Concurrent Automata, Database Computers, and Security:
A “New” Security Paradigm for Secure Parallel Processing

T. Y. Lin
Department of Mathematics and Computer Science
San Jose State University
San Jose, California 95192

Abstract

Declustering has been proposed to speed up paral-
lel database machine. However, the security requires
clustering. In this paper, we use temporal clustering
to reconcile the apparent conflict. Automata theory
is applied to high level architecture design. Based on
Petri net theory a database machine is proposed. The
classical notion of clustering is extend to temporal di-
mension and is imported to parallel database systems.

The proposed database machine not only has the lin- -

ear speedup, its capability {modeling power) also is in-
creased in the order of magnitude. The computational
model (in terms of automata) of the total system is
strictly higher than the union of that of individual
machine. It also efficiently support the security.

1 Introduction

In this paper we continue our efforts on applying
Petri nets and automata theory to issues in parallel
architecture [Lin90a, 91a}. The main focus here is in
database computers and their security.

Security has some architectural implications. We
have shown that a ‘multilevel data model’ without ad-
ditional structure can not be secure in the sense of
Bell and LaPadula Model (BLM) up to the letter; in a
very strict sense, there are ‘flaws’ in current interpreta-
tions of BLM. We have proposed a new secure model
in which the new architectural requirements is inte-
grated into the multilevel data model [Lin92g]. Here
we are applying this new model to parallel database
systems.

In classical databases, the notion of clustering is
employed to speed up retrieval. In secure databases,
clustering is employed to protect our data. So clus-
tering is an essential notion in both ordinary

*This work is partially supported by the grant MDA904-91-
C-7048.

©1993 ACM 0-89791-635-2 $1.50

94

and secure databases. Clustering in its primi-
tive form seems in conflict with parallel processing.
Declustering has been proposed as a means of
speeding up parallel processing [DeWitt91]. In
this paper, we propose a “new” security paradigm for
parallel database systems. The essence is to recon-
cile this apparent contradictory requirements between
security and parallel processing.

Traditionally, clustering means that related
data are stored together physically. The advan-
tage of it is that in one access, one can retrieve related
data into the buffer so that there is no need to access
secondary storage again for related data. This strat-
egy, in parallel systems, in fact has negative effects.
So the notion of declustering surfaced. We propose,
instead of declustering, but to redefine the cluster-
ing in temporal dimension. The notion of clus-
tering though originated from temporal. not physical,
requirements. However, in the past the notion of clus-
tering has been taken literally, hecause the two re-
quirements agree. In this paper. we propose to use
temporal proximity as our ‘new’ paradigm for cluster-
ing which will bring the notion of security and parallel
processing harmonily together. The 'new’ clustering
makes most of classical concepts portable to parallel
processing world.

Based on previous studies of concurrent automata,
we are developing a new type of parallel database ma-
chine, called EPN-DB (Extended Petri Net Database
machine). A reformulated ABDM is then mapped
onto the EPN-DB Machine. Based on the new no-
tion of clustering, we found that we can simply port
the classical requirements into parallel database ma-
chines without introducing declustering. At the same
time security’s requirements on the storage structure
can also be easily ported into our EPN-DB. We will
show that our new EPN-DB is not only an efficient
parallel processor also a very secure one.

Permission to copy withowt fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
i:s date appear, and notice :s. gi:rgn that copying is by permission of the

for Computing y. To copy otherwise, or to republish,
requires a fee and/or specific permission.

2 High Level Computer Architecture

It may worthwhile to recall some of our fundamen-
tal views here. Computer architecture normally is
defined as assembly language programmers’ percep-
tion of hardwares [Brink87, p. 6]. We are explor-
ing the perception of the algorithm designers or soft-
ware engineers [Lin91a]. In the extreme, Church thesis
is one form of computer architecture, because it rep-
resents computer scientists’ perception of hardwares.
To us, Church thesis captures the maximal capability
of hardwares. While our approach is to capture the
practical, normal, or natural capability of computers.
This approach is inherently controversial. Words such
as “normal,” or “natural” means different things for
different people. However, we believe that this ap-
proach has some practical usages. Our motivations
come from two sources: our construction of concur-
rent automata as a solution to Peterson conjecture
[Lin90a] and Tanenbaum’s comments on the organi-
zation of the stack of IBM PC, see [Tann87, pp.226]
and 3.1 below.

We view automata as abstractions of hardwares, as
well as abstractions of algorithm types or procedure
types. Our scenario is as follows: We analyze the de-
sirable systems and identify the algorithms types (in
terms of automata) to be supported. Then we exam-
ine the hardwares of the automata. For example, if
the algorithm is simulatable by a pushdown automa-
ton then we need a hardware, called pushdown au-
tomaton machine (PDA-machine). We have identified
earlier that microprocessors with stack overflow excep-
tion are PDA-machines [Lin91a)]. The Intel 80i86 (i =
2, 3, ...) are such machines (see the previous Propo-
sition). Applying the scenario, we build a new type
of database computers, EPN-DB, which is not only
efficient and can be organized, via new notion of clus-
tering, to support the security requirements in parallel
environment,.

3 Extended Petri Net (EPN) Parallel
Architecture

In this section, we review, motivate, and generalize
our approaches to Petri nets and EPN parallel archi-
tecture [Lin90a, 91a].

3.1 Peterson Conjecture

Petri nets have been proved to be one of the power-
ful models for parallel and concurrent systems. Many

95

applications and generalization have been developed
in past decades [Mura89)]. Interestingly, many of these
generalizations turned out to be either equivalent to
Petri nets (not real extension) or equivalent to Tur-
ing machines (too much extension). For examples,
color Petri nets are generalizations, yet equivalent to
ordinary Petri nets [Jens81], [Vos80]. On the other
hand, Petri nets with inhibitor arcs are real, but too
much extensions; they are Turing machines [Agew74].
These phenomena led James Peterson and many oth-
ers to believe that “Any significant extension of
the Petri net model tends to be equivalent to a
Turing machine” (Computing Surveys [Pel77, pp.
249] and his book [Pet81, pp. 203}).

A class of Extended Petri nets (EPN), called
Concurrent Pushdown Automata (CPDA), was coun-
structed in [Lin90a]. In terms of modeling power,
CPDA are strictly below Turing machines and strictly
above (ordinary) Petri nets. The existence of CPDA
settled Peterson’s conjecture negatively. The concur-
rent automata are the backbone of our studies. CPDA
1s an ordinary Petri net augmented with pushdown au-
tomata. The augmentation proceeds as follows:

1. At each transition, we place a PushDown Au-
tomaton (PDA) to process the color of a to-
ken that passes through the transition (color is
a string of input alphabet).

2. The PDA scans and accepts a {(nonempty) prefix
of the color and sends the token with new color
{the remaining string) to output places.

3. The resulting automaton is called extended
Petri net or concurrent pushdown antoma-
ton. Instead of PDA, we can augment any au-
tomaton, such as finite automaton. linear bound
antomaton, and Turing machine at each transi-
tion of a Perti net; we shall call them concurrent
automata. These concurrent automata are ex-
tensions and concurrent version of CLASSICAL
automata and Petri nets.

We believe these concurrent automata will be useful
in parallel processing. Intuitively, each individual au-
tomaton represents an individual computing machine
and the Petri net represents a concurrent control or
a network system. So concurrent automata can be
viewed as computation models of parallel systems or
networks. The concurrent pushdown automata that
solve the Peterson’s conjecture suggest that the com-
putational power of the total system can be strictly
greater than the union {“linear sum”) of each indi-
vidual system in the order of magnitude. So the par-

allel systems which are designed under these concur-
rent automata should exhibit a major jump on com-
puting capability; it is better than liner scaleup.

3.2 Church Thesis and Natural Compu-
tation Model (NCM)

Church thesis asserts that computers can execute

anv a]o‘nrlf}lm or eq]nva]nnﬂv comnntergs are l'\ﬁ"{"_

Sy 1HULiviiii, wIVQITLVEY, LLLINPUTIS QaT uoi\a

ware realization of Turing machines. However, a par-
ticular computing hardware may be able to execute
any algorithm, it may not be very natural, practi-
cal, or efficient to execute some type of algorithms.
So we propose to capture the naturality, practicality,
or efficiency of hardware usage in the Natural Com-
putation Model (NCM). NCM is a model for prac-
tical or natural capability of a given computer, while
Church thesis is a model of the theoretical maximum
capability.

Tanenbaum stated that “Intel 8088’s memory man-
agement architecture is very primitive ...does not
even detect stack overflow, a defect that has major im-
plications ...” [Tann87, pp.226]. If machines have no
stack overflow detection, designers are forced to design
their software based on the assumption that the stack
is of finite length. This remark leads us to conclude
that IBM XT model cannot be used naturally or
practically as Turing machines.

Proposition 1 The NCM of IBM PC (XT model) or
Intel 8088 microprocessor is a finite automatla (FA),
and the NCM of IBM AT (286, 386 and above models)
s a PushDown Automata (PDA).

Remark: Without explicitly abstraction of hard-
wares, this is not a provable proposition; it is a hy-
pothesis. However, one can easily give an IBM PC
version of RAM machine [Aho74].

For each hardwares there are NCMs associated with
it. To emphasize its functionality, we call these hard-
wares NCM-machines, e.g., Finite Automata machines
(FA-machines) PushDown Automata machines (PDA-
machines), Petri Net machines (PN-machines), or Ex-
tended Petri Net Machines (EPN-machines) [Lin90a].

3.3 EPN Parallel Architecture

In parallel processing, the common concern is com-
puting speed. Here our main focus is on the com-
puting capability: Is there a superlinear increasing in
computing (modeling) power? The answer is ’yes’ for
EPN parallel processing. Intuitively, modeling is the
capability of solving problems. For example, finite

96

automata can solve problems which are equivalent to
some regular languages; no finite automata can parse
a genuine context free languages. So the question, “Is
the NCM of EPN-machine has superlinear increased
in modeling power?” can be rephrased in terms of
automata theory, “Is the modeling power of NCM of
total system is strictly greater than the ‘union’ of the
NCMs of individual components?” The answer i1s es-
sentially given in my solution of Peterson’s conjecture

[Lin90a], [Lin91a).

The EPN-machines are somewhat similar to con-
nection machines. The Petrl net control can be per-
formed by a conventional machine (host). In connec-
tion machine, the PE (processing element) is a small
FA-machine. EPN-machine requires each PE to be
a genuine PDA that is a microprocessor with stack
overflow exception. The computing power of an EPN-
machine is strictly greater than that of PDA-machine
and PN-machine. In other words, the EPN-machine
can solve problems which are beyond the problems
solvable by PDA-machines or PN-machines. Since we
are using conventional machine to support the Petri
net control, we could use more powerful automaton
than Petri net as its control system. For example,
we could choose Petri nets with priority {(equivalent
to Turing machine) as its control system. For conve-
nience the host machine is called control machine.
Such generalization still will be called EPN architec-
ture.

Circles and squares represent places and transitions.

4 Parallel Processing and Clustering

Common secondary storage structures for paral-
lel database systems are declustering [Livn&7]. [De-
Wit91]. One of the key reasoning for using declus-
tering in a parallel database is to enable the system
to reading or writing multiple data stores in parallel.
There are three approaches in declustering; range par-
titioning, round robin, and hashing. Traditionally,
clustering means that related data are stored
together physically. The advantage of it is that in
one access, one can retrieve related data into the buffer
so that there is no need to access secondary storage
again for related data. This strategy. in parallel sys-
tems, in fact slow down the process. We propose. in-
stead of declustering, to redefine the clustering in
temporal dimension, and proceed as conventional
databases.

Petri net Control

PDA
machine

PDA
machine

PDA
machine

Figure 1: Petri net control of PDA machines

PDA
machine

PDA
machine

N

Figure 2: An EPN machine

Temporal Clustering

Let us use ‘block’ as the unit of data that can be
retrieved by one secondary storage access. In unipro-
cessor world, related data are stored block by block
consecutively (physically), in hoping that related data
would be retrieved by one or very few accesses. To
achieve this in parallel processing world, the storage
organization needs to be restructured. We mimic the
classical clustering almost literally, but on the time di-
mension. Namely, block by block, the data are evenly
distributed through different data stores so that they
can be retrieved in one parallel access. We illustrate
our idea in PDA stores. We will call the total block
from Block #1 to Block #n the temporal block #1,
the total block from Block #(n+1) to Block #2n
the temporal block #2, and so on. The whole tempo-
ral block can be retrieved to the buffers in one parallel
access. So a temporal block is something equivalent
to a classical block. The net effect of this approach
is that each classical database action is parallelized.
The data of a temporal block is n times larger than
a classical block, but it can be retrieved in one classi-
cal block time. So our organization is n time linear
speedup. For example, NCUBE, can connect to 1024

97

diskdrives, so its temporal block is 1 X bigger than clas-
sical block, yet it can process the data in one classical
block time. On the surface, a temporal block is simi-
lar to range partitioning or round-robin declustering.
Intrinsically, temporal blocks are distributed by the
semantic of data, so the distribution is more nature
and eflective.

5 EPN Database Architecture

In this section, EPN-architecture is applied to
databases. In order for EPN-architecture to be useful
in databases, some data stores are attached;they are
called EPN-DB.

5.1 ABDM and EPN-DataBase Machines

An EPN-DataBase machine (EPN-DB machine)
is an EPN-machine attached with secondary storage
structures to support data models. To each PDA-
machine, we attach a secondary data storage, called
PDA-store. To be specific PDA-machines are called
PDA-processors. The pair is called PDA-database ma-
chine (PDA-DB). Optionally. we may attach a sec-

Petri net Control

Control Store

PD{\ PDA PDA
machine machine machine
PDA PDA PDA
store store store
PDA DB #1 PDADB#2 PDADB #3

Figure 4: Petri net control of PDA machines, stores, and databases

PDA
DB

PDA
DB

Figure 5: EPN database machine

Example 5.2.

At the user’s level, we can represent ABDM in
relational form (There are intrinsic difference, see
[Lin92h]). So we will borrow the SQL for illustration.
Suppose a SELECT is issued. The command is sent
to each PDA-DB, and evaluated on the MetaData.
Based on the information on MetaData, the desirable
data is retrieved from BaseData.

Suppose the given SELECT is as follows:

select TARGETL, , TARGETING
from TABLE1,TABLEAUX
where TABLE1.ATTRIBUTEi= VALUE1

and TABLE1.ATTRIBUTE2=TABLE2.ATTRIBUTE2 (1)
and ...(2)

The induced SELECT, denoted by [SELECT], is as
follows: the MetaData and their data are represented
by []:

select [TARGET1],....... , [TARGETING] ,

from [TABLE1],..... [TABLEAUX]
where [TABLE1].[ATTRIBUTE1]=[VALUE1] [1]

and [TABLE1].[ATTRIBUTE2]=[TABLE2].[ATTRIBUTE2] [2]

and ...

MetaData’s are small, each PDA-DB can evalu-
ate the derived query [SELECT] on its own. Each

then locates the clusters that contain [TARGET1],
...[TARGETING] and the variable /data which are
in the predicates [1], {2], ...Since the number of clus-
ters are then very small, so the original SELECT can
be evaluated by all PDA-DB’s coordinated by Petri
Net control. Thus, the TARGETI, ... TARGETING
can be retrieved most efficiently and quickly.

5.2 Realization of EPN-DB

We have not imposed any constraints on the Petri
net yet, so the EPN-DB represent a very wide ranges
of computer systems. Our illustrations have heen con-
centrated on share nothing architecture, because it is
most useful and popular. The EPN-DB can easily
represent other architectures, such as the share main
memory architecture or share disk architecture. Each
PDA-DB can be a microprocessor based computers,
such as IBM PC (386 and higher models), work sta-
tions. The control machine can be a mainframe or an-
other microprocessor based computer. The machines
are linked by LAN. Many multimachine are express-
ible in EPN-DB. We helieve EPN’s are good theoret-
ical "shell” for high level architecture design.

Block #1 Block #2 Block #n
Block #(n+1) Block #(n+2) Block #({n+n)
PDA Store #1 PDA Store #2 PDA Store #n

Figure 3: Temporal clustering

ondary storage to the control-machine (Petri Net-
machine). We will call them control-processor and
control-store. Such architecture is called EPN-DB ar-
chitecture. To claim that EPN-DB are database ma-
chines, we have to demonstrate that they do support
data models. We will map ABDM to EPN-DB.

The Storage Structure of BaseData

The Basedata should be stored in data stores.
ABDM requires that all related tuples are stored in
a cluster. We interpret clusters in ABDM as temiporal
clusters. Therefore an ABDM cluster in parallel pro-
cessing is a temporal block, so its data are distributed
evenly into each PDA-store, as we have illustrated in
the temporal clustering. Each PDA-DB handles ide-
ally only one block for each retrieval. That is, EPN-
DB handles one temporal block for each parallel re-
trieval, at worst very few temporal blocks. Then con-
ventional strategies are portable to temporal blocks,
and we do not need the insecure declustering.

The Storage Structure of MetaData

MetaData is much more smaller than the size of
BaseData, so we have following choices:

1. It is resided in the control machine if the control
machine is a mainframe computer.

2. If the control machine is smaller, we replicate the
MetaData into each PDA-DB. In this way, each
PDA-processor can access their respective Meta-
Data store parallelly.

EPN-DB includes the so called share nothing archi-
tecture [Ston88]. PDA-stores do not share anything.
PDA-processors communicate among themselves via
Petri net control. When a user issues a request, the
Petri net control puts tokens into proper places(to ini-
tiate PDA-processors), and then run EPN.

Circles and squares represent places and transitions.

99

Example 5.1.

Let us illustrate our scenario on a very specific ex-
ample, namely, a search on a clustered index (the
index order is the physical storage order)[Date90].
Here the clustered index is interpreted as the in-
dex clustered in temporal dimension. Namely, the
index should be line up from block #1, block #2,
...until the whole temporal block is filled. Then it
goes to second temporal block and etc. EPN-DB is a
Petri net. Each PDA-DB is a subnet in which PDA-
processor represents a transition and PDA-Store a
place. When a user requests for searching an index.
A token with the desirable color (index) is placed in
each of the “little” place displayed in the figure. If
the color(source key) matches the color (the index) in
PDA-Store, the particular PDA fires. The clustered
index is searched in every PDA-store. if “match™ the
PDA “fires” the related data identified by the index to
Control machine. The token is then placed in the oval
shaped output place. This token is then available to
the user. In general all the classical strategies should
work as long as we interpret the classical cluster as a
temporal cluster.

Before we give a more detail example, let us exam-
ine our database language. Assume, we have a pred-
icate P(x1, x2, ...) define on BaseData. Let X be a
sub-BaseData in which P(x1, x2, ...) is valid. Let [X]
represents the image of X in MetaData. which is the
quotient set of the BaseData under the equivalence
relation. Let [P] ([x1], [x2], ...) be the “induced”
predicate, namely, [P} ([x1], [x2], ...) is true iff there
exists xi in [xi] such that p(x1, x2, ...) is true.

Note that we are not saying that P(y1.v¥2. ...) is
valid for any choices of yi in [xi]. We are saying that
[P] is true iff there is one set of choices so that P is
true. We will vaguely refer to this induced language
as “quotient language™ on MetaData. See [Lin92a] for
the formal theory of quotient language.

token carrying
desired string

output to user

PDA DB #2 .

PDA DB #1
token token

Figure 6: Search on a clustered index

6 Secure EPN-DB Machine

[DeWitt91,92] suggested that declustering is a good
strategy to speed up parallel processing. On the other
hand, security requires clustering. The purpose of this
section is to reconcile these two apparently contradic-
tory requirements in parallel processing.

6.1 Secure Clustering

In [Lin91a), [Lin92f], we have shown that the secu-
rity level of an input to any relational operator always
dominates that of the ouptput. In other words, re-
lational operators send high level information down-
ward to equal or lower level information. Without
proper additional structure, all relational operators
are trusted subjects; this is unacceptable. So in
[Lin92g] we added storage requirement to the axiom of
BLDM. With such requirement, one can avoid trusted
subjects completely. Such storage technique, called
clustering, was developed , not for security, by Hsiao
in the early 70’s for his model [Hsiao70], WongT71].

The notion of clustering is based on partitioning of

attribute domain. Consider the following partition:
Q11 = {SALARY: 0 <
SALARY < 40,000}
Q12 = {SALARY: 40,000 <
SALARY < 100,000}
Q13 = {SALARY: 100,000 <
SALARY < 250,000}
Q14 = {SALARY: 250,000 <
SALARY < 1,000,000}

It is clear that the partition defines an equivalence
relation on the SALARY figures. Using ABDM, we

100

will define an equivalence relation, called secure cius-
tering equivalence, as follows: Two data are secure
clustering equivalence iff they are in (1) the same par-
tition, and (2) the same security class. The secure
clustering equivalence relation partitions the attribute
domain into clustering equivalence classes, such class
is called a secure cluster. The storage requirement is:

Axiom 1 Data Clustering Aziom: FEach primitive
dala belongs to one and only one cluster, and each
cluster has to be stored physically together. Different
classes of data are stored in different volumes.

Definition 1 An ABDM with secure clastering equiv-
alence satisfying data clustering ariom call
SABDM(Secure Atiribute Based Data Model).

s

As an illustration, suppose a user is viewing a re-
lation, named HighView, at his terminal. We assume
HighView is classified SECRET. Now il the user issues
a query to retrieve a sub-relation, named LowView
FROM HighView. The subrelation LowView is classi-
fied CONFIDENTIAL. Effectively, he is defining an-
other relation LowView. Although it appears as if the
data in HighView is flowed into LowView, because of
the data clustering, there are no actual data flow from
HighView to LowView. The LowView get its data
from proper clusters, not from HighView. So such a
clustering technique allows us to execute all relational
operators without using any trusted subjects.

HighView — ClusterscontainingdatainHighV iew

(N

LowView «— ClusterscontainingdatainLowV iew

(2)

In general, we will call such data organization se-

cure clustering. Secure clustering is secure and effi-

cient [Hsiao88]. Since clustering is so intrinsic to se-

curity, declustering is not a secure strategy. However,

in the next section, we will show the solution to this
apparent contradiction.

6.2 Secure Temporal Clustering

A temporal block should have same security clas-
sification. Earlier we have pointed out that in par-
allel computation, the clustering should be viewed
from temporal dimension. Each classical cluster is as-
signed one security level and receives only the data of
that level, in parallel environment, temporal clusters
should play the role of clusters.

6.3 Secure Parallel Data Organization

Each PDA-DB has one PDA-processor and a PDA-
store. Each PDA-store consists of a set of diskpacks;
in PC’s, they are hardisks. A block is the collection
of data which can be retrieved in one access. In 360K
double density double side diskette, a block is a cluster
(two physical sectors, 1024 bytes); in 1.2MB high den-
sity diskette, it is a sector(512 bytes). To be specific,
let us assume that a block is a track. A collection
of tracks with the "same address” in each different
PDA-store is a temporal block. Each PDA-processor
accesses only one block in one parallel access; how-
ever, in total the EPN-DB accesses the whole tempo-
ral block. The whole temporal block is assigned one
security label.

Let us illustrate our idea in the organization of clus-
tered index (the index order is the physical order in
storage)[Date90]. The data will be arranged in the
index order throughout the whole track. If the first
track of the first PDA-DB is full, then go on to the
second PDA-DB and store the data in the track which
has ”same address” in the PDA-store of second PDA-
DB. We continue in this fashion until the whole tem-
poral block is full. Then go on to the second tempo-
ral block, and etc. The whole temporal block is full
with the data of the same security, even though, many
of them are resided in different physical volumes—we,
however, could say that the data are in the same “par-
alle]” or “temporal” volume. Similarly, we can define
the “parallel” or “temporal” cylinders (= the ”same”
tracks in difference surfaces[EINa89,p67}). With such

101

“parallel” or “temporal” tracks, cylinders, or volumes,
the classical database can be ported into parallel pro-
cessing world. So an EPN-DB machines is a secure
parallel database system if one uses the “parallel” or
“temporal” secondary storage structures as organized
above.

6.4 Secure Relational Operations

The secure data organization give us the security,
we illustrate the operations by examples.

Example 6.2.

Let us reinterpret Example 5.2. It will be seen
that security requirements have no essential impact
on the query processing. The security requirement is
reflected in the clustering equivalence and that’s all.

Suppose the following query is issued:

Q: select TARGET1, ... ,TARGETING

from TABLE1, ...TABLEAUX

where TABLE1.ATTRIBUTE1 = VALUE1 (1)

and TABLE1.ATTRIBUTE2 = TABLE2.ATTRIBUTE2 (2)
and ...

Then, Q is modified into [Q] by control machine or
each individual PDA-DB depending on the organiza-
tion (see Section 5.1). Each PDA-DB has a copy of Q

and [Q) : The MetaData and their data are represented

by]
[Q): select [TARGETi], ...,[TARGETING],
from [TABLE1}, ... [TABLEAUX]
where [TABLE1].[ATTRIBUTE1] = [VALUE1] [1a]
{TABLE1] . [CLASS] < Low [1c]

and [TABLE1).[ATTRIBUTE2] = [TABLE2].[ATTRIBUTE2] [2a]

{TABLE1].[CLASS2] = [TABLE2].[cLASS2] [2¢]
and ...

MetaData’s are small, each PDA-DB can evalu-
ate the derived query [Q] on its own, and locates the
clusters that contain [TARGETI], ... [TARGETING].
Since the number of clusters that contains the de-
sirable data are then very small. so the original
query Q can be evaluated by all PDA-DB’s coordi-
nated by Petri Net control. Thus. the TARGET1,
... TARGETING can be retrieved most efliciently and
quickly.

Note that the data
in tables [TABLEI1], ...[TABLEAUX] are stored in
proper secure clusters. For convenience, let us call the
output of Q be LowView. When the user issues Q to
retrieve a sub-relation, named LowView. Effectively,
he is defining another relation LowView. The relation
LowView will get its data from its proper clusters, not
from HIGHVIEW. So no data are actually flowed from
HighView to LowView. Such a clustering technique
allows us to execute all relational operators without

Low View High View
Secondary Storage
Top Secret Confidential Unclassified
Secret
o O OO o
cluster \@ O O
Volume 1 Volume 2 Volume 3 Volume 4
Figure 7: Secure temporal clustering
same security level
Block #1 Block #2 Block #n
Block #(n+1) Block #(n+2) Block #(n+n)
PDA Store #1 PDA Store #2 PDA Store #n

Figure 8: Another view of secure temporal clustering

using any trusted subjects, even though the data flow
appears to be downward flowing (but actually not).

With clustering, all the relational operations satisfy
the two properties of BLM axiom. So it is a secure
operations.

7 Conclusions

On the surface, the parallel processing and secu-
rity have conflicting requirements. Parallel requires
declustering [DeWitt91,92], whereas security requires
clustering [Lin92]. We propose temporal versions (or
parallel versions) of classical concepts on storage struc-
tures. Then many classical design concepts of gen-
eral purpose databases or secure databases can be
ported to the parallel world. The concurrent au-
tomaton and nature computation models of hardwares
[Lin91a] are used to define parallel database machines.
The ABDM (Attribute Based Data model} is mapped
onto the EPN-parallel machine and produce an EPN-
Database machine. To support security, secure tem-
poral clustering equivalence is introduced. Two
data are secure clustering equivalence if it is a clus-

102

tering equivalence in usual sense and their security la-
bel are the same (Section 6). An ABDM using secure
clustering equivalence is called SABDM (Secure At-
tribute Based Data Model). SABDM is mapped onto
EPN-parallel machine and we have a Secure EPN-DB
machine. This illustrates that if one interprets the
notion of clustering properly, a parallel machine be-
comes a very fast and secure database computers. The
EPN-DB machines are not only secure and fast, its
capability in solving harder problems (modeling) also
increased in the order of magnitude. We believe this
capability will surface when data processing hecomes
complex (knowledge processing).

References

[Brink87] J. E. Brink and R. J. Spillman, Computer
Architecture and Vax Assembly Language Pro-
gramming, Benjamin/Cummings, 1987.

[Date81,86,90)
C. Date, Introduction to Database Management
Systems, Addison-Wesley, 1981.86.90.

e 1: Table ‘1’

Tab

ATTRI1 CLASS1 | ATTRI2 CLASS2 ATTRIs CLASSs
DATA1 DATA2 DATAs
LABEL1 LABEL2 LABELs

Table 2: Table ‘I’
ATTRIn CLASSn | ATTRIm CLASSm | ... | ATTRIi CLASSI
DATAn DATAm DATAI
LABELn LABELm LLABELi

[DeWit91] D. DeWitt and J. Gray, Parallel Database
Systems: The Future of Database Processing or
a Passing Fad?, Preprint, 1991.

[DeWit92] D.DeWitt and J. Gray, “Parallel Database
Systems: The Future of High Performance Data-
base Systems,” Communications of the ACM,
1992.

[EINa89] R. Elmarsi and S. Navathe, Fundementals
of Database Systems, The Benjamin/Cummings
Publishing Company, 1989.

[HoU176] J. Hopferoft and J.Ullman, Introduction to
Automata Theory, Languages and Computations,
Addison-Wesly, 1976.

[Hsiao70] D. Hsiao and F. Farary, “A Formal System
for Information Retrieval from Files,” Communi-
cations of ACM Vol. 13, 2 (February 1970), pp.
67-73.

[Hsiao88] D. Hsiao and G. Hoppenstand, “Secure Ac-
cess Control with High Access Precision: An Effi-
cient Approach to Multilevel Security,” Database
Security, II: Status and Prospects, 1989.

[Hsiao91] D. Hsiao, “A Parallel, Scalable, and
Microprocessor-Based Database Computer for
Performance Gains and Capacity Grows,” IEEFE
Micro, December 1991.

[Jen81] Jensen, K., Color Petri Nets and the Invariant
Methods, Theoretical Computer Science, 1981.

[Lin82] Trueblood, R.Lin, T. Y. and Kerschberg,
L., Analysis of Computer Security Using Petri
Net Theory, Second International Conferences in
Computer Science, Santiago, Chile, 1982.

[Lin89a] T. Y. Lin, “Commutative Security Alge-
bra and Aggregation,” Research Direction in
Database Security, II, Proceedings of the Second
RADC Workshop on Dalabase Security, Decem-
ber 22, 1989, pp. 167-190.

103

[Lin89D) T. Y. Lin, “Some Remarks On Inference
Controller,” Research Direclion in Database Se-
curity, II, Proceedings of the Second RADC
Workshop on Database Securily, December 22,
1989, pp.158-166.

[Lin89c] T. Y. Lin. “Chinese Wall Security Policy~—
An Aggressive Model,” Proceedings of the Fifth
Aerospace Computer Security Application Con-
ference, Tuscon, AZ, December 4-8. 1984, pp.
282-289.

[Lin90a] T. Y. Lin, “Extended Petri Nets and Peter-
son’s Conjecture,” Proceedngs of Fourth Annual
Parallel Symposium, April, 1990.

[Lin90b] T. Y. Lin, "Message and Noncommutative
Aggregation”, Third RADC Workshop on Dala-
base Security, May 1991, pp. 106-116. (Coauthor:
Al-Eifan. Final Revision of Message and Inference
Aggregation, Third RADC Workshop on Datla-
base Security, June 1990.)

[Lin90c¢] T. Y. Lin, “Multilevel Database and Univer-
sal Security Algebra,” Third RADC Workshop on
Database Security, May 1991, pp. 96-105. (Final
Revision of Aggregation and Guidelines for SSO,
Third RADC Workshop on Database Security,
June 1990.)

[Lin90d] T. Y. Lin, “Security Algebra and TFor-
mal Models,” Database Sccurity, IIl: Status and
Prospects, edited by D. Spooner and C. E.
Landwehr, North Holland, 1990, pp. 75-96. (Fi-
nal revision of Security Algebra and Formal Mod-
els, Proceedings of IFIP WGI11.3 Workshop on
Database Security, September 5-7, 1989 (with L.
Kerschberg and R. Trueblood) paper 15, with L.
Kerschberg and R. Trueblood).

[Lin90e] T. Y. Lin, “Probabilistic Measure on Aggre-
gation,” Proceeding of 6th Annual Compuier Se-
curity Application Conference. Tucson, Arizona,
December 3-7, 1990, pp. 286-294.

[Lin90f] T. Y. Lin, “Multilevel Database and Aggre-
gated Security Algebra,” Database Security, 1V:
Status and Prospects, edited by S. Jajodia and
C. E. Landwehr, North Holland, 1991 , pp. 325-
348. (Final Revision of Database, Aggregation
and Security Algebra, IFIP WG11.3 Workshop
on Database Security, Halifax, UK, September
18-21, 1990.)

[Lin90g] T. Y. Lin, “Rough Sets, Neighborhood Sys-
tems and Approximation,” Fifth International
Symposium on Methodologies of Intelligent Sys-
tems, Selected Papers, Knoxville, Tennessee, Oc-
tober 25-27, 1990, pp. 130-141. (Coauthors:
Q.Liu and K. J. Huang).

[Lin90h] T. Y. Lin, “A Model of Topological Reason-
ing Expert System with Application to an Expert
System for Computer-Aided Diagnosis and Treat-
ment in Acupuncture and Moxibustion,” Interna-
tional Symposium on Ezpert Systems and Neural
Network Theory and Application, Hawaii, August
15-17 1990, pp. 123-126. (Coauthors: Qing Liu
and K.J. Huang)

[Lin91a) T. Y. Lin, “Concurrent automata and Paz-
allel Architecture,” Proceeding of 1991 Interna-
tional Conference on Parallel Processing, August,
1991.

[Lin91b] T. Y. Lin, “Inference’ Free Multilevel Data-
base System,” Proceedings of the Fourth RADC
Database Security Workshop, Little Compton,
RI, April, 1991.

[Lin91c] T. Y. Lin, “Entropy, Ordering and Aggrega-
tion,” Proceedings of the Fourth RADC Database
Securily Workshop, Little Compton, RI, April,
1991.

[Lin91d] T.Y. Lin, Topological and Fuzzy Rough Sets,
Kluwer Academic Publishers.

[Lin92a] T. Y. Lin, “Attibute Based Data Model and
Polyinstantiation,” IFIP Congress, September 7-
12, 1992.

[Lin92b] T. Y. Lin and David Hsiao, “Rough Sets in
Al as Clustering in Database,” First Workshop
on Rough Set Theory, September 2-5, 1992.

[Lin92c] T. Y. Lin and David Hsiao, “Attribute
Based Data Model—A Mathematical Character-
ization.” In preparation, 1992.

104

[Mura89] Tadao Murada, “Petri Nets: Properties,
Analysis, and Applications,” Proceeding of IEEE
77, 4, 1989, pp.541-580.

[Pet77] J. Peterson, “Petri nets,” ACM Computing
Surveys, 1977, pp.223-252.

[Pet81] J. Peterson, Petri net theory and the modeling
of systems, Prentice Hall, Englewood CIliff, N.J.,
1981.

[Tann87] Andrew Tannenbaum, Operating Systems:
Design and Implementation, Prentice-Hall, 1987.

[Wong71] Wong, E and Chiang, T.C. “Canonical
Structure in Attribute Based File Organization,”
Communications of the ACM 14, 9, 1971.

