
W h a t is a Secret
- and -

W h a t does that have to do with C o m p u t e r Securi ty?

Ruth Nelson

Information System Security
48 Hardy Avenue, Watertown, MA 02172

Abstract
This paper questions some of the basic assumptions of

computer security in the context of keeping secrets, and it
finds some major discrepancies. It then proposes a new
paradigm for functional security in computer systems.

The first conclusion of the paper is that secrecy and
security cannot be expressed both algorithmically and
accurately. The second conclusion of the paper is that
functional security models, which look at the application
software as well as the data, can be very useful. Use of
more realistic models involves a more complex definition
of secure systems, but it may reduce the conflict between
security and function and may result in more effective
secure systems.

Introduct ion

The question "What is a secret?," is not often asked in
the computer security community. We think that we
know what secrets are and what security is. The questions
this paper raises are whether our assumptions about
secrets and security are true and, more importantly,
whether they lead to useful conceptual and formal models
of security. When w e use these assumptions without
questioning them, and develop models and security criteria
for trusted computer systems, we may be misleading
ourselves and the user community into a false comfort.
On the other hand, we need models and criteria to build
and evaluate sys tems . This paper examines some
assumptions embedded in current security models and
some possibly fundamental limitations of an algorithmic
approach to security. The goal of the effort is not to
discard the current paradigm altogether, but rather to
understand its scope and its limitations and to explore
whether some other approaches may be more useful.

The paper reaches two conclusions. The first, and
more important, is drawn from examination of the
characteristics of secrets and systems. It is that secrecy
and security cannot be expressed both algorithmically and
accurately. Any precise model we construct of a secure

system is an abstraction that captures part of the
requirements but misses the heart of the matter. This fact
is probably responsible for much of the conflict between
the security profession and the system users and designers.
Our models are not and cannot be "correct," because of the
nature of the problem. The model is not the reality.

This does not mean, however, that precise security
models are not useful. They point out aspects of the
system that need attention, they show security problems
and indicate countermeasures, and they encourage careful
system design with security as a real system goal.
Security models are important for secure systems.

The second conclusion of the paper is that a functional
security model that looks at the application software as
well as the data can capture required behavior that is
outside of the information flow models. This makes the
functional model extremely useful and appropriate,
especially for those systems that require large amounts of
information flow from "high" to "low." It is true that the
definition of security in the functional model is more
complex (and therefore harder to enforce with high
assurance) than the "no information flow" definition.
However, enforcement of any algorithmic model cannot
assure that the system keeps secrets, and system
operational requirements generally conflict with the data
flow constraints imposed by current models. Use of more
realistic models may reduce the conflict between security
and function and may result in more effective secure
systems.

What is a secret? And how does it
behave?

One "common sense" definition of a secret is some
information that is purposely being kept from some
person or persons. It is interesting to investigate the
behavior and characteristics of secrets; this can lead to
doubts about secrets being easily defined objects. It can
also lead to some understanding of the limitations of any
automated or unautomated approach to keeping secrets, for

74

secrets cannot in general be kept absolutely. In the
broader security community, this is fairly well understood.
The goal is to keep things secret for some amount of
time, or to make secrets hard to obtain, or to slow down
the leakage of secrets. In computer security, however, we
ignore considerations of this kind, and we try to design
systems that have high assurance of not leaking secrets at
all. This leads us to some very difficult technical
problems, but may not be leading us to greater system
security.

Another interesting question is what piece of
information contains or communicates a secret. The
relationship between information and secrecy is
complicated, as the following examples suggest

1. If we cut a secret in half, is it still a secret?
Suppose that a secret recipe calls for 6 cups of sugar. Is
6 the secret? Cups? Sugar? That may depend on what
the observer already knows and what he can guess from
context. If he knows nothing then none of the pieces may
be a useful secret, but the whole is. The U.S. Industrial
Security Manual calls for independent portion marking of
classified documents, but it is known that this is
inadequate for some documents that are classified only in
aggregate.

2. If we move a secret out of context, is it still a
secret? In the example above, it is clear that "6" is not a
secret in general. In the context of the secret recipe, it
may be.

3. If we collect enough non-secret information and
process it correctly, we may have a secret. One example
of this is intelligence signal processing. The radiation
containing the signals can be freely detected and is not
kept secret, but the sender hopes that the information-
containing signals themselves stay hidden in the
surrounding noise.

4. Some observers may already know something
about a secret or have a good guess at it; in that case, a
large secret can be communicated with very little
information flow. If an observer knows that an invasion
is planned by the Pentagon, but does not know when it
will take place, he may be able to learn the date from
simple activity observation around the Pentagon (the
famous Pizza Truck example).

5. Secrets can be communicated by very condensed
codes, if the parties have agreed on these ahead of time.
The famous "one if by land, two if by sea" is an example
of very effective secret information transfer.

6. In encrypted communicat ions , we can
communicate large amounts of data with no secrecy leak,
because there is another secret protecting the flow.
However, if the observer learns our encryption key and
algorithm, a relatively small amount of information, then
he can learn all the information we have sent encrypted
with that key.

7. Sometimes the information content of binary
data is easy to extract because the data representation is an
easily guessed standard. A good example of this is ASCII
text stored in a computer. If an observer gets access to the
text data, she can probably know the information it
represents, or at least much of it. Sometimes the data
representation is less easily guessed, making the
information harder to extract. Examples of this are data
base data, hard to interpret without knowing the schema,
and binary data constructed and used by a particular
application program.

Whatever the definition of a secret is, it seems clear
that if no information is passed from the holder of a secret
to the observer who desires the secret, then no secrets are
passed either. However, if the observer has access to any
information at all, then it is extremely difficult to know
whether she has the secret, knows the secret with
certainty, or has enough clues to make useful guesses
about the secret.

Automating security

The field of computer security is based on the premise
that it is possible to specify and construct processing
algorithms that capture security requirements and allow
them to be met by an automated system. The attempt i s
to adapt the security rules developed for manual systems
and paper by making them both precise and general. Even
in a manual environment, real security cannot be made
precise, and this has been understood from the beginning.
The goal for computer security was and is to construct an
approximation to security that is precise, algorithmically
enforceable and "safe." This implies some overconstraint,
but this is necessary in a system that cannot use human
wisdom and discretion.

The formalization efforts in the 1970s were spurred by
the increased use of computing, the complex nature of
computer systems (and their propensity for failure and
erratic behavior), and the clear impossibility of analyzing
all code in every system to insure that security was
preserved.

The Reference Monitor concept proposed by Anderson
in 197211] suggests use of a small amount of highly
trustworthy software (the Reference Monitor) which
constrains the operation of the system so that only
authorized access can occur. The Bell and LaPadula
model[2] and others developed since then, have guided the
design and evaluation of reference monitor-based systems
for multilevel security. The TCSEC[3] generalized the
Reference Monitor to include other security relevant
functions of the system, keeping the idea that a small part
of the system could be trusted to prevent all other users
and software from unauthorized access.

75

The reference monitor concept and the computer
security research of the last twenty years assume that
security can be defined in an application-independent
manner. This implies that security can be defined
syntactically rather than semantically, that understanding
of the meaning or even the form of information is
unnecessary for assuring secure automatic system
operation. Since semantic interpretation is very difficult
if not impossible to implement algorithmically, the
assumption of content-independent security is crucial for
any general approach to automating security.

These two assumptions: that it is important to localize
security functions to a relatively small portion of the
system and that automated security must rely on a
structural abstraction rather than a semantic understanding
of secrecy, have been crucially important in the
development of secure systems. However, the current
Reference Monitor paradigm makes some additional
assumptions that act as further constraints on system
functionality in the name of security. These additional
constraints often forbid necessary functions of the system,
thus leading to a strong conflict between security and
functionality. An interesting question is whether there
can be other models of automating security that are less
restrictive than the current models and which capture more
of the desired functionality of the system.

The subject-object paradigm

The current models of computer security are all based
on control of access to data by human users or software
operating on the users' behalf. The subject-object
paradigm divides the world into active entities (subjects),
which access passive entities (objects). The actions of
subjects are to access objects; more specific functionality
is not modeled. Access types include read, write and
execute, implying a consideration of active access.
However, the special characteristics of execute access are
lost and are often modeled as equivalent to read access.

This model captures the concept of access control for
the data resources of the system, but does not consider
access to specific processing functionality. The
assumption is that security can be modeled in terms of
access to data. Behavior of "untrusted" code is assumed
to be non-security-relevant, possibly hostile and subject to
contamination by Trojan Horses deliberately trying to leak
da~.

Data access is constrained by the system, but the
software itself is given no special protection. Code
resident in the system is treated like other data, and is
assigned a label representing its sensitivity. When
software is operating, it runs "at" the current security level
of the user. The system has no particular knowledge of
the functions performed by the software or the types of

data it is designed to use, nor does it provide any special
configuration control to prevent the software from being
changed, either by the user or without his knowledge.

In addition, the subject-object paradigm assumes that
human users and the software acting on their behalf have
similar characteristics. In a multi level secure
environment, for example, users have clearances and can
have read access to data up to the level of their clearance.
The software running on behalf of a user takes on the
privileges of the user. Software runs "at a level," with
read access at or below that level and write access at or
above that level.

Mandatory security and information
flow constraints

The current computer security paradigm embodies
constraints on information flow from "high" to "low" as
essential for confidentiality. The "mandatory security"
(MAC) policies and models all assume that information
flow represents potential loss of confidentiality and that
control of this flow represents security. However, in all
practical systems, some information flow is necessary to
make the system work. The solution to date is to declare
that this flow must be mediated by trusted processes,
which can determine the difference between information
flow that violates confidentiality constraints and flow that
is safe. The goal is, however, to minimize the flow of
information and to get as close as possible to the ideal of
no flow in the interest of high security.

Mandatory security policy restricts data flow from a
higher to a lower security environment and also across
compartment boundaries. Untrusted processes (subjects)
running at a higher level are not permitted to write data
(objects) at a lower level, nor are they allowed to cause
effects that can be seen by a lower level user. Any
necessary data flows from high to low are done by trusted
processes and are not covered by the model. These flows
are examined on a case by case basis.

The abstraction assumes that information flow from
"high" to "low" is equivalent to unauthorized disclosure of
secrets and that this flow must be avoided in a secure
system. It seems obviously true that preventing
information flow prevents disclosure of secrets. The
model, therefore, does represent a "safe" formulation of
confidentiality. The problem is the conflict with required
system functions, which can be more or less severe,
depending on the use of the system. In all practical
systems information flow from high to low is
unavoidable, and, in some systems, it is the main required
activity.

76

Mission-oriented systems

The current security models have been helpful in
making a precise definition of automated security, and
they do capture some of the aspects of secure computing.
In the time-sharing environment for which they were
devised, the approximation of zero data flow from high to
low and the identification of user with software work.
However, they do not apply nearly so well to a growing
class of systems, which we have called "mission-
oriented."[4]. In these systems, the computation is
directed towards a single mission objective. The
application software is typically static, having been
developed for the mission and installed in an operational
configuration. Software development is typically not
done on the operational machines but in a separate
development environment. Processing is not done on
behalf of human users; it is a response to conditions such
as input signals, time of day, communications with other
machines, etc. Users do not have much interaction with
the computer system, and their interaction is quite stylized
compared to a time sharing user at a terminal. The
system is designed tO produce output for users, and the
users are not authorized either to see the system's internal
data or to modify its operation.

As a designer of secure dedicated systems at GTE, I
participated in analysis of security and functional
requirements for a number of these mission-oriented
systems. One of the issues was whether and how
"trusted" technology could help. Our conclusion for most
of our work was that we needed a reliable operating
system environment but no mandatory security controls.
The information flow and labeling constraints imposed by
these controls would not add to the security of our
systems and would interfere with needed functionality.

Leakage problem

The assumptions in the current MLS model are
violated when there is a required data flow out of the
system to a "lower" environment. The data flow
constraints are necessary because of the lack of control
over untrusted functionality and the possibility of Trojan
Horse software. If the assumptions of the model are
violated (and they always are in real systems), then Trojan
Horses can cause compromise of confidentiality, no matter
how strong the Trusted Computing Base may be. Here is
an example:

Suppose that an A1 trusted system is connected to a
network via an end-to-end encryption device that encrypts
user data but leaves the network addresses exposed. The
device works securely and is trusted. It receives individual
packets and address information from the application and
sends out encrypted packets to the requested address, if the

communicat ion is authorized. The untrusted
communications application is running at Top Secret and
is allowed to communicate with two other applications at
two other network addresses. These are also running at
Top Secret. This untrusted application then has available
to it a two-symbol alphabet -- the two addresses. If it
contains a Trojan Horse programmed to use this alphabet,
it can send one bit of Top Secret data with each packet by
ordering the packets to its two correspondents so that the
sequence of addresses encodes the data. (If the application
can send to more than two addresses, then its symbol
alphabet is larger and it can send its information more
quickly.) The important thing to notice about this
example is that the trusted software is all acting correctly,
but it cannot prevent the leakage of information out of the
system. The model works only in the absence of required
or permitted information flow.

Functional security model

A truly secure and effective system would allow
information to flow as needed for system functionality
without allowing unauthorized release of secrets. This
kind of security requires that there be an algorithmic way
of telling whether particular data actually conveys a secret.
This is difficult if not impossible, as the examination in
the beginning of this paper indicates. The security
approach that considers processing function as well as
information flow provides for the required information
flow, but controls the functions that cause this flow to
happen. This is still a syntactic model of security, but it
is significantly more flexible than a model that considers
system activity only in terms of data access.

An abstraction of security that controls access to
particular processing functions as well as to data captures
security and functional requirements more realistically
than the current data access reference monitor models. The
new paradigm proposed in this paper does this. It is an
outgrowth of the model described by Clark and Wilson[5]
in 1987 for commercial security applications. The model
was further developed at GTE and shown to apply to
multilevel security and other DoD applications[6,7]. This
paper describes some of the previous work and refines the
approach. It also considers some fundamental issues of
secrecy and its automation and concludes that the
"historical" view of what is secret, as embodied in both
the current paradigms and the new one, are the best we can
do in an algorithmic environment.

The new paradigm proposed in this paper considers the
resources of the system to be both passive data and active
processing services (performed by software programs). It
looks at access in terms of a triple: human users, who
may request access to data or processing service;
programs, which access and produce data; and data. Only

77

the data resource is passive. The idea of security embodied
in this model differs significantly from that in the
reference model, subject-object concept. The system is
secure if it performs its functions as programmed. The
security policy is not part of the model and may be
different for each system.

The Clark and Wilson model recognized that the
functionality of a computer system depends on its
application software, and that correct functionality depends
on correct software accessing the appropriate data for that
program. It also recognized the need for functional
limitation of access, that is, for allowing users to use
some software in the system and not other software.
Their model went beyond subject-object to the triple of
user, program, data. The Clark and Wilson work was
intended.to capture the way that operational business data
processing is done. The application software for
commercial systems is also usually developed on separate
development machines, is installed and becomes
operational through controlled procedures and is not
permitted to be changed or updated in an uncontrolled
fashion. In addition, auditing is commonly done in
business computing so that transactions are checked and
books balanced.

The Clark and Wilson model incorporates the business
computing paradigm. Only some of the software is
configuration and access controlled. Auditing and
balancing functions are included in the model. At GTE,
we recognized the similarities between the Clark and
Wilson paradigm and the DoD mission-oriented systems
we were developing. We extended the model and removed
the constraints of business application.

In our version, all application software in the system is
registered and installed. The enforcement mechanism, a
kind of reference monitor that manages active as well as
passive resources, controls access on the basis of users,
programs and data. Programs and users are known to the
system individually; data is known by its type and
characteristics. Each program has appropriate input and
output data types, and the relationships between users'
privileges, input data and output data can all be expressed
and enforced.

A partially formalized model was developed for this
concept. Programs are active, acting as functions that
transform and create data. The security policy is not
embedded in the model so that each system can be tailored
to its requirements. It is possible to define levels of
classification and privilege and to constrain data flow from
high to low. The data flow models are a kind of
projection of this more functional model of security.
Instead of having software be either "trusted" and examined
or untrusted and unprotected, the system protects and
constrains all software. Some programs are "trusted" to
produce output at less than the levels of some of their

inputs, but they are constrained as to what types of data
they can use and produce. All programs, trusted or not,
are protected from unauthorized change. Data can only be
produced or changed by a program that is authorized and
registered for that type of data. Some data access is
constrained by the privileges of the user running a
program, but programs can also be allowed to have
internal data that their users cannot access more directly.

The reference monitor concept was developed with the
idea that only a small portion of the software in the
system could be thoroughly examined and verified correct.
It is still true that verification of correctness to any high
degree is difficult if not impossible for large programs.
However, it is also true that high quality software can be
developed. In the functional security model, the security
constraints and security functionality of each program are
explicit and visible. Each program can be developed with
an appropriate amount of assurance for its function. Once
it is developed and installed, the system will preserve its
quality and prevent it from being corrupted.

Security as history

It is clearly difficult to determine what secrets are and
whether a particular information flow constitutes a
security leak. Automated, application-independent,
general security models cannot hope to capture the
semantics of secrecy. It is noteworthy that both the
"traditional" models and the functional model proposed in
this paper take a historical view of data sensitivity. The
sensitivity of data depends on its derivation -- how it was
produced or changed, or how it may have been produced or
changed.

In the Bell and LaPadula model, the presumed data
sensitivity level depends on the access matrix. The *-
property requires that data output by a program (or data to
which the subject had write access) be classified at least at
the level of the most sensitive input (subject had read
access). This is a kind of high-water-mark history of the
data. For untrusted subjects, all interesting history is
captured by the current label, determined by the access
matrix at the time the subject is active.

In the functional security model, the history is more
complex, because it includes the processing. If the
system is operating correctly, then any data object in the
system either was in the system at the initial time, or it
was created by some sequence of legitimate program
executions.

78

Conclusions References:

Security is a subtle concept and hard to capture in an
algorithmic way. The current reference monitor model of
security focuses on data and on access to data. It was
designed for the time-sharing, general purpose computing
environment and applies reasonably well. It does not
allow control of authorized information flow from high to
low and so may not reveal or prevent leakage of data in a
system with required flows. The functional security
model has a less precise but more realistic idea of security
and correct operation. Its enforcement mechanism protects
both software functionality and data. The functional
model includes the current security model in that systems
can be configured to enforce access on the basis of
subjects and objects and a lattice of security levels, but it
can also provide controlled, authorized data flows without
allowing secrecy leaks. All of the models are syntactic
and historical and avoid the problem of what a secret
actually is.

[1] J. P. Anderson, "Computer Security Technology Planning
Study," ESD-TR-73-51, vol. I, AD-758 206, ESD/AFSC,
Hanscom AFB, Bedford, MA, October 1972.
[2] D.E. Bell and L.J. LaPadula, "Secure Computer Systems:
A Mathematical Model," ESD-TR-73-278 Volume 2, MITRE,
November 1973.
[3] Department of Defense Trusted Computer Security
Evaluation Criteria, DoD 5200.28-STD, National Computer
Security Center, December 1985.
[4] C. Limoges, R. Nelson, J. Brunell, L Heimann, "Security
for Mission-oriented Systems," MILCOM '92, San Diego,
CA, September 1992.
[5] D. Clark and D. Wilson, "A Comparison of Commercial
and Military Computer Security Policies," Proceedings of the
1987 IEEE Symposium on Security and Privacy, Oakland, CA,
April 1987.
[6] C. Limoges, R. Nelson, J. Heimann, D. Becker,
"Versatile Integrity and Security Environment (VISE) for
Computer Systems, New Security Paradigms Workshop II,
Little Compton, RI, August 1994.
[7] Internetwork Security Research, Contract Number
MDA904-89-C-6030, 1989-1993

79

