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Abstract 

The traditional model of computer security was for- 
mulated in the 1970’s, when computers were espen- 
sive, solitary, heavy, and rare. It rests on three fun- 
damental foundations: management of security policy 
describing the set of actions each user is entit.led to 
perform, integrity of the physical system, its software, 
and especially its security-enforcing mechanisms, and 
secrecy of cryptographic keys and sensitive data. 

The modern computing environment, with its ra- 
pidly accelerating complexity, connectivity, and mi- 
niaturization, is undermining all three of these foun- 
dations. Nevertheless, the newest “secure” computer 
systems continue to be built on them. This paper 
argues that the traditional model of computer secu- 
rity is no longer viable, and that new definitions of 
the security problem are needed before the industry 
can begin to work toward effective security in the new 
environment. 

1 Introduction 

The traditional computer security model is built 
around a reference monitor, supported by hardware 
protect.ion mechanisms, which enforces administrati- 
vely defined security policies. The reference monitor’s 
software is assumed to be of high reliability and in- 
tegrity. The reference monitor is supplemented by 
strong cryptography for those unfortunate occasions 
when our data must venture outside the cozy confines 
of its safe haven. 

This model’s analogies are mostly military: the 
image is that of an information fortress, with walls, 
guards, interior compartments, and a defending army. 
When you approach the information fortress’s outer 
wall (“security perimeter”), you present your iipass- 
word” to the guardian of the gate. The fortress’s 
defensive garrison (“access control” facilities) protect 
your “confidential data” until you want to send it out 
of the “security perimeter”, perhaps through a “fire- 
wall”, a.t which point, you use a code (but only in 
your home country - because cryptography is a “mu- 
nition”!) The system’s strong walls and trustworthy 
gate guards (“integrity features of the Trusted Com- 
puting Base”) protect it against the introduction of 
“Trojan Horses” and “logic bombs”. 

The information fortress model was designed for 
(and in) a world in which computers were expensive, 
solitary, heavy, and rare. But that world is long gone. 
As frequent press reports indicate (the cover of the 
February 19, 1996 volume of Information Week, for 
example, proclaimed “Internet Security: Your Worst 
Nightmare”) information fortresses are not protecting 
today’s information much more effectively than Eu- 
rope’s magnificent physical fortresses are protecting 
today’s national borders. 

Given this state of affairs, it seems natural to fear 
that the security community’s current efforts will fail. 
After all, we all want our systems to be secure (right?) 
But perhaps we should worry instead that we might 
succeed. 



If success is defined in terms of attributes suita- 
ble to secure, but expensive, solitary, heavy, and rare 
computers, it seems probable that - in the increasin- 
gly unlikely event of success - we will buy security at 
the expense of important advantages of cheap, con- 
nected, miniature, and ubiquitous computers. In par- 
ticular, the current security worldview, if vigorously 
enforced, seems certain to: 

l limit connectivity and connected functionality 

l Drive software costs sharply upward through 
substantial additional assurance expense 

l Overwhelm administrators with policy, key, and 
audit log management0 

Do we really face a choice between useful com- 
puting and safe computing? The information for- 
tress paradigm seems to hold out little hope of pro- 
viding a secure heterogeneous, open, distributed, 
object-based, (fill in your favorite computing buzz- 
word here), worldwide network - and today we have 
no alternative paradigm. 

2 Symptoms 

Thomas Kuhn’s book The Structure of Scientific Re- 
r~olul’io~zs [Kuh’iO] provides a useful guidebook for dis- 
ciplines whose fundamental paradigms are in trouble. 
In Kuhn’s view, the principal symptom of a scientific 
crisis is the persistent failure of the puzzles of normal 
science to come out as they should: 

“The state of Ptolemaic astronomy was a 
scandal before Copernicus’ announcement. 
Galileo’s contributions to the study of mo- 
tion depended closely upon difficulties dis- 
covered in Aristotle’s theory by scholastic 
critics. Newton’s new theory of light and 
color originated in the discovery that none 
of the existing pre-paradigm theories would 
account for the length of the spectrum, and 
the wave theory that replaced Newton’s was 
announced in the midst of growing concern 
about anomalies in the relation of diffrac- 
tion and polarizat,ion effects to Newtonian 
theory. Thermodynamics was born from the 
collision of two existing nineteenth-century 
physical theories, and quantum mechanics 
from a variety of difficulties surrounding 
black-body radiation, specific heats, and the 
photoelectric effect. Furthermore, in all 
these cases except that of Newton the awa- 
reness of the anomaly had lasted so long and 

penetrated so deep that one can appropria- 
tely describe the fields affected by it as in a 
state of growing crisis. Because it demands 
large-scale paradigm destruction and major 
shifts in the problems and techniques of nor- 
mal science, t,he emergence of new theories is 
generally preceded by a period of pronoun- 
ced professional insecurity. As one might 
expect, that insecurity is generated by the 
persistent failure of the puzzles of normal 
science to come out as they should. Failure 
of existing rules is the prelude to a search 
for new ones.” 

Computer security should perhaps not yet be con- 
sidered a science, but Kuhn’s framework is still useful 
as a guide to discussing its present state of affairs. 

That state is dismal. The same exposures keep 
recurring; we make no practically useful progress on 
the hard problems of integrity, assurance, policy, and 
interoperability; and we are less and less able to adapt 
the fort,ress model to new technologies as they arise. 
Williams, Shafer, and Land011 [WSL95] declared the 
crisis: 

“There is a crisis emerging in information 
technology. Reliance on this technology is 
increasing much more quickly than our abi- 
lity to deal with the also increasing threats 
to information security.” 

Computers are rapidly getting smaller, cheaper, 
and more richly connected. More and more data re- 
sides on machines incapable of meaningful physical 
security (for example, laptop computers and perso- 
nal digital assistants) and designed - by economic 
necessity - with no strong logical security. Even the 
relatively few remaining information fortresses have 
thrown open their gates to Ethernet, ISDN, and fiber 
connections. At the other end of those connect,ions 
lies the worldwide Internet, on which, as Steve Bello- 
vin has observed, [Be1921 “There Be Dragons”. 

The Internet exists essentially independent of na- 
tional and international authorities, has no effective 
inherent security mechanisms, and houses a terrifying 
number of attackers of various stripes. Bellovin’s mo- 
nitoring tools detected rnore than 450 att,acks against 
AT&T’s network gateway in just 2 mont,hs; these at- 
tacks originated from more than 90 different. sites. 
Since Bellovin’s paper was published, CERT has ob- 
served a steady and rapid growth in the number of 
Internet security incidents; statistics published in the 
March 1996 issue of IEEE Computer indicate an ap- 
proximate yearly doubling in the number of incidents 
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reported to CERT [CP96]. This information is repor- 
ted with the caveat that “each incident may involve 
one site or hundreds (or even thousands) of sites, and 
some incidents have ongoing activity for long periods 
of time....” An even more alarming set of statistics 
appears in the same IEEE Computer column: 

“In a recent series of tests by cooperating 
organizations, using hacker tools freely avai- 
lable on the Internet and penetrating each 
other’s sites, the results were striking: 

88 percent of the attempted pcnetrati- 
ons were successful 

96 percent of all system penetrations 
went undetected 

In 95 percent of the instances where 
penetration was detected, nothing was 
done” 

The advice given to users trying to deal with these 
issues is not always very reassuring. A rec.ent PC- 
Week article, after describing security defects in Nets- 
cape Navigator’s Java and Ja.vaScript implementma- 
tions and in Microsoft Int.ernet Information Server, 
concluded as follows [Su196]: 

“None of these problems makes it impossi- 
ble to maintain a reasonable level of security 
on an Internet-connected network. Howe- 
ver, the nature of the Int.ernet demands at 
the very least daily scans of Usenet posts, 
E-mail lists, and Web sites for information 
on security breaches and the availability of 
patches.l” 

Technologies more disruptive t.han the Internet 
loom on the horizon. Esamples include: 

1. Object-orientation blurs the distinction between 
data and code, robbing us of one of our most. 
powerful integrity tools (hardware-enforced me- 
mory protection). At the same time object orien- 
tation encourages us to reuse code written by 
others - in some cases without benefit of access 
to the source text of the code we reuse. Ken 
Thompson’s nightmare [Tho84] is now perfected: 

‘There is a strong temptation to mimic Dave Barry here and 
add “I am not making this up!” The cited column’s recommen- 
ded solutions to the two Netscape flaws are classics (emphasis 
added): Javascript “Stop using Navigator 2.0 and upgrade to 
Version 2.01. Watch for nqicious activity when connecting to 
lrnjamiliar Web sites.” Java “Apply Netscape patch. Disable 
Java support until the patch is installed. When possible. use 
the Java Developtnenf ICii only on isoluted machines.” 

2. 

“You can’t trust code that you did 
not totally create yourself. (Especially 
code from companies that employ peo- 
ple like me.) No amount of source-level 
verification or scrutiny will protect you 
from using untrusted code.” 

In an object-oriented world we seem likely to en- 
sure that “no amount of source-level verification” 
will even be possible! 

Intelligent Agent architectures invite us to ese- 
cute other peoples’ code on our systems and to 
write our own code and send it out to make its 
way in the world without benefit of our over- 
sight. These agent,s are not distinguishable from 
programs we used to call viruses. 

The software industry is in general not keeping up 
with the escalating threat; although the design of 
Java shows evidence of some commendable attention 
to security, most modern software is designed without 
any thought given to security up-front. The Internet,. 
OMG CORBA, the Worldwide Web, and most Perso- 
nal Computer operating systems are examples of ma- 
jor components of the worldwide software infrastruc- 
ture into which security is currently being retrofitted. 

The effectiveness of t.he security we are building is 
open to question. Two “hot” security technologies 
(Public-Key Cryptography and Firewalls) are good 
exa.mples: 

2.1 Public-Key Cryptography 

Commonly claimed advantages of public-key techno- 
logy include: 

1. Offline servers 

The idea here is that since the only long-term 
cryptographic keys which must be exchanged in a 
public-key system are public, we might be able t.o 
get away with keeping the servers which generate 
t,he public/private key pairs and hand them out 
to users offline. Furthermore, since trustworthy 
public keys are available which can be used to 
protect exchanged session keys, we should also 
be able to make do without trusted servers in 
authent,ication dialogs. 

This all works fine as long as we don’t care about 
auditing (see the next paragraph) or timeliness 
(see the next bulleted item). 

If we want to audit logons, then some trusted 
online server must be involved in the logon pro- 
cess. If we want to audit client-server authenti- 
cation dialogs, it is convenient to have a trusted, 
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online, third-party server involved in the authen- 
tication dialog, because the absence of such an 
entity requires every server in the system to be 
able (and trusted) to audit client authenticat,i- 
ons. 

2. Simple key distribution 

The simple version of public-key key distribution 
is “client chooses session key, encrypts under tar- 
get’s public key, and sends to target”. There are 
subtle problems with this: 

l The client must authenticate that the tar- 
get’s public key is legitimate. Certificates 
and Certification Authorities were invented 
to solve this problem. 

l The client must confirm that the Certifi- 
cation Authority hasn’t changed its mind 
about the legitimacy of the target’s public 
key. Certificate Revocation Lists were in- 
vented to solve this problem, but not eve- 
ryone believes CRLs are a good idea. Rivest 
and Lampson [RL96] are willing to give up 
the presumed advantages of offline servers, 
in part to avoid having to use CRLs: 

“We assume that principals who is- 
sue certificates can provide on-line 
Internet service, or can arrange to 
provide such via a designated ser- 
ver.... Having such on-line capa- 
bility permits considerable simpli- 
fications - for example, we elimi- 
nate ‘certificate revocation lists’ in 
favor of on-line ‘reconfirmation’.” 

Whether a public-key system which requires ma- 
nagement of a Certification Authority, Cerbifi- 
cates, and CRLs is simpler than a secret-key 
system which requires management of a Security 
Server is open to question. 

3. Simple administration 

Here the claim is that the lack of on-line reposi- 
tories full of secrets and the potential for ad-hoc 
key distribution make public-key systems signi- 
ficantly easier to understand and manage than 
secret-key systems. It is not clear that experience 
supports this claim; Don Davis [Dav96] observes 
that some of the apparent simplicity of public- 
key system administrat,ion is accomplished by 
sleight of hand: the complexity is still there, but 
it has been transferred from the system operators 
to the end users: 

“it is not widely appreciated that these 
advantages rely excessively on end- 
users’ security discipline. In fact, 
the reason public-key security doesn’t 
need a trusted key-management in- 
frastructure is that the burden of key- 
management falls to public-key clients. 
With public-key cryptography, clients 
must constantly be careful to validate 
rigorously every public key they use, 
and they must husband the secrecy of 
their long-lived private keys. It turns 
out that these tasks are harder than 
they seem. 
“End-users are unwilling or unable 
to manage keys diligently. Perhaps 
surprisingly, it’s impossible to au- 
tomate asymmetric key management 
completely; certain security details re- 
main for human intervention, such 
as Root-key validation, passphrase 
choice, and clients’ physical security. 
Even where automation is possible, 
as with revocation-list checks, scaling 
problems and performance costs make 
short-cuts likely. If users or develo- 
pers skip these details, there is no way 
to detect their omission or to audit 
the consequences. I have coined the 
term compliance defect for this situa- 
tion: a rule of operation that is dif- 
ficult to follow and that cannot be 
enforced. Compliance defects under- 
mine the security of public-key cryp- 
tography. When users fail to manage 
their private keys securely, or when 
they fail to validate each others’ public 
keys rigorously, then authenticity and 
privacy guarantees weaken, and eve- 
ryone’s security deteriorates.” 

2.2 Firewalls 

Byte magazine [Ker96] recently reported on evidence 
that firewalls may not be a very effective means of 
preventing Internet break-ins: 

“The notion of a firewall as an impregna- 
ble defense against intruders is going up in 
smoke. Firewalls were in place in two highly 
publicized security breaches.. These aren’t 
isolat,ed cases. According to the Computer 
Security Institute, 30 percent of the Internet 
sites that reported breaches in their securit,y 
had a firewall in operation.” 
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There seems to be no documented evidence that fi- 
rewalls prevent or deter attacks. Until careful studies 
are done, we might be wise to keep our expectations 
modest; many firewall deployments are undermined 
by one or more fallacies: 

We ‘ve got the place surrounded 

Firewalls can be effective only if all traffic must 
go through them to get from the outside of the 
protected network to the inside and vice versa. 
But networks without unprotected connections 
(e.g. modems) between the inside and the out.- 
side are rare, and the probability that a network 
has no such illicit connections decreases as its 
size increases. 

Nobody in here but us chickens 

Firewalls cannot protect a network against bad 
guys who are already inside. As the size of a net- 
work increases, so does the chance that it con- 
tains bad-guy insiders. 

Sticks and stones can break my bon.es, bni words 
can never hurt me 

Firewalls are best at protecting systems against 
connections to “bad systems”. They are much 
less effective at screening out bad data from 
“good systems”. The bad data problem ari- 
ses as soon as an organization allows insiders 
to connect to and download information from 
the World Wide Web. The recent emergence 
of word-processor macro viruses shows that bad 
data can be destructive. Some amount of scree- 
ning of data is possible using application-level 
proxies, but these proxies are themselves proble- 
matic [Ker96]: 

“Proxy servers present management 
headaches, according to Kevin Kita- 
gawa, Internet securit.y product line 
manager for Sun’s Internet Commerce 
Group. ‘Proxy servers are wonder- 
ful for most common Internet proto- 
cols or services,’ he says. ‘The pro- 
blem is, for every new protocol or ser- 
vice that comes out, you have to add 
another application to the proxy ser- 
ver, like screening audio and so on.’ 
The proxy server cannot handle proto- 
cols that lack a specific proxy for them. 
Proxy architectures c.an also degrade 
performance and transparency.” 

When data is actually code, as with Java ap- 
plets, the problem gets worse. The Java “sand- 
box” approach to dealing with this problem is, 

as [DFW96] and much related work shows, hard 
for implementors to get right. It is also hard for 
users to live with, since it requires that they ne- 
ver use internet-resident applets with any dat.a 
they consider important enough to protect. 

3 Skeletons in the locked closet 

The Fundamental Principles of the information for- 
tress model are t.hese: 

Policy, enforced by the system, protects rcsour- 
ces from unaut,horized manipulation 

Integrity of the physical system and its code gu- 
arantees that policy is enforced 

Secrecy of crypt0 keys and sensitive data under- 
lies policy enforcement mechanisms 

The security community’s dirty little secret is that 
all three of these principles, which form the pillars of 
modern software security architecture, rest on infirm 
foundations: 

3.1 Policy 

Policy has two, related, fundamental problems: com- 
plexity and scale. 

Policy scales poorly in every dimension. The com- 
plexity of policy which must be stated in order to 
manage a system securely increases if any of the fol- 
lowing increase: 

l number of subjects 

l number of job func.tions 

l number of objects 

l number of operations 

l number of semantic classes of data (sensitivity 
labels, categories, etc...) 

The last two of these are the worst. hdmi- 
nistering access control is tolerable in a system 
whose only operations are create file, read 
file, write file, delete file. In a system with 
relational operators, the access control problem is al- 
ready much harder .- to do a good job of administe- 
ring inference control policies, an administrator must 
have enough detailed knowledge about the structure 
of a database and the information it contains to know 
which sequences of queries a.re inadmissible. As t.he 
number and semantic complexity of operations incre- 
ases, the administrat.or’s job quickly spirals out of 
intellectual control. 
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3.2 System integrity and the reference 
monitor 

System i&g&y assures that the security policy of 
a system cannot be bypassed. The US National 
Computer Security Center defines idegrity as follows 
[NatBB]: 

“sound, unimpaired, or perfect condition” 

This sets the bar pretty high, even by computer 
security standards. But perfection really is the stan- 
dard, because any hole in the wall of the fortress will 
let the enemy in. [NatSla] describes which pieces of 
the system must be perfect: 

“Systems that are used to process or handle 
classified or other sensitive information 
must be designed to guarantee correct and 
accurate interpretation of the security po 
licies and must not distort the intent of 
those policies. Assurance must be provided 
that correct implementation and operation 
of the policy exists throughout the system’s 
life-cycle. Application subsystems used to 
process or handle classified or other sensi- 
tive information must be designed, imple- 
mented, controlled, and operated in a man- 
ner which provides assurance that the go- 
als of both application-specific security po- 
licies and system-wide security policies are 
met without circumvention.” 

It seems quite unlikely that the software industry 
will come very close to this standard, for a variety of 
reasons: 

3.2.1 System integrity is hard 

Essentially, in order to get a system with excellent 
system integrity, you must insure that it is designed 
and built by geniuses. Geniuses are in short supply, as 
the 1991 US National Research Council report Com- 
puters at Risk [NatSlb] observes: 

“There is a shortage of well-qualified pe- 
ople to work on production-quality soft- 
ware. There is a more serious shortage of 
those qualified to build critical software, and 
a dramatic shortage of people qualified to 
build secure software...Setting requirements 
for, specifying, and building critical software 
require specialized knowledge not possessed 
by t,ypical software engineers. Over the ye- 
ars other engineering disciplines have deve- 
loped specialized techniques - hazard ana- 
lysis - for analyzing critical artifacts. Such 

techniques are not covered in most software 
engineering curricula, nor are they covered 
by most on-the-job training. Furthermore, 
working on critical software requires speci- 
alized knowledge of what can go wrong in 
the application domain. Working on secure 
software requires yet more skills. Most nota- 
bly, one must be trained to understand the 
potential for attack, for software in general 
and for the specific application domain in 
particular.” 

An illustration of the challenge integrity poses to 
the average working programmer appeared recently in 
IEEE Transactions on Soflware Engineering. Presu- 
mably a prerequisite to demonstrating that a system 
always does what it is supposed to do, is specifying 
what it is supposed to do. Kate Finney studied a 
population of Computer Science students to find out 
how well they were able to read specifications. The 
results were not encouraging [Fin96]: 

“The experiment that was carried out invol- 
ved 62 students, undergraduate and post- 
graduate, in reading a very small portion 
(less than 20 lines) of a specification in Z2. 
All were attending computing courses and 
most had been through a basic grounding in 
discrete mathematics in addition to separate 
tuition in the use of Z... Each student was 
asked three questions to test their ability to 
read and understand the specification. 

“in general the students found it difficult to 
understand any of the very simple Z speci- 
fications. 

“The point to note is that 19 students, ne- 
arly a third of the group, could not answer 
a single question and found the specification 
incomprehensible.” 

A correct specification is of course only t.hc begin- 
ning of producing a system with good integrity. Even 
if ordinary working programmers could be trained to 
understand and use precise specifications, and even if 
specification tools adequate to the description of se- 
cure systems were available,3 there would still be a 
long way t,o go. 

2Z is a formal language for specifying the behavior of soft- 
ware systems; its formal foundations (set theory and classi- 
cal first-order predicate logic) are “plain vanilla” by computcl 
science standards. A number of good inkroduchions exist, iw 
&ding for example [Di194]. The standard reference is [SpiW]. 

3There is some progress; some recently designed protocols 
are provably secure in a precisely defined sense under explicitly 
stated assumptions. See e.g. [BR94] and [BR95]. 
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A correct specification would have to be t,ransfor- 
med into correct code. Systematic approaches to this 
exist, but they are seldom used. Notable examples 
include the specification-refinement methodology of 
Dijkstra. Gries, and others [Gri81], and the Clean- 
room methodology [Dye921 (there are many others). 
Both methods have long pedigrees, but neither has 
made significant inroads into commercial program- 
ming practice. In the absence of reliable software en- 
gineering methodologies, software error rates remain 
depressingly high. 

Correct code would riced to be compiled correctly; 
for the dangers here cJ Thompson’s Turing Award 
lecture, cited above. Finally, correctly compiled code 
would have to be executed on correctly functioning 
hardware; Intel’s recent floating-point division bug 
reminds us that this cannot always be taken for gran- 
ted. 

3.2.2 System integrity is very expensive 

Assurance (the process of demonstrating that a 
system has good integrity) is particularly costly. 
Most of today’s software is designed for a mass mar- 
ket, in which many customers either do not have 
or do not acknowledge a serious security require- 
ment. Cost-justifying t,he effort required to assure 
system integrity for mass-market software appears to 
be infeasible.” Even where assurance has been done 
diligently, the sheer size of modern software artifacts 
raises doubts about its effectiveness. Microsoft unqu- 
estionably put a lot of effort into assurance of the 
Windows NT security architecture and implementa- 
tion; NT is an NCSC C2 evaluated system - but it is 
also more than 5 million lines of code [McC96]. What 
does the C2 evaluation imply, in practical terms, 
about the likely number of security-critical errors re- 
maining in those 5+ million lines?” 

4The temptation to condemn vendors as lazy or irrespon- 
sible for underspending on assurance is powerful; however, 
the security community has not made a very good case that 
the market will support the cost of assurance - or even 
that money for assurance is well spent. sendmail is a fairly 

small program. A quick check of the CERT ftp archi- 
ves (ftp://info.cert .org/pub/certadvisories) reveals that. 
sendmail is the subject of at least six CERT advisories - three 
in 1995 alone - of which the first was issued in January, 1990. 
Does anyone believe, after all this attention and after applica- 
tion of the many patches referenced in CERT’s advisories, that 
sendmail is now secure? 

5,Microsoft-bashers considering indulging in a feeling of su- 
periority here should reconsider: other modern, popular, com- 
mercial operating systems are also huge and complicated; any 
of them could have been chosen for this example - except that 
many of them aren’t even C2 evahrated! 

3.2.3 System Integrity requires tradeoffs 

System integrity is often bought at the expense of 
other desirable system quality attributes. Modula- 
rization, with strong inter-module boundaries, is a 
technique often used to improve system integrity. Un- 
fortunately, inter-module boundary traversals tend to 
be expensive on general-purpose hardware; therefore, 
systems with strong integrity are often slow. 

3.3 Secrecy 

The fortress model depends heavily on secrecy. In 
networked environments, the use of cryptography to 
guarantee confidentiality and integrity of data has led 
to an explosion of cryptographic keys, with the resull. 
that key generation, management, and distribution is 
the central problem of distributed system security de- 
sign. It is by no means a solved problem; for example, 
fault,s in key handling code lie at the heart of recently 
publicized flaws in SSL and Kerberos (version 4). 

Even stand-alone systems depend critically on se- 
crecy, for authentication; attacks on users’ secret 
passwords are a long-standing and persistent pro- 
blem. 

The security community has recognized the pro- 
blems associated with secrecy and has shrunk the se- 
crecy perimeter to exclude everything except crypto- 
graphic keys; this has been formalized as Kerchoff’s 
principle: security is in fhe keys, which is intended to 
mean t,hat if t,he keys remain confidential, t,he system 
is secure. But decades of experience with the pro- 
blems of passwords and crypt0 key management sug- 
gest. that a more accurate formulation might be inse- 
curity is in the keys. 

The simple problem with secrets is that people 
are not good at keeping them. Though simple, this 
problem is fundament8al: many attacks on “secure” 
systems succeed simply because they are performed 
by insiders who misuse their legitimate access to 
authentication secrets, cryptographic keys, or con- 
fidential information. Outsiders also penet,rate “se- 
cure” systems by exploiting secrecy failures; this is 
called social engineering, and it too is a serious pro- 
blem. Ira Winkler writes [Win961 

“even the best security mechanisms can he 
bypassed through Soc.ial Engineering. So- 
cial Engineering uses very low cost and low 
technology means to overcome impediments 
posed by information security measures.” 

He goes on to discuss t,he details of a particular 
social engineering a.t.tack. He concludes 
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“The attack yielded sensitive company in- 
formation and numerous user passwords, 
from many areas within the company, gi- 
ving the attackers the ability to cripple the 
company despite extremely good technical 
information security measures. The results 
would have been similar with almost any 
other company. 

“Even the best technical mechanisms could 
not have prevented the attack.” 

As Ruth Nelson observes, there are also complica- 
ted problems [Nel94] with secrecy: 

“Another interesting question is what piece 
of information contains or communicates a 
secret. The relationship between informa- 
tion and secrecy is complicated, as the fol- 
lowing examples suggest: 

If we cut a secret in half, is it still a 
secret? Suppose that a secret recipe 
calls for 6 cups of sugar. Is 6 the secret? 
Cups? Sugar? . . . 

If we move the secret out of context, is 
it still a secret? In the example above, 
it is clear that “6” is not a secret in 
general. In the context of the secret 
recipe, it may be. 

If we collect enough non-secret infor- 
mation and process it correctly, we may 
have a secret.... 

Some observers may already know so- 
mething about a secret or have a good 
guess at it; in that case, a large secret 
can be communicated with very little 
information flow...” 

Public-key cryptography tries to address some of 
the problems caused by excessive reliance on secrecy. 
But is it the devil’s bargain? The false hope that 
public keys could be printed in the newspaper and 
forgotten has faded like a mirage, and in its place 
we have hundreds of pages of legalese outlining un- 
der what circumstances key pairs (and corresponding 
certificates) of various grades may be issued, what it’s 
safe to use them for, and what obligations they im- 
pose upon their issuers and owners (for an example, 
set [Ver96]). Indeed, public-key key pairs seem more 
and more like nuclear waste; their private halves are 
hazardous if anyone comes in contact with them,6 and 

‘Because anyone other than their owners can use them to 
comb t fraud. 

their public halves need to be kept around in elabo- 
rately secure crypts for longer than their owners are 
likely to live.7 

This metaphor is in deadly earnest. Before we as 
a society create huge numbers of these key pairs, we 
had better understand the management and disposal 
issues we will face down the road. Public-key cer- 
tificates are essentially reified trust, just as cash is 
reified value. Mankind has no experience managing 
stockpiles of trust - especially stockpiles of misplaced 
trust. Ghosts of broken promises, echoes of failed re- 
lationships, the assurances of frauds - all these will 
be in the box, waiting for some modern Pandora to 
discover a private key, erase a CRL entry, or break 
an algorithm’ and let them out. 

4 Manifesto 

The central proposition of this paper is: 

No VIABLE SECURE SYSTEM DESIGN CAN 

BE BASED ON THE PRINCIPLES OF POLICY, 

INTEGRITY, AND SECRECY, BECAUSE IN 

THE MODERN WORLD INTEGRITY AND SE- 

CRECY ARE NOT ACHIEVABLE AND POLICY 

IS NOT MANAGEABLE. 

This is why computer security is starting to fail - 
and why it will continue to fail until it is re-built on 
new foundations. 

5 Why us; Why Now? 

Three trends have precipitated the crisis by undermi- 
ning the foundations of the fortress: 

1. Miniaturization makes physical security infeasi- 
ble, and makes assurance expenses burdensome 
because they work against the economies of scale 
which cost-justify miniaturization. Miniaturiza- 
tion also makes theft easy. Finally, very small 
devices give the impression of being not very va- 
luable; sociologically this works against securing 
them. 

2. Connectivity exposes systems to a much broa- 
der and more diverse population of users than 

7Because they may be needed to verify signatures on docu- 
ments with very long lifespans. 

‘While we’re on the subject, when we create key pairs with 
IO-year lifespans, or use a private key to sign LL 3O-year murt- 
gage, will we think about what percentage of the planet’s wc- 
4th we’re willing to bet on the proposition that our crypto- 
graphers are smarter than everyone alive today, and everyone 
waiting to be born? 
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ever before. The software which provides con- 
nectivity is itself an exposure in today’s envi- 
roninent; it t.ypically enforces few or no policies 
and is complex and poorly assured. Finally, con- 
nectivity compounds the problems of complexity, 
scale and policy composition in heterogeneous 
systems. 

3. The Mass Markei imposes severe economic con- 
straints on software development. Mass-market 
software must simultaneously compete on price 
and get quickly to market. This has the effect 
of putting pressure simultaneously on schedules 
and costs. The well-known schedule-c.ost-qualit#y 
triangle guarantees that design and assurance 
quality will suffer as a result. 

6 Reactions to the Unfolding 
Crisis 

Kuhn’s description of the development of a field in 
crisis describes us well: 

“When . . . an anomaly comes to seem more 
than just another puzzle of normal science, 
the transition to crisis and to extraordinary 
science has begun. The anomaly itself now 
comes to be more generally recognized as 
such by the profession. More and more at- 
tention is devot,ed to it. by more and more of 
the field’s most eminent men. If it still con- 

tinues to resist, as it usually does not, many 
of them may come to view its resolution as 
the subject matter of their discipline. For 
them the field will no longer look quite the 
same as it had earlier.... An . . . important 
source of change is the divergent nature of 
the numerous partial solut,ions that concer- 
ted attention to the problem has made avai- 
lable. The early at.tacks upon the resistant 
problem will have followed the paradigm ru- 
les quite closely. But with continuing re- 
sistance, more and more of the attacks upon 
it will have involved some minor or not so 
minor articulation of the paradigm, no two 
of them quit.e alike, each partially success- 
ful, but none sufficiently so to be accepted as 
paradigm by the group. Through this proli- 
feration of divergent articulations (more and 
more frequently they will come to be des- 
cribed as ad hoc adjustments), the rules of 
normal science become increasingly blurred. 
Though there still is a paradigm, few.prac- 
titioners prove to be entirely agreed about 

what it is. Even formerly standard solutions 
of solved problems are called in question. 

When acute, this situation is sometimes re- 
cognized by the scientists involved.... Ein- 
stein... wrote... ‘It was as if the ground had 
been pulled out from under one, with no firm 
foundation to be seen anywhere, upon which 
one could have built.’ And Wolfgang Pauli, 
in the months before Heisenberg’s paper on 
matrix mechanics pointed the way to a new 
quantum theory, wrote to a friend, ‘At, the 
moment physics is again terribly confused. 
In any case, it is too difficult for me, and 
I wish I had been a movie comedian or so- 
mething of the sort and had never heard of 
physics. “’ 

We are undeniably experiencing “a proliferation 
of divergent articulations” of the dominant para- 
digm. Articulations proliferate in all areas: standards 
(IEEE 802.10, GSS-API, SSL, X.509, Kerberos) 
and standards organizations (ISO, EMMA, IETF, 
X/Open), industry consortia (OMG, OSF, OURS, 
14)) technologies (RSA, DSS), product approaches 
(virus sc.anners, firewalls, smartcards, aut#hentication 
servers, SSO products, hardware copy-protection de- 
vices). This all comes to a head in the problem of 
integration of secure systems - a direct example of 
“the divergent nature of the numerous partial soluti- 
ons” being “an important source of change”. 

Pauli’s lament is also familiar; more and more secu- 
rity practitioners seem to be asking themselves, and 
asking one another, whether the computer security 
problem as we have currently stated it, is not simply 
too hard to be solved. Bate and Schaefer [BS95], for 
example, put it this way: 

“ 

l 

0 

. 

0 

Ain’t gonna be no secure-enough ope- 
rating systems to meet the needs 
of every[wo]man (graphics, cheap, 
fast,, modern. object-oriented, win- 
dows’n’MID1, etc.) 

Ain’t gonna be no immediate cure for 
usurpation of privilege by borrowed 
software or downloaded programs 

Ain’t gonna be no immediate cures for 
violations of liceuse agreements or use 
of pirated software and illicit cloning of 
software 

Ain’t gonna be no cure for incorrect 
software or hardware and consequences 
of running it” 
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The New Security Paradigms Workshop is a kind 
of formal recognition by practitioners of the art that 
the Old Security Paradigm is nearing (or perhaps 
beyond) the end of its useful life. 

7 What is the Way Forward? 

Kuhn observes that resolution of a paradigm crisis 
requires the existence of a workable alternative para- 
digm: 

“Let us then assume that crises are a ne- 
cessary precondition for the emergence of 
novel theories and ask next how scientists 
respond to their existence. Part of the ans- 
wer, as obvious as it is important, can be 
discovered by noting first what scientists ne- 
ver do when confronted by even severe and 
prolonged anomalies. Though they may be- 
gin to lose faith and then to consider al- 
ternatives, they do not renounce the para- 
digm that has led them into crisis. They 
do not, that is, treat anomalies as counter- 
instances, though in the vocabulary of phi- 
losophy of science that is what they are.... 
Once it has achieved the status of paradigm, 
a scientific theory is declared invalid only if 
an alternate candidate is available to take 
its place.... The decision to reject one para- 
digm is always simultaneously the decision 
to accept another, and the judgment leading 
to that decision involves the comparison of 
both paradigms with nature and with each 
other.” 

If we accept this judgment, it.‘s clear that the first 
step towards resolution of the crisis is to start building 
candidates for the position of alternative paradigm. 

8 New Fundamentals 

How does one build a new paradigm? Kuhn com- 
ments on this also: 

“The transition from a paradigm in crisis to 
a new one from which a new tradition of nor- 
mal science can emerge is far from a cumula- 
tive process, one achieved by an articulation 
or extension of the old paradigm. Rather 
it is a reconstruction of t.he field from new 
fundamentals, a reconstruction that changes 
some of the held’s most elementary theoreti- 
cal generalizations as well as many of its pa- 
radigm methods and applications. During 

the transition period there will be a large 
but never complete overlap between the pro- 
blems that can be solved by the old and by 
the new paradigm. But there will also be 
a decisive difference in the modes of solu- 
tion. When the transition is complete, the 
profession will have changed its view of the 
field, its methods, and its goals. One per- 
ceptive historian, viewing a classic case of a 
science’s reorientation by paradigm change, 
recently described it as ‘picking up the other 
end of the stick”’ 

Where do we look for inspiration? Kuhn again: 

“It is, I think, particularly in periods of 
acknowledged crisis that scientists have tur- 
ned to philosophical analysis as a device for 
unlocking the riddles of their field.” 

If the information fortress arises from an essentially 
military view of the world, it seems natural to look 
first to military philosophers. 

Clausewitz [von93] warned against perfection as 
a practical standard, and explained why activities 
which seem simple in theory, or on a small scale, don’t 
work in real-world conflicts: 

“If one has never personally experienced 
war, one cannot understand in what the dif- 
ficulties constantly mentioned really consist, 
nor why a commander should need any bril- 
liance and exceptional ability. Everything 
looks simple; the knowledge required does 
not look remarkable, the strategic opt,ions 
are so obvious that by comparison the sim- 
plest problem of higher mathematics has an 
impressive scientific dignity.. . . 

Everything in war is very simple, but the 
simplest thing is difficult. The difficulties 
accumulate and end by producing a kind 
of friction that is inconcievable unless oue 
has experienced war.... Countless minor in- 
cidents - the kind you can never really fo- 
resee - combine to lower the general level 
of performance, so that one always falls far 
short of the intended goal.... every fault and 
exaggeration of the theory is instantly expo- 
sed in war.” 

In theory, designing a secure system looks simple; 
just see to it that users’ passwords stay secret, write 
some code to enforce the required policy, and make 
sure the code gets run every time it needs to. The 
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knowledge required does not look so very remarka- 
ble; the strategic options indeed seem obvious. But 
as soon as one starts to build the system, the faults 
and exaggerations of the theory multiply beyond ima- 
gination, and one in the end always falls far short of 
the intended goal. The friction of countless minor 
incidents opposes all efforts to perfect the system. 

Even if the friction could be overcome, Sun Tzu 
[TzuSl] taught his emperor almost 2500 years ago 
that a perfect fortress is no defense against a wise 
enemy: 

“What is of supreme importance is to attack 
the enemy’s strategy. Next best is to disrupt 
his alliances. The next. best is to attack his 
army. The worst policy is to attack walled 
cities. Attack cities only when there is no 
alternative.” 

Centuries of history underscore his point. In the 
real world just as in our own discipline, fortresses are 
as often betrayed, or bypassed, or starved out, or lost 
to the Trojan horse, as they are carried by storm. 
The deadliest enemies of o?~r fortresses are not cryp- 
tanalysts and “crackers” - they are social engineers. 
insiders, and the authors of viruses, worms, and ‘rro- 
jan horses. And no wall will keep them out. 

Our new fundamentals should focus on attacking 
the enemy’s strategy, rather than on building fortres- 
ses which he will simply avoid. 

As evidence that this is not a hopeless task, here 
are a few examples” which suggest that the fortress 
assumptions (policy, integrity, secrecy) are not the 
only ones on which secure systems could be based: 

8.1 Inherent vs. Imposed Properties 

A back-of-the-envelope calculation suggests that $1 
Billion US, in $100 bills, occupies perhaps 15 cubic 
yards. At prices current as this is written, $1 Billion 
US, in gold, weighs about 80 tons. 

$1 Billion US, in electronic cash, on the other hand, 
is 32 bit,s plus some a.pplicat,ion-dependent headers. 
This is madness - surely a prescription for fraud on a 
breathtaking scale. 

This sort of thing happens because programmers 
naturally think about how they can make the world 
“better”, where better often means “faster and with 
less human involvement”, without paying much at- 
tention to why things are the way they are in the 
world t,oday. 

gThe word ezamples should be taken seriously here. This 

section is intended only to illustrate that the definition of sc- 
amity currently in vogue is not the only one possible. It should 
not be construed as a design for next year’s secure systems. 

The size and weight of cash is inconvenient. It, was 
designed to be inconvenient - precisely so that there 
would be inherent limits to the scale on which fraud, 
smuggling, and theft are feasible. All of our value- 
bearing instrument.s, in fact, are built with these sorts 
of intrinsic limitations. A check’s amount field is 
small - in part to limit the amount which can con- 
veniently be rcpresent.ed in it.. This is one of the rea- 
sons business checks are often printed on bigger stock 
than personal checks - businesses legitimately engage 
in bigger transactions. The temptation to make elec- 
tronic cash better (than physical cash) by removing 
the inconvenient relationship between value and size 
is natural - and it should be resisted. 

The software approach to building systems with 
limits is ordinarily to first build systems without li- 
rnits and then later add limiting mechanisms. This 
is particularly true in the case of security; we build 
systems under the assumption that everyone is autho- 
rized to do everything, and then we build in aulhen- 
fication and access conirol mechanisms to limit the 
actions of particular users. This means that in most 
cases! security is a property which is imposed on the 
system rather t.han a property which is inherent in 
the systcrn. 

If we want to make electronic cash secure, a good 
start would be to give it physicality by making its size 
more proportional to its value. A sensible approach 
to electronic representation of cash amounts might be 
to t,ake the dollar value and square it to arrive at. t.he 
desired number of representation bits. Note that by 
making value inherent in the representation of elec- 
tronic cash, we can make all implementations more 
secure, without imposing an assurance burden on im- 
plementation code - if your machine doesn’t have 1 
Billion terabits of storage, you can’t steal a Billion 
dollars, no matter how flaky the owner’s e-cash im- 
plementation is. 

A variant of this approach could be used to in- 
sure payment for copyrighted information downlo- 
aded over the Int,ernet. Copyrighted data could 
be transformed (for example, using a secret-sharing 
scheme) to make the length of its representation line- 
arly proportional to its assigned price. Users acces- 
sing the document could then simply be charged for 
connect time; the properties of secret-sharing sche- 
mes guarantee that customers would have to down- 
load an entire document in order t,o use any part of 
it, and the length of the transformed representation 
would insure that downloaders who retrieved intel- 
ligible versions of documents have spent enough in 
connect,-time charges to pay the copyright fee. No a.c- 
cess control is required to implement this scheme, and 
no distribution of document keys to users is required 
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either. Authentication is required only to accurately 
establish which user’s account should be charged for 
connect time. Ruth Nelson’s notion [Nel95] of un- 
helpfulness as a security policy seems related to this 
approach. 

8.2 Economic Models 

A common assumption today is that privacy requires 
secrecy. However this is manifestly not the case. An 
example will illustrate: 

Imagine a system which ret,ains medical records. 
Its record structure looks like this: 

owner-bankaccount 
owner-amount // $100,000 ? 
ownermedicalinformation 

A request message looks like this: 

requesterbankaccount 
requestedlecord 

A request to access a medical record succeeds if 
and only if a transfer from requesterbankaccount 
to owner-bankaccount succeeds. This has the nice 
property that no policy expressed in terms of subjects 
is required. The system works because: 

If I access my own records, I transfer money from 
my own account into my own account. No harm 
done. 

If my doctor accesses my records, he pays me 
~100,000. But this is OK with him, because he’ll 
just put it on my bill (and I’ll pay, because I now 
have the money!) 

If Kevin Mitnick accesses my records, then my 
privacy has been violated. On the other hand, 
my new $100,000 bank balance goes some way to 
soothing the sting. 

This system is an example of a fairly effective 
privacy-protection system which does not depend 
upon secrecy; instead it depends upon economics. 
(Unfortunately, it does still depend to some ex- 
tent upon system integrity - even Homer sometimes 
nods.) It also illustrates a candidate rule for desig- 
ning systems which depend minimally upon policy 
administration: 

Make the users ask forgiveness, not permission 
The basis for this rule is reversible sanctions; the 

sanction which penalizes had behavior is always ap- 
plied before any behavior. Later. a user who believes 
his action was benign can ask to have the sanction 

reversed. In the system described, the users ask for- 
giveness when they ask for their money back after 
accessing a protected resource. If the owner of the 
resource decides that the access was legitimate, she 
refunds the money. Otherwise, she keeps it. Punish- 
ment is swift and inevitable, which discourages at- 
tack. As Sun Tzu observes: 

“To be certain to hold what you defend is to 
defend a place the enemy does not attack.” 

8.3 Rigging the game 

The previous example illustrated an economic mo- 
del based on individual self-interest. It is possible to 
design systems which provide incentives for coopera- 
tion. Aselrod investigated such systems in [Axe84]; 
more recently Rosenschein and Zlotkin [RZ94] investi- 
gated social engineering for machines: 

“We want to understand the kinds of ne- 
gotiation protocols, and punitive and incen- 
tive mechanisms, that would cause indivi- 
dual designers to build machines that act 
in particular ways. Since we assume that 
the agents’ designers are basically interested 
in their own goals, we want to find interac- 
tion techniques that are “stable”, that make 
it worthwhile for the agent designer not to 
have his machine deviate from the target be- 
havior .” 

Note again the emphasis on security and stability 
as inherent, rather than imposed, properties of the 
system. 

8.4 Immunity 

Nature has been protecting systems against attack 
by foreign code and data for millions of years. The 
systems are organisms, and the foreign code and data 
are viruses, bacteria, and other toxins. Recent work 
by Stephanie Forrest and others [FHSL96], [DFH96] 
applies lessons learned from natural immune systems 
to computer security with very encouraging results. 

Independently, Jeff Kephart [Kep94] has proposed 
epidemiologic and immune-system models for protec- 
ting networked computers against viruses. 

8.5 Co-evolution of programs and 
data 

Another assumption designers often make is that gc- 
neral purpose stored-program computers must have 
the property that all copies of a program look the 
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same. But this is not true; it might be possible to 
substantially reduce the incidence of computer viru- 
ses by co-evolving program code and data. One way 
to do this might be: 

l pass an application’s code and all the files a user 
creates using that application to a secret-sharing 
function 

l Divide the output into as many files as were pro- 
vided as input (i.e. one file corresponding to the 
application’s code and one each corresponding to 
each of the user’s data files) 

l Store these files in place of the originals 

l When the application is invoked, re-const,itute 
the application code and data files by recovering 
the shared secret 

This results in a version of the application which 
is personalized to an individual user and the data he 
creabes using that application. A nice property of this 
kind of system is that neither an application’s code 
nor user data can be modified without corresponding 
changes to all other related files. Obviously, explicit 
import and export, operations would be required to 
“introduce” new files into the personalized applica- 
tion and to prepare files for use by people other than 
their owners. 

8.6 Safety (or at least integrity) in 
Numbers 

The fortress approaches integrity maintenance by ma- 
king one perfect copy of high-integrity data and bu- 
rying it in a fallout shelter under 24-hour armed gu- 
ard. Nature guarantees the integrity of some data 
(DNA, for example) by making millions of indifferent 
copies, distributing them as widely as possible, and 
ruthlessly exterminating those which aren’t “good 
enough”. Note that even the definition of integrity 
is relaxed here - from perfection to fitness for a par- 
ticular purpose. 

9 Agenda for the Revolution 

Perhaps the reader has been convinced that the Em- 
peror really isn’t wearing any armor. If so, she will 
have reahzed by now that. a lot of work lies ahead. 
Even if the suggestions in the previous section make 
some sense, the present paper plainly doesn’t lay a 
new paradigm out, in clear Copernican circles. 

If today’s security epicycles now seem too ugly t,o 
live with, the next steps look like these: 

1. 

2. 

3. 

4. 

Enumerate the principles of the new security 
worldview. 

Here are a few nominations: 

. 

. 

. 

. 

0 

b 

. 

0 

. 

l 

l 

. 

l 

0 

Assume low integrity. 

You can’t keep a secret. 

Security should be inherent, not imposed. 

Policy is evidence that security is imposed. 

Identit,y is a side-effect, of policy (don’t, de- 
pend on it; don’t authenticate it). 

Trust is evidence that security is imposed 
(trust nothing and 110 one). 

Ease of use should be proportional to the 
probability t.hat use is harmless. 

Make the user ask forgiveness, not permis- 
sion. 

Plan for emergence. 

Secrecy is not privacy. 

Control is not protection. 

“Confident,ialit,y, integrity, availability” is 
not security. 

Good enough is good en&gh. Perfect is too 
good. 

Evolve! 

Identify foundational primitives required to build 
the new-model world 

This paper has hinted at, a few useful primit,ives, 
built by analogy with biological and economic 
systems. 

Other useful analogies undoubtedly exist, but we 
should be careful not to settle for analogy if what 
is really required is an unprecedented model. 

Map out an infrastructure development pro- 
gramme for the new-model world 

Set out the research agenda for the new-model 
world 
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