
Fortresses Built Upon Sand 

Dixie B. Baker, Ph.D. 
Science Applications International Corporation 

The current “trusted system” paradigm is built upon the notion of a Reference Monitor that 
assumes the existence of a well-defined security policy, a bounded system entity, and a 
centralized reference validation mechanism with knowledge of and control over the system 
entity. The “trusted system” paradigm is hierarchical: management defines the policy, the 
hardware and system software that comprise the trusted computing base enforce the policy, and 
applications must conform to the policy. This paradigm acknowledges that applications depend 
upon the hardware and operating system on which they run, and that assurance that they will 
execute safely is derivedfiom the strength of this “trusted computing base. ” 

Several observations have prompted computer scientists to reexamine and question the relevance 
of this hierarchical “trusted system” paradigm: 

l Individuals, businesses, government, and social services are increasing their dependence 
upon computer systems and networks for both routine and critical functions, including 
electronic commerce, communications, education, medical collaboration, and entertainment. 

l The information systems upon which society is becoming increasingly dependent (e.g., power 
grids, telephone, Internet) are highly complex and non-hierarchical, often lacking a clear 
boundary and a common set of security objectives.’ 

l Attacks on networks and computer systems are becoming more frequent, virulent, global, and 
broadly publicized. 

The “obvious” conclusion seems to be “The Emperor has no clothes!” The “trusted system” 
paradigm must not be working - what we need is a totally different paradigm! 

It’s obvious to even the casual observer that what we’re doing now to make our systems safe and 
secure is not working. But is the “trusted system” paradigm at fault? Or are we just attempting 
to build our fortresses upon sand? Let’s examine the perceived problems with the existing 
paradigm and one of the proposed solutions. 

Policy 

In his provocative paper “The Emperor’s Old Armor” [BLA96] (different Emperor), Bob Blakley 
argues that “policy” is too complex (difficult to administer) and is not scaleable. My first 
reaction to this assertion was “without a policy, how do you know what you’re trying to 

’ I am consciously avoiding using the term “security policy,” as it appears to have different meanings for different 
people. 

148 



accomplish?” Then I realized that Blakley was really talking about access control policy and not 
“policy” in general. In that case, I agree with him that access control policies are very difficult to 
administer, and don’t scale in any dimension; they are limited both in the number of subjects, 
functions, objects, operations, and classes, and in breadth of control. Further, as both Wulf et 
al. [ WUL96] and Greenwald [GRE96] point out, today’s distributed environments require 
multiple protection philosophies and policies.2 

Though not articulated, the common “policy,” or perhaps more accurately “philosophy of 
protection,” that runs throughout all of these papers (and others that were presented at the New 
Security Paradigms Workshop) is that systems should be dependabZe.3 Basically, all of the 
approaches presented expect, assume, and depend upon systems to: 

l Behave predictably; they should do what we think they will do. 
l Be available when we need them. 
l Be safe; they should not do what we don’t want them to do. 
l Be capable of protecting our data from unwanted disclosure, modification, and destruction. 
l Respond quickly. 

In other words, systems should be trustworthy. 

Greenwald presented an interesting and useful multi-policy approach for addressing the 
challenges of resource management and access control across distributed systems policies. But, 
as he acknowledges, a user would first need to identify and authenticate herself to a particular 
host in the distributed system before the security policy could be enforced by the Distributed 
Compartment Model (DCM) mechanisms. Thus the DCM depends upon the underlying 
operating system to provide fundamental protection, and the DCM mechanisms add a layer of 
more finely grained access control. Similarly, Wulf et al. acknowledge that Legion comprises 
high-level mechanisms and objects that must trust the host machines on which they reside and 
that the project has not addressed lower-level mechanisms such as messaging. 

System Integrity and the Reference Monitor Concept 

Blakley’s argument appears to assume that existing systems actually use trusted systems that 
implement the Reference Monitor Concept. Not so ! In fact, the vast majority of computer 
systems in use today are first-generation systems originally designed for use in the home. 
Unfortunately, these “personal computer” systems have migrated into the business environment, 
where none of the assumptions upon which they were built hold. They are physically 
unprotected, accessed by multiple users, and used for critical business functions. They are 
neither predictable nor safe (though they are all too available.) 

* H. Hosmer introduced this concept at the 1992 New Security Paradigms Workshop [HOS92]. 
3 “Dependability” is a broad term defined as the degree of trust that may justifiably be placed in a system’s 
reliability, availability, safety, security, and performance [CRI95]. 

149 



But unfortunately, as the PC has become ubiquitous, a degree of complacency and an acceptance 
of the inevitability of software failures have emerged along with the technology. People have 
come to expect program failures. As contrasted with the guarantees and warnings that are 
expected to accompany physical products ranging from hair dryers to baby strollers, commercial 
software invariably carries sweeping disclaimers that in effect say “If this program doesn’t work, 
tough luck!” In his book Fatal Defect [PET95], Ivars Peterson challenges his readers to 
“Imagine your reaction if you found [such a] disclaimer on your car or kitchen appliance... [and] 
. . . what would happen to our society if everybody who wished to use a telephone, television set, 
car, detergent, or plastic toy were first obliged to learn at least a little about how it was made and 
how it works internally, and then to test it for hazards and other surprises.” Peterson poses the 
rhetorical question “Why are software manufacturers allowed a sweeping disclaimer that no other 
manufacturer would dare to make?” 

I doubt anyone would argue with Blakley’s assertion that neither perfection nor correctness is a 
reachable goal in computer systems - nor that “system integrity is hard.” But we appear to be 
going in the wrong direction. Instead of moving computer science forward in developing 
dependable systems, we appear to be going backwards in our acceptance of mediocrity. 
“Correctness” is not the issue; “dependability” is. 

All of the papers presented in this session4 depend upon the underlying operating system to carry 
out the actions of the applications - whether they be “Legions,” “handles,” or “agents.” 
Dependencies in computer systems cannot be ignored. No computer system component can be 
any more trustworthy than the components upon which it depends. So while the trusted 
computing base may be the weakest link, it’s also the most essential. 

Applications derive their functionality and assurance from the strength of the underlying 
inj?astructure; unfortunately, the dependability of that infrastructure has largely been ignored 

Emergent Security 

Concepts relating to complex adaptive or “ecologic” systems (e.g., genetic algorithms, software 
“agents, ” “emergent” behavior, adaptation) appear quite appealing for building an alternative 
approach to securing very-large-scale systems, such as the Internet. In complex adaptive 
systems, simple behaviors of individual agents create powerful group behaviors. So why not 
create software “agents” capable of assimilating their environment and “learning” adaptive, 
protective behaviors that collectively will result in the emergence of a secure system? Such an 
approach is highly attractive in that it appears to mimic how complex systems develop and to 
eliminate a “brittle” dependency. 

Rasmusson and Jansson [RAS96] (as well as others) have suggested approaches based upon the 
ecologic model. Rasmusson and Jansson suggest using commerce agents that detect and avoid 

’ “Best of the New Security Paradigms Workshop,” National Information System Security Conference, Baltimore, 
MD, September, 1996. 

150 



interaction with malicious participants, causing “reputations” and secure electronic commerce to 
emerge. However, security approaches based upon adaptive “agents” must deal with three 
fundamental problems: 

1. Values are not universally shared. 
2. Time is not an ally. 
3. The systems upon which the agents rely are not necessarily trustworthy (if they were, the 

agents might be superfluous). 

Values are not universally shared. 

“What’s best for the community” in the “new” paradigm is equivalent to a “security policy” in 
the “old” paradigm. Experience has shown that agreeing upon a security policy even within a 
single enterprise is an arduous task; and as Greenwald and Wulf et al. have observed, a single 
security policy may not be appropriate in a distributed or complex system. 

As an example of how social control evolves, Rasmusson and Jansson contrast what happens in a 
small village with what happens in a large city. In a small village, life is governed by the social 
control that evolves from the individual values of the residents. In a large city, the large number 
of people increase the variability of values, and reduces social control. Complex computer 
systems such as the Internet are much more similar to a large city than to a small village, so the 
probability that “safe” social values will naturally emerge is much lower than for a single 
business enterprise. 

So how does one assure adaptation to the “right” policy or set of policies? What happens if the 
agents “learn” the “hacker’s ethic?” Would that be acceptable to everyone? How does any 
single participant in the community know what he or she is being protected from? Is it important 
to know? Who decides who decides? 

Time is not an ally. 

Adaptation takes time. Experience has shown that attacks can be accomplished incredibly fast. 
Consider the Morris Internet “worm.” Late in the evening of November 2, 1988, Robert Morris, 
Jr., released into the ARPANET a “worm” program that expropriated the resources of each 
invaded computer and generated replicas of itself on other computers. Within hours, it spread to 
several thousand computers attached to the worldwide research network [DENgO]. Could agents, 
without knowing the precise nature of the impending attack, have adapted quickly enough to 
protect the ARPANET “community” from this virulent attack? 

The systems upon which the agents re/y are not necessarily trustworthy. 

Most importantly, software “agents,” like any other applications, are dependent upon the strength 
of the infrastructure on which they execute. Since software agents are nothing more than 
application programs, this means they themselves are vulnerable to attack and subversion by 
other applications (which may be other agents). Indeed, a virus can be viewed as a software 
agent in that it causes executable programs to “learn” whatever behavior the virus is transmitting. 
As Blakley has noted, 

151 



Intelligent Agent” architectures invite us to execute other peoples’ code on our systems 
and to write our own code and send it out to make its way in the world without benefit of 
our oversight. These agents are not distinguishable from programs we used to call 
“viruses.” 

While some argue that not all viruses are “bad” (see “Values” discussion above) and that they 
can perform useful functions, the typical virus does not perform functions the majority of people 
desire their systems to “learn.” 

Security has historically been viewed as a “weakest link” attribute. In fact, the “brittleness” of 
the “trusted system” paradigm relates to the single-point-failure problem. Any system component 
is only as trustworthy as the components upon which it depends. The validation mechanism 
provides both the strength of the security architecture and its primary point of vulnerability. 

The Bottom Line 

No matter how one may try to deny it, ignore it, or distort it, the simple fact remains; security is 
built from the foundation up, or to quote Blakley, “security must be inherent, not imposed.” 
None of the “new paradigms” presented at the 1996 New Security Paradigms Workshop can 
overcome the simple fact that very few of the operating systems and networks in use today are 
dependable or trustworthy. The “trusted system” paradigm is as relevant as it ever was; it just 
was never taken seriously. To assure that applications can execute safely - whether they be on a 
home computer, in a distributed business system, or on the Internet, and whether they take the 
form of “Legion,” “handle,” “ agent,” or a critical healthcare application - requires a dependable 
infrastructure, which is what “trusted systems” attempt to achieve. Unfortunately, few 
consumers have demanded that to this point. 

As Blakley points out in a footnote: 

The temptation to condemn vendors as lazy or irresponsible for underspending on 
assurance is powerful; however, the security community has not made a very good case 
that the.market will support the cost of assurance - or even that money for assurance is 
well spent. 

What will it take? 

A Word about Secrecy 

Blakley also argues that depending heavily on secrecy for security will not work because people 
can’t keep secrets. I’m in total agreement here. In fact, I would add that a direct correlation 
appears to exist between degree of secrecy and the amount of effort people are willing to put into 
getting to it (and the more pain they’re willing to endure). I think an interesting experiment 
would be to offer two talks at a conference: one advertised as a classified talk on “Verb 

152 



Conjugation”’ and the other advertised as an unclassified talk on “Microsoft’s Latest Idea.” I 
have a feeling we would find far more people interested in verbs than we might have guessed. 
The best way to protect secrets might be to post them on billboards. 

References 

[BLA96] 

[CRI95] 

[CR0951 

[DEN901 

[GRE96] 

[HOS92] 

[PET951 

y.;961 

[WUL96] 

Blakley, B., “The Emperor’s Old Armor,” to be published in Proceedings of the New 
Security Paradigms Workshop, 1996. 
Cristian, F, G. Le Lann, and T. Lunt (eds.), “Dependable Computing for Critical 
Applications 4,” ISBN 3-211-82649-1, Dependable Computing and Fault-Tolerant 
Systems, Volume 9, 1995. 
Crosbie, M., and E. Spafford, “Defending a Computer System using Autonomous 
Agents,” Proceedings of the 1 gth National Information Systems Security Conference, 
Ott 1995. 
Denning, P. J., “The Internet Worm,” Computers Under Attack: Intruders, Worms, 
and Viruses, Peter J. Denning, Ed., ACM Press, 1990, Chapter 10. 
Greenwald, S., “A New Security Policy for Distributed Resource Management and 
Access Control,” to be published in Proceedings of the New Security Paradigms 
Workshop, 1996. 
Hosmer, H. H. “The Multipolicy Paradigm for Trusted Systems, ” Proceedings of the 
New Security Paradigms Workshop, 1992-I 993, IEEE Computer Society Press, Los 
Alamitos, CA. 
Peterson, Ivars. Fatal Defect: Chasing Killer Computer Bugs, Times Books, 1995. 
Rasmusson, L. and S. Jansson, “Simulated Social control for Secure Internet 
Commerce,” to be published in Proceedings of the New Security Paradigms 
Workshop, 1996. 
Wulf, W. A., C. Wang, and D. Kienzle, “A New Model of Security for Distributed 
Systems,” to be published in Proceedings of the New Security Paradigms Workshop, 
1996. 

5 Apologies to the grammar buffs. 

153 


