
How Responsibility Modelling Leads to Security Requirements

Ros Strens and John Dobson

Department of Computer Science
University of Newcastle upon Tyne

Newcastle NE1 7RU
United Kingdom

Abstract

When a technical system is placed in a social context
organisational requirements arise in addition to the
functional requirements on the system. Security is a good
example of such an organisational requirement. A means
of identifying these organisational requirements is needed
and also a way of specifying them that is meaningful both
to users and systems designers.

This paper proposes that the concept of responsibility
fills both these needs. Responsibilities embody
requirements in that the responsibility holder needs to do
things, needs to know things and needs to record things
for subsequent audit. These needs form the basis of a
‘need-to-know’ security policy. Furthermore a model of
responsibilities describes the context within the
organisational structure in which the requirements,
including those related to security, arise.

KEYWORDS
Responsibility, obligation, requirements, enterprise

modelling, security

1. Introduction

The first requirement that an organisation will have of
a technical system is that it has the functionality necessary
to serve the organisation’s purposes. This defines the
functional requirements on the system. Of equal
importance is the need for the system to support those
functions in a way which matches the structure, objectives
and characteristics of the organisation. These requirements
that come out of a technical system being placed in a
social context are termed organisational requirements. We
shall be particularly concerned in this paper with security
as an organisational requirement.

The need to capture and deal with organisational
requirements in the system design process has long been
recognised, and a number of methods are now in existence
to support the handling of such issues in IT systems
design, but there is very little evidence that they are
widely used. The ORDIT project, an Esprit II project
investigating information technology and organisational

change, has addressed these problems on the basis of
socio-technical systems theory, with its premise that the
system contains within it two sets of resources: technical
and social (human) resources, and that these are so inter-
related that any attempt to optimise only one of these sets
of resources may adversely affect the other set so that the
resultant utilisation is suboptimal. Design methods
appropriate for technical systems cannot simply be applied
to socio-technical ones, since equal consideration must be
given to both human and technical issues if the design is
to meet the real requirements of the organisation and be
supportive of people in their work roles. Again, security
systems will be considered as socio-technical systems
instead of just as technical ones, recognising that security
policies and models that have been developed in a purely
technical context may not be applicable to the wider
context we are here considering.

We therefore need a means by which system
developers can recognise organisational requirements such
as security properties and specify them in such a way that
enables them to envisage and propose solutions to meet
the achievement requirements. The problem here is
twofold. Firstly there is the problem of how to capture the
requirements, some of which may be apparent and easily
ascertained, others may be more difficult to elicit, if, for
example, they are implicit in the working practices, and
others may only arise when design solutions are proposed.

The second problem is that the language of systems
designers is suited to technical systems whereas the users’
language is appropriate to the organisational context.
What is needed is some set of boundary objects where
these two worlds can meet. We are proposing that the
concept of responsibility is one such boundary object, and
that responsibilities may be regarded as the key to
understanding requirements in implementable terms in
that a responsibility has attributes that can be appreciated
in both worlds although the language and implications
differ.

We also see the concept of responsibility as being a
means of solving our first problem, that of identifying
requirements in the first place. We propose that an
organisation can be viewed as a network of
responsibilities that embody aspects of structure as well as

143

Permission to copy without fee alI or pan of this material is granted.
provided that the copies are not made or distributed for dkcl commet’cial
advantage, the ACM copyright notice and the tide of the publication and
its date appear. and notice is given that copying is by permission of the
Associbtion for Computing Machinery. To copy olhenvire. or to republish.
requires a fee and/or specific permission. Q1993 ACM O-89791-635-2 $1.50

function. The users’ real requirements are manifest in the
responsibilities they hold in that they have a need to know
things and a need to do things for the proper fulfilment of
their responsibilities, and a need for audit in order to show
how they have fulfilled their responsibilities. A
responsibility thereby implies requirements for
information, requirements for action and requirements for
the recording of history, and, by approaching these
requirements through the responsibilities held by users by
virtue of their work roles within the organisation, we not
only capture the requirements but gain an understanding
of the organisational context in which they arise. Note that
we are assuming primarily a ‘need-to-know’ basis for
security policies, though our ideas can accommodate other
alternative bases for a security policy.

On the designer’s side of the boundary, it is clear that
the requirements for information and action can be
translated into the data and functions that the IT system
must provide. Thus the concept of responsibility as a
boundary object between users and designers should lead
to a better understanding by designers of what the
technical system should achieve (rather than how it will
do it which is purely within the domain of the designer),
and its context of use within the socio-technical system.

The concept of responsibility is also a valuable
boundary object between different types of model and
between reality and models. By looking at all of the
responsibilities held within a work role, we can unify
different models of the organisation, such as a process-
oriented horizontal view and a management or vertical
view, into one responsibility based view.

In the next section the rationale underlying our
assertion that responsibilities embody requirements and
the context in which those requirements arise in terms of
organisational structure is presented, and the final section
briefly indicates how these ideas have been applied in the
real world to produce a specification of user requirements
for an integrated clinical workstation.

2. The concept of responsibility

In the paper delivered at the New Security Paradigms
workshop last year, we argued for responsibility being a
key issue for security. This section elaborates the notion of
responsibility; a subsequent section will relate this
elaboration to issues of security.

2.1. The responsibility relationship

So far we have spoken of responsibilities held by users
as though they are a ‘thing’ that the user possesses. In fact
the holding of a responsibility implies that there is also a
giver of that responsibility and therefore the existence of a
relationship between the holder and the giver of the
responsibility. (From now on we shall refer to the
‘people’ involved as agents, since an agent can be any size

of group from an individual to a department or even a
whole organisation.) We therefore define responsibility as
a relationship between two agents regarding a specific
state of affairs, such that the holder of the responsibility is
responsible to the giver of the responsibility, the
responsibility principal (Figure 1).

Figure 1. A Rixponsibility Relationship between
Two Agents

The definition of a responsibility consists of:
a) who is responsible to whom;
b) the state of affairs for which the responsibility is

held;
c) a list of obligations held by the responsibility

holder (how the responsibility can be fulfilled);
d) the type of responsibility (these include

accountability, blameworthiness, legal liability).

2.2. The relationship between responsibilities,
obligations and activities

This brings us to the distinction between
responsibilities, obligations and activities. We use these
concepts in the sense that agents execute activities in order
to discharge obligations imposed on them by virtue of the
responsibilities they hold. These obligations are what the
agents have to do and effectively describe their ‘jobs’ or
roles. They are the link between their responsibilities and
the activities they execute. Another way of describing this
relationship is to say that responsibilities tell us why
agents do something, obligations tell us what they do and
activities are how they do it.

The distinction between responsibilities and
obligations is apparent from the words we use: a
responsibility is for a state of affairs, whereas an
obligation is to do something that will change or maintain
that state of affairs. Thus a set of obligations must be
discharged in order to fulfil a responsibility. As such,
obligations define how that particular responsibility can be
fulfilled. For example a hospital doctor may have
responsibility for the medical condition of certain patients.
To fulfil this responsibility the doctor must discharge
certain obligations such as to diagnose, treat, monitor
and/or prescribe.

144

The distinction between obligations and activities is
that obligations define what has to be done rather than
how it is done. Activities are defined as operations that
change or maintain the state of the system or affect the
outside world. Role holders may (or may not) have a wide
choice of activities that discharge the obligations they
hold. Consider again the hospital doctor who has an
obligation to make a diagnosis. According to
circumstances he may choose one or more of several
activities such as to examine the patient, order x-rays or
do tests.

2.3. Creation of responsibility relationships:
the delegation process

The responsibility relationship implies a structure as,
for example, whether a particular responsibility held by a
doctor is to the patients, to the employer or to other staff.
These responsibility relationships are created when
delegation takes place and obligations are transferred from
one agent to another. This delegation process will
frequently be implicit rather than explicit, and may be
used to explain how the hierarchical organisational
structure and distribution of responsibilities has come
about over time. Our account of the delegation process is
based on the view that, because a responsibility is a
relationship between two agents, responsibility holders
cannot independently transfer their responsibilities to
other agents, but they can transfer their obligations. The
result of this process is the establishment of new
responsibility relationships between the pairs of agents
involved. The original holder becomes the principal of the
new responsibility relationship and the receiver of the
obligation is the new responsibility holder. We will now
examine this process in a little ‘more detail, since a
security policy must have the concepts to permit
statements about what happens to capabilities for access to
resources associated with obligations in the presence of
delegation. It is possible, for example, that as a result of
delegation of obligations, an undesirable set of capabilities
ends up in the hands of the same roleholder; this would
force the re-examination of the desirability of the
delegation, and perhaps of the original division of
responsibilities (which would have to be solved in the
social system, of course, not the technical one).

AGENT A

AGENT A AGENT B

Figure 2. A responsibility relationship created by
the transfer of an obligation

The top diagram in Figure 2 shows a situation where
agent A is the holder of several obligations associated
with a responsibility. If an obligation to do something is
passed to agent B (lower diagram), agent A still retains the
original responsibility since this is not transferable, and
we will see in the next section how that responsibility can
be fulfilled. Meanwhile agent B has acquired an obligation
relating to the state of affairs for which agent A holds
responsibility. Agent B also holds responsibility now for
that same state of affairs, as well as agent A, because it
will be affected when the obligation is discharged.
However agent B’s responsibility is to agent A who
delegated the obligation; in other words a new
responsibility relationship has been created between them,

An example of this process is where the first author of
a book is responsible to a publisher for the production of a
text. The first author retains this responsibility to the
publisher even if the obligations to write individual
chapters are transferred to other authors. The other authors
then acquire responsibility for the writing of their
respective chapters, but their responsibility is to the first
author and not directly to the publisher.

A chain of responsibility relationships can thus be
created as obligations are passed from one agent to
another. Within each individual responsibility relationship
both agents have a responsibility for the same state of
affairs, although their obligations differ.

2.4. Functional and structural obligations

The obligations referred to above are functional in
nature. They are what agents must do with respect to a
state of affairs (e.g. execute activity), in order to fulfil
their responsibilities regarding that state of affairs. These
we term functional obligations.

145

We have seen however that when an agent delegates an
obligation to another agent, the first agent still retains
responsibility for the resulting state of affairs. To fulfil
this responsibility the first agent must ensure that the
transferred obligation is discharged satisfactorily by the
other agent. The first agent thus acquires a new obligation
to do whatever is appropriate with respect to the other
agent in order to fulfil his responsibility, such as directing,
supervising, monitoring and suchlike of the other agent.
This other agent also acquires an obligation of a
complementary nature to be directed, to be supervised or
whatever. These we term structural obligations (Figure 3).
For example if a director passes an obligation to a
manager, the director acquires a structural obligation to
direct the manager in the discharging of the transferred
obligation, and the manager acquires an obligation to
accept direction. Other examples of these structural
obligations (e.g. to verify) occur in the context of
auditability obligations. Again the structural obligations
may be implicit in the hierarchical structure of the
organisation rather than a result of explicit delegation.

To summarize, we have shown that everything that a
responsibility holder must do, whether with respect to a
state of affairs or to another agent, is represented by the
functional and structural obligations held.

AGENT A

Functional
Obligation

L
AGENT A AGENT B

AGENT B

Functional
. Obligafion

)[- - $ Resp Holder

New Struclural New Sfructoral

Ob/iga?ion Obligation

Figure 3. New structural obligations created by
the transfer of an obligation

how the distribution of function and the organisational
structure are embodied in the network of responsibility
relationships. From the point of view of defining
requirements we only need to know what the agents need
to do and the distinction between functional and structural
obligations is unimportant.

Thus the obligations that a responsibility holder must
discharge tell us what the responsibility holder needs to
do, and this leads us directly to requirements on the IT
system. These fall into two categories. Firstly some of the
actual obligations (what the agent needs to do) can be
transferred to the IT system and real&d as functions on
the system. These are therefore functional requirements on
the IT system. Secondly the IT system may be used to
support agents in discharging their obligations. One form
of this support is meeting their information requirements,
i.e. what the agents need to know. Another form of
support is keeping a record of what has been done (the
need for audit). In practice the ‘need to do’, ‘need to
know’ and ‘need for audit’ lists are generated for each
responsibility and are interpreted as functional and
information requirements on the IT system.

2.6. Responsibility modelling within the ORDIT
modelling framework

The concepts presented above form part of a modelling
framework developed by the ORDIT project. This
framework will now be described briefly to show how
responsibility modelling fits into the broader field of
enterprise modelling.

The Generic ORDIT Model: The core concept in the
ORDIT way of looking at organisations is the agent entity.
These are the primary manipulators of the state or
structure of the system, but essentially they are the people
in the socio-technical system, although it is possible for a
machine to behave as an agent entity. An agent entity is
not just a person but any size of group from an individual
to a whole organisation. Other essential elements in
modelling an organisation are actions and resources,
where an action entity is an operation that changes or
maintains the state of the system, and a resource entity is
what enables the agent to do the action. An icon showing
these entities and the relationships between them is shown
in Figure 4.

2.5. Responsibilities embody requirements

We have distinguished between functional (process)
and structural (organisational) obligations solely to show

146

structural
relationship

I

RC+Mk?PUJ
relotiomhip

RESOURCES

Figure 4. Icon depicting the Generic Concepts in
ORDIT Models

We say that agent entities have functional relationships
to action entities, since agents do the actions, and that they
have access relationships to resource entities, while the
action entities have requirements relationships to resource
entities; i.e. agents must access resources that are used by
actions performed by agents. We are particularly
interested in organisational structure so structural
relationships between agents are shown. These are
basically responsibility relationships. Relationships
between resources (resource schema) and between actions
(interactions) are of less interest as these can be
represented by data and process models respectively.

The ORDIT Modelling Framework: We have taken
this generic model of an enterprise and from it developed
three separate but inter-related models of the organisation.
These models are of different aspects of the organisation
based either on responsibilities, on obligations, or on
activities. Each model includes the same three basic types
of entity: agents, activities and resources, and also the
relationships between them.

Figure 5 shows how the three models are related in that
the vertical links join concepts of the same type. This
scheme is based on the recognition of obligations, as we
define them, as the link between responsibilities and
actual activities. The model based on obligations is called
an obligation model because the obligations held describe
the holder’s job or role. Similarly for the resource entity,
capability tokens signifying capability to access resources
are seen to be the link between rights or authorisations to
access and the actual accessing of resources. For example
a doctor must first be author&d to access the necessary
parts of the IT system by an authorising agent before
being able to obtain tokens such as an identifier and
password that provide the capability to access. This allows
access to the information resource.

Figure 5. The Three ORDIT Models and how they
are related.

3. Security requirements

Figure 5 can be considered as a framework for
positioning security requirements. Security is often
thought of as a way of binding together a particular set of
capability tokens and resources according to the dictates
of some security policy. What is often not stated, however,
is how the security policy is derived, or any justification
that a particular set of bindings compose together to
achieve a particular security objective. The richer set of
concepts, and the relations between them, exhibited in
Figure 5 go some way to providing a language in which
these arguments can be made.

We have used the approach outlined in this paper to
develop a set of requirements, including security
requirements, for an integrated clinical workstation for use
in acute hospitals. These are open windows into extensive
computer and communication services that provide a
broad range of support to clinical staff in meeting their
responsibilities at the point of care. The immediate
objective of the part of the project cited here has been to
capture the nature of the requirements of medical doctors,
and ultimately of nursing and other staff who provide
direct clinical care. The scope covers the problems of
organising the process of medical care, of supporting the
medical records, and of implementing computer support
through carefully tailored user interfaces. Issues of
security of access and confidentiality of information have
throughout been of paramount concern.

The methodology used accepts that the fundamental
requirement is for users to have a solution to their
problems. In other words requirements are the obverse of
problems. The process therefore starts by making lists of
problems and frustrations with current procedures and
records, based on statements from potential medical users.
These are couched in the language and concepts of the
users.

147

Structuring the problems and transforming them into
user requirements has been done by applying the concept
of responsibility and related concepts shown in Figure 5,
so that the user requirements can be expressed in terms
familiar to the users while at the same time the expression
reaches the edge of the kind of language used by systems
developers.

The first step was to generate a list of eleven key
responsibilities held by medical doctors; a need to know, a
need to do and a need for audit list was then generated for
each responsibility. Each item in the need to do list was
then divided into two components: functions that could be
transferred to the system and tasks for the management of
the organisation.

Without going into details (which are in any case
sensitive), one example of the process should indicate how
the concepts were used. Consider the design of the
security privileges to be afforded a consultant who has
two separate sets of responsibilities: a National Health
Service consultant and a private practice consultant.
Whereas most of the time these two separate roles do not
conflict, it is obviously desirable1 to enforce separation of
duties at the level of the computing system so that the
private practice consultant cannot access NHS
information, and vice versa. The approach we take to
defining the boundaries of this separation is first to
establish the separate responsibilities and associated rights
(need to know, need to do, need for audit) for each
agency. These responsibilities will be different since the
two responsibility principals are different (NHS, the
patient in person). The obligations associated with each
responsibility are then examined and the need for
capabilities assessed, bearing in mind that deriving
capabilities from rights is part and parcel of, and
structurally isomorphic to, the process of deriving
obligations from responsibilities. Part of this process
involves examining delegation in the way we have
suggested (responsibilities cannot be delegated, but
derived obligations can) and examining the consequences
of the corresponding delegation of capabilities. It turns
out, for example, that the delegation rules in NHS and
private practice are different.

The mapping from obligations to activities is not
always straightforward if the possibility and consequences
of failure of activities is to be considered. In terms of the
classical approach to fault tolerance, the obligation can be
considered as the “acceptance test” and a variety of
alternative activities might have to be considered. Each
alternate will of course require its own set of resources
and access modes and the way in which these derive from
generalised capabilities will have to be considered.

4. Conclusions

A security policy must be capable of showing where
security responsibilities lie - for example, who can
authorise access to resources, who can validate claims of
‘need to know’, who can specify and operate prevention
mechanisms. The concepts we have designed and shown
in Figure 5 are an attempt to provide a modelling language
for these kinds of policy concerns so that the issues of
drawing security system boundaries can be discussed.

This issue of drawing system boundaries is not trivial:
In a previous study we conducted for a patient records
system for a small ward in a small hospital, one half of the
time, and one third of the effort, spent in the requirements
phase was simply finding out where the system boundaries
lay. These proportions are not untypical. It might be
difficult to prove, but our suspicion is that when a system
seriously fails to fulfil its security objectives, the failure
can more likely be traced to inappropriate or faulty
boundary drawing than inappropriate or faulty (use of)
security mechanisms. (Back door entries for system
programmers are a good example of this.) In our
experience, the main problem in system boundary drawing
is a clear delineation or model of the space in which the
boundaries are to be drawn. At the level of security
mechanisms, this space is one containing activities,
resources and agents (our activity model), but there are
often real difficulties in relating this space to the space of
an organisational security policy if the latter space is not
well defined.

The aim of this paper has been to show how
responsibility modelling can be used as a means of
specifying security policy requirements on an IT system
that is meaningful to both users and systems designers and
in a way that solves these difficulties. We hope to have
shown how obligations define what a responsibility holder
must do, and how these can be divided into those that
must be done by people and those that are transferable on
to the IT system, thus creating functional requirements on
that system. By listing what a responsibility holder needs
to know and needs to record we can create lists of
information requirements.

We also hope to have shown how organisational
structure may be interpreted in terms of responsibility
relationships, and therefore how a model of
responsibilities and their associated obligations not only
represents function but also the context within the
organisational structure in which the responsibility is held.
This has direct bearing on whether the responsibility
holder holds the necessary authorisation and capability
tokens to access the information resources required for
performance in a role while respecting the constraints
derived from a need-to-know security policy.

1 at least in the case of elective treatment; the emergency
situation is very different and it might not be at all desirable.

148

Acknowledgements

We gratefully acknowledge the contributions made by
our colleagues in the ORDIT project and also to Stewart
Orr, Project Manager of the Integrated Clinical
Workstation Project to the ideas presented here. We also
gratefully acknowledge the support of the University of
Newcastle upon Tyne and the Esprit programme (Project
2301).

149

