
Average Case vs. Worst Case—Margins of Safety in
System Design

Andreas Gal, Christian W. Probst, and Michael Franz

Donald Bren School of Information and Computer Science
University of California, Irvine

Irvine, CA, 92697
{gal,probst,franz }@uci.edu

Abstract. We predict that we will soon witness attacks on all kinds of systems
that will be based on the attacked systems’ worst-case behavior. For example, the
worst-case performance of Java Bytecode Verification rises quadratically with
program length. By sending a legal, but difficult-to-verify program to a server
virtual machine, we can keep that server occupied for an inordinate amount of
time, effectively making it unavailable for useful work. The problem, however,
is not restricted to mobile-code verification: for example, an attacker could ex-
ploit knowledge about a just-in-time compiler’s register allocator by sending it
a particularly difficult to solve graph-coloring puzzle. This even puts into ques-
tion the premise of open-source software, since it is knowledge of the underlying
algorithm that is exploited in the attack, rather than a particular implementation
defect. The same vulnerability can be exploited if the attacker has intimate knowl-
edge of the data structures used in the attacked system. Similar problems occur
in hardware, e.g. with respect to power variability or the heat dissipation of pro-
cessors. Malicious programs can exploit which parts of computer chips dissipate
power, thereby overheating regions of the chip that are known to contain no tem-
perature sensors. This attack could be used to affect battery life or cause early
chip aging. Unfortunately, worst case-based attacks are hard to counter without
also limiting the system’s behavior in the average case.

1 Introduction

Recently, attacks based on the worst-case behavior of systems have been reported in
several areas—from mobile code [12] to more general applications [8] to heat dissipa-
tion of processors [9]. The main characteristic shared by these attacks is that they target
systems that have been optimized for theaveragecase and do not include sufficient
margin of safety for theworstcase.

In this paper, we contend that correct behavior in the average case is not sufficient
to defend systems against worst-case behavior based attacks. Instead, there needs to
be a dual focus on the (worst-case-)performance. Otherwise, as we will show, systems
become vulnerable.

For example, the JVM bytecode verification algorithm exhibits quadratic worst-case
execution complexity. We have been able to construct relatively small mobile programs
that require hours of verification on high-end workstations. The programs in question

are perfectly legal JVM code, perform no malicious action on the host, and will even-
tually be verified as being safe. However, the process of verification itself is so costly
as to effectively constitute a denial-of-service attack. Current mobile code systems treat
verification and just-in-time code generation as atomic operations. As far as we know,
there is not a single existing Java Virtual Machine in which verification or just-in-time
code generation can be interrupted by the user—other than by killing the whole Vir-
tual Machine. And for the increasingly importantserver-side virtual machines, human
intervention is not even an option.

The problem with these kind of attacks is that the scenarios where the attack occurs
do not constitute ”illegal” uses of the system being attacked. In fact, there might be
completely reasonablevalid and usefulprograms or inputs, that just by incident—or by
malicious intent—cause the system to exhibit some kind of worst-case behavior. There
often exist simple precautions against these attacks. In the case of bytecode verification,
e.g., one could deploy a traditional monitor that would abort verification when a certain
time limit is exceeded. It is noteworthy, however, that these countermeasures always
come with the risk of rejecting certain useful programs.

Hence, the problem is similar to that of defending against low-intensity viruses
or worms that cause damage while “flying under the radar” without ever tipping off
an intrusion-detection system. Unlike such a low-intensity virus or worm, however, the
attack in our case consumes all of the cycles of the host and prevents useful calculations.

Unfortunately, attacks based on worst-case behavior can affectall parts of systems.
In the compilation pipeline of Mobile Code Execution Frameworks, e.g., an adversary
that knows the target virtual machine’s register allocation algorithm might be able to
maliciously craft a valid mobile-code program containing a particularly difficult to solve
graph-coloring puzzle. Or, to attack the heat sensors present on modern processors, an
adversary could send a program that specifically over-uses parts of the chip that are
not close to sensors. This kind of attack results in an overheating of parts of the chip,
thereby causing, e.g., increased power consumption or accelerated chip aging [9].

An interesting point to note is that “security by obscurity” seems to be a perfectly
valid approach to secure systems against this kind of attacks. In the realm of software,
“open source” systems might be more vulnerable against the attacks described than
systems that provide “security by obscurity”. Advocates of “open source” development
have long argued that their systems are safer because the code is audited by hundreds
of people and implementation defects are hence more easily spotted and removed. Our
attack, however, does not depend on anyimplementation defect, but only on the un-
derlyingalgorithm, which is publicly exposed in open-source development. Hence, the
open-source process simultaneously increases the vulnerability to attacks such as ours
while making it impossible to quickly react to an exposed vulnerability by changing the
underlying algorithm.

In the realm of hardware, “security by obscurity” is applied by default. Since, e.g,
the on-chip temperature sensors are hidden in the chip packaging, there is no easy way
to find out whether the chip only has sensors as described in the specification. As we
will discuss briefly in Section 2.2, chips might very well contain more heat sensors than
documented, to limit the chip’s vulnerability.

The remainder of this paper is structured as follows: The next section gives sev-
eral examples for systems that havenot been designed with the worst case in mind.
The examples chosen come from two areas, namely the vulnerability and attackability
of data operations and hardware systems. These examples support our contention that
a paradigm shift is necessary towards making systems aware of worst-case behavior
based attacks and hardening them against those attacks. In Section 3, we argue that the
solution may very well lie in designing systems based on theirworst-case, rather than
average-casebehavior. Currently, systems like virtual machines, JIT compilers, and
many processors are fine tuned for either high performance or low cost in the average
case, with the hope that the worst case will rarely occur—we assert that this approach
is simply too dangerous. A summary concludes our paper (Section 5).

2 Worst Case Behavior-based Attacks

Systems that accept user programs or inputs must use special care to avoid that the
input causes one or several system components to exhibit worst-case behavior. This
section presents some examples for such systems that must be optimized for theworst
and not for theaveragecase. We start by looking at attacks based on some form of
algorithmic complexity (Section 2.1), and later on present an example from the realm
of hardware (Section 2.2). A commonality of the attacks described is that in order to
succeed, the attacker needs intimate knowledge about the implementation or the system
layout.

Beside the examples presented, there are many more documented in literature. Gar-
finkel [15] describes nested HTML tables as an attack on some browser. Due to bad
implementation of the layout algorithms in some browsers, they would perform super-
linear work to determine the on-screen layout of the table. Stubblefield and Dean [10]
describe an attack against SSL servers. In this attack a malicious client coerces a web
server into performing expensive RSA decryption. Again this attack is based on the
intimate knowledge of the implementation of the web server.

2.1 Algorithmic Complexity Attacks

In this section we look at three examples from different areas, that are closely related.
We start with a denial-of-service attack on the Java Bytecode Verifier, based on the
knowledge how a large class of Virtual Machines perform verification. The next attack
applies the same ideas to the compilation pipeline in mobile-code execution frame-
works. Finally, we describe the general case that the first two examples are specializa-
tions of, namely the attackability based on the worst-case behavior of operations on
data structures.

Java Bytecode Verification Staticmobile code verification was introduced as an alter-
native to thedynamicchecking of type safety properties at runtime through dynamic ex-
ecution monitors [7] by Gosling and Yellin [28, 21]. Using dynamic runtime checks can
cause a significant runtime overhead at execution time. The basic ingredient of every

1: todo← true
2: while todo = true do
3: todo← false
4: for all i in all instructions of a methoddo
5: if i was changedthen
6: todo← true
7: check whether stack and local variable types

match definition ofi
8: calculate new state afteri
9: for all s in all successor instructions ofi do

10: if current state fors 6= new state derived fromi then
11: assume state afteri as new entry state fors
12: marks as changed
13: end if
14: end for
15: end if
16: end for
17: end while

Fig. 1.The standard verification algorithm found in Sun Microsystem’s JVM implementations.

JVM bytecode verifier is an abstract interpreter for Java Virtual Machine Language in-
structions. The stacks and virtual registers of this abstract interpreter storetypes, rather
thanvalues. Similarly, the instructions of the abstract interpreter operate at the type-
level only and do not perform any actual calculations. For an extensive discussion of
conditions for bytecode to be accepted by the verifier see [20]. Figure 1 shows a simpli-
fied version of the algorithm that is used, with slight modifications, in all Java Virtual
Machine implementations that we are aware of, including Sun’s own CVM [27] and
HotSpot virtual machines [26].

Regarding the complexity of verification, the analysis of straight-line code is in-
expensive, since the abstract interpreter only propagates type information through the
instructions and computes the abstract stack state after each instruction. The runtime
of such a data-flow analysis is significantly increased if the code contains jumps, ex-
ception handlers, or subroutines, which introduce forks and joins in the control-flow
graph. When separate control flows are merged together, an instruction’s predecessors
may have different abstract stack or variable types. After merging the state informa-
tion of the two incoming control flows, the data-flow analysis has to be repeated for
all instructions which are reachable from this point in the control flow of the method.
For simplicity, the existing Java verifier repeats the entire data-flow analysis for every
instruction of a method until there are no more changes.

For average Java programs, the verifier algorithm quickly reaches a fixed point after
only a few iterations. For straight-line code or code that contains only forward branches,
the verification algorithm terminates already after a single iteration (Figure 2). It is
obvious that—in theory—the Java verifier could need up ton iterations over the method,
with n being the number of instructions in the method. Since for each iteration the
verifier might have to visit all instructions, the overall complexity is at leastO(n2).

return

fconst 2; fstore 1

iconst 0; ifeq L11

3

goto L2

L2:

L1:

5

6

8

iconst 0; istore 1 I

F

I

Fig. 2. Verification of Java byte-code through iterative data-flow analysis. The verifier traverses
the method from the first instruction to the last. While conditional branch instructions such as
ifeq are either taken or not-taken by the virtual machine, the abstract interpreter considers both
cases at the same time. In this example, the local variable is set to a float in one of the branches,
and to an integer in the other. At the merge point (instruction 8), the type of the variable becomes
>, because the type of the local variable depends on whether the branch was taken or not. Any
attempts by the program to read local variables of type> would be rejected by the verifier.
The example code shown here contains no backward branches, and hence the analysis can be
completed in a single iteration. If the taken and not-taken code blocks had been locatedbefore
the ifeq instruction (backward branch), the abstract interpreter would have had to iterate over the
code a second time to determine the type of the local variable in the merge point.

Such quadratic runtime behavior does not only exist in theory. In fact, simple Java
programs can be constructed that expose the worst-case scenario in practice. Figure 3
shows a very simple Java program that does nothing but store an integer into a local
variable and jump backwards through the code until it finally returns.

Studying the verifier algorithm reveals that newly computed type information is for-
warded immediately to instructions that come syntacticallyafter the current instruction.
To instructions that come syntacticallybeforethe current instruction, the new abstrac-
tions will only be forwarded in the next iteration of the DFA. The simplistic approach of
the traditional Java bytecode algorithm to iterate over the bytecode until a fixed point is
reached simplifies the generation of attacks like the one shown in Figure 3, but any other
iteration order would also exhibit a particular (possibly different) worst-case behavior
for which a malicious program could be constructed.

We have measured the verification time for two malicious programs designed to
exhibit the worst-case performance of the Java verifier using the Sun Microsystems
Java 2 HotSpot Client VM [12]. Figure 4 shows the verification time for a single method
containing bytecode with an increasing maximum data-flow path of lengthN . This time
includes only the time it takes the verifier to prove safety. The code is never actually
executed or compiled to executable code. The first curve shows the verification time
for a worst-case path length problem with empty basic blocks. The second curve in the
graph shows the maximum flow path problem with some additional code added to each
basic block, which further slows down the verifier. Both curves clearly show quadratic
growth.

All measurements were taken on a 2.53 GHz Pentium 4 and the Sun HotSpot VM
1.41. The maximum verification time we observed on this machinefor a single method
was approximately 40 seconds. Since the size of method code in Java is limited, this
time can not be increased. However, to achieve even longer verification times, an at-

1 2 3 4

L2:

L3:

I

I

I

I

I

I

I

I

1

3

4

5

10

iconst 0; ifeq L3

return

goto L0

iconst 0; istore 1

goto L2

iconst 0; ifeq L2

goto L1

iconst 0; ifeq L1

goto L0

L0:

L1:

I

I

7

8

11

13 I

I

I

I

I I

II

I I

II

I

I

I

I

I

Iteration

Fig. 3. Java bytecode program that takesn iterations to be verified using Sun’s standard DFA
verifier approach. The entry state for each basic block depends on the successor basic block. The
type of the first local variable is displayed for each iteration of the DFA. It is initially assumed
to be of unknown type and is discovered to be an integer (I) during successive iterations. Shaded
boxes indicate a change in the current iteration, framed boxes will be visited in the next iteration.

 0

 5

 10

 15

 20

 25

 30

 35

 0 10000 20000 30000 40000 50000 60000

tim
e

to
 v

er
ify

 m
et

ho
d

(s
)

method size (bytes)

N=3000

worst case data flow with empty basic blocks
worst case data flow

Fig. 4.Verification time for verifying a single method containing a worst-case data-flow scenario.
Thex-axis indicates the length of the method bytecode in bytes, which is proportional to the num-
ber of basic blocksN used to construct the code. The arrows indicate for comparison purposes
the code size for path lengthN = 3000.

tacker could hide more than just one of these methods in the code. Just including 20
methods instead of one already increases the verification time to approximately 15 min-
utes on the test machine we used.

The standard JAR archive format used by Java can be used to drastically reduce the
apparent size of the malicious code. The code patterns used in the presented scenarios
lend themselves for compression due to their very regular structure. Figure 5 indicates
the compressed size for different problem lengthsN . While the verification times in-

 0

 10000

 20000

 30000

 40000

 50000

 60000

 520 540 560 580 600 620 640 660 680 700 720
 0

 1000

 2000

 3000

 4000

 5000

m
et

ho
d

si
ze

 (
by

te
s)

ve
rif

ic
at

io
n

tim
e

(m
s)

JAR archive size (bytes)

verification time
compression

Fig. 5. Compression of constructed code examples using the standard JAR archive format. The
code is extremely well compressible as it repeats identical code patterns. While the verification
times increases by over factor 5000, the JAR file merely grows by less than 200 bytes.

creases by over factor 5000, the JAR file merely grows by less than 200 bytes. The JAR
archive format thus represents another example of a well-meant algorithm with appro-
priate average-case performance, which however exhibits very unexpected worst-case
behavior.

We have used the two algorithmic shortcomings described here to construct a mali-
cious applet [11] that disables the Java VM of web browsers for some time. The applet
is 10kb in size and indistinguishable from regular applet code, because it is a legal
and correct Java program. Short of disabling Java applets, the user cannot prevent or
interrupt the loading of this applet. In fact, existing browsers do not even allow the
user to interrupt the verification because the browser implementor never considered the
verification time to be costly enough. Some browsers, including some versions of the
Microsoft Internet Explorer, allow the verifier to continue the verification silently and
continue to hog the CPU in the background even if the user leaves a website containing
an applet that takes an excessive amount of time to verify.

Attacking the Mobile-Code Compilation Pipeline Denial-of-service attacks are not
limited to the bytecode verification phase, which is executed early in a bytecode-execu-
tion framework. Any code transformation algorithm applied to mobile code during its
path from a portable bytecode format to natively executable machine code is vulnerable
at its point of worst-case complexity. This applies in particular to compiler optimization
algorithms, which are traditionally chosen for speed in the average case but not for
worst-case performance, and some of which use heuristics to solve problems like graph
coloring and instruction scheduling that are known to be NP-complete [6, 17].

An example for such an attackable optimization algorithm is register allocation.
Register allocation is an important component of any JIT compiler that strives to achieve
good code quality. The classic register-allocating algorithm is structured after Chaitin’s
graph coloring allocator [6, 5]. Many improvements and variants have been proposed [2,

4

0

1

2

3

4

0

1

2

3

bucket bucket

Fig. 6.Normal operation of a hash table implementation (right hand side) versus collisions caused
by, e.g., malicious input.

3, 16, 19], but most of this research was focused on improving the average-case per-
formance. Poletto et al. showed that register allocation using graph-coloring has a
quadratic worst-case complexity for certain pathological cases [23] and proposed a
linear-scan algorithm for register allocation. This algorithm is not guaranteed to find
the optimal register allocation for any given problem, but has a linear worst-case per-
formance. To truly harden the virtual machine against worst-case behavior based denial-
of-service attacks, however, this principle of trading off some code quality in return for
linear time complexity has to be extended to the entire code-processing pipeline.

Attacking Data-Structure Operations If we abstract from the just presented exam-
ples, the common property is the worst-case behavior of the underlyingalgorithms.
Crosby and Wallach [8] show how to attack systems for which the implementation of
certain data structures like hash tables is known. Hash tables have an average-case com-
plexity of O(n) for insertingn elements, and a worst-case complexity ofO(n2) if all
elements hash to the same bucket in the table. Figure 6 shows the comparison between
the average case and the worst case as given by [8].

If the adversary is able to inspect the code of the system he wants to attack, e.g. be-
cause it is an open source project, he might be able to feed hand-crafted data into the
system that will cause exactly this worst case to occur. In the case of hash tables, an
adversary would only send data that will all hash to the same bucket. The only pre-
condition beside access to the implementation code is that the hashing function used
must be deterministic. Based on his knowledge of the system and of the path data takes
through the system, he can then pre-compute data that will all hash to the same bucket
in the hash table. While this pre-computation might be expensive, it can easily be done
off-line, long before the actual attack.

Crosby and Wallace describe how to compute such an attack on hash tables [8].
They also describe attacks on two hash table implementations of the Perl interpreter, the
Squid web proxy, and the DJB DNS cache. Finally, they present an attack on the Bro
intrusion detection system [22], which also is highly vulnerable to the proposed attacks.
Figure 7 shows the result of attacking Bro with SYN packets at a rate of 16kb/second.
As can be seen, already for this relatively slow attack the number of dropped packages

pa
ck

et
 p

ro
ce

ss
in

g
la

te
nc

y

30
5 10 15 20 25

90

80

70

60

50

40

0
0
2
4
6
8
10
12

16

20

14

18

cummulative dropped packets
packet processing latency

minutes into the attack

[i
n

th
ou

sa
nd

s]
cu

m
m

ul
at

iv
e

dr
op

pe
d

pa
ck

et
s

[i
n

se
co

nd
s]

Fig. 7. Performance of the network intrusion detector Bro under attack. The solid line marks the
latency for processing of received packets, the dashed line the number of dropped packets in
thousands. The attack is based on sending SYN packets at a rate of 16kb/second.

and the latency in processing received packages is considerable. For more details on the
attacks c.f. [8].

Obviously this kind of attack is not limited to hash tables, but in principle can be
used against any data structure and its operations that fulfill three conditions: there must
be at least an order of magnitude difference between the runtime for the average and the
worst case, the operations must be deterministic, and the source code must be available.

2.2 Hardware Attacks

This section complements the just described attacks on software with two examples
for attacks on hardware. We start by describing an attack based on the behavior of a
power supply subsystem when the current drawn by the system changes. The second
attack targets chips and their on-chip heat sensors. Compared to many software systems,
hardware usually has the advantage that

Power Variability Attacks Joseph et al. [18] describe a possible attack caused by
the increasing focus on power dissipation issues in current microprocessors. These is-
sues have lead to a group of proposals of power-saving techniques, e.g. clock gating,
that generally are very effective in reducingaveragepower. However, many of these
techniques also result in increased variability of both power dissipation and the current
drawn by the processor. This increased variabilities can cause supply voltage fluctua-
tions, which is a significant problem since chips may malfunction if the supply voltage
rises or drops out of a chip-specific tolerance range. The variability is caused by the
power supply’s inductance, which together with the current variations produces jitters
on the chip’s supply lines. This problem is know as thedI/dt problem, since the magni-
tude of voltage ripples caused depends on the change of current over time.

Heat Dissipation Attacks Another example for a system that is vulnerable to worst-
case behavior based attacks is the cooling system for processors (or chips in general).
Obviously, a chip’s power and heat dissipation depend on the program(s) executed on
the chip. Consequently, a malicious program might try to overheat parts of the chip to
cause, e.g., increased power usage to drain batteries, heat damage to the chip, or general
instability of the system.

Together with the increase in performance of modern chips comes an increase in
power density. To allow high performance while keeping cooling cost low, the cooling
system is optimized for the average case instead of the worst case. As the average work-
load does not induce worst-case power dissipation, especially not over longer periods,
the cooling system can be kept much smaller. To guard the system against the worst-
case, it then needs to be equipped with sensors to throttle the system if the on-chip heat
gets to high, or even shut off or reboot in extreme situations.

The vulnerability caused by this has been reported by Dadvar and Skadron [9]. The
authors deal with the Pentium 4, a chip that employs two on-chip sensors to measure
heat. The chip’s thermal control circuit uses an internal thermal diode and compares it
to a reference current. This sensor has been placed close to the area of the chip that is
expectedto be the hottest undernormal operation. This means that under certain cir-
cumstances, namely a workload that does not represent the average case, other regions
of the chip might actually become hotter than the area monitored by the sensor. The
sensor’s measurements are not visible from the outside, but are used exclusively by the
thermal control system. Whenever this system detects thermal stress, the CPU activity
is throttled by interleaving short periods of complete inactivity with normal operation.

The authors report on their early findings with respect to thermal vulnerabilities. Un-
der normal operating conditions they were not able to cause thermal throttling, however
with partial blocking of the system’s air vents or with disabling the fans altogether,1

they could slow down a system by 50%. Even more important, the new multi-threaded
Prescott core is reported to reach core temperatures that already during normal opera-
tion get close to the throttling trigger temperature. As the authors argue in [9] this will
pose a serious risk of thermal attacks against such systems.

3 Countermeasures—And Why They Do Not Work

In general, the best countermeasure against the attacks described in this paper is to de-
sign systems for the worst case—if it is known. In contrast to security flaws previously
discovered in systems like the JVM [4], the enabling property for worst-case behavior
based attacks on systems is aninherent propertyof the system and not merely some
faulty implementation or mis-design that could easily be exchanged.

In the case of the JVM verifier, rewriting the algorithm to iterate over the code in
some other order, or the introduction of a work list algorithm, would not significantly
improve the situation. Each of these algorithms would still expose quadratic runtime
behavior for some worst case scenarios.

1 This requires additional software and user-rights to access the corresponding flags in the sys-
tem, however the authors report on several programs that give “normal” user programs exactly
these rights.

However, a number of mitigating factors exist. First, current JVMs limit the code
size per method to 65,536 bytes. On high-end desktop systems this limits the maximum
verification time we were able to achieve using a single method to approximately 40s.
This (probably accidental) ceiling prevents the construction of worst case scenarios with
near-infinite verification time.

Further shortening the maximum method length of Java methods is not an option,
since long Java methods are not uncommon. Some compilers emitting Java bytecode
generate long methods close to the limit defined in the Java specification. It would
be not surprising if Sun decided to remove the current code size limitation in future
versions of the Java Virtual Machine.

It seems unlikely that one could establish a clear set of rules to detect classes of
malicious input that are responsible for causing a system to exhibit its worst-case be-
havior. For the attacks on software systems presented in this paper, such rules could be
to reject programs because they take more than a certain number of iterations to verify
or because more than a certain number of entries map to the same bucket in a hash ta-
ble. Obviously, any such number would be chosen arbitrarily and would impose a very
vague and imprecise restriction of acceptable programs.

On the other hand, trying to detect patterns such as the ones described in this paper
would not eliminate the problem—more complex and less obvious examples can be
easily constructed. It would also get us back to thepattern matchingapproach used
in virus detection tools, something that bytecode verification was supposed to free us
from.

The impact of the complexity-based attacked just described can be increased in-
creasing the intensity of attacks, e.g. by shipping a large number of malicious methods
to the verifier, performing several voltage/current changes in short time, or starting sev-
eral threads with stress marks in short time.

4 A New Security Paradigm

As already pointed out, we contend that the only chance to counter attacks that are
based on the worst-case behavior of certain parts of systems is a new security paradigm.
Instead of targeting only the safety of certain properties of incoming data, the new
paradigm must also take into account the complexity and design of the whole system.
In the case of the hardware examples presented in this paper this means that the system
must be equipped with sensors to identify the effects of executing malicious programs.
For the software examples this means to target the whole compilation path from veri-
fication up to execution and the careful design and selection ofall data structures and
operations.

We are currently investigating possible approaches to harden systems against worst-
case behavior based attacks. In the case of attacks based on algorithmic complexity, the
vulnerability demonstrates the need for not onlycorrect but alsoefficientalgorithms.
With software applications, e.g., moving to Grid- and service-based architectures, in
which computations are sent to hosts for execution, these efficient algorithms are going
to be essential for system reliability in the near future.

One of our main observation is that with respect to worst-case behavior based at-
tacks, open source initiatives actually worsen the situation. While in the general case
the open-source statement “attack points are easily spotted if thousands of developers
around the globe inspect the code” is certainly true, it does not hold with respect to
worst-case behavior, which is due to algorithmic properties. Open source reveals the
algorithm, making the design of an attack possible. The main insight is thatbugscan
be fixed easily, butalgorithmsare difficult to replace. As pointed out in Section 2.2 a
similar approach can be seen in the realm of hardware—e.g., there is no evidence that
on-chip heat sensors that are documented really are the only ones. However, there is no
easyway for an attacker to find out whether the documentation is correct or not.

As we have shown previously, the code compression format used by Java lends itself
to conceal from the user the true size of transported programs. Compression algorithms
can also be exploited in many other ways. Clasen used a missing range check in the zlib
decompression algorithm to construct PNG images that crash the browser because the
decompression algorithm tries to allocate unreasonably large amounts of memory [24].
It is entirely possible that similar vulnerabilities exist in any other compression format,
but this has apparently not yet been studied.

Our own main interest is to harden Java Virtual Machines against the kind of at-
tacks described. Therefore, we are currently constructing an “algorithmic testbed” Java
Virtual Machine that can be configured with different variants of critical algorithms.
We have also developed a tool to automatically generate JVM class files that present
particular hard to solve algorithmic puzzles. This tool is currently used in benchmark-
ing existing JVMs, highlighting their potential vulnerabilities, and aiding the removal
of such vulnerabilities. Our aim is to harden the existing Java-based information infras-
tructure already deployed against such worst-case behavior based attacks. Although no
such attacks have yet been reported, they could be very costly in scenarios in which
computations are sent to remote servers in the form of “agents”.

The scope of this process is quite broad by nature: For many code optimizations,
well known heuristics exist to speed up their average case performance. However, little
to no emphasis has been placed on the worst-case behavior of these algorithms in the
context of being a potential security risk. In particular, iterative analyses such as escape
analysis, register coalescing, live-range splitting, instruction scheduling, and register
allocation through graph coloring can have a very poor worst-case performance. Ex-
isting JIT implementations must be analyzed to identify their weaknesses, and also to
provide a framework of code-optimization algorithms with well understood worst-case
behaviors.

For the verifier, we have developed such a hardened algorithm. After performing
an initial type check using a superficial type system, it converts the Java bytecode to
Static Single Assignment form (SSA) [25, 1], and only then checks the consistency of
type flows using the whole Java type system to verify type safety [13, 14]. While this
algorithm has a higheraverage-casecost than the standard Java verification algorithm, it
has a much betterworst-casebehavior. Namely, all phases beside the SSA construction
can be performed in linear time. Many higher-end JIT compilers for Java generate SSA
anyway at later stages of dynamic code generation. While SSA construction is the main
cost in our algorithm, these frameworks can get verification at anincrementalcost by

using our verifier and reusing the constructed SSA. Currently, they perform the standard
Java verificationbeforestarting the actual compilation.

5 Conclusion

Future software-application architectures are moving to Grid- and service-based archi-
tectures, in which computations are sent to hosts for execution. Soon, these service-
based execution frameworks will be omni-present, making the actual network-based
execution mechanism invisible to the user. In these architectures, efficient algorithms
for each step in the chain fromreceiving mobile codeto compiling it to native codeand
executing itwill be needed to protect against complexity-based attacks. The threat of
these subtle denial-of-service attacks has been neglected, apparently because it does not
occur in daily average-case use of mobile code. In the case of an unsupervised server
at the heart of a service-based framework, however, having the framework verifying,
analyzing, compiling, and executing many mobile-code programs in parallel will make
each and every phase in the framework vulnerable to complexity-based attacks.

At the same time chips are being optimized to use as little power as possible and
their cooling systems are minimized to be only as big as necessary. As a result, large
groups of systems are vulnerable by thermal attacks based on power variations and too
small cooling systems.

We therefore advocate a new security paradigm based on complexity-hardened sys-
tems. With the currently widespread of vulnerable systems in place, there is no quick
fix to this problem. Instead, we will need to rethink the architecture of those systems—
while current systems have been selected and designed for their average case behavior,
we will need to construct systems where each step and module has a provableworst-
casebehavior. Until these systems are in place, open source code development actually
worsens the situation. Instead, as seen in the realm of hardware, security by obscurity
actually works.

References

1. B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting Equality of Values in Programs.
In Proceedings of the 15th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages (POPL), pages 1–11, San Diego, California, January 1988.

2. A. W. Appel and K. J. Supowit. Generalization of the sethi-ullman algorithm for register
allocation.Software - Practice and Experience, 17(6):417–421, 1987.

3. P. Briggs, K. D. Cooper, and L. Torczon. Improvements to graph coloring register allocation.
ACM Transactions on Programming Languages and Systems, 16(3):428–455, May 1994.

4. CERT Coordination Center, Carnegie Mellon University, http://www.cert.org.
5. G. J. Chaitin. Register allocation and spilling via graph coloring. InProceedings of the

SIGPLAN 1982 Symposium on Compiler Construction (CC), pages 98–105, Boston, MA,
June 1982.

6. G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, Martin, E. Hopkins, and P. W.
Markstein. Register allocation via graph coloring.Computer Languages, 6(1):47–57, 1981.

7. R. M. Cohen. The defensive Java Virtual Machine specification version 0.5. Technical report,
Computational Logic, Inc., May 1997.

8. S. A. Crosby and D. S. Wallach. Denial of Service via Algorithmic Complexity Attacks. In
Proceedings of the 2003 USENIX Symposium on Virtual Machines. USENIX Association,
2003.

9. P. Dadvar and K. Skadron. Potential Thermal Security Risks. In21st IEEE SEMI-THERM
Symposium. IEEE, 2005.

10. D. Dean and A. Stubblefield. Using Client Puzzles to Protect TLS. InProceedings of the
2001 USENIX Security Symposium. USENIX Association, 2001.

11. A. Gal, C. W. Probst, and M. Franz. An Applet performing a complexty-based Denial-of-
Service attack on the verifier. Available athttp://nil.ics.uci.edu/exploit .

12. A. Gal, C. W. Probst, and M. Franz. A Denial of Service Attack on the Java Bytecode
Verifier. Technical Report 03-23, University of California, Irvine, School of Information and
Computer Science, 2003.

13. A. Gal, C. W. Probst, and M. Franz. Proofing: An Efficient and Safe Alternative to Mobile-
Code Verification. Technical Report 03-24, University of California, Irvine, School of Infor-
mation and Computer Science, November 2003.

14. A. Gal, C. W. Probst, and M. Franz. Integrated Java Bytecode Verification. InProceedings of
the First International Workshop on Abstract Int erpretation of Object Oriented Languages,
January 2005.

15. S. Garfinkel. Script for a king. HotWired Packet,http://hotwired.lycos.com/
packet/garfinkel/96/45/geek.html and seehttp://simson.vineyard.
net/table.html for the table attack., November 1996.

16. L. George and A. W. Appel. Iterated register coalescing.ACM Transactions on Programming
Languages and Systems, 18(3):300–324, May 1996.

17. J. Hennessy and T. Gross. Postpass code optimization of pipeline constraints.ACM Trans-
actions on Programming Languages and Systems, 5(3):422–448, July 1983.

18. R. Joseph, D. Brooks, and M. Martonosi. Control Techniques to Eliminate Voltage Emer-
gencies in High Performance Processors. InHPCA ’03: Proceedings of the The Ninth In-
ternational Symposium on High-Performance Computer Architecture (HPCA’03), page 79,
Washington, DC, USA, 2003. IEEE Computer Society.

19. S. Lelait, G. R. Gao, and C. Eisenbeis. A New Fast Algorithm for Optimal Register Al-
location in Modulo Scheduled Loops. In K. Koskimies, editor,Proceedings of the 7th In-
ternational Conference on Compiler Construction (CC’98), volume 1383, pages 204–218,
Lisbon, Portugal, March 28 - April 4 1998. Springer.

20. X. Leroy. Java Bytecode Verification: Algorithms and Formalizations.Journal of Automated
Reasoning, 30(3/4):235–269, 2003.

21. T. Lindholm and F. Yellin.The Java Virtual Machine Specification. Addison-Wesley, 1996.
22. V. Paxson. Bro: A System for Detecting Network Intruders in Real Time.Proceedings of the

7th Security Symposium. (USENIX Association: Berkeley, CA), 1998.
23. M. Poletto and V. Sarkar. Linear scan register allocation.ACM Transactions on Program-

ming Languages and Systems, 21(5):895–913, 1999.
24. Redhat. Vulnerability in zlib library, Advisory ID: RHSA-2002:026-35, 2002.
25. B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global Value Numbering and Redundant

Computations. InProceedings of the 15th ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL), pages 12–17, San Diego, California, January 1988.

26. Sun Microsystems. The Java Hotspot Virtual Machine, 2002.
27. Sun Microsystems. CDC: An Application Framework for Personal Mobile Devices,

http://java.sun.com/products/cdc/, 2003.
28. F. Yellin. Low level security in Java. In O’Reilly and Associates and Web Consortium

(W3C), editors,World Wide Web Journal: The Fourth International WWW Conference Pro-
ceedings, pages 369–380. O’Reilly & Associates, Inc., 1995.

