
Non-Unifiability of Encrypted Terms in Cryptographic Protocol
Specifications

Sreekanth Malladi
Dept of Math and Computer Science

University of Wisconsin-Superior
Superior, WI - 54880

msskanth@hotmail.com

Carol Taylor
Center for Secure and Dependable Systems

University of Idaho
Moscow, ID - 83843

ctaylor@cs.uidaho.edu

Abstract

Non-Unifiability of Encrypted Terms (NUET) has been continuously advocated over the past decade for
cryptographic protocol security. In this paper, we extend the definition of NUET to suit newer protocol de-
sign features, and newer scenarios. We present implementation guidelines to achieveNUET in the context
of the new features and environments. We also prove that previous results established assumingNUET such
as type-flaw attack prevention (and thus decidability) are also valid for the newer considerations when our
redefinedNUET is properly implemented in a protocol.

Keywords – Cryptographic protocols, Passwords, Constructed keys, Inference systems, Non-unifiability,
Type-flaw attacks, Completeness.

1 Introduction

Suppose we have two encryptions[X]K and [Y ]K in a protocol specification1. Then, placing unique
constants (say 1 and 2) inside them, as[1, X]K and[2, Y ]K will make it impossible to replay one claiming as
another. That means, regardless of what is substituted forX andY , the encryptions can be uniquely identified
and they are said to benon-unifiable.

This property ofNon-Unifiability of Encrypted Terms(NUET) in protocols was suggested as a prudent
engineering practice for protocol design in the classical work by Abadiand Needham [AN94, Principle 10].
Following Abadi and Needham,NUET was advocated or used at many places in the literature (e.g. [Low96b,
Aur97, HLS00, GT00b, RS03, BP04, RS05]). The most significant ofthese papers is recently by Ramanujam
and Suresh in which they prove thatNUET ensures decidability of protocol security for trace-based security
properties, and prevents type-flaw attacks [RS05].

However, all the above works including [RS03] have considered basiccryptographic protocol features
such as atomic keys and assume perfect protocol run environments where encryptions are unbreakable and
unforgeable. “Real-world” protocols such asSSL andSET employ newer features such as non-atomic keys
and weak human passwords [FKK, MV97]. Also, with the knowledge of newer cryptographic vulnerabilities,
attackers are endowed with new powers to break encryptions and createfake encryptions.

1[t]k denotest encrypted withk.



These are the issues we consider in this paper: we extend the definition ofNUET to suit the newer features
and environments. We suggest implementation guidelines for protocol designto satisfy the extended defini-
tion. We prove that the so satisfied requirement is sufficient to prevent type-flaw attacks on cryptographic
protocols and consequently, ensures the decidability of protocol security.

This paper is structured as follows: InSection 2, we expand on the above points and present a background.
In Section 3, we present our framework to be used in subsequent sections and redefineNUET. In Section 4,
we prove our main result on type-flaw attacks. InSection 5, we provide implementation guidelines to achieve
the newNUET in the standard model, and in a model that allows weak human passwords. In the same section
we also present a study of the effect ofNUET in the presence of non-standard attacker inference rules. We
sum up with aConclusion that includes a discussion of non-free term algebras in protocol specifications and
how they could influence the results established thus far.

2 Background

Consider the Woo and Lamπ1 protocol [WL94]:

Msg 1.A → B : A
Msg 2.B → A : NB

Msg 3.A → B : [A, B, NB]↔
sh(A,S)

Msg 4.B → S : [A, B, [A, B, NB]↔
sh(A,S)]

↔

sh(B,S)

Msg 5.S → B : [A, B, NB]↔
sh(B,S)

(Notation: We use uppercase letters for variables and lowercase for ground terms; [X1, . . . , Xn] represents
concatenation of termsX1 to Xn; [X]↔Y representsX encrypted withY using a symmetric keying algorithm.
sh(X, Y ) represents a shared-key between agentsX andY .)

We will abbreviate the Woo and Lamπ1 protocol toWL π1 and use it as a running example in this paper.
This protocol belongs to a special class of protocols that contain messagereceptions by participants that they
cannot decrypt (in Msg 3 above,B is not expected to decrypt the message, but to simply use it to construct
Msg 4). Ramanujam and Suresh in [RS05] explicitly state that their results arenot valid for this class of
protocols. They in fact exemplify the invalidity on theWL π1 protocol. To demonstrate the strength of our
results, we use thisveryexample in our paper to show that our results are also applicable for these class of
protocols.

Below we explain two important features in “real-world” protocols that fall outside the scope of Ramanu-
jamet al.’s (and many other’s such as [HLS00]’s) results.

2.1 Constructed keys, and Passwords

Ramanujamet al.’s results state that their results are only applicable to protocols that employ atomic keys,
but not composed keys.Composed(or Constructedor non-atomic) keys are keys that are formed using shared
secrets and other data exchanged as part of the protocol itself. For example,[a, [nb]

↔

k′ ] can be used as a key.
Many times, the “authentication force” in terms encrypted with constructed keys lies not just in the fields
inside the encryptions, but also in the terms inside the keys.

In Section 3, we redefineNUET by requiring constants to be placed inside keys as well (if it is a constructed
key). Our protocol model is based on Millen-Shmatikov’s constraint solving technique that explicitly employs
constructed keys. Hence unlike previous results, they are valid even in presence of constructed keys. In
Section 5we present an example protocol that employs constructed keys and showhow it can be attacked if
our newly redefinedNUT is not followed.

2



Messages should also not be tagged with constants when a protocol is being implemented with a weak
password [CMAFE03, Low04]. For example, consider the following message:

[21, na]
↔

passwd(a,s)

Now if an attacker guessespasswd(a, s), he can decrypt the message using that guess and check the tag
“21” to verify that guess. He does not even need to knowna! Thus, tags facilitate such direct guessing attacks.

In Section 5we show thatNUET can also be adopted by rearranging terms, without using artificial con-
stants that aid guessing attacks.

2.2 Non-standard attacker inference rules

All published works that suggestedNUET only considered standard attacker inference rules that adopt
the perfect encryption assumption. Perfect encryption assumption implies that an attacker can neither break
existing encryptions nor create fake encryptions.

However, nothing is perfect in this world and encryption is no exception. For example, the rule

[m, n]↔k ⊢ [m]↔k ( ⊢ denotes the relationinfer ).

holds when usingCBC (Cipher Block Chaining) method for symmetric key encryption providedm is a
whole number of blocks [Boy90, SG92]. Here, an attacker is able to create [m]↔k without actually possessing
m or k. In Section 5we show how an attacker can attack theWL π1 protocol using this rule even when the
protocol implementsNUET as suggested in previous works. We then present alternative ways to achieve
NUET depending on the inference rules in effect to avoid such attacks.

3 The Framework

Our formal protocol model is based on the constraint solving model of Millen-Shmatikov [MS01]. The
model uses symbolic terms which is ideal for our results which involve unification. We start off by introducing
the term algebra, protocol model,NUET, and constraint solving.

3.1 Term Algebra

Messages are constructed using operators that are applied freely on terms.

Definition 1. A term is one of the following:

Variable We assume that every variable appearing in a protocol specification and thus part
of a term, can be attributed to a particular type. We denote the type of a variableV
astype(V ).

Constant Atomic values and numbers. E.g., name of the attackerǫ, noncena, numbers 1, 2,
3 etc.

[t1, t2] Pair of termst1 and t2, using the pairing operator. We will write[t1, t2, t3] for
[t1, [t2, t3]], to avoid notational clutter.

pk(X) Public-key of agentX. It is assumed that the corresponding secret key is not sent
as part of any message in the protocol. Therefore, the attacker can onlydecrypt
messages encrypted with his public-key.

3



h(t) Hash oft, whereh is a one-way hash function.

[t]→k t encrypted withk using an asymmetric encryption algorithm.k is any term, not
necessarily a public-key.

[t]↔k t encrypted withk using a symmetric encryption algorithm.k can be any term.

sigk(t) Public-key signature of termt validated using keyk. According to assumptions,
private keys are never revealed, so the attacker can only construct signatures with
his own private key.

A ground termis any term that does not contain a variable. We use uppercase letters forvariables and
lowercase letters for constants and ground terms. Note that every protocol can possibly use special variables,
such asMsg3 in theWL π1 protocol. SinceB cannot decrypt the term, this is represented as a variable of a
special type (for the proofs and results in this paper, it suffices to simply assume that such variables have a
special type. We do not need to formalize those types).

We assume that the attacker possesses an initial set of terms such as his ownpublic-key,pk(ǫ), the names
of some principals, nonces he can generate and so on.

When we refer to encryption in general (not specifically asymmetric or symmetric), we will ignore the
superscripts ‘↔’ and ‘→’. So, t encrypted withk will be written simply as[t]k. We now define thesubterm
relation on terms:

Definition 2. Let t, t1, t2 andk be terms. Then, thesubtermrelation denoted as⊏ is defined as the smallest
relation on terms such that,

1. t ⊏ t;

2. t ⊏ [t1, t2] if t ⊏ t1 ∨ t ⊏ t2;

3. t ⊏ [t′]k if t ⊏ t′ ∨ t ⊏ k;

4. t ⊏ pk(t′) if t ⊏ t′;

5. t ⊏ h(t′) if t ⊏ t′;

6. t ⊏ sigk(t
′) if t ⊏ t′ ∨ t ⊏ k;

We will write t ∈ T if t ⊏ t′ ∧ t′ ∈ T .

In point 3 above,t ⊏ k might sound unusual, but it is crucial for our proofs since our term algebra allows
constructed keys (See Lemma 3).

3.1.1 Unification

We now talk about unification.

Definition 3. A substitutionσ is denoted asσ = {x1/V1, . . . , xn/Vn} such thatσt represents the substitution
of x for all occurrences ofV in a termt wheneverx/V ∈ σ. Further,∀x/V ∈ σ, V is a variable andx is
either a variable, ground term or a constant.

4



Definition 4. Let t, t′ be two terms. Thent, t′ are said to beunifiable, denotedt ≈ t′ (readt unifies with
t′) iff σt = σt′ for some substitutionσ. σ is called theunifier. A unifier ρ is called themost general unifier
(mgu) if every other unifierσ, is an extension ofρ; specificallyσ = ρσ.

Further,

[t1, t2] ≈ [t′1, t
′

2] if t1 ≈ t′1 ∧ t2 ≈ t′2,
pk(t) ≈ t′ if (t′ = pk(t′′) ∧ t ≈ t′′) ∨ (t′ is a variable),
[t]k ≈ t′ if (t′ = [t′′]k′′ ∧ t ≈ t′′ ∧ k ≈ k′′) ∨ (t′ is a variable),
h(t) ≈ t′ if (t′ = h(t′′) ∧ t ≈ t′′) ∨ (t′ is a variable),
sigk(t) ≈ t′ if (t′ = sigk′′(t′′) ∧ t ≈ t′′ ∧ k ≈ k′′) ∨ (t′ is a variable).

3.2 Protocol Model

In this section we introduce the protocol model. The basic model is derived from the idea of semi-bundles
introduced in [Son99] with the underlying framework derived from the strand space model [THG98].

Definition 5. A strandis a sequence of communication points callednodesdenoted as〈n1, . . . , nk〉. A node
consists of atermand asign. The term of a noden (denoted asterm(n)) can be any term constructed from
the term algebra. The sign of a node (denoted assign(n)) is either ‘+’ or ‘−’. Thus, strands = 〈n1, . . . , nk〉
can be represented as〈±t1, . . . ,±tk〉 whereti is the term on the nodeni for i = 1 to k.

Roles in protocols are modeled asparametric strands. For example, role ‘B’ in the WL π1 protocol can be
represented in the parametric strand form as:

roleB = 〈−A, +NB,−X, +[A, [B, X]]↔sh(B,S),−[A, [B, NB]]↔sh(B,S)〉.

A parametric strand is instantiated into asemi-strandusing a substitution for some of the variables in the
parametric strand, by an honest agent. These substitutions indicate that theagent knows the value for that
term. For example, above,roleB can be instantiated by an agent ‘b’ using

σh
b = {nb/NB, b/B, s/S}

and
σh

b roleB = 〈−A, +nb,−X, +[A, [b, X]]↔
sh(b,s),−[A, [b, nb]]

↔

sh(b,s)〉.

A typical honest substitution is denotedσh
x wherex is the agent’s identity. A set of semi-strands is a

semi-bundle; the set of all honest substitutions for a semi-bundle is denotedσH
S . We will denote the set of

encryptions in a semi-bundleS asEncr(S), hashes asHash(S) and signatures asSig(S). We will tend
to ignore the subscripts inσh

x andσH
S when we refer to substitutions in general, not of a specific strand or

semi-bundle respectively.
We will say that a substitution is “well-typed” if variables in all the elements of the substitution are instan-

tiated with ground terms of their corresponding types; for example, a noncevariableNA being instantiated
with a nonce value ‘na’ wherena ∈ Nonce. More generally,

well-typed(σ) iff ∀x/V ∈ σ ¦ x is ground ⇒ x ∈ type(V ).

We assume that an honest agent always follows a well-typed substitution:

Assumption 1.
∀σh ∈ σH

¦ well-typed(σh)

5



3.3 NUET — Non-Unifiability of Encrypted Terms

We now explain our notion ofNon-Unifiability of Encrypted Terms and define it formally. The require-
ment is quite simple. In a given protocol specification (set of parametric strands),no two encrypted2 terms
should be unifiable unless they are textually equal. In other words, there is no common substitution for
variables in two textually distinct terms, that will make the terms equal. Formally,

Definition 6. Let S be a semi-bundle such thatS = σhSt whereSt is a set of parametric strands. ThenSt is
NUET-satisfyingandS is NUET-complyingiff

∀t1, t2 ∈ St ¦ ((t1 = [t′1]k1
∧ t2 = [t′2]k2

) ∨ (t1 = h(t′1) ∧ t2 = h(t′2)) ∨ (t1 = sigk1
(t′1) ∧ t2 = sigk1

(t′2))

∧(t1 6= t2) ⇒ t1 6≈ t2. (1)

∀t ∈ St ¦ t = [t′]→k ⇒ k is not a variable. (2)

Condition 1 is sufficient to prevent type-flaw attacks in presence of atomic keys. In presence of constructed
keys, we would need the additional Condition 2 (See Theorem 1, Case 3).

NUET is quite easy to achieve in protocols. Since the requirement is that terms shouldbe non-unifiable
unless they are textually equal, it is possible that this requirement is naturally achieved by a protocol with-
out any special modifications. However, even in protocols that do not satisfy NUET naturally, they can be
modified slightly to satisfyNUET. A simple technique is to use distinct constants (such as numbers) inside
textually distinct terms of parametric strands. This would ensure that the protocol will be NUET-satisfying.
This is explained in more detail with examples inSection 5.

3.4 Attacker Capabilities

Attacker capabilities are modeled as operators on sets of terms to analyze, synthesize or hide terms. Let
Φ be the set of attacker term set operators.Φ captures standard inference rules, namely pairing, splitting,
encryption, decryption as well as hashing, and signatures.

Definition 7. The set of attacker term set operators,Φ is defined asΦ = {Φanalz , Φsynthz} with Φanalz =
{φsplit , φpdec , φsdec}, Φsynthz = {φpair , φpenc , φsenc , φhash , φsig}, and,

φsplit(S) = S ∪ x ∪ y if [x, y] ∈ S,
φpdec(S) = S ∪ x if [x]→

pk(ǫ) ∈ S,

φsdec(S) = S ∪ x if [x]↔y , y ∈ S,
φhash(S)= S ∪ h(x) if x ∈ S,

φpair(S) = S ∪ [x, y] if x, y ∈ S,
φpenc(S)= S ∪ [x]→y if x, y ∈ S,
φsenc(S)= S ∪ [x]↔y if x, y ∈ S,
φsig(S) = S ∪ sigpk(ǫ)(x) if x ∈ S.

The question as to whether a termt can be generated by the attacker usingΦ is formulated using thefake
operation,F :

Definition 8. ThefakeoperationF is defined such thatF(T ) is the smallest set formed from a set of ground
termsT , closed underΦ. Further,t ∈ F(T ) iff there existsφ1, . . . , φn ∈ Φ such thatt ∈ φn(. . . (φ1(T )) . . .).

2Here, by “encryption” we mean any cryptographic function application,not necessarily symmetric-key and public-key encryp-
tions.

6



3.5 Constraints and Satisfiability

As stated before, a semi-bundle is a collection of partially instantiated strands.All the nodes in a semi-
bundle can be merged into an interleaving. Since a semi-bundle has finite number of nodes, there can be
finitely many such interleavings from a semi-bundle.

A constraint sequencecan be drawn from each interleaving such that every element in a sequence represents
a constraintstating that a message expected by an honest agent has to be computed by the attacker using his
initial knowledge, messages sent by honest agents until that point and hiscapabilities.

A typical constraint is represented asm : T denoting thatσǫm should be obtainable usingF onT where
σǫ is the attacker’s substitution. i.e.,m : T ⇔ σǫm ∈ F(σǫT ).

A constraint sequence issatisfiableif there is a consistent substitution of ground terms to variables such
that the attacker can generate every message on every constraint in the sequence. A semi-bundle is said to be
completableto a bundleif a constraint sequence drawn from one of the interleavings of the semi-bundle is
satisfiable using some consistent substitution.

Definition 9. Let C be a constraint sequence andσǫ be the attacker’s substitution. Then, we say thatσǫ

satisfiesC, or σǫ ⊢ C, iff ∀m : T ∈ C ¦ σǫm ∈ F(σǫT ).

Definition 10. If ∀m : T ∈ C ¦ m is a variable, thenC is called asimpleconstraint sequence.

A simple constraint sequence is always solvable as long as the attacker hasat least one constant. We,
assume that the attacker possesses at least one ground term for everyvariable occurring in a protocol, with
the same type. Therefore, the attacker can always do a well-typed substitution for such a sequence:

Assumption 2. Let C be a simple constraint sequence. Then,∃σ ¦ σ ⊢ C ∧ well-typed(σ).

3.6 Constraint Satisfaction

We now introduce theconstraint satisfaction procedureby Millen-Shmatikov [MS01] to determine if a
constraint sequence is satisfiable. The algorithm for the procedure (denotedP) is given in Appendix A. The
algorithm uses a set ofreduction rules, R.

A reduction rule is always applied byP to the first constraint of a constraint sequence that does not have
a variable on the left side, called theactive constraintof P. An application of a ruler ∈ R on a constraint
sequenceC with the current substitutionσǫ is represented as,

r(C; σǫ) = 〈C ′; σǫ′〉,

whereC ′ is the new constraint sequence andσǫ′ , the new substitution. A list of all reduction rules inR
considered byP is in the Appendix3. P applies ruleelim to eliminate all stand-alone variables on the right
side, before applying any other rule.

Definition 11. Let C be a constraint sequence andCP = {C1, . . . , Cn}, a set of constraint sequences gener-
ated byP from C. ThenC is solvableiff there exists a sequence of reduction rules that reduce the sequence
such that the resultant sequence is a simple constraint sequence. Formally,

σǫ ⊢ C iff ∃rn, . . . , r1 ∈ R ¦ rn(. . . (r1(C1; σ
ǫ
1)) . . .) = 〈Cn; σǫ

n〉 ∧ ∃τ ¦ τ ⊢ Cn ∧ σǫ = σǫ
n ∪ τ,

whereσǫ
1 = { } andCn is a simple constraint sequence.

3Note that we denote the application of rules in a functional notation, although inreality they are only relations.

7



Note that the above definition assumes that solving a constraint sequenceC usingP is equivalent to testing if
σǫm ∈ F(σǫT ), ∀m : T ∈ C. This has been formally justified by Millen-Shmatikov in [MS01] who proved
thatP is terminating, sound and complete.

Definition 12. Two constraint sequencesC andC ′ areequivalentiff wheneverσǫ ⊢ C, σǫ ⊢ C ′. A constraint
sequence isnormalfor P iff the active constraint is not of the form[t1, t2] : T for somet1 andt2.

Lemma 1. Every constraint sequence has an equivalent normal constraint sequence.

Proof. Let C be a constraint sequence. Letm : T ∈ C be the active constraint ofP for C such thatm =
[t1, t2] for somet1, t2 and letσǫ be the attacker’s substitution. Then applyrpair onC such thatrpair (C; σǫ) =
〈C ′; σǫ〉. Then, becauserpair is sound [MS01, A.3],σǫ ⊢ C ⇒ σǫ ⊢ C ′. Therefore,C andC ′ are equivalent.
Apply rpair as many times as possible onC to obtain a normal constraint sequenceC ′′. By induction,C and
C ′′ are equivalent.

3.7 Security properties and Attacks

An attack is a violation of a security property, not known to exist in a normal run of the protocol. We
assume that a security property can be “embedded” into a semi-bundle and testing for violation of the property
is equivalent to finding out if a constraint sequence from the semi-bundleis satisfiable. This is particularly
true for trace properties such as secrecy and authentication. For example, violation of secrecy can be tested
by embedding a “test strand” containing a node with a secret term (unencrypted) and a ‘+’ sign into a semi-
bundle and then testing the semi-bundle for solvability.

Our main result is general and is valid for any trace property that can be embedded into a semi-bundle as
above since it is based around the general definition of solvability of sucha “test” semi-bundle.

We however define atype-flaw attackusing the property of well-typed introduced in Section 2.2. We
will say that a type-flaw attack exists on a semi-bundle if a constraint sequence from the semi-bundle was
solved with an ill-typed substitution, and the constraint sequence cannot possibly be solved using a well-
typed substitution. Formally,

Definition 13. Let C be a constraint sequence from a semi-bundleS andσǫ be the attacker’s substitution. We
say that atype-flaw attackis possible onS iff

(σǫ ⊢ C ∧ ¬well-typed(σǫ)) ∧ (∄σǫ′
¦ σǫ′ ⊢ C ∧ well-typed(σǫ′)).

4 Main Result

We now prove that if a semi-bundle isNUT-complyingthen there are no type-flaw attacks on the semi-
bundle.

Proof Outline. Our proof utilizes the reduction procedureP. We consider a possible constraint sequence
C that can be generated from the given semi-bundleS. We then examine the reduction rules that could be
possibly applied to satisfyC and which affect the current attacker substitution. We show that whenS is
NUT-complying, the application of those rules implies that the attacker substitution remains well-typed, if it
was initially well-typed. This implies that ifC was solved using an ill-typed substitution, the ill-typing only
occurred after all the reduction rules were applied onC by P.

The resultant constraint sequence, when no more rules can be applied,is a simple constraint sequence.
According to Assumption 2, such a sequence can always be satisfied by awell-typed attacker substitution.

8



Therefore, wheneverC was satisfied with an ill-typed substitution, it can also be satisfied using a well-typed
substitution. This proves that there is no type-flaw attack onS.

There are two other crucial parts in our proof. Firstly, we prove that whenever two (non-variable) terms of a
NUT-complyingsemi-bundle are unified, the unifier is a well-typed substitution. This is rather straightforward
since terms in aNUT-complyingsemi-bundle are unifiable only when obtained from the same corresponding
term in their parametric strands. Further, both of those terms would be instantiated with honest instantiations,
which are always well-typed from Assumption 1. Therefore, a unifier for those would be well-typed. This is
proved in the following Lemma:

Lemma 2.
Let S = σH

S St such thatSt is NUT-satisfyingand S is NUT-complying. Then∀t, t′ ∈ Encr(S) ∪
Hash(S) ∪ Sig(S), ∃σ ¦ σt = σt′ ⇒ well-typed(σ).

Proof. We prove through induction.

1. SinceS is NUT-complying, let t1 = σh
1X andt2 = σh

2X. Then,∃σ ¦ σt1 = σt2 ⇒ ∃σ ¦ σσh
1X =

σσh
2X. From Assumption 1,∀σh ∈ σH

¦ well-typed(σh). Let σh
1X be ground andσh

2X = X. Then
σσh

1X = σh
1X, andσσh

2X = σX. Therefore,σ ⊂ σh
1 and well-typed(σ). Similarly, if σh

2X is ground
andσh

1X = X, then well-typed(σ).

2. Let t1 = σh
1 [X, Y ] ∧ t2 = σh

2 [X, Y ]. Then,∃σ ¦ σt1 = σt2
⇒ ∃σ ¦ (σσh

1X = σσh
2X) ∧ (σσh

1Y = σσh
2Y ) (from def 4)

⇒ ∃σ ¦ (σσh
1X = σσh

2X) ∧ ∃σ ¦ (σσh
1Y = σσh

2Y )
⇒ well-typed(σ) ∧ well-typed(σ) (From (1))
⇒ well-typed(σ).

3. Let t1 = [t′1]k1
∧ t2 = [t′2]k2

. Then,∃σ ¦ σt1 = σt2
⇒ ∃σ ¦ (σt′1 = σt′2) ∧ ∃σ ¦ (σk1 = σk2) (from def 4)
⇒ well-typed(σ) ∧ well-typed(σ) (From (1))
⇒ well-typed(σ).

4. Let t1 = h(t′1) ∧ t2 = h(t′2). Then,∃σ ¦ σt1 = σt2
⇒ ∃σ ¦ (σt′1 = σt′2) (from def 4)
⇒ well-typed(σ) (From (1))

5. Let t1 = sigk1
(t′1) ∧ t2 = sigk2

(t′2). Then,∃σ ¦ σt1 = σt2
⇒ ∃σ ¦ (σt′1 = σt′2) ∧ ∃σ ¦ (σk1 = σk2) (from def 4)
⇒ well-typed(σ) ∧ well-typed(σ) (From (1))
⇒ well-typed(σ).

Secondly, note thatNUT guarantees that terms are non-unifiableonly when they belong to the semi-bundle
(or subterms of the semi-bundle). Therefore, the above result on the unifier remaining well-typed is true only
under the condition that attacker inference rules (here the reduction rules) always decompose a term set to add
subterms of the existing terms. For example, a reduction rule[t1, t2]k ⊢ [t1]k. would reduce the right side of
the active constraintT , by adding a term[t1]k if T contained some[t1, t2]k. Here,[t1]k 6⊏ [t1, t2]k. Therefore,
if [t1]k is unified with the left side of the constraint, the resultant substitution is not necessarily well-typed,
since[t1]k does not belong to the semi-bundle and was not created by an honest agent. Hence, our scheme is

9



valid only for those inference rules which reduce a term set to obtain subterms. i.e. reduce a term setT to T ′

so that,∀t ∈ T ′, t ⊏ t′′ for somet′′ ∈ S.
The following Lemma states that all the reduction rules inR reduce the term set of a constraint so that the

resultant term set contains only subterms of the original term set:

Lemma 3.

∀r ∈ R ¦ r(C<, m : T, C>; σ) = 〈C<, m : T ′, C>; σ〉 ∧ T ⊂ T ′ ⇒ ∀t ∈ T ′ \ T, ∃t′ ∈ T ¦ t ⊏ t′.

Proof. The only rules whereT ⊂ T ′ arersplit , rpdec, andrsdec.

1. In the case ofrsplit where[t1, t2] ∈ T , T ′ \ T = {t1, t2} andt1 ⊏ [t1, t2] andt2 ⊏ [t1, t2];

2. Forrpdec, T ′ \ T = t, wheret ⊏ [t]pk(ǫ) and[t]pk(ǫ) ∈ T ;

3. Similarly, forrsdec, we have two constraints replacing the active constraint,m : T ∪ [t]↔k . k : T and
m : T ∪ t ∪ k. For the first constraint,T ′ \ T = {}. For the second constraint,T ′ \ T = {t, k} where
t ⊏ [t]k andk ⊏ [t]k

4.

We now state and prove the main result.

Theorem 1. Let S be a semi-bundle. IfS is NUT-complying, there cannot be a type-flaw attack onS.

Proof. Let C be a constraint sequence fromS andσǫ be the attacker’s substitution. IfS is NUT-complying
then, we want to prove that,

σǫ ⊢ C ⇒ (∃σǫ′
¦ σǫ′ ⊢ C ∧ well-typed(σǫ′)).

Firstly, sinceσǫ ⊢ C, by Definition 11, letrn(. . . (r1(C1; σ
ǫ
1)) . . .) = 〈Cn; σǫ

n〉, for somern, . . . , r1 ∈ R,
and substitutionρ whereρ ⊢ Cn, with σǫ = σǫ

n ∪ ρ.
We first prove thatσǫ

n is well-typed. We show that∀r ∈ R ¦ r(C; σ) = 〈C ′; σ′〉, well-typed(σ) ⇒
well-typed(σ′). Sinceσǫ

1 = { } is well-typed, it follows inductively thatσǫ
n is well-typed.

Case 1 ∀r ∈ {rpair , rhash , rpenc , rsenc , rsig , rsplit , rpdec, rsdec} ¦ r(C; σǫ) = 〈C ′; σǫ′〉, with σǫ =
σǫ′ . Therefore, well-typed(σǫ) ⇒ well-typed(σǫ′).

Case 2 When r = run , let run(C<, m : T, C>; σǫ) = 〈τC<, τC>; τ ∪ σǫ〉 where τ =
mgu(m, t), t ∈ T ; A reduction rule is always applied to the active constraint. By the
definition of active constraint,m is not a variable. Also,P eliminates all stand-alone
variables fromT using rule (elim) before applying any other rules inR. Therefore,t is
not a variable. Assume without loss of generality thatC is a normal constraint sequence
(Lemma 1). Therefore, from Definition 12,m is not a pair. From Lemma 3,∀t ∈ T ¦ t ⊏ t′,
for somet′ ∈ S and sinceS is NUT-complying, τm = τt ⇒ well-typed(τ) from
Lemma 2. Now since,σǫ′ = σǫ ∪ τ , well-typed(σǫ) and well-typed(τ), it follows that
well-typed(σǫ) ⇒ well-typed(σǫ′).

Case 3 Whenr = rksub , let rksub(C<, m : [t]→k ∪ T, C>; σǫ) = 〈τC<, τm : τ [t]→k ∪ τT, τC<; τ ∪
σǫ〉. Hereτ = mgu(k, pk(ǫ)). From Condition 2 ofNUT, k is not a variable. Therefore,
k ≈ pk(ǫ) ⇒ ∃X ¦ k = pk(X) for someX. From the term algebra,∀pk(X), X is
a principal name. Sinceǫ is a principal name (the name of the attacker), well-typed(τ).
Hence, well-typed(σǫ) ⇒ well-typed(σǫ′).

4Recall thatk ⊏ [t]k by Definition 2.

10



Finally, sinceCn is a simple constraint sequence, from Assumption 2,∃ρ′ ¦ well-typed(ρ′) ∧ ρ′ ⊢ Cn. Let
σǫ′ = σǫ

n ∪ ρ′. From above,∃r1, . . . , rn ∈ R ¦ rn(. . . r1(C1; σ
ǫ
1) . . .) = (Cn; σǫ

n) andρ′ ⊢ Cn. Therefore,
from Definition 11,σǫ′ ⊢ C. Further, since well-typed(σǫ

n) and well-typed(ρ′), it follows that well-typed(σǫ′).
Therefore,σǫ ⊢ C ⇒ (∃σǫ′

¦ σǫ′ ⊢ C ∧ well-typed(σǫ′)).
Hence, the result.

5 Implementing NUET

As suggested in previous works,NUET can be achieved by inserting constants inside encryptions. How-
ever, this has to be done carefully and consistently. Proper placement ofconstants is crucial since arbitrary
placements will not guaranteeNUET. For example,[a, 1, NB]K and [B, na, 2]K both contain unique con-
stants but are still unifiable5! In the following Lemma we prove that placing constants at the beginning of
every concatenation ensuresNUET.

Lemma 4. Let S be a semi-bundle and letf1(t1) andf2(t2) be two terms inS. Let t1 = [c1, t
′

1] andt2 =
[c2, t

′

2]. Thenc1 6= c2 ⇒ f1(t1) 6≈ f2(t2).

Proof. Let us supposef1(t1) ≈ f2(t2) is true. Then, by definition,t1 ≈ t2 is also true. i.e,
∃σ ¦ σt1 = σt2 ⇒ ∃σ ¦ σ[c1, t1] = σ[c2, t2] ⇒ ∃σ ¦ [c1, σt1] = [c2, σt2] ⇒ c1 = c2, a contradiction.
Therefore,f1(t1) 6≈ f2(t2).

With this result, we now demonstrate the placement of tags and the application of our results on the fol-
lowing protocol:

Msg1. A → B : [A, B]
Msg2. B → A : [1, NB]→

pk(A)

Msg3. A → B : [2, NA]→
pk(B)

Msg4. B → A : [3, A, NB]→[4,NA]

Msg5. A → B : [5, A, NB]→[6,A,NB ].

We have created this artificial protocol by incorporating constructed keys in messages 4 and 6 ([4, NA] and
[6, A, NB]). Notice the use of tags ‘4’ and ‘6’ inside the encryption keys which prevents the attack below:

Msg1. a → b : [a, b]
Msg2. b → a : [1, nb]

→

pk(a)

Msg3. I(a) → b : [2, pk(ǫ)]→
pk(B)

Msg4. b → I(a) : [3, a, nb]
→

pk(ǫ)

Msg5. I(a) → b : [4, a, nb]
→

[a,nb]
.

The attack works by using a type-flaw in Msg 3 (pk(ǫ) in place ofNA) and extractingnb in Msg 4 by
the attacker since it is now encrypted with his own public-key. This attack cannot be avoided by excluding
tags inside constructed keys and this observation was never made in previous works. Ramanujamet al.’s
paper explicitly states that their condition only mandates non-unifiability of encrypted subterms in a protocol

5with a unifierσ = {[a, 1]/B, [na, 2]/NB}.

11



which is sufficient only for atomic keys. As the attack above demonstrates, when a constructed key contains
no ground terms, the attacker can unify the key with his own public key and extract the contents inside the
encryption.

The above representation for the protocol is in the form of parametric strands. Let both the roles in the
protocol be namedroleA androleB . Changing them to semi-strands using a consistent substitutionsσh

a and
σh

b whereσh
a = {a/A, b/B, na/NA} andσh

b = {b/B, nb/NB} we obtain,

roleA = 〈+[a, b],−[1, NB]→
pk(a), +[2, na]

→

pk(B),−[3, a, NB]→
h(4,na,NB), +[5, a, NB]→

h(6,a,NB)〉,

roleB = 〈−[A, b], +[1, nb]
→

pk(A),−[2, NA]→
pk(B), +[3, A, nb]

→

h(4,NA,nb)
,−[5, A, nb]

→

h(6,A,nb)
〉.

Let St = {roleA, roleB} andS = {σh
aroleA, σh

b roleB}. Assuming well-typed(σh
a ) and well-typed(σh

b ),
we can now conclude from our main result thatS is devoid of type-flaw attacks, sinceSt is NUET-satisfying
and thereforeS is NUET-complying.

5.1 Password protocols

As explained earlier, constants should not be placed inside password encryptions as they enable direct
guessing attacks. However, constants are not required to achieveNUET, as terms may as well be arranged so
as to satisfyNUET. A simple solution is to make sure that every concatenation in a semi-bundle startswith a
(secret) ground atomic value such as a nonce.

Consider the terms[na, KA]passwd(a,b) and[KB, nb]passwd(a,b). These terms are unifiable, although they are
textually distinct. However, a simple rearrangement of these terms as[na, KA]passwd(a,b) and[nb, KB]passwd(a,b)

would ensure that they are non-unifiable. Essentially, the condition which isachieved by placing constants at
the beginning is now achieved by replacing them with ground atomic terms.

The existence of at least one such atomic value inside password encryptions has been demonstrated to be
unavoidable for password protocols [Gon93]. The reason being thatin the absence of such a requirement (and
in the absence of any other redundancies), it would be impossible to confirm successful decryption.

5.2 Non-standard inference rules

The above theory on placement of constants is only valid when consideringstandard inference rules. For
example, consider theWL π1 protocol tagged with constants to beNUET-satisfying:

Msg 1.A → B : A
Msg 2.B → A : NB

Msg 3.A → B : [A, B, NB, 1]↔
sh(A,S)

Msg 4.B → S : [A, B, [A, B, NB, 1]↔
sh(A,S), 2]↔

sh(B,S)

Msg 5.S → B : [A, B, NB, 3]↔
sh(B,S)

Although tags have been placed at the end of every concatenation, the protocol still satisfiesNUET going
by a similar argument in the proof of Lemma 4. However, a type-flaw attack is stillpossible on this protocol:

Msg 1.a → b : a
Msg 2.b → a : nb

Msg 3. i(a) → b : [nb, 3] /* In place of[a, b, nb, 1]sh(a,s) */
Msg 4.b → i(s) : [a, b, [nb, 3], 2]sh(b,s)

Msg 5. i(s) → b : [a, b, [nb, 3]]sh(b,s) /* usingCBC inf rule on Msg 4. */

12



The attack works because, the attacker induces a type-flaw in Msg 3 and reduces Msg 4
([a, b, [nb, 3], 2]sh(b,s)) to obtain Msg 5 ([a, b, [nb, 3]]sh(b,s)).

The attack works despite our proof on absence of type-flaw attacks in presence ofNUET, since it involves
a decomposition rule that decomposes a term set to create a non subterm of the semi-bundle. Consequently, it
affects the attacker substitution by introducing an ill-typed substitution. It fallsoutside the scope of Lemma 2
since it involves a term that was not present in the original semi-bundle. The term was produced by a rule not
considered in Lemma 3 to prove that all rules only produce subterms that originally existed in the semi-bundle.

This attack can be easily avoided by placing constants placed at the beginningof every concatenation. We
would like to point out however, that such tagging is not an epicure for allinference rules. For example, a
similar rule forCBC encryptions is possible by taking advantage of thesuffix property(as opposed to prefix
property used by the previous rule):

[m, n]k ⊢ [n]k

In presence of such a rule, placing constants at the end of every concatenation ensures type-flaw attack
protection as terms produced by the rule can never be unified with existing terms to produce ill-typed unifiers.

Generally speaking, constants have to be so chosen so as to make unification with existing terms impossible
when non-standard inference rules are in effect. Note that no such special care is needed when considering
rules as below:

{[a, [x, b]]→k , [c, [x, d]]→k , a, b, c, d} ⊢ x where a 6= c ∨ b 6= d

This rule was shown to be possible by Coppersmithet al. when usingRSA method for asymmetric key
encryption [CFPR96].

Such a rule does not affect our results in any way since the rule only produces a subterm of the existing
semi-bundle (essentially retaining the validity of Lemmas 2 and 3). Therefore,no special care needs to be
taken when such rules are in effect.

6 Conclusion

In this paper we redefinedNUT and formally proved that it prevents type-flaw attacks in broader scenarios.
We have shown example protocols, scenarios and attacks that fall outsidethe scope of the previous results.
Of particular interest is the demonstration that our results are equally valid for protocols such as theWL π1

protocol that fall outside Ramanujamet al.’sand other results.
Note that our result is also essentially a decidability result for protocols andcan be considered as an

extension of Ramanujamet al.’s results to broader scenarios. Ramanujamet al. follow a different approach
for decidability by modeling protocol execution traces using finite state automaton and two counter machines.
In the end they show that, in presence of tagging, analyses can only be restricted to well-typed runs (which
is known to be decidable). Thus, they prove that tagging ensures attacksare possible only in a well-typed
system, demonstrating that they are not type-flaw attacks. In other words,a proof of absence of type-flaw
attacks is sufficient to conclude decidability of security for protocols on unbounded scenarios. This is exactly
what we proved in this paper. Our results are also stronger in another sense — they clearly demonstrate
under what class of attacker inference rules the decidability property holds. This was never considered by
Ramanujamet al.

Decidability results on unbounded scenarios seal the problem of protocol security for trace based proper-
ties. The results enable the protocol designer to check whether a protocol is correct by simply following the
condition for decidability and verifying the protocol (with single instance perrole) using an analysis tool such
as the constraint solver. This is a matter of few seconds.

13



The use of the constraint solving model as our framework allows us to reason our concepts (such as place-
ment of constants) clearly, since it is based on a symbolic analysis approach that correlates replay of terms
with unification. This is not easy in other approaches based on the strand space framework that start their
analysis with ground instances of the protocol (e.g. [THG98, GT00a]).

Previous works based on the constraint solving model only used it to develop tools to analyze protocols on
bounded scenarios [CE02, BMV03, CMAFE03]. However, the model can also be used as a general framework
for proofs on unbounded scenarios, as is done in this paper. The basic modeling of protocol roles is the same
in both the standard strand space framework and in the constraint solving model. They differ in the attacker
model — While the strand space framework models the attacker using penetrator strands, the constraint
solving method models them using term set operators and equates them to a symbolic reduction procedure.
The net capability of the attacker is the same in both the approaches.

There are two important extensions to our theory that we are currently investigating at this point. The first
concerns relaxing the free term algebra assumption by allowing for operations such asXOR andProducts
that contain algebraic properties such as cancellation (e.g.a ⊕ a ⊕ b = b). Our proof strategy in pres-
ence of those operations is the same as in this paper with the additional investigation as to how the attacker
substitution is affected when a constraint is eliminated using unification. Our aimis to find out if for every
attacker substitution, there exists an equivalent well-typed substitution that satisfies a constraint even when
cancellation operations are considered. This remains to be seen.

Secondly, we have only considered trace based properties such as secrecy and authentication but would
like to examine other properties such as anonymity and non-repudiation as well. The results in this paper are
still more general than previous works for trace based properties as wehave a single proof regardless of the
properties under consideration6, while other works require separate proofs for each property.

References

[AN94] M. Abadi and R. Needham. Prudent Engineering Practice for Cryptographic Protocols. InProc.
IEEE Symposium on Research in Security and Privacy, pages 122–136. IEEE Computer Society
Press, 1994.

[Aur97] T. Aura. Strategies against replay attacks. InProceedings of the 10th IEEE Computer Society
Foundations Workshop, pages 59 – 68, Rockport, MA, June 1997. IEEE Computer Society
Press.

[BMV03] D. Basin, S. M̈odersheim, and L. Vigaǹo. Constraint differentiation: A new reduction technique
for constraint-based analysis of security protocols. InProc. 10th ACM Conference on Computer
and Communication Security, pages 335–344. ACM press, 2003.

[Boy90] C. Boyd. Hidden assumptions in cryptographic protocols. InProc. of the IEE, Part E, pages
433–436, 1990.

[BP04] Bruno Blanchet and Andreas Podelski. Verification of cryptographic protocols: Tagging en-
forces termination. InTheoretical Computer Science. Special issue FoSSaCS’03. To appear,
2004.

[CE02] R. Corin and S. Etalle. An Improved Constraint-based system forthe verification of security
protocols.9th Int. Static Analysis Symp. (SAS), LNCS 2477:326–341, september 2002.

6including newly discovered properties against type-flaw and multi-protocol guessing attacks [MAFM00, MAF03]

14



[CFPR96] D. Coppersmith, M. Franklin, J. Patarin, and M. Reiter. Low-exponent RSA with related mes-
sages.Lecture notes in computer science, 1070, 1996.

[CMAFE03] R. Corin, S. Malladi, J. Alves-Foss, and S. Etalle. Guess what? Here is a new tool that finds
some new guessing attacks. InWorkshop in the Issues of Theory of Security (WITS03), Poland,
Warsaw, April 2003.

[FKK] A. Freider, P. Karlton, and P. Kocher. The SSL protocol Version 3.0. http://home.net-
scape.com/eng/ssl3/.

[Gon93] L. Gong. Variation on the Themes of Message Freshness and Replay or the Difficulty of De-
vising Formal Methods to Analyze Cryptographic Protocols. InProceedings of the Computer
Security Workshop VI, pages 131–136, Los Alamitos, California, 1993.

[GT00a] J. D. Guttman and F. J. Thayer. Authentication tests. InProceedings, 2000 IEEE Symposium
on Secuirty and Privacy, pages 96 – 108. IEEE Computer Society Press, May 2000.

[GT00b] J. D. Guttman and F. J. Thayer. Protocol Independence through Disjoint Encryption.13th IEEE
Computer Security Foundations Workshop, pages 24–34, July 2000.

[HLS00] J. Heather, G. Lowe, and S. Schneider. How to prevent typeflaw attacks on security protocols. In
Proc. 13th Computer Security Foundations Workshop, pages 255–268. IEEE Computer Society
Press, July 2000.

[Low96a] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In
Proceedings of TACAS, volume 1055, pages 147–166. Springer-Verlag, 1996. Also in Software
Concepts and Tools, 17:93-102, 1996.

[Low96b] G. Lowe. Some new attacks on cryptographic protocols. InProceedings of 9th Computer
Security Foundations Workshop. IEEE, 1996.

[Low04] G. Lowe. Analysing protocols subject to guessing attacks.Journal of Computer Security,
12:83–98, 2004.

[MAF03] S. Malladi and J. Alves-Foss. How to prevent type-flaw guessing attacks on password protocols.
In Workshop on Foundations of Computer Security (FCS03), June 2003.

[MAFM00] S. Malladi, J. Alves-Foss, and S. Malladi. What are multi-protocol guessing attacks and how to
prevent them. In11th IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE 2002), pages 77–82. IEEE Computer Society, june
2000.

[Mea96] C. Meadows. The NRL protocol analyzer: An overview.Journal of Logic Programming,
26(2):113–131, 1996.

[Mea04] C. Meadows. Towards a hierarchy of cryptographic protocol models. InDIMACS Workshop on
Security Analysis of Protocols. DIMACS Center, CoRE Building, Rutgers University, Piscat-
away, NJ, June 2004.

[MS01] J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic protocol
analysis. InProc. ACM Conference on Computer and Communication Security, pages 166–
175. ACM press, 2001.

15



[MV97] Mastercard and VISA. SET Secure Electronic Transaction Specification: Business De-
scription. May 1997. Available electronically athttp://setco.org/set specifi-
cations.html.

[RS03] R. Ramanujam and S. P. Suresh. A decidable subclass of unbounded security protocols. In
Workshop in the issues of theory of security (WITS03), 2003.

[RS05] R. Ramanujam and S. P. Suresh. Decidability of context-explicit security protocols.Journal of
Computer Security, 13(1):135–165, 2005.

[SG92] S. Stubblebine and V. Gligor. On message integrity in cryptographicprotocols. InProc. IEEE
Symposium on research in security and privacy, pages 85–104, 1992.

[Son99] D. X. Song. Athena: a new efficient automatic checker for security protocol analysis. InProc.
12th IEEE Computer Security Foundations Workshop, pages 192–22. IEEE Computer Society
Press, 1999.

[THG98] F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is a security protocol
correct? InProc. IEEE Symposium on Research in Security and Privacy, pages 160–171. IEEE
Computer Society Press, 1998.

[THG99] F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security protocols correct.
Journal of Computer Security, 7(2,3):191–230, 1999.

[WL94] T.Y.C. Woo and S. S. Lam. A lesson on authentication protocol design. Operating Systems
Review, 28(3):24–37, 1994.

A Reduction Procedure P [MS01]:

C := initial constraint sequence
σ := 0
repeat
let c∗ = m : T be the constraint inC

s.t.m is not a variable
if c∗ not found

output Satisfiable!
apply rule(elim) to c∗ until no longer applicable
∀r ∈ R
if r is applicable toC

〈C ′; σ′〉 := r(C; σ)
create node withC ′; addC → C ′ edge

〈C; σ〉 := pop
push 〈C ′; σ′〉

until emptystack

16



B Set of Reduction Rules, R

run(C<, m : T, C>; σǫ) = 〈τC<, τC>; τ ∪ σǫ〉 whereτ = mgu(m, t) ∧ t ∈ T ;
rpair(C<, [m1, m2] : T, C>; σǫ) = 〈C<, m1 : T, m2 : T, C>; σǫ〉;
rhash(C<, h(m) : T, C>; σǫ) = 〈C<, m : T, C>; σǫ〉;
rpenc(C<, [m]→k : T, C>; σǫ) = 〈C<, k : T, m : T, C>; σǫ〉;
rsenc(C<, [m]↔k : T, C>; σǫ) = 〈C<, k : T, m : T, C>; σǫ〉;
rsig(C<, sigpk(ǫ)(m) : T, C>; σǫ) = 〈C<, m : T, C>; σǫ〉;
rsplit(C<, m : [t1, t2] ∪ T, C>; σǫ) = 〈C<, m : t1 ∪ t2 ∪ T, C>; σǫ〉;
rpdec(C<, m : [t]→

pk(ǫ) ∪ T, C>; σǫ) = 〈C<, m : t ∪ T, C>; σǫ〉;

rksub(C<, m : [t]→k ∪ T, C>; σǫ) = 〈τC<, τm : τ [t]→k ∪ τT, τC>; τ ∪ σǫ〉,
whereτ = mgu(k, pk(ǫ)), k 6= pk(ǫ);

rsdec(C<, m : [t]↔k ∪ T, C>; σǫ) = 〈C<, k : T, m : T ∪ t ∪ k, C>; σǫ〉.

17



Justification for NSPW

This paper focusses on decidability and completeness results for cryptographic protocols with considera-
tions of newer protocol features and newer protocol environments.

Cryptographic protocols are being vigorously studied over the last decade. Only recently the area has
attained a level of maturity and consolidation. Many useful tools have been built such as model checkers,
theorem provers and special purpose analyzers to analyze cryptographic protocols [Low96a, Mea96, Son99,
MS01]. Useful frameworks such as the strand space framework havebeen developed which aid in both tool
construction and proofs by hand [THG99]. In this process, some well-known problems have been “solved”.
For example, security properties such as secrecy which were proven tobe undecidable on unbounded scenarios
have been shown to be decidable when protocols follow simple restrictions onmessage construction such as
NUET.

The latest trend in the literature has been research into tools and results with extended protocol features and
relaxed assumptions about the environment, such as cryptographic vulnerabilities [Mea04]. Tools are being
developed, and decidability results are being published with these considerations. Following this new shift of
paradigm in protocol analysis, we have presented a largely useful result for protocols, redefining a previously
used condition plus identified several issues in its implementation. We redefinedthe previously advocated
condition ofNUET on protocols to suit the new features and environments. We have proven that under the
redefined condition, the protocol security problem for trace based security properties remains decidable in the
context of new features and some of the environments. We obtained this result by demonstrating the absence
of type-flaw attacks underNUET.

We would like to emphasize through our work that this is the direction in which protocol analysis should
proceed. Tools such as model checkers are useful to find attacks (and only in bounded models), but cannot be
used to prove that a protocol is correct on unbounded scenarios.

To quote Dijkstra’s famous observation,

Program testing can be used to find errors, but not to prove the absence of errors.

Protocols are programs too. An end user would naturally be more satisfied touse a protocol that is provably
correct, not merely an assurance of its security by demonstrating the lack of discovered flaws by tools. Using
our results, a protocol designer can design a protocol followingNUET and verify a bounded instance of the
protocol using a tool and conclude its security. As mentioned earlier, this is amatter of few seconds.

Thus, we beleive that our paper is well qualified for consideration in to theNew Security Paradigms Work-
shop. It presents a clear shift in the analysis paradigm through consideration of new features and environments
for cryptographic protocol analysis as well as a shift of focus from analyzing protocols for attacks using tools
towards evolving provably secure protocols. We believe our results will encourage active discussion on the
application of our results to other features such as non-free term algebras and non-trace based security prop-
erties. We also hope that the discussion will clarify any concerns about our results and our implementation
guidelines.

On a final note, we would like to thank the organizers of the NSPW 2005 for kind consideration of our
paper for includsion in the workshop.

Sincerely
Sreekanth Malladi, PhD, Assistant Professor, University of Wisconsin-Superior
Carol Taylor, PhD, Instructor, University of Idaho.

Attendance Statement. To participate in the lively and extensive discussions at the New Security Paradigms
Workshop, one of us will attend the workshop. One of the authors has already attended a past NSPW (2002)

18



and is well aware of the intensity with which the discussions take place.

19


