actually read from the file.

Another shortcoming of the standard Java security
architecture is that policies can only be specified in terms of
permissions exposed by the Java security API. Another critical
drawback is that once a security check is done, there are no
controls on the propagation of data thereafter. Data confidentiality

Java bytecode
Annotations

Analysis

Linear
Information

flow
verification

Java
verification

Java bytecode Execute

Offline Runtime

Java bytecode
Annotations

Analysis

Linear
Information

flow
verification

Java
verification

Java bytecode Execute

Offline Runtime

Figure 1: Overview of our mobile code pipeline

policies cannot be expressed or enforced in the current Java
scheme. This is the reason why a policy such as “any data read
from the local filesystem must not be transmitted on the network”
cannot currently be expressed.

At the Java source level, fields and classes can be marked
with access modifiers such as public, private and
protected to limit their visibility to other classes and
packages. While enforced offline by the Java compiler, marking a
field private does not mean that it is inaccessible at runtime.
Private fields can easily be accessed using Java's reflection
capabilities. Thus, these modifiers should be thought of as an
abstraction tool to hide implementation details, rather than as
tools for strict protection of information.

Myers’ Jflow system [14] uses a Java-based source language,
Jif, with security labels on variables. A type system is imposed on
these labels, and successful type checking of a program implies
the lack of any illicit flows in it. It is uncommon to have access to
the source of most deployed programs. The vast majority of these
are simply packaged as Java bytecode. Moreover, the lack of an
easily checkable proof of the analysis means that the code
consumer has to trust the entire Jif compiler.

3. ALGORITHM
3.1 Background

Variables have associated security labels that indicate the
sensitivity of the information they hold. We assume that these
labels form a lattice.

Information is said to flow from x to y if the value of y is
derived in any way from the value of x.

A leak is said to happen when information flows from a
variable to another one with a lower security label.

There are two ways a program could leak information. The
most direct way is through an explicit flow – this is when there is
a direct flow of information from one variable to another, for
example, through an assignment, or by getting the result of an
arithmetic operation.

Another way to leak information is by using control flow. For
example, consider the following code snippet, where x is secret,
and y is public:

if (x == 0) then y = 1 else y = 2;

print y

In this example, even though there is no direct assignment
from x to y, the value of y can be easily used to infer the value of
x. Such flows of information are caused by conditional control
flow, and are called implicit flows.

3.2 Analysis
We present our analysis here for three-address code. To

perform this on Java bytecode, we first convert it to three-address
code, and then back to Java bytecode. These transformations are
explained in greater detail in the next section.

The label of a variable at any point in the flow graph indicates
the security level of the value it holds. This is used to prevent
explicit flows.

Aside from labels associated with variables, we also attach a
security label with each basic block in the control flow graph of
our program. We call the former variable labels, and the latter
block labels. Both labels are drawn from the same lattice of
security labels.

The block label models the information that is implicitly
present at a location in the control flow graph because of
conditional jumps on the values of variables. This is used to
prevent implicit flows.

We use the following notation: for a variable x, x denotes its
security label. For labels x1, x2, … xn, x1 + x2 + … + xn denotes the
least upper bound of those labels.

We assume that methods have been provided with security
signatures that specify the security labels of its parameters and its
return value. For every method, our analysis checks whether the
method satisfies its own security signature. While doing this
analysis, at method calls it checks if the parameters for the call
are compatible with the signature of the method called, and
assume that the return value has the label given in the signature. A
parameter is compatible if its security label is at most as sensitive
as the label specified in the signature. For example, a method
taking a “secret” parameter could also take a “public” parameter,
but not vice versa.

Our data flow analysis iterates over two kinds of values:
variable labels, and block labels. It terminates when they have
stabilized. We associate two sets and a block label with each basic
block B in the control flow graph under consideration:

• IN(B) = {x1:l1, x2:l2,…, xn:ln}: the IN set for the data
flow analysis. This is a mapping from variables to their
security labels – variable xi has security label li. The IN
set for a block represents the mapping that holds at the
entry of the block.

• OUT(B) = {x1:l1, x2:l2,…, xn:ln}: the OUT set for the
data flow analysis. This is also a mapping from
variables to their security labels, just like the IN set, but
it holds at the exit of a block.

• L(B) = {l1:B1, l2:B2,…, ln:Bn}: This is a list of security
labels, along with a pointer to the basic block
containing the jump instruction that caused each label to
be set. We need this information for declassification.
We use the notation L(B) to denote the least upper
bound of all the labels in L(B).

Initially, the IN and OUT sets for each block are empty, and
all variables and blocks are marked with the least-restrictive
element of the security-label lattice (public). We assume that the
formal parameters of the method being analyzed have been
labeled with security labels. These labels form the IN set of the
entry-block of the control flow graph of the method.

After this initial setup, we perform a standard iterative data-
flow analysis which terminates when the IN and OUT sets and
block labels have stabilized.

On every iteration of the dataflow analysis, and for every
basic block, we perform the following actions:

• Compute the IN set of this block from its immediate
predecessors: The OUT sets of all the immediate

predecessors of the current block are merged to form
the IN set of the current block. If a variable x occurs in
only one of the OUT sets, then it is simply carried over
to the IN set. If a variable x occurs in multiple OUT sets
with labels l1, l2, …, ln, then it is put in the IN set with
label l1 + l2 + … + ln.

• Compute the block label of this block from the block
labels of its immediate predecessors and post-
dominator information (this is where we explain
declassification): The block label of the current block
label is computed as follows: it is simply the union of
the block labels of all the immediate predecessors of the
current block, except when the same label l:B occurs in
multiple predecessor block labels. In that case, we
check if the current block post-dominates B. (A block
B1 post-dominates another block B2 if every path from
B2 to the exit of the control flow graph goes through
B1). If it does, then we can safely declassify the security
label l for this block, and remove it from the current
block label.

• Propagate labels through the block and compute the
OUT set: At the beginning of a block, the OUT set for
that block is initialized with the IN set. We go through
the basic block instruction by instruction, and for each
instruction “x = y op z” in the block, we compute the
label of x as follows: x = y + z + L(B). The labels y and
z are looked up in the OUT set. Finally, we are left with
a mapping from variables to their respective security
labels. This mapping holds at the exit of the block. This
is the OUT set for that block.

Figure 2 gives an example of our analysis performed on a
simple control flow graph. At the entry block, the variables c and

d are marked “secret”, and everything else is “public”. The
example shows how other variables get tainted secret, and how
implicit flows are modeled using block labels.

We now give a brief sketch of the proof of correctness of our
analysis. Given that initially the method’s formal parameters are
explicitly labeled with security labels, all we need to show is that
every variable to which a value of label l flows is also marked
with a label at least as sensitive as l. This is straightforward: for
the case of explicit flows, we can easily see (by construction in
our analysis) that the left-hand sides of expressions are labeled the
least upper bound of variables on the right-hand side and the
block label. For the case of implicit flows, we elevate the label of
a block if control flows to it as a result of a conditional jump, and
henceforth every value computed in that block is also labeled at
least as sensitive as its block label. Hence, we see that security
labels are faithfully propagated by our analysis.

4. TRANSPORTING RESULTS SAFELY
We now explain how we annotate Java bytecode with an

easily and quickly (in time linear to program size) verifiable proof
that it satisfies the information flow properties that our analysis
checked for.

We annotate Java bytecode with the following:

• The bytecode for each method is annotated with where
its basic block boundaries lie. We assign a unique
number to each block.

• Each block is then annotated with the final stabilized
values of it’s IN and OUT sets, and its block label.

• Each method is annotated with the post-dominator tree
for its control-flow graph.

a = a + 12
print a

b = c + de = a + 1

a = 1
b = a + 1
c = secret
d = c+ a
if d == 0

IN = ()

OUT = (a, b, c, d, e)

IN = (a, b, c, d)

OUT = (a, b, c, d)

OUT = (a, b, c, d)

IN = (a, b, c, d)

IN = (a, b, c, d, e)

L = {}

L = {}

L = {d:B1} L = { d:B1}

OUT = (a, b, c, d, e)

B4 post-dominates B1
hence declassify d:B1

B1

B4

B3
B2

a = a + 12
print a

b = c + de = a + 1

a = 1
b = a + 1
c = secret
d = c+ a
if d == 0

IN = ()

OUT = (a, b, c, d, e)

IN = (a, b, c, d)

OUT = (a, b, c, d)

OUT = (a, b, c, d)

IN = (a, b, c, d)

IN = (a, b, c, d, e)

L = {}

L = {}

L = {d:B1} L = { d:B1}

OUT = (a, b, c, d, e)

B4 post-dominates B1
hence declassify d:B1

B1

B4

B3
B2

Figure 2: our information-flow analysis on a sample control flow graph.

Given these annotations, we now explain how they can be
quickly verified in one pass over the bytecode.

For each block B, we first verify that it’s IN set is correct. For
the entry set, the IN set is directly derived from the security labels
associated with formal parameters, so we simply check that the IN
set of the entry block is compatible with the labels of parameters.
For all other blocks, we compute a new IN set for the block from
the OUT sets of all its immediate predecessors. This is done in
exactly the same way as is done by the analysis. Finally, we
check that the annotated IN set is stricter than the newly
computed IN set. Similarly, we also compute a new block label of
this block in the same way as in the analysis. Then we check than
the annotated block label is stricter than the newly computed
block label.

To verify the OUT set of a block B, we compute a new OUT
set (starting with the annotated IN set) by sequentially going
through the instructions in the block. Then we check that the
annotated OUT set is stricter then the newly computed OUT set.

To compute the block labels, we need post-dominator
information. We transport this is an annotation for every method.
To verify that the post-dominator information is correct, we use
the technique of [16], which given a control flow graph and a
post-dominator tree, verifies in linear time that the post-dominator
tree is correct.

We now give a sketch of the proof of correctness of the above
verification procedure. We need to show that a malicious
adversary cannot modify the annotations in a way that can violate
the property proved by the static analysis:

(1) every variable to which a value of label l flows is also
marked with a label at least as sensitive as l.

Essentially, we want to show that if an adversary “lies” about
an annotation, it will be caught by our verification procedure. For
the entry block of the procedure, it’s IN set can be trivially
checked as it should have labels at least as sensitive as those of
the formal parameters of the method under consideration. We call
an annotated IN set of a block correct if the label of every
variable in it is at least as strict as that computed by taking the
unions of the OUT sets of all the immediate predecessors of the
block. Similarly, an annotated OUT set is correct if every variable
in it is at least as sensitive as that in the OUT set as computed by
the analysis. For our annotations to be incorrect there must be at
least one block for which either the IN or OUT set is incorrect.
This is because if the IN and OUT sets of every block are correct,
and we can trivially check the correctness of the IN set of the
entry block, then by the correctness of our static analysis
algorithm, this program does not violate (1).

5. STATUS AND FUTURE WORK
We have currently implemented the analysis framework. We

have based our implementation on the Soot framework [27]. We
use Soot to parse Java bytecode into Soot’s Jimple representation.
Jimple is a conversion of Java bytecode to three-address code. We
perform our analysis on Jimple.

The proof generator and verifier are currently under
development. We will need to “translate” our proof from Jimple
back to Java bytecode in order to transport it. This can be done by
simply converting all temporaries in three-address Jimple to local
variables in the final bytecode.

There are several other broad avenues of future work we
would like to consider.

Another approach to tackling the information-flow problem is
to use dynamic techniques, such as mandatory access [28]. Such
approaches have one very significant advantage over static
techniques: they can be bound to code very late – at execution
time. This gives them a great deal of flexibility. For example,
different executions of the same program could be run under
varying security policies.

The disadvantage of dynamic methods when compared to
static techniques is that they lack a clean mechanism to safely
declassify information. This is because dynamic techniques only
know about one execution path, whereas static methods can
reason about all execution paths taken to reach a certain program
point. This leads to “label creep”, where security labels on objects
keep moving up, often making programs unusable.

We have also designed and implemented a system that does
mandatory access control in the Java virtual machine at the level
of objects [28]. We now want to investigate how this dynamic
approach and the static approach presented in this paper can be
meaningfully combined to get the best features of each. For
example, we could annotate bytecode with verifiable information
about points where it is safe to declassify information. Such a
hybrid technique will have all the advantages of dynamic
techniques, but will also be able to make informed decisions at
runtime about where it is safe to declassify certain information.

Currently, we expect the user to provide security labels the
formal parameters of methods. This is a very cumbersome and
error-prone approach. We would like to find a way in which the
user could specify tags in a high-level manner. For example, one
could specify tags at a package level. So, all method parameters
of classes in java.io are public, or all classes in
com.taxform are secret, except the ones explicitly marked
public.

All current approaches to securing information flow terminate
the program (in the case of dynamic techniques), or reject a
program (in the case of static techniques) when they find that the
program leaks information. This behavior is of little use to the
user or programmer because she doesn’t know either what
particular piece of information is getting leaked, or where it’s
getting leaked. Could we try to identify the source of the
information getting leaked? For example, could we inform the
user that the information getting leaked is from the file
/etc/passwd? Such information would be useful in making the
decision of whether to let the program continue running, or
terminate it right away.

Another useful piece of information to report would be not
only what information is getting leaked, but how much of it is
getting leaked. For example, even legitimate programs leak
information about passwords when they check whether a user-
provided password matches the correct password. Quantifying
leaks is also useful for specifying high-level policies such as
saying that a program is safe as long as it only leaks 1/n bits per
execution.

Covert channels: Explicit channels for the transfer of
information, such as assignments or method calls, can be
controlled by changing or monitoring the mechanisms that
implement them. However, information can also be transmitted

through covert channels that do not depend on explicit
mechanisms, but the side-effects of computation [7]. Examples
are:

• Timing channels: measuring how long a computation
took can reveal something about the data it was
operating on [8]. A subset of timing channels are
termination channels, where the termination of a
program reveals information [9].

• Power channels: measuring the power consumption of
a CPU (or a peripheral, such as a smart card) can be
used to infer the bits being computed.

• Resource channels: information could be leaked by
monitoring the consumption (or exhaustion) or various
resources, such as a CPU or memory.

A full-fledged Java virtual machine has many potential covert
channels. Examples include: how often, when and how long the
garbage collector runs. For example, code could be crafted to
purposely trigger the garbage collector. Measuring the latency of
garbage collection could reveal in-formation about the size and
number of objects. This is an instance of using resource
consumption as a covert channel. While our technique can
control the overt flow of information in Java bytecode, stemming
the flow through covert channels remains an open question.

Note, however, that a virtual execution environment can
randomize a number of its activities to stem the flow of
information from covert channels. For example, it could insert
random delays into the execution of individual bytecode
instructions. It could even randomize its heap allocation and
garbage collection to defeat attacks that observe the heap or
garbage collection delays. Such randomization is easier to do in a
virtual machine, as opposed to native code running on bare
hardware. This is because of the higher-level nature of a virtual
machine, and because all code is executed under complete control
of the virtual machine.

6. RELATED WORK
Early work in information flow and mandatory access control

(MAC) was done by Bell and LaPadula [10], who pioneered the
idea of information being classified at multiple sensitivity levels.
Denning [11] extended the Bell-LaPaulda model to use a lattice
for sensitivity labels. Denning was also one of the first to use
static analysis on source code to enforce information flow
properties with very little runtime overhead [12]. Volpano
formalized the soundness of the analysis that Denning proposed
[13]. Andrew Myers et al [14] used a type system to enforce
information flow statically. Their Jif compiler is a source-to-
source compiler that checks a Java program with information flow
annotations, type-checks it, and outputs a regular Java program.
This work is closest to ours. However, our analysis is
significantly different as we analyze Java bytecode (and not Java
source programs) for information flow properties. This enables us
to analyze and check commercial off-the-self Java programs and
legacy code. Another significant difference is that we can
annotate bytecode with a compact, easily-verifiable proof of the
results of our static analysis. This will enable code consumers to
easily check the validity of the information flow properties of the
code without repeating the entire (computationally-intensive)
analysis.

RIFLE [15] is a system that tracks information flow
dynamically. This is accomplished by using a combination of
hardware and software. The underlying hardware architecture is
modified to explicitly track information-flow labels on words. At
load time, binaries are rewritten from the standard instruction set
to a new one that also appends security labels to instructions. This
translation also does a data-flow and reachability analysis on the
binary. This converts implicit flows to explicit flows that can then
be tracked by the architecture.

The major difference between RIFLE and our system is that
our solution is software-only and does not require modifications
to the underlying hardware architecture. However, since RIFLE
analyses native binaries, it can enforce its constraints on a much
wider range of programs, whereas our solution only works for
Java bytecode.

Bernardeschi and et.al [26] use type-based abstract interpreta-
tion, which is very similar to bytecode verification, to prove in-
formation flow safety of java bytecode. They, like Denning, han-
dle implicit flows and use immediate post-dominator to reduce the
security label of the execution context. Our approach for analyz-
ing the program for information flow safety is similar. We, unlike
them, also transport the result of our analysis in ways that is eas-
ily checkable by the code consumer — eliminating the need to do
expensive analysis every time before execution of the program.

Much work has been done to annotate Java bytecode in order
to reduce the overhead of optimization and code-generation at the
consumer’s end. Krintz and Calder [17] add various annotations
to Java class files with the goal of reducing compilation overhead
in a dynamically optimizing compiler. Some of the annotations
are: counts of local variable uses, to aid the register allocator;
indicating which methods are likely to get inlined multiple times,
to save some initial work that is done for every inlining; and
method priority annotations, to guide the dynamic optimizer’s
choice of which methods to optimize more aggressively. In [18],
Jones and Kamin present a scheme for annotating Java class files
with virtual register assignments in order to facilitate register
allocation. The annotation-aware JIT (AJIT) system [19] also
adds annotations to Java class files that are the results of various
time-consuming optimizations. They add annotations for null-
check elimination, array bound check elimination, virtual register
assignment, and memory disambiguation.

Note that these are optimizations that do not affect program
semantics, only performance. Their common feature is that they
serve as “effort-directing” information for a just-in-time (JIT)
compiler. This allows them to be used safely at the code con-
sumer without verifying them first.

Stork et. al have used a mobile code format based on abstract
syntax trees (ASTs) [21] as a base for safe transportation of anno-
tations. In [22], they show how to annotate ASTs with the results
of escape analysis, and then verify them. The major difference is
the intermediate format to which these annotations are added.
They add annotations to a mobile code format based on abstract
syntax trees, which is a much higher level representation than the
bytecodes we have considered here.

In broad terms, our work is a very specific case of the much
more general concept of proof-carrying code (PCC) [20]. Like
PCC, a computation-intensive “proof-generator” emits a small
certificate (the annotations) that is verified at the code consumer’s
end in one linear pass. Also like PCC, the verifier, which is small
itself, does not need to trust the program that generates annota-

tions. This keeps the trusted computing base small. However, the
full generality of PCC was not needed in this case, where a sim-
ple, specific solution existed.

The work that comes closest to that presented here is stack-
maps [23], as used in Java 2 Micro Edition(J2ME). Stackmaps
allow the costly Java bytecode verification procedure to be split
into two phases – a costly off-device pre-verification phase that
augments class files with stackmaps, and a quick on-device verifi-
cation phase that checks the stackmaps in one linear pass. Also
called “lightweight verification” stackmaps were first proposed in
[24], and further formalized in [25]. The Java bytecode verifica-
tion procedure, though not an optimization, is also an iterative
data flow analysis. Stackmaps are also essentially “frozen” data
flow results, as are our annotations.

7. CONCLUSION
Access control mechanisms in current language runtimes lack

support for expressing and enforcing fine-grained information-
flow policies. Such policies are needed to enforce the correct
handling of sensitive data. As a solution, we present a static
analysis on Java bytecode that certifies its information-flow
properties. Moreover, to make checking information-flow viable
in a JIT-compiled environment, we also present a scheme for
annotating Java bytecode with the results of our analysis in way
that is easily and quickly verifiable at the target site.

8. ACKNOWLEDGEMENTS
Parts of this effort are sponsored by the National Science

Foundation under grants CCR-TC-0209163 and CCR-ITR-
0205712, and by a generous gift from Sun Microsystems Labs.

Any opinions, findings, and conclusions or recommendation
expressed in this material are those of the authors and should not
be interpreted as necessarily representing the official views, poli-
cies or endorsements, either expressed or implied, of the National
Science foundation (NSF), any other agency of the U.S. Govern-
ment, or those of Sun Microsystems, Inc.

9. REFERENCES
[1] Tim Lindholm and Frank Yellin; The Java Virtual Machine

Specification; Addison-Wesley, April 1999.

[2] Microsoft Corporation. Microsoft .NET, 2003.

[3] B. N. Bershad, S. Savage, P. Pardyak, D. Becker, M.
Fiuczynski, and E. G. Sirer. Protection is a software issue. In
Proceedings of the 5th Workshop on Hot Topics in Operating
Systems, pages 62–65, Orcas Island, WA, May 1995.

[4] L. Gong. Inside Java 2 Platform Security: Architecture, API
Design, and Implementation. The Java Series. Addison-
Wesley, Reading, MA, USA, 1999.

[5] Úlfar Erlingsson, Fred Schneider; IRM Enforcement of Java
Stack Inspection; IEEE Symposium on Security and Privacy,
2000.

[6] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. In Proceedings of the
14th ACM Symposium on Operating Systems Principles,
pages 203–216, 1993.

[7] B. W. Lampson. A note on the confinement problem.
Communications of the ACM, 16(10):613–615, 1973.

[8] J. Agat. Transforming out timing leaks. In ACM Symposium
on Principles of Programming Languages, pages 40–53, 2000.

[9] Volpano and Smith. Eliminating covert flows with minimum
typings. In The 10th Computer Security Foundations
Workshop. IEEE Computer Society Press, 1997.

[10] D. Bell and L. LaPadula. Secure computer systems:
mathematical foundations. Report MTR 2547 v2, MITRE,
November 1973.

[11] D. E. Denning. The lattice model of secure information
flow. Commun. ACM, 19(5):236–243.

[12] D. E. Denning and P. J. Denning. Certification of
programs for secure information flow. Commun. ACM,
20(7):504–513, 1977.

[13] D. Volpano, G. Smith, and C. Irvine. A sound type
system for secure flow analysis. Journal of Computer
Security, 4(3):167–187, 1996.

[14] A. C. Myers. JFlow: Practical mostly-static information
flow control. In Symposium on Principles of Programming
Languages, pages 228–241, 1999.

[15] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan,
G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani, and D. I.
August. Rifle: An architectural framework for user-centric
information-flow security. In 37th International Symposium
on Microarchitecture, December 2004.

[16] Loukas Georgiadis and Robert E. Tarjan. Dominator
Tree Verification and Vertex-Disjoint Paths in Digraphs. In
ACM-SIAM Symposium on Discrete Algorithms, 2005.

[17] C. Krintz and B. Calder. Using annotation to reduce
dynamic optimization time. In SIGPLAN Conference on
Programming Language Design and Implementation, 2001.

[18] J. Jones and S. Kamin. Annotating Java class files with
virtual registers for performance. Concurrency: Practice and
Experience, 12(6), 2000.

[19] J. Hummel, A. Azevedo, D. Kolson, and A. Nicolau.
Annotating Java bytecodes in support of optimization.
Concurrency: Practice and Experience, 9(11), 1997.

[20] G. C. Necula. Proof-carrying code. In The 24th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 1997.

[21] V. Haldar, C. H. Stork, and M. Franz. The source is the
proof. In New Security Paradigms Workshop, 2002.

[22] M. Franz, C. Krintz, V. Haldar, and C. H. Stork.
Tamper-proof annotations, by design. Technical Report 02-
10, Department of Information and Computer Science,
University of California, Irvine, 2002.

[23] Sun Microsystems Inc. Connected, limited device
configuration, Apr 2000.

[24] E. Rose and K. H. Rose. Lightweight bytecode
verification. In Workshop on Formal Underpinnings of the
Java Paradigm (OOPSLA 1998), 1998.

[25] G. Klein and T. Nipkow. Verified lightweight bytecode
verification. Concurrency: Practice and Experience, (13),
2001.

[26] Marco Avvenuti and Cinzia Bernardeschi and Nicoletta
De Francesco. Java bytecode verification for secure
information flow. SIGPLAN Notices, 38(12), 2003.

[27] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan,
Patrick Lam, Etienne Gagnon and Phong Co. Soot – a Java
optimization framework. In proceedings of CASCON, 1999.

[28] Vivek Haldar, Deepak Chandra and Michael Franz.
Practical, Dynamic Information-Flow for Virtual Machines.
Submitted for publication.

