
F o r m a l S e m a n t i c s o f C o n f i d e n t i a l i t y i n

M u l t i l e v e l L o g i c D a t a b a s e s

Adrian Spalka

Department of Computer Science III, University of Bonn
RSmerstr. 164, D-53117 Bonn, Germany

Fax: - 49 - 228 - 550 382, Email: adrian@cs.uni-bonn.de

Abstract

This paper presents a new formal approach to the defini-
tion of confidentiality in multilevel logic databases. We
regard a multilevel secure database as an extension of
an open database which preserves the database-seman-
tics. We give four definitions of confidentiality which
capture various degrees of information on secrets. Three
of them are relevant in the presence of the Closed World
Assumption. We present their formalisation within
standard predicate logic and their interpretation for
multilevel databases. From this viewpoint, the defini-
tions lead to a formal semantics of the Simple-Security-
Property and the *-property. In particular, we demon-
strate that the traditional interpretation of these proper-
ties represents just a special case of our formalism.

1 Introduction

In this section we give an informal definition of an
ordinary and that of a multilevel logic database, we
motivate our approach and, finally, discuss previous
works and related approaches.

1 .1 Ove rv i ew

A state of the world as seen by a logic database (LDB)
consists of facts, rules and general laws. The LDB
maps a state of the world into a set of data and a set of
integrity constraints. The LDB uses clauses for the
uniform representation of data, constraints and que-
ries. The symbols which can occur in a clause are
stored in the LDB's signature. A LDB is valid if the
data satisfy the integrity constraints, viz the data allow
the derivation of the constraints.

In a multilevel state of the world, a set of security
levels is assigned to each piece of information. Ac-

cording to Thuraisingham (1991), information in a
multilevel state of the world is the knowledge of the
truth value of a statement with respect to a particular
security level. A multilevel database (MLDB) consists
of two components: a database and a partially ordered
classification scheme, where a set of security levels is
assigned to each element of the signature, data item
and integrity constraint. The classification in the mul-
tilevel database is assumed to correspond to the clas-
sification in the multilevel world. The handling of in-
tegrity constraints and the relationship of information
at different levels are controversial issues; they are
discussed in the next section.

A security policy regulates the access of processes
to a MLDB. The security policy encountered most
often is Bell and LaPadula's (BLP) interpretation of
the mandatory access control, which is described in
Landwehr (1981). BLP assigns a maximum security
level to each process (or equivalently, the user on
whose behalf the process executes) which is allowed
to have access to the database. The security policy of
BLP is formulated in terms of explicit primitive read-
and write-operations, but its two most important prop-
erties are usually translated for MLDB in the follow-
ing way:

• The Simple-Security-Property requires that a
process is only allowed to select a data item if the
process' security level is greater than or equal to
the item's level.

• The *-property requires that a process is only
allowed to modify the database in such a way that
for each data item involved in the modification, ie
insert-, delete- or update-operation, the item's
security level is greater than or equal to the
process' level.

Without going into details, we note that in order to
avoid some of its implications, the *-property is often
simplified to allow a modification only for data items

64

which have the same security level as the acting proc-
ess.

The Simple-Security-Property implicitly expresses
a MLDB's confidentiality requirements. It is under-
stood that an object must be kept secret from a user if
the object 's security level is greater than or incompa-
rable with the user 's level.

1.2 Rationale

The use of standard predicate logic for the description
of databases has a number of widely accepted advan-
tages. To us, the two most important ones are the
unambiguous semantics and the uniform representa-
tion of data and constraints. The most important se-
mantical task of an ordinary, open LDB is to watch
over the validity of the data with respect to the con-
straints. This is obviously not the only task of a LDB,
but if the constraints are removed from a database,
then, in our opinion, this is no longer a database. It is
rather an arbitrary set of data with some sophisticated
methods which can answer queries and modify the
contents of this set.

The original definition of BLP expresses the confi-
dentiality requirements of a multilevel system through
read- and write-operations. This is appropriate in a file-
and record-orientated environment in which the only
(direct or indirect) way to obtain the contents of a
record or file is by reading it itself. This view assumes
that if only non-confidential information is transmitted
to a user, then the confidential information is kept
secret from him.

The situation changes when we move to a logic-
based environment. To be able to read a clause from a
set of clauses means to be able to derive it from the
set. Here the read-operation should be replaced by
the process of deriving a clause.

Now two problems emerge. Firstly, it is possible
that a user can gain knowledge of a clause even if it is
not transmitted to him. Secondly, in the original envi-
ronment, the allowance and prohibition of a read-
operation are complementary actions, and the confi-
dentiality of, eg, a record is based on this fact. It is
kept secret if it cannot be read. For a clause, the prop-
erties of being or not being derivable from a set of
clauses are not the only possible relationships be-
tween a clause and a set of clauses. Therefore the
precise meaning of the statement 'A clause is secret if
it is not derivable' is ~I~e secrecy of a clause is pre-
served in any other case except when it is derivable'.
Does this match our intuition? We argue that it does
not and that in a definition of confidentiality, it is nec-

essary to name explicitly the relationship that must
hold between a clause and a set of clauses.

Let us at last assume that such a definition of confi-
dentiality is given. From the viewpoint of logic, the
only difference between any set of clauses and a set
forming a database state is that the former 's contents
may be arbitrary, while the latter 's must satisfy some
(static) integrity constraints. Thus, to affect a clause's
derivability or confidentiality, or in the broadest
sense, its relationship to the data of a state, it may no
longer suffice to modify just these data. From now on
we must take also the integrity co.~straints into con-
sideration, eg whether they allow a particular modifi-
cation of the data, or whether they themselves can be
modified. We are in no case allowed to ignore them-
they form an integral part of a database.

In summary, the derivability or confidentiality of a
clause depends on the data of a state. The contents of
a state are in turn fixed up to a degree of freedom
which is determined by the integrity constraints.

In this light we think it incorrect to speak of a fun-
damental conflict between confidentiality and integ-
rity. It is possible that the degree of f reedom is insuf-
ficient to keep a particular secret, but can we simply
assume that a secret can always be kept? As in real life
itself, if there are some known boundary conditions
which uniquely identify a thing, then it is useless to
try to keep it secret.

The main objective of this paper is to give an inter-
pretation of the BLP appropriate to multilevel logic
databases.

1.3 Related work

The relevant works most often concentrate either on a
formal definition of confidentiality or a practical con-
struction of multilevel relational databases.

According to Gougen /Meseguer (1984), a confi-
dentiality requirement expresses that 'under certain
conditions, certain individuals should not have access
to certain information". Its formalisation as non-
interference is specifically intended to model trusted
processes, but the authors also introduce a simple
model of a multilevel-secure database. In this context,
they interpret non-interference as non-derivability.

Morgenstern (1987) notes that in order to keep a
piece of information in a deductive database secret, it
may not be sufficient to make it directly inaccessible.
The author speaks of deductive databases in an in-
formal manner and uses them mainly to accentuate

Gougen/Meseguer (1984):75.

65

some new problems which arise during the transition
from relational databases.

The first basic attempt of a formal treatment of con-
fidentiality is presented in Thuraisingham (1991). The
author's main idea is to formalise the multilevel secu-
rity properties in NTML, a non-monotonic logic. Al-
though this approach points to the right direction,
NTML has been shown to be not sound.*

Berson/Lunt (1987a) and Berson/Lunt (1987b) in-
vestigate the possibility of the application of the MAC-
model to deductive databases. They point out many
new problems and suggest an approach to tackle
them, but, due to the initial nature of these works, no
solutions are offered.

Meadows/Jajodia (1987), Burns (1990) and
Wiseman (1990) are examples of early approaches
which consider a multilevel relational database in
which primary key and foreign key constraints are the
only classes of integrity constraints. Burns (1990) and
Wiseman (1991) note that there is a fundamental con-
flict between secrecy and integrity, since each of them
can only be enforced at the expense of the other.

The handling of polyinstantiation has also received
a lot of attention, eg in Jajodia/Sandhu (1990),
Sandhu/Jajodia/Lunt (1990) and Lunt (1991). Many
of the proposed solutions are of a syntactical charac-
ter, thus each solution solves one problem while open-
ing the way for another.

Denning et al (1988), Jajodia/Sandhu (1990) and
Jajodia/Sandhu (1991) are three of the first papers
which recognise that not every tuple in a multilevel
relational database (ML-RDB) corresponds to a true
fact in the real world. To exclude the unwanted tuples
from a security level, they introduce the notion of a
filter function. However, their definition does not pre-
vent the database from violating integrity.

In the approach of Smith/Winslett (1992), a tuple is
only believable to a user if both have the same secu-
rity level. This highly conservative assumption seems
to be neither practically relevant, nor theoretically
clear since the authors speak of believability in an
informal manner.

The most recent paper on ML.RDB is Qian (1994).
The author claims that integrity should be enforced at
every security level only on those tuples which are
believable at this level. However, to determine a tu-
pie's believability, she uses purely syntactic filtering
functions. Lastly, the author believes t that ML-RDB
with general integrity constraints unavoidably intro-

cf Garvey et al (1992):160.
1 Qian (1994):213, line 15.

duce functions with random choice, ie a random se-
mantics-a standpoint which in our opinion is defi-
nitely wrong.

2 Basic definitions

Following Cremers/Griefahn/Hinze (1993) we con-
sider databases from the viewpoint of predicate logic.
Thus the discussion and the results are also valid for
relational databases in proof-theoretical representa-
tion.*

2 . 1 P r e d i c a t e log ic

A signature is a pair Z = (FS, PS). The set FS con-

rains ranked function symbols and PS ranked predi-
cate symbols. Both sets, FS and PS, are non-empty,
finite and disjunct.

The set of terms over a signature Z, TE z, is the
smallest set with the following properties: each vari-
able is a term; each constant, ie a function symbol of
rank 0, is a term; l e t f b e a function symbol of rank k
and t 1 tk terms, then f (t 1 tk) is a term. A term

is ground if it does not contain any variable.
Let r be a predicate symbol of rank k and t 1 t k

terms, then r (t I tk) is an atomic formula or for

short an atom. Let a be an atomic formula, then a is a
positive literal and - , a a negative literal. We denote
the set of atomic formulae over Z by AF x and the set
of literals over Z by LI'I ¢. A literal is ground if it com-
prises only ground terms.

A clause is a formula of the form
alV...vct m <-- .,~1 ̂ . . .^) .n

in which all variables are assumed to be universally
quantified. Each o: i in the head of the clause is an
atom and each 27. in its body a literal. A clause is
range-restricted if each of its variables occurs also in a
positive literal in its body; indefinite or disjunctive if
m > 1 ; normal if m = 1 ; a query if m = 0 ; and ground
if it comprises only ground literals. A normal clause is
called a rule if n > 1 and a fact if n = 0.

We assume that all clauses are range-restricted.
We denote the set of all these clauses over E by CL z
and its subset of normal clauses by NCLZ. §

Let I c_ CL be a set of clauses, then Th(I) _c CL

* cf Reiter (1984).
§ We omit the superscript whenever the respective signa-
ture is evident.

66

denotes all clauses which can be (logically) derived
from I (for a clause ~o, ~o ~ Th(I) is also denoted as

It-~o). We denote the set of all atomic formulae in

Th(I) by F(I) , ie F (I) = Th(I)[nv .

Let I c_ N C L ~ be a set of normal clauses. The

completion of I as defined in Cremers /Gf ie fahn / -

Hinze (1993)* is denoted by f . We assume that the
declarative semantics of a set I __ N C L z is given by

its completion.

2 . 2 L o g i c databases

A scheme is a pair D B = (Z , C) , where Z = (F S , PS)

is a signature and C c_ CL z a set of clauses. Z deter-

mines the set CL z , which is the language of DB. The
elements of C are called static integrity constraints;
they represent invariable propert ies of the world.

A valid state of DB is a set I c N C L z the comple-

tion of which is consistent and which satisfies the

static integrity constraints, viz C c_ Th([) holds. The

present state of DB, db = I , can be any valid state I.
Let e - A be a query, where A = 21^.. .^ ~ . The

answer-set of db = I to +-- A is the set of all ground

substitutions, YI = {zl }, for the variables of A such

that Axi ~ Th(i).

We assume that a transaction can change the pres-
ent state of a database. However, its formal definition
is not needed in this paper.

2 . 3 D a t a b a s e s with user s and rights

The database presented above is an open one because
it cannot tell one user from another- i t answers any
query and follows any valid transaction in the same
manner. A database mus t be able to recognise the
users if it is expected to treat them differently. There-
fore we add to our database a set P of all users or per-
sons who have access to it. We also introduce for each
user p e P the following rights:

• RS a c_ CL zpt determines the clauses a person

Cremers/Griefahn/Hinze (1993):60.
* For the moment it suffices to know that the sets of sym-
bols of Ep, the signature of p, are subsets of the respective
sets of Z. The motivation for the removal of a symbol from
Zp is given later.

may see as an e lement of I or C.
• RD a c_ RS a determines the clauses a person is

allowed to delete.

• R/a _ CL ~p determines the clauses a person is

allowed to insert.
Now we have arrived at a database which recognises
different users and is able to behave in accordance
with the stated fights. We call it a database with
rights.

2 . 4 Persona l database profi les

Let DB be a database with the scheme DB = (E,C)

and the state db = I . The application of RS, the right
to see, to DB provides for each user p his profile DBp
with the scheme DBp=(Ep,Cp) and the state

dbp = Ip.

One of the requirements to the profile is that it sat-
isfies the confidentiality requi rements for the user p.
But there is more than this. Our starting point has
been an open database. Then we have added users
and fights to it. If a user possesses all fights, then his
profile is identical to the whole database. Otherwise,
his profile is different from it. Should the database
semantics of the whole database or of a profile be
allowed to vary depending on the actual settings of the
rights? We maintain that the desirable answer is in
both cases 'No'. We would like to look on a profile as
an independent open database which respects the
validity of the whole database. Thus we must deter-
mine the relationships between the original database
and a profile, and between profiles.

First of all we must require that DB should always
be valid and that validity of a state db = I depends

only on the constraints C, ie C c_ Th(i).

Secondly, a state dbp = Ip of the profile DBp should

also be always valid, and since DBp should behave as
if it were an autonomous database, its validity must
not depend on anything else but the constraints of

DBp = (Ea,C p). Thus we require that C a c_ Th(i a).

Thirdly, a use r ' s transaction can never violate C a,
but since DB is the ultimate authority on integrity, it
must not happen that a transaction violates C, ie

Ca Th(71 a) and C cZ Th(I). Formally this can be E

translated into the requi rement

or equivalently

67

Finally, we require that the validity of two profiles is
independent from each other. This means that a valid
transaction executed by one user may not invalidate
the profile of another user. The formal interpretation
depends on the relationship between the data of two
profiles. They are obviously independent if they do
not share any data. We later investigate the case when
one is a subset of the other, which is usually consid-
ered to hold in multilevel databases.

3 Formal semantics of confidentiality

In this section we present a summary of the results of
Spalka (1994). An object of protection in a logic data-
base is either a symbol of the signature, an atomic
formula, ie a fact, or a clause, ie a rule. However,
atomic formulae play here a central role.

3 . 1 C o n f i d e n t i a l i t y o f symbols

Symbols of the signature cannot be directly manipu-
lated. A symbol is only a part of a clause. To keep a
symbol secret from a user can thus only mean that:

• This symbol does not appear in any clause of the
user 's data or constraints.

• The database responds with 'I don' t understand',
viz B y n t a x e r r o r , to a query or transaction of
the user if it comprises this symbol.

Both points are immediately linked to the signature of
the user-profile. They can be satisfied when the secret
symbol is removed from it. One should however keep
in mind that the removal of just one symbol from the
signature can reduce the language by a considerable
number of clauses.

3 . 2 C o n f i d e n t i a l i t y o f f a c t s

Let 6 be a fact, I a set of clauses and 6 is derivable
from I, ie 6 • Th(I). Let us also assume that 6 should

be kept secret from the user p with regard to I. As
long as p does not mention 6, its secrecy is preserved.
But what should the database answer when the user
asks

Does 6 • Th(I) hold?

The re are (at leas0 five possible answers: "Yes',
'Maybe', 'No', 'I don ' t know' and 'I don' t understand'.

The first answer tells the whole truth and obviously
does not preserve secrecy. But which of the remain-
ing four possibilities preserve secrecy? The second

answer is not a lie, but it is also not the whole truth.
The database admits that it knows the truth but it is
not going to tell it. The 'No'-answer is a blunt lie. In
the fourth case, the database admits to understand the
question, but it pretends not to know the answer. Fi-
nally, in the last case, the database pretends not even
to understand the question.

In general, each answer except "Yes' is suitable to
keep the secret. However, depending on the circum-
stances, an answer can be too weak in a particular
situation. We see that there is no unequivocal defini-
tion of secrecy. Some things can be more secret than
other. Each of the five answers gives the user a differ-
ent amount of information on the secret. Since the
amount of information is gradually decreasing with
each point, we can say that each answer represents a
degree of confidentiality.

We take the view that the decision on the real se-
crecy of a secret or on the amount of information
about a secret which a user may acquire must be
made by an application. Thus it is necessary to assign
a degree of confidentiality to a confidentiality re-
quirement. But first we translate the informal answers
into formal expressions in the context of a logic data-
base:

co: rh(7)
o1: ' " ~ v ~ v 6 V . . . E

G2:6 rh(i)
G3: 6 ~ Th(i) and ~ a ~ Th(i)

G4: a ~ A F
A confidentiality requirement for an atomic formula is
now a statement of the form ' 6 should be kept secret
from p at the degree G' where G is one of G1 to G4.

G1 is the only degree of which we can say that it
does not allow the database to lie to conceal a secret.
It only provides him with a weaker information than it
is capable of, but this information is still true. If we
contemplate the possible consequences of a lie from a
practical and ethical point of view, then it seems pref-
erable to give imprecise rather than false information.
This preference is also underlined by the effort
needed to enforce G2, which may require the mainte-
nance of a consistent set of lies.

Finally, we note that the traditional definition of
confidentiality as non-derivability is equivalent to the
Gl-degree in our formalism.

3.3 Confidentiality of rules

In principle, it would be possible to define the confi-

68

dentiality of a clause in the same way as for an atomic
formula. We believe that this is inappropriate. In our
opinion, a reason for keeping a rule confidential is that
it is used to derive confidential data. To give an exam-
ple, let s(X)e-- r (X) be a confidential rule and r(a) a
fact. Then s(a) should also be kept secret.

We thus say that the requirement to keep a rule
confidential, means that:

i) This rule is not among the stored data or integ-
rity constraints.

ii) The data which can be derived by this rule
should also be kept secret.

Since a fact is a rule with an empty body, this defini-
tion is a proper extension of the definition of confiden-
tiality of a fact.

4 Confidentiality in multilevel databases

This section discusses the adaptation of BLP based on
the MAC-model to multilevel logic databases.

4 . 1 T h e M A C - m o d e l

The MAC-model can be defined as
=(O,S, SC, L)

0 is a set of objects, ie units of protection. The set S
contains subjects which represent users that work
with the objects. SG is a partially ordered set" the
elements of which are interpreted as security levels.
L:S u 0 ~ SG is a function which places a security
mark on every subject and object. The value of L(o),
o ~ O, is interpreted as the object's degree of confi-
dentiality, and the value of L(s), s e S, as the subject's

degree of trustworthiness.
The MAC-model is assumed to satisfy two proper-

ties. The Simple-Security-Property states for a file-
orientated environment that L(s)> L(o) is necessary

and sufficient in order that s may read o, and it is un-
derstood that any object which s may not read must
be kept secret from him. The *-property states that
L(o)> L(s) is necessary and sufficient in order that s

may create or write o.
Now we give an interpretation of the MAC-model

for logic databases. The objects of 0 are identified
with symbols of the signature, facts and clauses. The
subjects of S are identified with the users in P and the
database commands. SG and L are adopted as new
components of DB. The interpretation of the two

Some authors define SG as a lattice.

properties depends on the object. Before we go into
details, let us take a look at the original intention of
both properties.

4 .1 .1 The Simple-Secur i ty-Proper ty

The function L enables us to relate an object and a
subject. The Simple-Security-Property uses this rela-
tionship to express two points. Firstly, the property
itself is the following implicit, generic confidentiality
requirement: an object o should be kept secret from a
subject s, if L(s)>__L(o) does not hold. Secondly, this

property shows us how to satisfy this confidentiality
requirement in a file-orientated environment: if o
should be kept secret from s, then s should not be
given read-access to o.

In its original definition, both points are merged
into one statement. This is appropriate for a file-
orientated environment, but for a logic database we
must consider both points separately.

4.1.2 The *-property

A subject can actively or passively acquire knowledge
either by executing read-operations or by waiting until
other subjects execute write-operations which a r e
addressed to him. The Simple-Security-Property is
concerned with the first case. The *-property worries
about other subjects' write-operations. Is this really
something we need to worry about in a model?

The *-property limits a user 's ability to perform
modifications of a system. It prevents him from modi-
fying an object the security level of which is lower
than his own. This restriction is hard to understand
when we keep in mind that a user is only assigned a
specific security level if he is trusted to behave prop-
erly. Since the *-property does not state anything
about a user 's trustworthiness, we must try to give a
different interpretation to it.

If this property is concerned about a situation in
which a user may be misled to use an untrustworthy
command which pretends to be trustworthy, then it
can be safely abandoned if the implementation of the
commands can be trusted. In this case the *-property
does not belong to the model, but is rather an imple-
mentation requirement. If, on the other hand, its in-
tention is that a system itself may not write-down any
information not approved of by the Simple-Security-
Property while it is processing a read-operation, then
it is evidently not concerned about the possibility that
the system will deliberately and intentionally violate
the Simple-Security-Property. In our opinion, explicit

69

modifications which violate the *-property should be
admissible on account of their implied trustworthi-
ness.

To us the *-property has only one meaningful in-
terpretation: if two subjects, who may be users or
commands, are able to communicate with each other,
then a communication must be conducted in such a
way that neither party will be provided with any im-
plicit knowledge on information which should be kept
secret from it and which is visible to the other party. If
both subjects are users, then we can do nothing but to
rely on their trustworthiness. If on the other hand a
user is communicating with a database, then we must
establish instructions for its behaviour. Yet in both
cases we are forced to define the kind of implicit
knowledge which may not be written down.

We advocate to choose an interpretation for the *-
property which agrees to the assumptions about a
subject 's trustworthiness expressed by the function L.
In particular, we do not regard the *-property as a re-
striction on explicit modifications, but only as a re-
quirement to confine specific kinds of implicit infor-
mation transfers.

In this light, in a theoretical model the *-property is
subsumed by our interpretation of the Simple-
Security-Property, since the kind or degree of infor-
mation which a subject is allowed to have on a secret
can be expressed within a confidentiality requirement
in our formalism.

4 . 2 C o n f i d e n t i a l symbols

When symbols of the signature are objects of protec-
tion, the situation resembles very much that in a file-
orientated environment.

Let a and b be two symbols and ph and pl two users
such that L(ph)>L(pl), L(pl)=L(a) and

L(ph)= L(b). The signature of ph comprises both a

and b, while according to section 3.1, b is not an ele-
ment ofp l ' s signature.

Thus for the users ph and pl, the Simple-Security-
Property induces an inclusion-relation on their signa-
tures.

4 . 3 C o n f i d e n t i a l f a c t s

Let ph and pl be two users with their database profiles
DBph and DBpl so that L(ph)> L(pl). Let moreover a

be a fact from the data of the state dbph = Iph and

L(ph)=L(tz). The Simple-Security-Property tells us

that a should be kept secret from pl with regard to
DBt~. In section 3.2 we have shown that this require-
ment must be qualified with a degree of confidential-
ity, which can be G1, G2, G3 or G4.

4 . 3 . 1 G1

This weakest confidentiality-degree allows pl to have
indefinite information on t~. Let us consider the follow-
ing example. Let

Z = (FS= {a},PS = {q,r,s})
C={q(X)vr(X)+- s(X)}

be a LDB-scheme visible to the user pl. Let moreover

Y(Tph)= {r(a),s(a)}, and r(a) should be kept secret

from pl at Gl-degree. pl must not be able to derive
r(a). Thus we reduce pl's set of positive data to

F (/p t)= {s(a)}. Now the trouble is that Ipt does not

satisfy C, and we owe the user an explanation. We
suggest to tell him that his profile is weakly consis-
tent, that is:

• the integrity constraints in C are always satisfied
by the data in db = I

• his data may seem to violate C due to some se-
crets

Now the user is able to identify the violated con-
straint, and through a simple substitution he can find

out that q(a)v r(a)~ Th(i) holds, viz ei ther q(a) or is

r(a) true. Maybe r(a)is true, or maybe not.

We see that the interpretation of G1 in a LDB in-
volves some interactions and new conventions. The
general enforcement of G1 is based on the following
method. Firstly, reduce the data in a user ' s profile so
that he can not derive the secret fact from it. Sec-
ondly, observe how the reduction affects the user 's
integrity constraints. If all constraints are satisfied,
then the user cannot use them to derive any further
information. If a constraint is violated, then we should
hope that it is an indefinite clause, viz it will only tell
the user that a disjunction of some facts is true. How-
ever, if this constraint is a definite clause, then it may
not be possible to enforce G1.

Since Gl-requirements only reduce the data of a
profile but do not introduce any data, the data of a
profile are always a subset of the global database's
data. For our users ph and pl, the Simple-Security-
Property induces an inclusion-relation on their posi-
tive data, ie facts:

F(i,I)c--F(i,h)"

70

Does the same relationship also hold for their sets of
integrity constraints? The answer is a definite 'No'.
The properties of Th as a hull-operator, the validity of
a profile and the subset relation on the sets of data
yield only the following inclusions:

Ctn ~ Th(It, t)
C,i c-- Th(i,h)
C,h c-Th(Iph)

The relationship Cpl c_ Cph , or more general

Th(fpt)cTh(fph), does not follow from the above

inclusions. In our opinion, to state it as a requirement
would only limit the database's expressiveness.

We believe that integrity constraints must only sat-
isfy the semantics-preserving properties of a personal
database profile. Here the independence of the pro-
files of pl and ph has two consequences. Firstly, the
construction of C~l and C~h must ensure that pl's valid
transactions do not invalidate ph's profile. Secondly,
the transactions of ph are guaranteed to respect the
validity ofp l ' s profile if they only affect data of his own
level. However, based on ph's trustworthiness, he can
be allowed to execute any transaction which leads
even to a weakly consistent profile of pl as long as no
secret fact at Gl-degree is disclosed.

4.3 .2 G2

Let c~ be a fact which should be kept secret from the
user pl at G2-degree. The database is required to en-

sure that c~ ~ Th(lpt) and Cpl c Th(Ipl).
The difference between G1 and G2 is that G1 al-

lows a profile to become weakly consistent, whereas
G2 does not. This is necessary in order to avoid the
derivation of any information which cannot be derived
from I~, ie the database must always answer with a
convincing 'No'. Let us consider a variant of the ex-
ample of the previous section.

Z = (FS= Ia},PS = Iq, r,s})
C={q(X)vr(X)+--s(X)}

Y(I)={r(a),s(a)}
We require that r(a) should be kept secret from pl at

G2-degree. Now we are not allowed to set

F(Ipl)={s(a)} since this gives pl indefinite informa-

tion on the secret.
We see that there are two reasons for weak consis-

tency:
• the secret r(a) is not derivable from I~

• q(a), which is not secret, is not present F(D.
Consequently there are two ways to make pl's profile
consistent:

• Show pl the secret, viz insert r(a) into I/~

• Insert something else into I~ which makes it con-
sistent, ie insert q(a).

This example shows that q(a) represents from the

database's viewpoint a plausible lie for r(a), ie it may

serve as a cover story* for a secret fact. We say that
q(a) is an alias for r(a). In general, each fact from the

violated constraint's head except the secret is a plau-
sible lie. t However, if this constraint is a definite
clause, then it offers no aliases for the secret. In this
case the constraint uniquely identifies the secret, and
confidentiality at G2-degree cannot be enforced.

Since the alias is a member of F(i~t) but not of

F(i), F(ipt) is no longer a subset of F (i) . For our

users ph and pl, the Simple-Security-Property does not
imply an inclusion of the sets of integrity constraints
for the same reasons as for G1. Moreover, it can be no
longer interpreted even as an inclusion on the sets of
their data because G2-requirements may lead to a
deliberate inclusion of false information into a user 's
profile. G2 provides a higher degree of confidentiality
than G1, but aliases do not come without problems.

The next example motivates the interpretation of
the Simple-Security-Property for G2-degree. Let us
assume that the fact c~ must be kept secret from pl
and that G2-secrecy can only be enforced if the alias fl
is inserted for ~ in pl's data. pl cannot recognise fl as
an alias (it is placed in the light grey zone in the dia-
gram on the next page). Let us assume that ot is not
Secret to the user ph (it is located in his white zone).
Now ph sees two different facts, which represent two
different names for the same fact. How can ph recog-
nise which of them is the true one, and which is an
alias? If ph is considered trustworthy to see the truth,
he must not be confused by false aliases.

We see that an alias inserted for a user at a low
level can disturb the profile of a user at a higher level.

cf Garvey/Lunt (1991).
t Briiggemann (1993) aptly points out that a good cover
story is also expected to play down the covered secret as far
as possible. Thus it would be advisable to measure the qual-
ity of a cover story with respect to a secret. Although we do
not do it in this paper, our database can use some special
predicates to express it, eg as an order on the possible
plausible lies.

71

- - t

i i ii ii ii ii iii iiii i ii i ii i iiiiii!ii!i"!iiiiiiiiiiiiiiiiiiiii iiiii i iiii
t

t

t

09

Q
(.9

¢/)

09

Q

Not recognisable
aliases T ru e clauses

Thus we must provide for the possibility to move an
alias from the light grey into the dark grey zone, viz
out of the profile's data.

For a user p, the set of facts a which satisfy the
condition L(p)>_L((z)can be partitioned into three

subsets:
i) true facts

ii) aliases which are not recognisable as such at p 's
security level L(p)

iii) recognisable aliases at L(p)
Thus for G2-degree the Simple-Security-Property in-
duces between two users with adjacent security levels
an inclusion-relation on the true facts and on the ali-
ases which are not recognisable at both levels. For
users with any two comparable security levels, the
inclusion-relation holds only on the true facts.

4 . 3 . 3 G3

A confidentiality requirement at G3-degree can be
expressed in standard predicate logic. However, it is
trivially not satisfiable in databases with completion-
semantics, viz, in which the Closed World Assumption
is made. It tells us that for each atom a, either a or its
negation - ~ is derivable. This obviously contradicts
the formal G3-requirement.

4.3 .4 G4

G4 is the strongest degree of confidentiality. It re-
quires a database to give a user no information on a
secret. According to section 3.2, this means that a is
not a valid fact in the user profile's language, ie

at ~ AF zp* . The only way to achieve it is to remove at

least one symbol from the user 's signature which he
would need to construct the confidential fact. We see
that confidentiality of facts at G4-degree can be re-
duced to confidentiality of symbols.

4 . 4 Confidential rules

The definition of confidentiality of a rule reduced to
the rule itself requires that the rule should be neither
an element of the data nor of the integrity constraints.
Here further investigation is necessary in order to find
out when and how this can be done without violating
the database semantics.

5 Conclusion

In this paper we have presented a new approach to the
definition of confidentiality in multilevel logic data-
bases. An open deductive database has served as our
starting point. With the introduction of users and
rights we have defined the notion of global consis-
tency and that of a personal database profile.

We have shown that secrecy has no unique mean-
ing. We have given four possible definitions of se-
crecy, G1 to G4, which have been motivated by real-
life situations. They correspond to the information
which is contained in the informal answers 'Maybe',
'No', 'Don't know' and 'Don' t understand', that is, they
capture the various degrees of implicit information
which a user may obtain on a secret. All definitions
have been formalised within standard predicate logic.
Three of them, G1 for indefinite, G2 for negative, and
G4 for no information on secrets, are relevant in the
presence of the Closed World Assumption. From the
viewpoint of multilevel security, G1 to G4 provide a

72

formal semantics of the Simple-Security-Property and
the *-property. In particular we have demonstrated
that the traditional interpretation of these properties
represents just a special case of our formalism.

References

Berson, Thomas A., and Teresa F. Lunt. 'Security
Considerations for Knowledge-Based Systems'.
Third Expert Systems in Government Conference.
Reprint. 1987.

Berson, Thomas A., and Teresa F. Lunt. 'Multilevel
Security for Knowledge-Based Systems'. 1987
IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, 1987. pp 235-242.

Briiggemann, Hans Hermann. Private communica-
tion. Hildesheim, 1993.

Burns, Rae K. 'Integrity and Secrecy: Fundamental
Conflicts in the Database Environment'. Ed Bha-
vani Thuraisingham. 3rd RADC Database Security
Workshop 1990. Bedford, Massachussets: Mitre,
1991. pp 37-40.

Cremers, Armin B., Ulrike Griefahn, and Ralf Hinze.
Deduktive Datenbanken. Vieweg, 1993.

Denning, Dorothy E., Teresa F. Lunt, Roger R. Schell,
William R. Shocldey, and Mark Heckman. ~ h e
SeaView Security Model'. 1988 Symposium on Se-
curity and Privacy. IEEE Computer Society Press,
1988. pp 218-233.

Garvey, Thomas D., and Teresa F. Lunt. Multilevel
Security for Knowledge Based Systems. Technical
Report SRI-CSL-91-01. Menlo Park, CA: SRI Inter-
national, 1991.

Garvey, Thomas D., Teresa F. Lunt, Xiaolei Qian, and
Mark E. Stickel. ~Foward a tool to detect and
eliminate inference problems in the design of mul-
tilevel databases'. Ed Bhavani Thuraisingham, and
Carl E. Landwehr. Database Security VI. IFIP
WGll.3 Workshop on Database Security 1992.
Amsterdam: North-Holland, 1993. pp 149-167.

Gougen, Joseph A., and Jos~ Meseguer. 'Unwinding
and Inference Control'. 1984 IEEE Symposium on
Security and Privacy. IEEE Computer Society
Press, 1984. pp 75-86.

Jajodia, Sushil, and Ravi Sandhu. 'Polyinstantiation
Integrity in Multilevel Relations'. 1990 IEEE Sym-
posium on Research in Security and Privacy. IEEE
Computer Society Press, 1990. pp 104-115.

Jajodia, Sushil, and Ravi Sandhu. froward a multilevel
secure relational data model'. ACM SIGMOD In-
ternational Conference on Management of Data
1991. 1991. pp 50-59.

Landwehr, Carl E. 'Formal Models for Computer
Security'. ACM Computing Surveys 13.3 (1981):
247-278.

Lunt, Teresa F. 'Polyinstantiation: an Inevitable Part
of a Multilevel World'. The Computer Security
Foundations Workshop IV. IEEE Computer Society
Press, 1991. pp 236-238.

Meadows, Catherine, and Sushil Jajodia. 'Integrity
Versus Security In Multilevel Secure Databases'.
Ed Carl E. Landwehr. Database Security. IFIP
WGll.3 Workshop on Database Security 1987.
Amsterdam: North-Holland, 1988. pp 89-101.

Morgenstern, Matthew. 'Security and Inference in
Multilevel Database and Knowledge-Base Sys-
tems'. 1987 ACM SIGMOD Conference/SIGMOD
Record 16.3 (1987):357-373.

Qian, Xiaolei. 'A Model-Theoretic Semantics of the
Multilevel Relational Model'. Ed Matthias Jarke,
Janis Bubenko, and Keith Jeffery. Advances in Da-
tabase Technology - EDBT'94. LNCS, vol 779. Ber-
lin et al: Springer-Verlag, 1994. pp 201-214.

Reiter, Raymond. ~'owards a Logical Reconstruction
of Relational Database Theory'. Ed Michael L.
Brodie, John Mylopoulos, and Joachim W.
Schmidt. On Conceptual Modeling. New York:
Springer-Verlag, 1984. pp 191-238.

Sandhu, Ravi, Sushil Jajodia, and Teresa F. Lunt. 'A
new polyinstantiation integrity constraint for multi-
level relations'. The Computer Security Founda-
tions Workshop III. IEEE Computer Society Press,
1990. pp 159-165.

Smith, Kenneth, and Marianne Winslett. 'Entity
Modeling in the MLS Relational Model'. 18th
VLDB Conference. 1992. pp 199-210.

Spalka, Adrian. 'Formal Semantics of Rights and Con-
fidentiality in Definite Deductive Databases'. IEEE
Computer Security Foundations Workshop VII.
IEEE Computer Society Press, 1994. pp 47-58.

Thuralsingham, Bhavani. 'A Nonmonotonic Typed
Multilevel Logic for Multilevel Secure Data/Know-
ledge Base Management Systems'. IEEE Com-
puter Security Foundations Workshop IV. IEEE
Computer Society Press, 1991. pp 127-138.

Wiseman, Simon. ~I'he Control of Integrity in Data-
bases'. Ed Sushil Jajodia, and Carl E. Landwehr.
Database Security IV. IFIP WGll.3 Workshop on
Database Security 1990. Amsterdam: North-
Holland, 1991. pp 191-203.

Wiseman, Simon. q'he conflict between confidential-
ity and integrity'. IEEE Computer Security Founda-
tions Workshop IV. IEEE Computer Society Press,
1991. pp 241-242.

73

