
Principles-Driven Forensic Analysis

Sean Peisert
Department of Computer Science and Engineering

San Diego Supercomputer Center
University of California, San Diego

peisert@sdsc.edu

Matt Bishop
Department of Computer Science
University of California, Davis

bishop@cs.ucdavis.edu

Sid Karin
Department of Computer Science and Engineering

San Diego Supercomputer Center
University of California, San Diego

skarin@cs.ucsd.edu

Keith Marzullo
Department of Computer Science and Engineering

University of California, San Diego
marzullo@cs.ucsd.edu

April 18, 2005

Abstract

It is possible to enhance our understanding of what has
happened on a computer system by using forensic tech-
niques that do not require prediction of the nature of the
attack, the skill of the attacker, or the details of the sys-
tem resources or objects affected. These techniques ad-
dress five fundamental principles of computer forensics.
These principles include recording data about the entire
operating system, particularly user space events and en-
vironments, and interpreting events at different layers of
abstraction, aided by the context in which they occurred.
They also deal with auditing the recorded data in a multi-
resolution fashion so that results can be established to a
high degree of certainty rather than merely inferred.

1 Introduction

“It is a capital mistake to theorize before one
has data. Insensibly one begins to twist facts
to suit theories, instead of theories to suit facts.”

-Sherlock Holmes, A Scandal in Bohemia,
Sir Arthur Conan Doyle (1891)

Forensic analysis is the process of understanding, re-
creating, and analyzing events that have previously oc-
curred. Logging is the recording of data that will be use-
ful in the future for understanding past events. Auditing
involves gathering, examining, and analyzing the logged
data to understand the events that occurred during the

incident in question [Bis03]. The data gathered may also
involve decompiling binaries or recovering other remain-
ing evidence, such as saved memory images.

Successful forensic analysis requires the ability to re-
create any event regardless of the intent of the user, the
nature of the previous events, and whether the cause of
the events was an illegitimate intruder or an authorized
insider. The ability to do this has progressed very little
since the first research on the subject in 1980 [And80].
Examples of events that current tools cannot accurately
identify include anything that a program is reading or
writing to memory. This covers a huge number of possi-
ble events and exploits, such as changes to the user envi-
ronment, buffer overflows, and race conditions.

Current techniques to resolve these problems result in
generation of too much information, leading to imprac-
tical performance slowdowns and high storage require-
ments. They also suffer from a disparity between the
goals of system designers, administrators, and forensic
analysts. Five principles address current failures. We
believe that any tool that does not follow all of these
principles will fail to record actions or results in enough
detail to understand their meaning. Some current tools
use techniques that address some, but not all, of these
principles. Thus, they fail to recognize and report many
scenarios, or do so incorrectly.

No widely-used operating system records every event,
its cause, and its result. Hence we need other ways to
generate this information. Two key bases for computer
forensics will help us interpret events correctly:

1



• The entire system must be considered.

• The effects of an action can be significantly different
than what we expected them to be.

For modern operating systems, these ideas suggest the
following principles. In these, we use context as a broad
term that includes any system detail surrounding an
event. Environments are a subset of context and refer
generally to user-definable shell and program settings.

Principle 1: Consider the entire system. This includes
the user space as well as the entire kernel space,
filesystem, network stack, and other related subsys-
tems.

Principle 2: Assumptions about expected failures, attacks,
and attackers should not control what is logged and
audited. Trust no user and trust no policy, as we
may not know what we want in advance.

Principle 3: Consider the effects of events, not just the
actions that caused them, and how those effects may
be altered by context and environment.

Principle 4: Context assists in interpreting and under-
standing the meaning of an event.

Principle 5: Every action and every result must be pro-
cessed and presented in a way that can be analyzed
and understood by a human forensic analyst.

Several of these principles parallel principles from clas-
sic operating system concepts, such as having fail-safe
defaults. For instance, principle 2 says that rather than
recording X, we should record everything except X, after
having determined from principles 1, 3, and 4 that X is
not valuable.

Examples of problems that current tools do not ad-
dress, and the principles that would need to be followed
to address them, include:

1. user functions called and variables used (principle 1)

2. changes in the user enviroment (such as the UNIX
shell or applications) (principles 1, 3, and 4)

3. buffer and numeric overflows [Bis03, HB03], reading
memory locations larger than the allocated buffer
(principles 1 and 4)

4. race conditions [BD96, Gro97] (principles 1, 2, and
4)

5. code injected into the program instruction stream
(principles 1, 2, and 4)

6. data exposed from one user space to another with a
memory write, to share data covertly (principles 1
and 4)

7. data read from or written to raw disk at points with
unallocated inodes, which may also indicate covert
data sharing (principles 1 and 4)

8. interception of user input (principles 1 and 2)

9. detailed understanding of code written to the heap at
runtime and executed dynamically (principles 1, 2,
3, and 4)

10. programmer backdoors [GWSB03] exploited, or even
just subtle memory alterations or views (principles
1, 2, and 4)

Throughout this paper, we will refer to a real system
compromise as an example. A Mandrake Linux system
was running a wide variety of security software, includ-
ing syslog, TCPWrappers, the network IDS snort,1 the
host-level firewall iptables, and Tripwire.2 All current
security patches had been applied. Despite these typi-
cal precautions, the machine was compromised. This was
discovered from email from a system administrator at an-
other site, whose machines were being attacked by the
compromised system. The vulnerability was probably in
Linux-PAM (Linux Pluggable Authentication Module),
though that suspicion is an inference from available and
missing data. No hard evidence is available. The only ev-
idence unearthed by standard procedures and tools was
a directory containing a tool to perform brute-force ssh
attempts against other machines, ctime evidence that a
number of standard binaries had been replaced and pos-
sibly “trojaned,” and syslog messages showing a number
of successful ssh logins for every user on the system that
did not have a login shell. No proof of how the intruder
broke in and what the intruder did was found.

In the next section, we discuss the inadequacy of cur-
rent forensic solutions in terms of our principles.

2 The Current Problems With
Forensics

2.1 Principle 1: Consider the Entire Sys-
tem

Principle 1 requires an analyst to have access to at least
as much data after an intrusion as an intruder had before
and during. For instance, failing to consider user space
leaves the analyst with no way to determine whether
a buffer overflow occurred, as in our intrusion example
above. An intruder can cause a buffer overflow, but using
current tools, an analyst cannot prove that one occurred.

Many tools are able to provide forensic information
about the kernel space by instrumenting the entrances
to the kernel. Many tools attempt containment, or per-
form static [AE02] or dynamic vulnerabilities analysis for

1http://www.snort.org
2http://www.tripwire.org

2



race conditions, buffer overflows, and other potential se-
curity exploits. But principle 1 demands more informa-
tion, specifically from both the kernel space and the user
space. Even in properly confined programs [Lam73], an
attacker can perform actions relevant to an intrusion in
user space. User space environments can alter the per-
ceived nature of an event, and the events reported by a
tool that only looks at the kernel space may be inaccurate
or incomplete at best.

For instance, current tools identify mmap or sbrk mem-
ory allocation system calls (syscalls), but do not tell us
the size and content of data transfered to or from mem-
ory. Current tools identify a running process, but do
not tell us which function in the code was exploited via
buffer overflow to put the program in that state. Cur-
rent tools can tell us which library was loaded and which
file was executed, but not the directories in the user’s
library and execution paths that were searched, which
would include information on how a user is attempting
to explore the machine. Unlike many previous forensic
tools and techniques [Bis03, Gro97, SL03, Sun01] or fault
tolerance systems [Don76], today’s tools reduce the need
for pre-determination of “attack” or “failure” methods by
casting a broad net. But they omit non-kernel space data
and information about user space that results in missing
many forensically-relevant events.

Computer forensics typically uses a standard set of
tools including system logs (syslog and TCPWrappers on
UNIX, the Event Log on Windows), logs from network
intrusion detection systems, host-level firewall logs, and
Tripwire. None of these tools, either collectively or in-
dependently, are designed to consider the entire system.
Despite their use, both initial knowledge of intrusions and
methods of discovery are frequently based on guesses, as
in our example above. In that example, we wanted to
know, with high certainty, which software contained the
vulnerability. What was the nature of that vulnerabil-
ity? What backdoors were subsequently installed? What
actions were taken on the system? What other systems
were attacked from our system? How, and were any suc-
cessful? No current tool is able to answer these questions
well because no tools consider the entire system. Even
the most basic forensic procedure of halting a machine to
make images of the disks has a trade-off between preserv-
ing the contents of the disks, and wiping out the content
of memory. Hence, all of these tools are inadequate for
forensic analysis.

The tools mentioned above could be augmented to pro-
vide a more complete system viewpoint. However, those
augmentations suffer from their own incomplete system
view. For instance, standard UNIX process accounting is
trivially bypassed by changing the names of the programs
that are run, running a process that does not exit, or us-
ing command arguments, which alter the behavior of the
program but are not recorded. In our intrusion example,
process accounting would not have recorded the nature
of the exploit because the exploit likely hijacked an ex-

isting process. Therefore this technique does not address
principle 1 either.

Two tools, BSM (Basic Security Model) [Sun01] and
BackTracker [KC03] (and its companion, ForwardTracker
[KMC04]), gather enhanced data that is useful for foren-
sic analysis, and both must be installed and running on a
system before the events to be analyzed occur. The per-
spective gained from pre-installation is what gives them
an advantage over other tools, though they are usually not
used until it is too late, as was the case on the machine in
our example intrusion. Despite their improvements over
the standard tools, they still do not address the require-
ments for complete forensic logging: BSM’s audit trails
are too coarse and focused on the kernel space to cap-
ture understand events such as buffer overflow attempts,
because BSM does not look at function calls and mem-
ory events. BackTracker and ForwardTracker help answer
the questions, “how did this get here?” and, “what effect
did this have?” respectively. Backtracker and Forward-
Tracker both use the same information to produce their
results, and can link processes, sockets, files, and file-
names using syscalls and process executions, and output
a visual, connected graph showing a chain of objects and
events. However, these tools do not consider user space
at all, and therefore will not uncover what caused not
only our intrusion example, but the also the exploits we
outlined in section 1.

One recent technique classifies forensic data necessary
to design audit sources that have lower performance costs
but continue to meet modern forensic needs [Kup04].
However, this technique only looks at BSM data and
data gathered from system library interposition. It ig-
nores memory and user space. It doesn’t address analysis
(violating principle 5). It ignores a user bypassing dy-
namic system libraries by using their own static libraries
(violating principle 2).

While UNIX syslog is at one extreme of the avail-
able logging solutions, ReVirt [DKC+02] is at the other.
It provides an exact, replayable record of all non-
deterministic events. This is, in some sense, the “ulti-
mate” logging system. It records the least amount of
information needed to re-create everything. The record-
ing of non-deterministic events is merely the first part of
forensics, and is not analysis or auditing. ReVirt follows
principle 1 by considering the whole system, but does not
present events in a way that can be analyzed easily.

The only tool aimed at forensics that takes a broader
view of the entire system is Plato [KDC04], which uses
virtual machine introspection [Gar03]. Hooks in Plato
can monitor raw device I/O, CPU exceptions, kernel
backdoors, syscall race conditions, file system race condi-
tions, and virtual registers, RAM, and hard disks. How-
ever, Plato does not record memory events, and program-
specific events and environment information. Fortu-
nately, an exact, complete re-creation of the operating
system is not required to obtain a complete forensic view
of the system. There are many events that occur on an op-

3



erating system that are irrelevant to forensics, and these
events are easier to define and ignore than the events that
are relevant to forensics. Starting with this assumption
would give us a more fail-safe method for having neces-
sary information.

Further, hypervisors [BS95] are not always capable
of replaying events exactly. Plato, ReVirt, and other
hypervisor-style virtual machines with deterministic re-
play capabilities fail on multiprocessor machines, because
neither the hypervisors nor the operating systems know
the ordering of simultaneous reads and writes, by two or
more threads running on different processors, to the same
location in shared memory. The order of memory reads
and writes is critical for deterministic replay. Thus, deter-
ministic replay techniques are crippled on multiprocessor
machines. The limitation of hypervisors with determinis-
tic replay to uniprocessors is particularly critical given the
prevalence of multiprocessor machines and the impending
emergence of multiple processors on the same die sharing
memory.

2.2 Principle 2: Assumptions Should Not
Control What Is Logged

Depending on assumptions about an opponent’s abilities
can cause an analyst to pay attention to what an attacker
wants the analyst to see (a blatant component to an at-
tack), and not the damage an attacker is actually doing
(more subtle and concealed by the blatant component).
It is difficult enough to gather proof of the results of a
non-malicious user’s actions, let alone the intentions of a
skilled intruder.

For example, ignoring insiders to focus on outsiders
places too much attention on access control mechanisms
rather than recording system events. Any user can be a
threat. One of our key desired outcomes is the ability
to detect and prove when this occurs. In our intrusion
example, all of the secure and encrypted access controls
were not enough to stop or even log a remote exploit.

The less data recorded the easier it is for an intruder
to distract an analyst. For example, reliance on tools
that only look at the filesystem may draw an analyst’s
attention to blatant accesses files. In fact, with root ac-
cess, the intruder can covertly write those files to another
user’s memory, and that other user may be the one who
actually transports the stolen data off the system.

All of the tools in the previous section fail to record the
entire system for one of two basic reasons. Either their
designers felt it would be impractical, or their designers
assumed it was not necessary. In relying on the standard
suite of tools, system administrators assume that impor-
tant events will be logged. In relying on process account-
ing, administrators assume that binaries are what they
appear to be and that arguments to those binaries are
irrelevant. In relying on Tripwire, administrators assume
that files will show evidence of change if an intrusion has
occurred. We have argued in the previous section that

these assumptions made by forensic tool designers and
administrators are fallacious. These tools would not have
helped in our intrusion example.

In the previous section, we mentioned that BSM’s audit
trails are too coarse to capture and enable reconstruction
of many events, because BSM makes assumptions about
what is relevant to security. A huge number of events,
particularly in user space, are not considered “security-
related” events, and therefore BSM does not record them.
In our example above, BSM might have provided addi-
tional evidence that could help one infer a cause of the
intrusion. But it would not have provided proof of a
buffer overflow exploit, because BSM does not look at
user space. Even BackTracker relies on the assumption
that an analyst will have evidence in the form of a process
ID, file, or inode from which to begin an investigation of
an initial exploit, which is frequently not true. In our own
intrusion example, there was evidence of changed files but
there was no conclusive evidence that these were part of
the initial exploit.

2.3 Principle 3: Consider the Effects,
Not Just the Actions

Failing to consider context can lead an analyst to draw
incorrect conclusions from interpreting inputs. Interpre-
tation of the input can be incongruent with the inter-
pretation of the result, due to the way that changes in
the user environment can affect translation of inputs. Of
the available tools, only ReVirt follows this principle, be-
cause it obviates the need to determine any relative im-
portance of system events and objects ahead of time. By
re-creating everything, the analyst can decide after the
fact what is important enough to investigate and analyze
in more detail.

Standard UNIX process accounting does not show how
the context (the argument) affects the behavior of the
program, and it tells an analyst nothing about the re-
sults of running that program. This violates principle 3.
Keystroke logging through the UNIX kernel’s sys read
syscall shows user inputs, but not necessarily the results
of those keystrokes, also violating principle 3. This exam-
ple in forensics demonstrates that the result is at least as
important as the action, because if the user environment
had been modified to change the effect of a keystroke, the
action or input may be different than the result of that
input. There are many other variations on this kind of
behavior. In our intrusion example, if the intrusion re-
sulted from a remote exploit, these forensic mechanisms
would have revealed nothing about the exploit, because
no new processes were started, nor were any keystrokes
input. Similarly, BackTracker and ForwardTracker do not
consider context and environments along with the events
that they record. Therefore, there is no easy way to de-
termine the effect on the system of files opened, processes
started, or network sockets connected.

Though BackTracker can show a series of kernel-level

4



objects and events leading to the creation of a particu-
lar file, it is merely showing a part of what happened,
and not what could have happened at a particular stage,
nor what vulnerabilities existed there. In our intrusion
example, BackTracker may have shown that a shell was
obtained following a Linux-PAM exploit, but what other
actions could have been taken? Though BackTracker
may help a forensic scientist decide where to look for a
particular action or exploit, it does not necessarily help
the analyst understand the nature of the action itself.
For instance, process accounting may show evidence of
a startup script running, and BackTracker may show a
chain like socket->httpd->sh. This indicates that a
shell was obtained from httpd, but does not help an an-
alyst understand the nature of the vulnerability that al-
lowed the shell to start. One way to analyze this is to ask
the question at each stage: “What could happen here?”
This approach allows an analyst to consider not only what
is shown but also what else could have been done. Much
like playing chess against a computer system and being
able to see the computer’s legal moves, this presentation
should include a list of the intruder’s actions, the results
of those actions, and a tree showing other possible ac-
tions at each stage. Such a technique could assist not
only with forensic analysis, but also vulnerability analy-
sis [Bis03]. We want to know not only the events that
transpired, but also the context and conditions set up by
those events, and the capabilities achieved by the user
in each condition [TL00]. In our intrusion example, we
want to know not only the exploited program, but also
the nature of that exploit and what else might have been
vulnerable.

2.4 Principle 4: Context Assists in Un-
derstanding Meaning

Knowing the context helps an analyst understand when
the result of an event may be incongruent with the ex-
pected result. Context also gives meaning to otherwise
obscure actions. For example, knowing the user owner-
ship of memory regions helps us understand if a user is
attempting to share data with another user through a
memory write. Knowing that a file is already opened by
one program when another program attempts to write to
it, tells us about a possible attempt at a race-condition
exploit. We can record a user typing setenv or chmod,
but current tools do not record the state of the targets of
those commands, such as execution paths or file permis-
sions, which could help an analyst understand the result.

We define an abstraction shortcut to be an event that
bypasses or subverts a layer of abstraction on a system to
perform actions at a lower level. Doing this makes events
harder to understand. It is a common tactic, and many
existing tools are confused by such tactics because they do
not capture the different layers of context. For instance,
although BackTracker does a good job of avoiding the
potential problems arising as a result of tracking only

filenames and not inodes, or processes and not process
IDs, it does not compare UNIX group names and group
IDs, UNIX usernames and user IDs, and data read or
written to disk by reading or writing directly to the raw
devices in /dev. This bypasses the UNIX file system.
Finally, even where existing tools tell us that some data
has been written to a raw socket or to the virtual memory
residing in swap space on disk, they do not tell us what
that data was, where in higher layers of abstraction it
was written to, or what the results of the actions were.
Context is a key element here. When an address is given,
is it physical or virtual, and is that space in memory or in
swap space on disk? The ability to translate raw disk read
and write actions to something human-readable, such as
its equivalent file on the filesystem, is essential. Neither
BackTracker nor BSM consider context. The principle of
using context to help understand meaning says that we
can derive meaning from data if we know how it is being
used and manipulated.

2.5 Principle 5: Every Action and Result
Must Be Processed and Presented in
an Understandable Way

In general, forensic tools are not designed to do analysis.
None of the standard tools installed on the machine in our
intrusion example do any analysis. Even the “enhanced”
tools, which require being installed ahead of time and are
supposed to aid a human to do analysis, do so poorly or in
passing. Most tools collect or display information so that
humans can attempt to perform analysis. But the tools
do little to analyze it themselves. The best tools only dis-
play collected information, and do not analyze, limiting
their ability to present information in a coherent way. For
instance, we can record keystrokes but we do not necessar-
ily know the result of their entry [Tho84]. We can record
and view a chain of processes, but we do not know what
took place within them at the level of memory accesses,
and we do not know the results of other operations that
depend on the current state of the user space environ-
ment. We need to analyze and correlate recorded events
using enhanced logging techniques, about both kernel and
user space events and environments, enabling an analyst
to distinguish meaningful results from the actions that
caused them and the conditions which permit them.

Of the existing tools, only BackTracker attempts to
post-process information to display it in a more human-
understandable way. However, BackTracker requires a
specific UNIX process or inode number from which to
“backtrack” to an attack entry point. This limitation
is severe when forensically analyzing an insider case in
which there is no suspicious evidence or non-authorized
activity to start with. Instead, it would be desirable in-
stead to be able to analyze a range of times. In our in-
trusion example, an intruder may have already been in
the system for a considerable period of time before being
detected. So if one particular suspicious object is found,

5



the intruder may have already installed and used multiple
backdoors after the initial exploit. BackTracker does not
make it easy to discover these.

Only ReVirt follows the first two principles by en-
abling the re-creation of all events. However, the non-
deterministic events that ReVirt records are analyzable
only with great difficulty. ReVirt enables more analyz-
able information to be logged after intrusion during re-
play. But even ReVirt is not a complete solution to foren-
sically analyze a system because it does not address prin-
ciple 5. Better information, and automated presentation
and analysis tools must be gathered and developed.

Plato is not designed to clearly present the informa-
tion it captures. Each scenario (such as syscall race
conditions) is approached as a service that must be im-
plemented and run separately. For instance, if Plato
recorded every assembly code “store” instruction, the
generated data would be worthless without careful post-
processing that considered context (principles 3 and 4).
Our forensic principles say that all the information should
be already processed, synthesized, and readily available
for query and analysis. From this point of view, Plato
does not have the proper goals for complete forensic anal-
ysis, as it does not follow principle 5. As Plato runs be-
low the guest operating system, in our intrusion example,
Plato would have observed the entire intrusion, from orig-
inal entry to subsequent entries and activities. However,
because it does not monitor memory events, or support
detailed correlation, translation, and automated analysis,
it would not have been as effective as we desire.

In our intrusion example, the standard tools did not
present evidence of the intrusion in a coherent way. The
evidence was scattered throughout syslogs and the filesys-
tem in an unorganized and uncorrelated manner.

The standard tools for forensics fail to address all five
fundamental principles of complete forensics. They do
not address the entire operating system, they assume that
user actions will generate system log events, keystroke ev-
idence, or kernel event evidence; and they all completely
fail to understand results as opposed to merely actions.
In the next section, we suggest possible solutions.

3 New Approaches for a Solution

The primary gaps identified in the previous section are
the lack of current tools that consider and synthesize data
from user space, context, and results, as well as the lack
of automated analysis. In this section, we will present
techniques that can be used to implement a possible so-
lution.

3.1 Principles-Based Logging

This section discusses techniques that follow from the
principles defined in the introduction, which address the
problems with forensic analysis. For instance, principle 1
states that everything needs to be recorded, but principle

5 cautions us to do so in a way that first permits computer
analysis, ultimately enabling more intelligent analysis by
a human.

We will begin outlining principles-based tools by using
selected techniques from existing tools. Principles-based
tools must record the nature and timing of interrupts and
traps to the kernel (including syscalls and their parame-
ters) as well as output from the kernel and information
about asynchronous syscalls that have been interrupted
by an interrupt and restarted. Tools must record mem-
ory allocations in both the stack and the heap, including
their origins and timings. They must also record events
involving other standard interfaces, such as the filesystem
and network stack, including opening and closing of file
handles, disk reads and writes, packets sent, DNS queries,
and their precise timings. But this covers only a subset
of all possible events. We must address the forensic prin-
ciples, especially and ultimately principle 5.

To satisfy principle 1, tools must record events in user
space. These events include memory reads and writes
(and their origins, contents, sizes, and timings), and also
the names and types of function calls and parameters.
The former would have helped to confirm the suspected
remote buffer overflow exploit in our intrusion example.
The latter would have told us significantly more than ex-
isting tools. A principles-based tool may be able to pre-
dict behavior based upon analysis of the program and
certain memory events. For example, certain memory
events performed inside frequently-called, tight program
loops may not need to be recorded, or recorded com-
pletely, since the same data could be gathered with lower
overhead using other methods.

To satisfy principles 3 and 4, principles-based tools
must also record context of both the kernel and user space.
In user space, context information is program-specific,
including the shell, common applications, memory, and
general user environment. While it is impractical to in-
strument every program on the system, some programs
can be instrumented to save only memory events, and
a very small subset of commonly used programs can be
modified to save additional information. This can signifi-
cantly clarify the results of actions by common programs.
In our intrusion example, the intruder may have made ex-
tensive use of the login shells, editors, or other common
programs. The following is an example of the contextual
information that should be captured:

• login shell-specific: application execution paths, li-
brary paths, user limits, current working directory,
keystroke mappings, and command aliases

• all programs: names of functions called, parameters,
and names of variables read from and written to

• specific programs: application environmental in-
formation, including working directory, command
macros, and other actions (e.g. from vim, emacs,
or the X Windows environment)

6



From an implementation perspective, several meth-
ods can capture information about events that occur in
user space. One is introspection or monitoring of a vir-
tual machine. This technique has been used successfully
[GR03, KDC04] with security and allows the host operat-
ing system to monitor everything that occurs in the vir-
tual operating system. A key benefit over other solutions
may be a relatively low performance overhead. Unfortu-
nately, introspection of a running virtual machine for the
types of events that are of forensic interest is likely to
increase performance overhead significantly. Introspec-
tion need not be done in real-time, however. Using an
hypervisor such as ReVirt to perform introspection upon
replay could provide significant performance advantages
over capturing information in real time. ReVirt currently
runs with an 8-66% overhead, whereas overhead gen-
erated by real-time introspection would be significantly
higher. Using ReVirt, one can choose to capture different
forensic information during multiple, different replays —
a feature not possible in real-time.

The hypervisor approach also has limitations. First,
and most importantly, using a virtual machine does not
give access to the names of forensically valuable variables
and functions within running programs. Second, there
is limited practicality in running and maintaining virtual
systems. Finally, the hypervisor method adds yet an-
other step to the forensic data-gathering process because
non-deterministic events from the virtual machine execu-
tion must first be gathered and then replayed to obtain
important forensic data. Another limitation is that in-
truder tools now attempt to “fingerprint” a machine to
determine if it is running a virtual machine ahead of time.
Since some hypervisors, such as Xen [BDF+03], are now
becoming quite common, attacks against the hypervisor
itself may increase, and an intruder’s behavior may be
modified if an intruder detects that a system is running
such a virtual machine.

Other solutions for capturing user space information
do not use a virtual machine. One method is to combine
static and dynamic analysis code-instrumentation meth-
ods. Programs are built by compilers that can capture
additional information, both at compile-time and run-
time about the programs. Binary rewriters can instru-
ment binaries to record and save run-time logging data.
Programs run with an instrumented compiler or binary
rewriter-like tool can tell us, for instance, the nature of
dynamic code written by a user program onto the heap
and executed at runtime, as the instrumented programs
can record what is written to memory and executed.

NetBSD 2.0 contains a feature called verified exec3

that can be used to impose restrictions on running only
cryptographically-signed (“fingerprinted”) binaries. In
this way, having forensically valuable information com-
piled into binaries could be enforced. Restrictions such
as verified exec and loadable kernel modules are more

3http://www.netbsd.org/Releases/formal-2.0/NetBSD-2.0.

html

acceptable to some sysadmins than the virtual machine
approach, and are significantly more easy to maintain. In
the compiler-instrumentation approach, this user space
information can be recorded by instrumenting the sys-
tem’s C/C++ compiler and mandating that any binary
run on the system, including the kernel, be compiled with
C/C++. This approach has the benefit of saving more
user-understandable information than virtual machines or
binary rewriters because it can force all binaries to have
debugging and profiling information compiled in. With
binary rewriting, a binary can be instrumented to gather
information similar to that which a compiler can give.
The implementation is simpler, but the presence of the
symbol table cannot be guaranteed.

One drawback to these approaches is the amount of
information that would be generated. The approach of
instrumenting a compiler, as opposed to using a binary
rewriter, could significantly reduce the amount of data
necessary. For instance, to investigate buffer overflows,
new tools need to capture all sbrk and mmap syscalls, as
well as capture sizes and timing of memory writes to those
allocated variables. However, it is likely that new tools
will not need to record all memory writes. Assembly code
store instructions generated by the compiler for manip-
ulating intermediate variables could represent a massive
portion of the code. These do not need to be recorded.
Unfortunately, a binary rewriter does not know how to
deal with any higher-level constructs. On the other hand,
after recording the syscalls above, a compiler could insert
code not after every assembly store instruction (unless
there is assembly inline with the C/C++ code) but after
every C/C++ assignment operation, as represented in the
compiler’s abstract symbol tree (AST) or other intermedi-
ate language. While there are also a very large number of
assignment operations in typical C/C++ code, the num-
ber may be an order of magnitude less than the number
of assembly code store instructions. Therefore, though
using a binary rewriter is undoubtedly less cumbersome
than instrumenting a compiler, the improvement of the
resulting information given by both the symbol table and
the ability to audit events and constructs at a higher level
than assembly code, is likely to improve forensic analyz-
ability. The timing, size, and nature of memory writes is
merely one example of this.

Using compilers and binary rewriters raises the follow-
ing the problem: to capture information about the entire
system, even the operating system needs to be recom-
piled. If imposed on the kernel and drivers, this restric-
tion could cause problems for code dependent on spe-
cific timing responses from the hardware. While not all
systems have such dependencies, we would like our tech-
niques to be generic. Fortunately, the parts of the code
that rely on timing information interact with the hard-
ware and need not be instrumented at the same level as
all the other system and user code. Because we know
the inputs to the kernel (syscalls, traps, interrupts), and
the kernel is deterministic, we can determine its results

7



via replay. Similarly, by using forensic data gathered from
other programs and by drawing upon collected user space
information (for instance, a hash of the memory image of
the kernel [GR03]), we can determine how a kernel has
changed and how that change has affected the system,
without instrumenting the kernel itself.

In the next section, we discuss principles-based audit-
ing, particularly principle 5, and specifically how to audit
the information obtained using the techniques described
in this section and present it to an analyst.

3.2 Principles-Based Auditing

Though only represented by a single principle, the most
difficult part of forensic analysis is auditing the data. A
solution requires a method of presenting kernel and user
space context and events together to the analyst. Several
research projects have presented different classifications
and categorizations of system events [Den87, Kup04], vul-
nerabilities [Bis95, Bis03], and even a complete system
information model [Gro97]. A principles-based tool will
need to use similar classifications and models to help build
a hierarchical model to present the data. New tools need
not present a method for exhaustively analyzing the data,
since this would require foreknowledge about the nature
of the event, which is an assertion that we avoid (principle
2). Rather, a principles-based tool should exhaustively
log data, and, in presenting it, enable the human analyst
to perform analysis more easily and completely. A pre-
sentation should include the raw events themselves, and
enable the ability to easily view events and environments
at arbitrary points in time. It should also correlation
of those events arbitrarily with others at similar points
in time or operating on similar points in memory or on
disk. An analyst should be able to easily speculate about
global questions involving forensic data (“were there any
potential memory race conditions recorded in this day-
long time period, and where?”) and also to look in more
detail [Gro97] into the macro-views of process and file
information provided by existing tools to find answers.

Storing and representing data in a coherent way is criti-
cal to the forensic process. To audit this information, new
tools can use techniques similar to those used in debug-
ging, which allow a programmer to “step” into functions
or walk through higher-level function calls. We define this
display of detailed information along with coarser-grained
data to be a multi-resolution view of forensic data. This
would allow an analyst to zoom in on specific processes
and memory events, and anything that those events are
related to, to see more detail. In keeping with this goal,
tools must store data in a way that enables this. One way
is by viewing a computer system as a relational database.
An application launch can be viewed as a record in a ta-
ble, having a large number of items associated with it. At
the least, this includes: a process ID, user ID, group ID,
time, checksum, path, current working directory, size of
initial stack memory allocation, set of heap allocations,

set of functions, set of variables, and a set of filehandles
associated with the process. Each field within this process
record is also a record itself. For example, a user ID needs
to be associated with a user name, and also with pro-
cesses, file handles, heap allocations, memory writes, and
so on. Using symbol table information, each memory al-
location is associated with a variable, function, program,
user, and time. A critical part of the automated analy-
sis is translating abstract addresses into understandable
objects and events (principle 4).

Principles-based tools can perform context-assisted
translation not only for memory but also for abstraction
shortcuts. For example, a write to an arbitrary disk loca-
tion through a raw device may have a file associated with
it (and if it does not, this can be an indication of covert
information sharing). Then, the same correlations that
were done with memory can also be done with files and
network events: a file or socket is owned by a user and
has a process ID of the process which accessed it, and so
on. All of this correlated information, including how data
is viewed or modified, should be in the multi-resolution
view.

Once translations and correlations are finished,
principles-based tools can perform automated analyses to
generate warnings for a human analyst. For instance, a
tool can compare the sizes of memory writes to buffer
sizes [HB03] to look for potential overflows. Rapid ac-
cesses on the same location in memory or disk by different
programs should provide a warning about a possible race
condition, as would rapid accesses to the same network
ports. Addresses of memory writes by user programs
can be audited to see whether the program instruction
stream is being tampered with, and correlated with user
IDs to determine whether information is being shared be-
tween user spaces. Those same memory writes can also
be analyzed to determine whether they might possibly be
covertly recording user inputs. Program environments at
the time of each event can be audited so that effects of
actions can be correctly identified. Function names can
be analyzed in an attempt to determine whether remote
access may have been granted by programmer backdoor
or by exploit of a software bug. Tools can also provide a
facility to keep a record of the history of the values of se-
lected variables in memory, and when different programs
accessed or changed them.

A final method of analysis required for principles-driven
tools, addressing principle 2, is to perform analysis not
only about what did happen, but what could have hap-
pened at each step in a system’s execution, both in kernel
and user space. For example, in a buffer overflow, the re-
turn address is typically altered to return the execution
point to an alternate location. In this automated analy-
sis, we also want to know the other active programs and
their functions that could have been jumped to. Or, in
a possible race condition situation, we want to know the
programs and nature of the objects involved. To perform
this analysis, one can use the requires/provides techniques

8



[TL00] as a model to present abstract events, and look not
just at that series of events but also at a set of conditions
and capabilities acquired given the events and the context
in which they occur.

The techniques we have described in this section ad-
dress one possible solution to principle 5. They com-
pletely transform typical methods forensic software uses
to present information to a user. No current tools come
anywhere close to providing any sort of useful and auto-
mated analysis without sacrificing a significant amount of
accuracy by ignoring or filtering out relevant data. Com-
bined with proper data acquired by adhering to the first
four principles, these techniques give a possible solution
to performing forensic analysis in a way that assists a hu-
man analyst to obtain proof, not inference, in a practical
way.

3.3 Summary of Principles-Based Solu-
tions

Using either introspection of a hypervisor, a binary
rewriter, or compiler modifications, principles-driven
tools must gather not only kernel events, but also infor-
mation on timings, sizes, and locations of memory al-
locations, reads, and writes. Tools must gather infor-
mation on events using abstraction shortcuts, particu-
larly those bypassing the filesystem or network. They
must gather information on program, function, and vari-
able names. By correlating those names, memory events,
system context, and program environments, principles-
driven tools must translate these objects and events into
human-understandable data. Finally, after generating
human-understandable data, principles-based tools must
present that data in a multi-resolution fashion that allows
for viewing data at granularities ranging from memory
writes to program launches and user logins. This repre-
sentation should also provide a vulnerability analysis of
not only what did occur but what could have occurred.

4 Conclusions

The principles of computer forensics we have described
help us devise techniques to significantly improve our
ability to understand what has happened previously on
a computer system, when compared with current tools.
Those techniques, which we have also outlined, do not
require pre-determination of the nature of the events or
the skill level of the attacker, and do not require the anal-
ysis to begin with knowledge of precise details after the
fact about users, times, processes, and system objects in-
volved. The techniques also have the potential to perform
their work in a practical way.

We believe that looking at the complete system to
record information not recorded by previous forensic tools
(principle 1), particularly data about user space events
and environments (principles 3 and 4), and events that

have occurred using abstraction shortcuts (principle 3),
will allow us to more precisely analyze events that in-
volve covert memory reads, buffer overflows resulting
from memory writes, race conditions in memory or on
disk, reads and writes to raw devices, and other similar
events. These techniques address forensics without mak-
ing assumptions about the opponent (principle 2), and
they allow for understanding not just actions, but the re-
sults of those actions based on context (principles 3 and
4). Auditing tools that allow for analysis of the recorded
information should also allow for vulnerability analysis
based on the current context from any point in time,
translation of abstraction shortcuts to a higher granu-
larity, and, most importantly, a multi-resolution view of
the data, which allows zooming in and out of kernel and
user events and environments, and the ability to easily
analyze at any point in time (principle 5).

The techniques derived from these five forensic prin-
ciples lead to answers more easily proven correct. This
greatly reduces inferences and guesswork. These concrete
answers are exactly what we desired in our intrusion ex-
ample, and were impossible without the changes that that
we suggest. The techniques go a long way towards mak-
ing the final analysis by a human easier by performing
automated analysis first. And finally, they go a long way
to addressing scenarios that were previously unsolvable,
such as the insider problem and events occurring in user
space.

5 Acknowledgements

This material is based on work sponsored by the United
States Air Force and supported by the Air Force Research
Laboratory under Contract F30602-03-C-0075. Matt
Bishop gratefully acknowledges support from awards
CCR-0311671 and CCR-0311723 from the National Sci-
ence Foundation to the University of California at Davis.

References

[AE02] Ken Ashcraft and Dawson Engler. Using
programmer-written compiler extensions to
catch security holes. In Proceedings of the
2002 IEEE Symposium on Security and Pri-
vacy, 2002.

[And80] James P. Anderson. Computer security threat
monitoring and surveillance. Technical re-
port, James P. Anderson Co., Fort Washing-
ton, PA, April, 1980.

[BD96] Matt Bishop and Michael Dilger. Checking
for race conditions in file accesses. Computing
Systems, 9(2):131–152, 1996.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser,
Steven Hand, Tim Harris, Alex Ho, Rolf

9



Neugebauer, Ian Pratt, and Andrew Warfield.
Xen and the art of virtualization. In Pro-
ceedings of the 2003 Symposium on Operating
Systems Principles, October 2003.

[Bis95] Matt Bishop. A taxonomy of UNIX system
and network vulnerabilities. Technical Report
CSE-95-10, University of California at Davis,
1995.

[Bis03] Matt Bishop. Computer Security: Art & Sci-
ence. Addison Wesley Professional, 2003.

[BS95] Thomas C. Bressoud and Fred B. Schneider.
Hypervisor-based fault tolerance. In Proceed-
ings of the Fifteenth ACM Symposium on Op-
erating Systems Principles, 1995.

[Den87] Dorothy E. Denning. An intrusion-detection
model. IEEE Transactions on Software En-
gineering, SE-13(2):222–232, February 1987.

[DKC+02] George W. Dunlap, Samuel T. King, Sukru
Cinar, Murtaza A. Basrai, and Peter M.
Chen. ReVirt: Enabling intrusion analysis
through virtual-machine logging and replay.
In Proceedings of the 2002 Symposium on Op-
erating Systems Design and Implementation,
2002.

[Don76] James E. Donnelly. A distributed capability
computing system (DCCS). In Proceedings of
the Third International Conference on Com-
puter Communication, August 1976.

[Gar03] Tal Garfinkel. Traps and pitfalls: Practical
problems in system call interposition based
security tools. In Proceedings of the 2003 Net-
work and Distributed System Security Sympo-
sium, 2003.

[GR03] Tal Garfinkel and Mendel Rosenblum. A vir-
tual machine introspection based architecture
for intrusion detection. In Proceedings of the
2003 Network and Distributed System Secu-
rity Symposium, 2003.

[Gro97] Andrew H. Gross. Analyzing Computer In-
trusions. PhD thesis, University of California,
San Diego, 1997.

[GWSB03] David P. Gilliam, Thomas L. Wolfe, Josef S.
Sherif, and Matt Bishop. Software security
checklist for the software life cycle. In Pro-
ceedings of the Twelfth IEEE International
Workshop on Enabling Technologies: Infras-
tructure for Colaborative Enterprises (WET-
ICE’03), 2003.

[HB03] Eric Haugh and Matt Bishop. Testing C
programs for buffer overflow vulnerabilities.

In Proceedings of the 2003 Network and Dis-
tributed System Security Symposium, 2003.

[KC03] Samuel T. King and Peter M. Chen. Back-
tracking intrusions. In Proceedings of the
Symposium on Operating Systems Principles,
October 2003.

[KDC04] Samuel T. King, George W. Dunlap, and Pe-
ter M. Chen. Plato: A platform for virtual
machine services. Technical Report CSE-TR-
498-04, University of Michigan, 2004.

[KMC04] Samuel T. King, Z. Morley Mao, and Peter M.
Chen. CIDS: Causality-based Instrusion De-
tection Systems. Technical Report CSE-TR-
493-04, University of Michigan, 2004.

[Kup04] Benjamin A. Kuperman. A Categorization of
Computer Security Monitoring Systems and
the Impact on the Design of Audit Sources.
PhD thesis, Purdue University, 2004.

[Lam73] Butler W. Lampson. A note on the confine-
ment problem. Communications of the ACM,
16(10):613–615, October 1973.

[SL03] Tye Stallard and Karl Levitt. Automated
analysis for digital forensic science: Seman-
tic integrity checking. In Proceedings of the
19th Annual Computer Security Applications
Conference, December 8-12 2003.

[Sun01] Sun Microsystems, Inc. Auditing in the
SolarisTMOperating Environment, February
2001.

[Tho84] Ken Thompson. Reflections on trusting trust.
Communications of the ACM, 27(8):761–763,
August 1984.

[TL00] Steven J. Templeton and Karl Levitt. A re-
quires/provides model for computer attacks.
In Proceedings of the 2000 Workshop on New
Security Paradigms, pages 31–38, 2000.

10


