
The Emperor’s Old Armor

Bob Blakley
International Business Machines Corporation

Abstract

The traditional model of computer security was for-
mulated in the 1970’s, when computers were espen-
sive, solitary, heavy, and rare. It rests on three fun-
damental foundations: management of security policy
describing the set of actions each user is entit.led to
perform, integrity of the physical system, its software,
and especially its security-enforcing mechanisms, and
secrecy of cryptographic keys and sensitive data.

The modern computing environment, with its ra-
pidly accelerating complexity, connectivity, and mi-
niaturization, is undermining all three of these foun-
dations. Nevertheless, the newest “secure” computer
systems continue to be built on them. This paper
argues that the traditional model of computer secu-
rity is no longer viable, and that new definitions of
the security problem are needed before the industry
can begin to work toward effective security in the new
environment.

1 Introduction

The traditional computer security model is built
around a reference monitor, supported by hardware
protect.ion mechanisms, which enforces administrati-
vely defined security policies. The reference monitor’s
software is assumed to be of high reliability and in-
tegrity. The reference monitor is supplemented by
strong cryptography for those unfortunate occasions
when our data must venture outside the cozy confines
of its safe haven.

This model’s analogies are mostly military: the
image is that of an information fortress, with walls,
guards, interior compartments, and a defending army.
When you approach the information fortress’s outer
wall (“security perimeter”), you present your iipass-
word” to the guardian of the gate. The fortress’s
defensive garrison (“access control” facilities) protect
your “confidential data” until you want to send it out
of the “security perimeter”, perhaps through a “fire-
wall”, a.t which point, you use a code (but only in
your home country - because cryptography is a “mu-
nition”!) The system’s strong walls and trustworthy
gate guards (“integrity features of the Trusted Com-
puting Base”) protect it against the introduction of
“Trojan Horses” and “logic bombs”.

The information fortress model was designed for
(and in) a world in which computers were expensive,
solitary, heavy, and rare. But that world is long gone.
As frequent press reports indicate (the cover of the
February 19, 1996 volume of Information Week, for
example, proclaimed “Internet Security: Your Worst
Nightmare”) information fortresses are not protecting
today’s information much more effectively than Eu-
rope’s magnificent physical fortresses are protecting
today’s national borders.

Given this state of affairs, it seems natural to fear
that the security community’s current efforts will fail.
After all, we all want our systems to be secure (right?)
But perhaps we should worry instead that we might
succeed.

If success is defined in terms of attributes suita-
ble to secure, but expensive, solitary, heavy, and rare
computers, it seems probable that - in the increasin-
gly unlikely event of success - we will buy security at
the expense of important advantages of cheap, con-
nected, miniature, and ubiquitous computers. In par-
ticular, the current security worldview, if vigorously
enforced, seems certain to:

l limit connectivity and connected functionality

l Drive software costs sharply upward through
substantial additional assurance expense

l Overwhelm administrators with policy, key, and
audit log management0

Do we really face a choice between useful com-
puting and safe computing? The information for-
tress paradigm seems to hold out little hope of pro-
viding a secure heterogeneous, open, distributed,
object-based, (fill in your favorite computing buzz-
word here), worldwide network - and today we have
no alternative paradigm.

2 Symptoms

Thomas Kuhn’s book The Structure of Scientific Re-
r~olul’io~zs [Kuh’iO] provides a useful guidebook for dis-
ciplines whose fundamental paradigms are in trouble.
In Kuhn’s view, the principal symptom of a scientific
crisis is the persistent failure of the puzzles of normal
science to come out as they should:

“The state of Ptolemaic astronomy was a
scandal before Copernicus’ announcement.
Galileo’s contributions to the study of mo-
tion depended closely upon difficulties dis-
covered in Aristotle’s theory by scholastic
critics. Newton’s new theory of light and
color originated in the discovery that none
of the existing pre-paradigm theories would
account for the length of the spectrum, and
the wave theory that replaced Newton’s was
announced in the midst of growing concern
about anomalies in the relation of diffrac-
tion and polarizat,ion effects to Newtonian
theory. Thermodynamics was born from the
collision of two existing nineteenth-century
physical theories, and quantum mechanics
from a variety of difficulties surrounding
black-body radiation, specific heats, and the
photoelectric effect. Furthermore, in all
these cases except that of Newton the awa-
reness of the anomaly had lasted so long and

penetrated so deep that one can appropria-
tely describe the fields affected by it as in a
state of growing crisis. Because it demands
large-scale paradigm destruction and major
shifts in the problems and techniques of nor-
mal science, t,he emergence of new theories is
generally preceded by a period of pronoun-
ced professional insecurity. As one might
expect, that insecurity is generated by the
persistent failure of the puzzles of normal
science to come out as they should. Failure
of existing rules is the prelude to a search
for new ones.”

Computer security should perhaps not yet be con-
sidered a science, but Kuhn’s framework is still useful
as a guide to discussing its present state of affairs.

That state is dismal. The same exposures keep
recurring; we make no practically useful progress on
the hard problems of integrity, assurance, policy, and
interoperability; and we are less and less able to adapt
the fort,ress model to new technologies as they arise.
Williams, Shafer, and Land011 [WSL95] declared the
crisis:

“There is a crisis emerging in information
technology. Reliance on this technology is
increasing much more quickly than our abi-
lity to deal with the also increasing threats
to information security.”

Computers are rapidly getting smaller, cheaper,
and more richly connected. More and more data re-
sides on machines incapable of meaningful physical
security (for example, laptop computers and perso-
nal digital assistants) and designed - by economic
necessity - with no strong logical security. Even the
relatively few remaining information fortresses have
thrown open their gates to Ethernet, ISDN, and fiber
connections. At the other end of those connect,ions
lies the worldwide Internet, on which, as Steve Bello-
vin has observed, [Be1921 “There Be Dragons”.

The Internet exists essentially independent of na-
tional and international authorities, has no effective
inherent security mechanisms, and houses a terrifying
number of attackers of various stripes. Bellovin’s mo-
nitoring tools detected rnore than 450 att,acks against
AT&T’s network gateway in just 2 mont,hs; these at-
tacks originated from more than 90 different. sites.
Since Bellovin’s paper was published, CERT has ob-
served a steady and rapid growth in the number of
Internet security incidents; statistics published in the
March 1996 issue of IEEE Computer indicate an ap-
proximate yearly doubling in the number of incidents

3

reported to CERT [CP96]. This information is repor-
ted with the caveat that “each incident may involve
one site or hundreds (or even thousands) of sites, and
some incidents have ongoing activity for long periods
of time....” An even more alarming set of statistics
appears in the same IEEE Computer column:

“In a recent series of tests by cooperating
organizations, using hacker tools freely avai-
lable on the Internet and penetrating each
other’s sites, the results were striking:

88 percent of the attempted pcnetrati-
ons were successful

96 percent of all system penetrations
went undetected

In 95 percent of the instances where
penetration was detected, nothing was
done”

The advice given to users trying to deal with these
issues is not always very reassuring. A rec.ent PC-
Week article, after describing security defects in Nets-
cape Navigator’s Java and Ja.vaScript implementma-
tions and in Microsoft Int.ernet Information Server,
concluded as follows [Su196]:

“None of these problems makes it impossi-
ble to maintain a reasonable level of security
on an Internet-connected network. Howe-
ver, the nature of the Int.ernet demands at
the very least daily scans of Usenet posts,
E-mail lists, and Web sites for information
on security breaches and the availability of
patches.l”

Technologies more disruptive t.han the Internet
loom on the horizon. Esamples include:

1. Object-orientation blurs the distinction between
data and code, robbing us of one of our most.
powerful integrity tools (hardware-enforced me-
mory protection). At the same time object orien-
tation encourages us to reuse code written by
others - in some cases without benefit of access
to the source text of the code we reuse. Ken
Thompson’s nightmare [Tho84] is now perfected:

‘There is a strong temptation to mimic Dave Barry here and
add “I am not making this up!” The cited column’s recommen-
ded solutions to the two Netscape flaws are classics (emphasis
added): Javascript “Stop using Navigator 2.0 and upgrade to
Version 2.01. Watch for nqicious activity when connecting to
lrnjamiliar Web sites.” Java “Apply Netscape patch. Disable
Java support until the patch is installed. When possible. use
the Java Developtnenf ICii only on isoluted machines.”

2.

“You can’t trust code that you did
not totally create yourself. (Especially
code from companies that employ peo-
ple like me.) No amount of source-level
verification or scrutiny will protect you
from using untrusted code.”

In an object-oriented world we seem likely to en-
sure that “no amount of source-level verification”
will even be possible!

Intelligent Agent architectures invite us to ese-
cute other peoples’ code on our systems and to
write our own code and send it out to make its
way in the world without benefit of our over-
sight. These agent,s are not distinguishable from
programs we used to call viruses.

The software industry is in general not keeping up
with the escalating threat; although the design of
Java shows evidence of some commendable attention
to security, most modern software is designed without
any thought given to security up-front. The Internet,.
OMG CORBA, the Worldwide Web, and most Perso-
nal Computer operating systems are examples of ma-
jor components of the worldwide software infrastruc-
ture into which security is currently being retrofitted.

The effectiveness of t.he security we are building is
open to question. Two “hot” security technologies
(Public-Key Cryptography and Firewalls) are good
exa.mples:

2.1 Public-Key Cryptography

Commonly claimed advantages of public-key techno-
logy include:

1. Offline servers

The idea here is that since the only long-term
cryptographic keys which must be exchanged in a
public-key system are public, we might be able t.o
get away with keeping the servers which generate
t,he public/private key pairs and hand them out
to users offline. Furthermore, since trustworthy
public keys are available which can be used to
protect exchanged session keys, we should also
be able to make do without trusted servers in
authent,ication dialogs.

This all works fine as long as we don’t care about
auditing (see the next paragraph) or timeliness
(see the next bulleted item).

If we want to audit logons, then some trusted
online server must be involved in the logon pro-
cess. If we want to audit client-server authenti-
cation dialogs, it is convenient to have a trusted,

4

online, third-party server involved in the authen-
tication dialog, because the absence of such an
entity requires every server in the system to be
able (and trusted) to audit client authenticat,i-
ons.

2. Simple key distribution

The simple version of public-key key distribution
is “client chooses session key, encrypts under tar-
get’s public key, and sends to target”. There are
subtle problems with this:

l The client must authenticate that the tar-
get’s public key is legitimate. Certificates
and Certification Authorities were invented
to solve this problem.

l The client must confirm that the Certifi-
cation Authority hasn’t changed its mind
about the legitimacy of the target’s public
key. Certificate Revocation Lists were in-
vented to solve this problem, but not eve-
ryone believes CRLs are a good idea. Rivest
and Lampson [RL96] are willing to give up
the presumed advantages of offline servers,
in part to avoid having to use CRLs:

“We assume that principals who is-
sue certificates can provide on-line
Internet service, or can arrange to
provide such via a designated ser-
ver.... Having such on-line capa-
bility permits considerable simpli-
fications - for example, we elimi-
nate ‘certificate revocation lists’ in
favor of on-line ‘reconfirmation’.”

Whether a public-key system which requires ma-
nagement of a Certification Authority, Cerbifi-
cates, and CRLs is simpler than a secret-key
system which requires management of a Security
Server is open to question.

3. Simple administration

Here the claim is that the lack of on-line reposi-
tories full of secrets and the potential for ad-hoc
key distribution make public-key systems signi-
ficantly easier to understand and manage than
secret-key systems. It is not clear that experience
supports this claim; Don Davis [Dav96] observes
that some of the apparent simplicity of public-
key system administrat,ion is accomplished by
sleight of hand: the complexity is still there, but
it has been transferred from the system operators
to the end users:

“it is not widely appreciated that these
advantages rely excessively on end-
users’ security discipline. In fact,
the reason public-key security doesn’t
need a trusted key-management in-
frastructure is that the burden of key-
management falls to public-key clients.
With public-key cryptography, clients
must constantly be careful to validate
rigorously every public key they use,
and they must husband the secrecy of
their long-lived private keys. It turns
out that these tasks are harder than
they seem.
“End-users are unwilling or unable
to manage keys diligently. Perhaps
surprisingly, it’s impossible to au-
tomate asymmetric key management
completely; certain security details re-
main for human intervention, such
as Root-key validation, passphrase
choice, and clients’ physical security.
Even where automation is possible,
as with revocation-list checks, scaling
problems and performance costs make
short-cuts likely. If users or develo-
pers skip these details, there is no way
to detect their omission or to audit
the consequences. I have coined the
term compliance defect for this situa-
tion: a rule of operation that is dif-
ficult to follow and that cannot be
enforced. Compliance defects under-
mine the security of public-key cryp-
tography. When users fail to manage
their private keys securely, or when
they fail to validate each others’ public
keys rigorously, then authenticity and
privacy guarantees weaken, and eve-
ryone’s security deteriorates.”

2.2 Firewalls

Byte magazine [Ker96] recently reported on evidence
that firewalls may not be a very effective means of
preventing Internet break-ins:

“The notion of a firewall as an impregna-
ble defense against intruders is going up in
smoke. Firewalls were in place in two highly
publicized security breaches.. These aren’t
isolat,ed cases. According to the Computer
Security Institute, 30 percent of the Internet
sites that reported breaches in their securit,y
had a firewall in operation.”

5

There seems to be no documented evidence that fi-
rewalls prevent or deter attacks. Until careful studies
are done, we might be wise to keep our expectations
modest; many firewall deployments are undermined
by one or more fallacies:

We ‘ve got the place surrounded

Firewalls can be effective only if all traffic must
go through them to get from the outside of the
protected network to the inside and vice versa.
But networks without unprotected connections
(e.g. modems) between the inside and the out.-
side are rare, and the probability that a network
has no such illicit connections decreases as its
size increases.

Nobody in here but us chickens

Firewalls cannot protect a network against bad
guys who are already inside. As the size of a net-
work increases, so does the chance that it con-
tains bad-guy insiders.

Sticks and stones can break my bon.es, bni words
can never hurt me

Firewalls are best at protecting systems against
connections to “bad systems”. They are much
less effective at screening out bad data from
“good systems”. The bad data problem ari-
ses as soon as an organization allows insiders
to connect to and download information from
the World Wide Web. The recent emergence
of word-processor macro viruses shows that bad
data can be destructive. Some amount of scree-
ning of data is possible using application-level
proxies, but these proxies are themselves proble-
matic [Ker96]:

“Proxy servers present management
headaches, according to Kevin Kita-
gawa, Internet securit.y product line
manager for Sun’s Internet Commerce
Group. ‘Proxy servers are wonder-
ful for most common Internet proto-
cols or services,’ he says. ‘The pro-
blem is, for every new protocol or ser-
vice that comes out, you have to add
another application to the proxy ser-
ver, like screening audio and so on.’
The proxy server cannot handle proto-
cols that lack a specific proxy for them.
Proxy architectures c.an also degrade
performance and transparency.”

When data is actually code, as with Java ap-
plets, the problem gets worse. The Java “sand-
box” approach to dealing with this problem is,

as [DFW96] and much related work shows, hard
for implementors to get right. It is also hard for
users to live with, since it requires that they ne-
ver use internet-resident applets with any dat.a
they consider important enough to protect.

3 Skeletons in the locked closet

The Fundamental Principles of the information for-
tress model are t.hese:

Policy, enforced by the system, protects rcsour-
ces from unaut,horized manipulation

Integrity of the physical system and its code gu-
arantees that policy is enforced

Secrecy of crypt0 keys and sensitive data under-
lies policy enforcement mechanisms

The security community’s dirty little secret is that
all three of these principles, which form the pillars of
modern software security architecture, rest on infirm
foundations:

3.1 Policy

Policy has two, related, fundamental problems: com-
plexity and scale.

Policy scales poorly in every dimension. The com-
plexity of policy which must be stated in order to
manage a system securely increases if any of the fol-
lowing increase:

l number of subjects

l number of job func.tions

l number of objects

l number of operations

l number of semantic classes of data (sensitivity
labels, categories, etc...)

The last two of these are the worst. hdmi-
nistering access control is tolerable in a system
whose only operations are create file, read
file, write file, delete file. In a system with
relational operators, the access control problem is al-
ready much harder .- to do a good job of administe-
ring inference control policies, an administrator must
have enough detailed knowledge about the structure
of a database and the information it contains to know
which sequences of queries a.re inadmissible. As t.he
number and semantic complexity of operations incre-
ases, the administrat.or’s job quickly spirals out of
intellectual control.

6

3.2 System integrity and the reference
monitor

System i&g&y assures that the security policy of
a system cannot be bypassed. The US National
Computer Security Center defines idegrity as follows
[NatBB]:

“sound, unimpaired, or perfect condition”

This sets the bar pretty high, even by computer
security standards. But perfection really is the stan-
dard, because any hole in the wall of the fortress will
let the enemy in. [NatSla] describes which pieces of
the system must be perfect:

“Systems that are used to process or handle
classified or other sensitive information
must be designed to guarantee correct and
accurate interpretation of the security po
licies and must not distort the intent of
those policies. Assurance must be provided
that correct implementation and operation
of the policy exists throughout the system’s
life-cycle. Application subsystems used to
process or handle classified or other sensi-
tive information must be designed, imple-
mented, controlled, and operated in a man-
ner which provides assurance that the go-
als of both application-specific security po-
licies and system-wide security policies are
met without circumvention.”

It seems quite unlikely that the software industry
will come very close to this standard, for a variety of
reasons:

3.2.1 System integrity is hard

Essentially, in order to get a system with excellent
system integrity, you must insure that it is designed
and built by geniuses. Geniuses are in short supply, as
the 1991 US National Research Council report Com-
puters at Risk [NatSlb] observes:

“There is a shortage of well-qualified pe-
ople to work on production-quality soft-
ware. There is a more serious shortage of
those qualified to build critical software, and
a dramatic shortage of people qualified to
build secure software...Setting requirements
for, specifying, and building critical software
require specialized knowledge not possessed
by t,ypical software engineers. Over the ye-
ars other engineering disciplines have deve-
loped specialized techniques - hazard ana-
lysis - for analyzing critical artifacts. Such

techniques are not covered in most software
engineering curricula, nor are they covered
by most on-the-job training. Furthermore,
working on critical software requires speci-
alized knowledge of what can go wrong in
the application domain. Working on secure
software requires yet more skills. Most nota-
bly, one must be trained to understand the
potential for attack, for software in general
and for the specific application domain in
particular.”

An illustration of the challenge integrity poses to
the average working programmer appeared recently in
IEEE Transactions on Soflware Engineering. Presu-
mably a prerequisite to demonstrating that a system
always does what it is supposed to do, is specifying
what it is supposed to do. Kate Finney studied a
population of Computer Science students to find out
how well they were able to read specifications. The
results were not encouraging [Fin96]:

“The experiment that was carried out invol-
ved 62 students, undergraduate and post-
graduate, in reading a very small portion
(less than 20 lines) of a specification in Z2.
All were attending computing courses and
most had been through a basic grounding in
discrete mathematics in addition to separate
tuition in the use of Z... Each student was
asked three questions to test their ability to
read and understand the specification.

“in general the students found it difficult to
understand any of the very simple Z speci-
fications.

“The point to note is that 19 students, ne-
arly a third of the group, could not answer
a single question and found the specification
incomprehensible.”

A correct specification is of course only t.hc begin-
ning of producing a system with good integrity. Even
if ordinary working programmers could be trained to
understand and use precise specifications, and even if
specification tools adequate to the description of se-
cure systems were available,3 there would still be a
long way t,o go.

2Z is a formal language for specifying the behavior of soft-
ware systems; its formal foundations (set theory and classi-
cal first-order predicate logic) are “plain vanilla” by computcl
science standards. A number of good inkroduchions exist, iw
&ding for example [Di194]. The standard reference is [SpiW].

3There is some progress; some recently designed protocols
are provably secure in a precisely defined sense under explicitly
stated assumptions. See e.g. [BR94] and [BR95].

7

A correct specification would have to be t,ransfor-
med into correct code. Systematic approaches to this
exist, but they are seldom used. Notable examples
include the specification-refinement methodology of
Dijkstra. Gries, and others [Gri81], and the Clean-
room methodology [Dye921 (there are many others).
Both methods have long pedigrees, but neither has
made significant inroads into commercial program-
ming practice. In the absence of reliable software en-
gineering methodologies, software error rates remain
depressingly high.

Correct code would riced to be compiled correctly;
for the dangers here cJ Thompson’s Turing Award
lecture, cited above. Finally, correctly compiled code
would have to be executed on correctly functioning
hardware; Intel’s recent floating-point division bug
reminds us that this cannot always be taken for gran-
ted.

3.2.2 System integrity is very expensive

Assurance (the process of demonstrating that a
system has good integrity) is particularly costly.
Most of today’s software is designed for a mass mar-
ket, in which many customers either do not have
or do not acknowledge a serious security require-
ment. Cost-justifying t,he effort required to assure
system integrity for mass-market software appears to
be infeasible.” Even where assurance has been done
diligently, the sheer size of modern software artifacts
raises doubts about its effectiveness. Microsoft unqu-
estionably put a lot of effort into assurance of the
Windows NT security architecture and implementa-
tion; NT is an NCSC C2 evaluated system - but it is
also more than 5 million lines of code [McC96]. What
does the C2 evaluation imply, in practical terms,
about the likely number of security-critical errors re-
maining in those 5+ million lines?”

4The temptation to condemn vendors as lazy or irrespon-
sible for underspending on assurance is powerful; however,
the security community has not made a very good case that
the market will support the cost of assurance - or even
that money for assurance is well spent. sendmail is a fairly

small program. A quick check of the CERT ftp archi-
ves (ftp://info.cert .org/pub/certadvisories) reveals that.
sendmail is the subject of at least six CERT advisories - three
in 1995 alone - of which the first was issued in January, 1990.
Does anyone believe, after all this attention and after applica-
tion of the many patches referenced in CERT’s advisories, that
sendmail is now secure?

5,Microsoft-bashers considering indulging in a feeling of su-
periority here should reconsider: other modern, popular, com-
mercial operating systems are also huge and complicated; any
of them could have been chosen for this example - except that
many of them aren’t even C2 evahrated!

3.2.3 System Integrity requires tradeoffs

System integrity is often bought at the expense of
other desirable system quality attributes. Modula-
rization, with strong inter-module boundaries, is a
technique often used to improve system integrity. Un-
fortunately, inter-module boundary traversals tend to
be expensive on general-purpose hardware; therefore,
systems with strong integrity are often slow.

3.3 Secrecy

The fortress model depends heavily on secrecy. In
networked environments, the use of cryptography to
guarantee confidentiality and integrity of data has led
to an explosion of cryptographic keys, with the resull.
that key generation, management, and distribution is
the central problem of distributed system security de-
sign. It is by no means a solved problem; for example,
fault,s in key handling code lie at the heart of recently
publicized flaws in SSL and Kerberos (version 4).

Even stand-alone systems depend critically on se-
crecy, for authentication; attacks on users’ secret
passwords are a long-standing and persistent pro-
blem.

The security community has recognized the pro-
blems associated with secrecy and has shrunk the se-
crecy perimeter to exclude everything except crypto-
graphic keys; this has been formalized as Kerchoff’s
principle: security is in fhe keys, which is intended to
mean t,hat if t,he keys remain confidential, t,he system
is secure. But decades of experience with the pro-
blems of passwords and crypt0 key management sug-
gest. that a more accurate formulation might be inse-
curity is in the keys.

The simple problem with secrets is that people
are not good at keeping them. Though simple, this
problem is fundament8al: many attacks on “secure”
systems succeed simply because they are performed
by insiders who misuse their legitimate access to
authentication secrets, cryptographic keys, or con-
fidential information. Outsiders also penet,rate “se-
cure” systems by exploiting secrecy failures; this is
called social engineering, and it too is a serious pro-
blem. Ira Winkler writes [Win961

“even the best security mechanisms can he
bypassed through Soc.ial Engineering. So-
cial Engineering uses very low cost and low
technology means to overcome impediments
posed by information security measures.”

He goes on to discuss t,he details of a particular
social engineering a.t.tack. He concludes

8

“The attack yielded sensitive company in-
formation and numerous user passwords,
from many areas within the company, gi-
ving the attackers the ability to cripple the
company despite extremely good technical
information security measures. The results
would have been similar with almost any
other company.

“Even the best technical mechanisms could
not have prevented the attack.”

As Ruth Nelson observes, there are also complica-
ted problems [Nel94] with secrecy:

“Another interesting question is what piece
of information contains or communicates a
secret. The relationship between informa-
tion and secrecy is complicated, as the fol-
lowing examples suggest:

If we cut a secret in half, is it still a
secret? Suppose that a secret recipe
calls for 6 cups of sugar. Is 6 the secret?
Cups? Sugar? . . .

If we move the secret out of context, is
it still a secret? In the example above,
it is clear that “6” is not a secret in
general. In the context of the secret
recipe, it may be.

If we collect enough non-secret infor-
mation and process it correctly, we may
have a secret....

Some observers may already know so-
mething about a secret or have a good
guess at it; in that case, a large secret
can be communicated with very little
information flow...”

Public-key cryptography tries to address some of
the problems caused by excessive reliance on secrecy.
But is it the devil’s bargain? The false hope that
public keys could be printed in the newspaper and
forgotten has faded like a mirage, and in its place
we have hundreds of pages of legalese outlining un-
der what circumstances key pairs (and corresponding
certificates) of various grades may be issued, what it’s
safe to use them for, and what obligations they im-
pose upon their issuers and owners (for an example,
set [Ver96]). Indeed, public-key key pairs seem more
and more like nuclear waste; their private halves are
hazardous if anyone comes in contact with them,6 and

‘Because anyone other than their owners can use them to
comb t fraud.

their public halves need to be kept around in elabo-
rately secure crypts for longer than their owners are
likely to live.7

This metaphor is in deadly earnest. Before we as
a society create huge numbers of these key pairs, we
had better understand the management and disposal
issues we will face down the road. Public-key cer-
tificates are essentially reified trust, just as cash is
reified value. Mankind has no experience managing
stockpiles of trust - especially stockpiles of misplaced
trust. Ghosts of broken promises, echoes of failed re-
lationships, the assurances of frauds - all these will
be in the box, waiting for some modern Pandora to
discover a private key, erase a CRL entry, or break
an algorithm’ and let them out.

4 Manifesto

The central proposition of this paper is:

No VIABLE SECURE SYSTEM DESIGN CAN

BE BASED ON THE PRINCIPLES OF POLICY,

INTEGRITY, AND SECRECY, BECAUSE IN

THE MODERN WORLD INTEGRITY AND SE-

CRECY ARE NOT ACHIEVABLE AND POLICY

IS NOT MANAGEABLE.

This is why computer security is starting to fail -
and why it will continue to fail until it is re-built on
new foundations.

5 Why us; Why Now?

Three trends have precipitated the crisis by undermi-
ning the foundations of the fortress:

1. Miniaturization makes physical security infeasi-
ble, and makes assurance expenses burdensome
because they work against the economies of scale
which cost-justify miniaturization. Miniaturiza-
tion also makes theft easy. Finally, very small
devices give the impression of being not very va-
luable; sociologically this works against securing
them.

2. Connectivity exposes systems to a much broa-
der and more diverse population of users than

7Because they may be needed to verify signatures on docu-
ments with very long lifespans.

‘While we’re on the subject, when we create key pairs with
IO-year lifespans, or use a private key to sign LL 3O-year murt-
gage, will we think about what percentage of the planet’s wc-
4th we’re willing to bet on the proposition that our crypto-
graphers are smarter than everyone alive today, and everyone
waiting to be born?

9

ever before. The software which provides con-
nectivity is itself an exposure in today’s envi-
roninent; it t.ypically enforces few or no policies
and is complex and poorly assured. Finally, con-
nectivity compounds the problems of complexity,
scale and policy composition in heterogeneous
systems.

3. The Mass Markei imposes severe economic con-
straints on software development. Mass-market
software must simultaneously compete on price
and get quickly to market. This has the effect
of putting pressure simultaneously on schedules
and costs. The well-known schedule-c.ost-qualit#y
triangle guarantees that design and assurance
quality will suffer as a result.

6 Reactions to the Unfolding
Crisis

Kuhn’s description of the development of a field in
crisis describes us well:

“When . . . an anomaly comes to seem more
than just another puzzle of normal science,
the transition to crisis and to extraordinary
science has begun. The anomaly itself now
comes to be more generally recognized as
such by the profession. More and more at-
tention is devot,ed to it. by more and more of
the field’s most eminent men. If it still con-

tinues to resist, as it usually does not, many
of them may come to view its resolution as
the subject matter of their discipline. For
them the field will no longer look quite the
same as it had earlier.... An . . . important
source of change is the divergent nature of
the numerous partial solut,ions that concer-
ted attention to the problem has made avai-
lable. The early at.tacks upon the resistant
problem will have followed the paradigm ru-
les quite closely. But with continuing re-
sistance, more and more of the attacks upon
it will have involved some minor or not so
minor articulation of the paradigm, no two
of them quit.e alike, each partially success-
ful, but none sufficiently so to be accepted as
paradigm by the group. Through this proli-
feration of divergent articulations (more and
more frequently they will come to be des-
cribed as ad hoc adjustments), the rules of
normal science become increasingly blurred.
Though there still is a paradigm, few.prac-
titioners prove to be entirely agreed about

what it is. Even formerly standard solutions
of solved problems are called in question.

When acute, this situation is sometimes re-
cognized by the scientists involved.... Ein-
stein... wrote... ‘It was as if the ground had
been pulled out from under one, with no firm
foundation to be seen anywhere, upon which
one could have built.’ And Wolfgang Pauli,
in the months before Heisenberg’s paper on
matrix mechanics pointed the way to a new
quantum theory, wrote to a friend, ‘At, the
moment physics is again terribly confused.
In any case, it is too difficult for me, and
I wish I had been a movie comedian or so-
mething of the sort and had never heard of
physics. “’

We are undeniably experiencing “a proliferation
of divergent articulations” of the dominant para-
digm. Articulations proliferate in all areas: standards
(IEEE 802.10, GSS-API, SSL, X.509, Kerberos)
and standards organizations (ISO, EMMA, IETF,
X/Open), industry consortia (OMG, OSF, OURS,
14)) technologies (RSA, DSS), product approaches
(virus sc.anners, firewalls, smartcards, aut#hentication
servers, SSO products, hardware copy-protection de-
vices). This all comes to a head in the problem of
integration of secure systems - a direct example of
“the divergent nature of the numerous partial soluti-
ons” being “an important source of change”.

Pauli’s lament is also familiar; more and more secu-
rity practitioners seem to be asking themselves, and
asking one another, whether the computer security
problem as we have currently stated it, is not simply
too hard to be solved. Bate and Schaefer [BS95], for
example, put it this way:

“

l

0

.

0

Ain’t gonna be no secure-enough ope-
rating systems to meet the needs
of every[wo]man (graphics, cheap,
fast,, modern. object-oriented, win-
dows’n’MID1, etc.)

Ain’t gonna be no immediate cure for
usurpation of privilege by borrowed
software or downloaded programs

Ain’t gonna be no immediate cures for
violations of liceuse agreements or use
of pirated software and illicit cloning of
software

Ain’t gonna be no cure for incorrect
software or hardware and consequences
of running it”

10

The New Security Paradigms Workshop is a kind
of formal recognition by practitioners of the art that
the Old Security Paradigm is nearing (or perhaps
beyond) the end of its useful life.

7 What is the Way Forward?

Kuhn observes that resolution of a paradigm crisis
requires the existence of a workable alternative para-
digm:

“Let us then assume that crises are a ne-
cessary precondition for the emergence of
novel theories and ask next how scientists
respond to their existence. Part of the ans-
wer, as obvious as it is important, can be
discovered by noting first what scientists ne-
ver do when confronted by even severe and
prolonged anomalies. Though they may be-
gin to lose faith and then to consider al-
ternatives, they do not renounce the para-
digm that has led them into crisis. They
do not, that is, treat anomalies as counter-
instances, though in the vocabulary of phi-
losophy of science that is what they are....
Once it has achieved the status of paradigm,
a scientific theory is declared invalid only if
an alternate candidate is available to take
its place.... The decision to reject one para-
digm is always simultaneously the decision
to accept another, and the judgment leading
to that decision involves the comparison of
both paradigms with nature and with each
other.”

If we accept this judgment, it.‘s clear that the first
step towards resolution of the crisis is to start building
candidates for the position of alternative paradigm.

8 New Fundamentals

How does one build a new paradigm? Kuhn com-
ments on this also:

“The transition from a paradigm in crisis to
a new one from which a new tradition of nor-
mal science can emerge is far from a cumula-
tive process, one achieved by an articulation
or extension of the old paradigm. Rather
it is a reconstruction of t.he field from new
fundamentals, a reconstruction that changes
some of the held’s most elementary theoreti-
cal generalizations as well as many of its pa-
radigm methods and applications. During

the transition period there will be a large
but never complete overlap between the pro-
blems that can be solved by the old and by
the new paradigm. But there will also be
a decisive difference in the modes of solu-
tion. When the transition is complete, the
profession will have changed its view of the
field, its methods, and its goals. One per-
ceptive historian, viewing a classic case of a
science’s reorientation by paradigm change,
recently described it as ‘picking up the other
end of the stick”’

Where do we look for inspiration? Kuhn again:

“It is, I think, particularly in periods of
acknowledged crisis that scientists have tur-
ned to philosophical analysis as a device for
unlocking the riddles of their field.”

If the information fortress arises from an essentially
military view of the world, it seems natural to look
first to military philosophers.

Clausewitz [von93] warned against perfection as
a practical standard, and explained why activities
which seem simple in theory, or on a small scale, don’t
work in real-world conflicts:

“If one has never personally experienced
war, one cannot understand in what the dif-
ficulties constantly mentioned really consist,
nor why a commander should need any bril-
liance and exceptional ability. Everything
looks simple; the knowledge required does
not look remarkable, the strategic opt,ions
are so obvious that by comparison the sim-
plest problem of higher mathematics has an
impressive scientific dignity.. . .

Everything in war is very simple, but the
simplest thing is difficult. The difficulties
accumulate and end by producing a kind
of friction that is inconcievable unless oue
has experienced war.... Countless minor in-
cidents - the kind you can never really fo-
resee - combine to lower the general level
of performance, so that one always falls far
short of the intended goal.... every fault and
exaggeration of the theory is instantly expo-
sed in war.”

In theory, designing a secure system looks simple;
just see to it that users’ passwords stay secret, write
some code to enforce the required policy, and make
sure the code gets run every time it needs to. The

11

knowledge required does not look so very remarka-
ble; the strategic options indeed seem obvious. But
as soon as one starts to build the system, the faults
and exaggerations of the theory multiply beyond ima-
gination, and one in the end always falls far short of
the intended goal. The friction of countless minor
incidents opposes all efforts to perfect the system.

Even if the friction could be overcome, Sun Tzu
[TzuSl] taught his emperor almost 2500 years ago
that a perfect fortress is no defense against a wise
enemy:

“What is of supreme importance is to attack
the enemy’s strategy. Next best is to disrupt
his alliances. The next. best is to attack his
army. The worst policy is to attack walled
cities. Attack cities only when there is no
alternative.”

Centuries of history underscore his point. In the
real world just as in our own discipline, fortresses are
as often betrayed, or bypassed, or starved out, or lost
to the Trojan horse, as they are carried by storm.
The deadliest enemies of o?~r fortresses are not cryp-
tanalysts and “crackers” - they are social engineers.
insiders, and the authors of viruses, worms, and ‘rro-
jan horses. And no wall will keep them out.

Our new fundamentals should focus on attacking
the enemy’s strategy, rather than on building fortres-
ses which he will simply avoid.

As evidence that this is not a hopeless task, here
are a few examples” which suggest that the fortress
assumptions (policy, integrity, secrecy) are not the
only ones on which secure systems could be based:

8.1 Inherent vs. Imposed Properties

A back-of-the-envelope calculation suggests that $1
Billion US, in $100 bills, occupies perhaps 15 cubic
yards. At prices current as this is written, $1 Billion
US, in gold, weighs about 80 tons.

$1 Billion US, in electronic cash, on the other hand,
is 32 bit,s plus some a.pplicat,ion-dependent headers.
This is madness - surely a prescription for fraud on a
breathtaking scale.

This sort of thing happens because programmers
naturally think about how they can make the world
“better”, where better often means “faster and with
less human involvement”, without paying much at-
tention to why things are the way they are in the
world t,oday.

gThe word ezamples should be taken seriously here. This

section is intended only to illustrate that the definition of sc-
amity currently in vogue is not the only one possible. It should
not be construed as a design for next year’s secure systems.

The size and weight of cash is inconvenient. It, was
designed to be inconvenient - precisely so that there
would be inherent limits to the scale on which fraud,
smuggling, and theft are feasible. All of our value-
bearing instrument.s, in fact, are built with these sorts
of intrinsic limitations. A check’s amount field is
small - in part to limit the amount which can con-
veniently be rcpresent.ed in it.. This is one of the rea-
sons business checks are often printed on bigger stock
than personal checks - businesses legitimately engage
in bigger transactions. The temptation to make elec-
tronic cash better (than physical cash) by removing
the inconvenient relationship between value and size
is natural - and it should be resisted.

The software approach to building systems with
limits is ordinarily to first build systems without li-
rnits and then later add limiting mechanisms. This
is particularly true in the case of security; we build
systems under the assumption that everyone is autho-
rized to do everything, and then we build in aulhen-
fication and access conirol mechanisms to limit the
actions of particular users. This means that in most
cases! security is a property which is imposed on the
system rather t.han a property which is inherent in
the systcrn.

If we want to make electronic cash secure, a good
start would be to give it physicality by making its size
more proportional to its value. A sensible approach
to electronic representation of cash amounts might be
to t,ake the dollar value and square it to arrive at. t.he
desired number of representation bits. Note that by
making value inherent in the representation of elec-
tronic cash, we can make all implementations more
secure, without imposing an assurance burden on im-
plementation code - if your machine doesn’t have 1
Billion terabits of storage, you can’t steal a Billion
dollars, no matter how flaky the owner’s e-cash im-
plementation is.

A variant of this approach could be used to in-
sure payment for copyrighted information downlo-
aded over the Int,ernet. Copyrighted data could
be transformed (for example, using a secret-sharing
scheme) to make the length of its representation line-
arly proportional to its assigned price. Users acces-
sing the document could then simply be charged for
connect time; the properties of secret-sharing sche-
mes guarantee that customers would have to down-
load an entire document in order t,o use any part of
it, and the length of the transformed representation
would insure that downloaders who retrieved intel-
ligible versions of documents have spent enough in
connect,-time charges to pay the copyright fee. No a.c-
cess control is required to implement this scheme, and
no distribution of document keys to users is required

12

either. Authentication is required only to accurately
establish which user’s account should be charged for
connect time. Ruth Nelson’s notion [Nel95] of un-
helpfulness as a security policy seems related to this
approach.

8.2 Economic Models

A common assumption today is that privacy requires
secrecy. However this is manifestly not the case. An
example will illustrate:

Imagine a system which ret,ains medical records.
Its record structure looks like this:

owner-bankaccount
owner-amount // $100,000 ?
ownermedicalinformation

A request message looks like this:

requesterbankaccount
requestedlecord

A request to access a medical record succeeds if
and only if a transfer from requesterbankaccount
to owner-bankaccount succeeds. This has the nice
property that no policy expressed in terms of subjects
is required. The system works because:

If I access my own records, I transfer money from
my own account into my own account. No harm
done.

If my doctor accesses my records, he pays me
~100,000. But this is OK with him, because he’ll
just put it on my bill (and I’ll pay, because I now
have the money!)

If Kevin Mitnick accesses my records, then my
privacy has been violated. On the other hand,
my new $100,000 bank balance goes some way to
soothing the sting.

This system is an example of a fairly effective
privacy-protection system which does not depend
upon secrecy; instead it depends upon economics.
(Unfortunately, it does still depend to some ex-
tent upon system integrity - even Homer sometimes
nods.) It also illustrates a candidate rule for desig-
ning systems which depend minimally upon policy
administration:

Make the users ask forgiveness, not permission
The basis for this rule is reversible sanctions; the

sanction which penalizes had behavior is always ap-
plied before any behavior. Later. a user who believes
his action was benign can ask to have the sanction

reversed. In the system described, the users ask for-
giveness when they ask for their money back after
accessing a protected resource. If the owner of the
resource decides that the access was legitimate, she
refunds the money. Otherwise, she keeps it. Punish-
ment is swift and inevitable, which discourages at-
tack. As Sun Tzu observes:

“To be certain to hold what you defend is to
defend a place the enemy does not attack.”

8.3 Rigging the game

The previous example illustrated an economic mo-
del based on individual self-interest. It is possible to
design systems which provide incentives for coopera-
tion. Aselrod investigated such systems in [Axe84];
more recently Rosenschein and Zlotkin [RZ94] investi-
gated social engineering for machines:

“We want to understand the kinds of ne-
gotiation protocols, and punitive and incen-
tive mechanisms, that would cause indivi-
dual designers to build machines that act
in particular ways. Since we assume that
the agents’ designers are basically interested
in their own goals, we want to find interac-
tion techniques that are “stable”, that make
it worthwhile for the agent designer not to
have his machine deviate from the target be-
havior .”

Note again the emphasis on security and stability
as inherent, rather than imposed, properties of the
system.

8.4 Immunity

Nature has been protecting systems against attack
by foreign code and data for millions of years. The
systems are organisms, and the foreign code and data
are viruses, bacteria, and other toxins. Recent work
by Stephanie Forrest and others [FHSL96], [DFH96]
applies lessons learned from natural immune systems
to computer security with very encouraging results.

Independently, Jeff Kephart [Kep94] has proposed
epidemiologic and immune-system models for protec-
ting networked computers against viruses.

8.5 Co-evolution of programs and
data

Another assumption designers often make is that gc-
neral purpose stored-program computers must have
the property that all copies of a program look the

13

same. But this is not true; it might be possible to
substantially reduce the incidence of computer viru-
ses by co-evolving program code and data. One way
to do this might be:

l pass an application’s code and all the files a user
creates using that application to a secret-sharing
function

l Divide the output into as many files as were pro-
vided as input (i.e. one file corresponding to the
application’s code and one each corresponding to
each of the user’s data files)

l Store these files in place of the originals

l When the application is invoked, re-const,itute
the application code and data files by recovering
the shared secret

This results in a version of the application which
is personalized to an individual user and the data he
creabes using that application. A nice property of this
kind of system is that neither an application’s code
nor user data can be modified without corresponding
changes to all other related files. Obviously, explicit
import and export, operations would be required to
“introduce” new files into the personalized applica-
tion and to prepare files for use by people other than
their owners.

8.6 Safety (or at least integrity) in
Numbers

The fortress approaches integrity maintenance by ma-
king one perfect copy of high-integrity data and bu-
rying it in a fallout shelter under 24-hour armed gu-
ard. Nature guarantees the integrity of some data
(DNA, for example) by making millions of indifferent
copies, distributing them as widely as possible, and
ruthlessly exterminating those which aren’t “good
enough”. Note that even the definition of integrity
is relaxed here - from perfection to fitness for a par-
ticular purpose.

9 Agenda for the Revolution

Perhaps the reader has been convinced that the Em-
peror really isn’t wearing any armor. If so, she will
have reahzed by now that. a lot of work lies ahead.
Even if the suggestions in the previous section make
some sense, the present paper plainly doesn’t lay a
new paradigm out, in clear Copernican circles.

If today’s security epicycles now seem too ugly t,o
live with, the next steps look like these:

1.

2.

3.

4.

Enumerate the principles of the new security
worldview.

Here are a few nominations:

.

.

.

.

0

b

.

0

.

l

l

.

l

0

Assume low integrity.

You can’t keep a secret.

Security should be inherent, not imposed.

Policy is evidence that security is imposed.

Identit,y is a side-effect, of policy (don’t, de-
pend on it; don’t authenticate it).

Trust is evidence that security is imposed
(trust nothing and 110 one).

Ease of use should be proportional to the
probability t.hat use is harmless.

Make the user ask forgiveness, not permis-
sion.

Plan for emergence.

Secrecy is not privacy.

Control is not protection.

“Confident,ialit,y, integrity, availability” is
not security.

Good enough is good en&gh. Perfect is too
good.

Evolve!

Identify foundational primitives required to build
the new-model world

This paper has hinted at, a few useful primit,ives,
built by analogy with biological and economic
systems.

Other useful analogies undoubtedly exist, but we
should be careful not to settle for analogy if what
is really required is an unprecedented model.

Map out an infrastructure development pro-
gramme for the new-model world

Set out the research agenda for the new-model
world

References

[Axe841 Robert Axelrod. 7’h.e Erohtion of Coop
rufion. Basic Books, New York, 1984.

[Be1921 S. Bellovin. There be dragons. In Proc.
USENIA’ Security Symposium III, pages l-
16. USENIX, September 1992.

14

[BR94]

[BR95]

[BS95]

[CP96]

[Dav96]

[DFH96]

M. Bellare and P. Rogaway. Entity authen-
tication and key distribution. In D. Stinson,
editor, Proc. IEEE Crypt0 99. Springer-
Verlag, 1994. LNCS no. 773.

M. Bellare and P. Rogaway. Optimal asym-
metric encryption - how to encrypt with
ma. In A. DeSantis, editor, Proc. Eurocrypt
94. Springer-Verlag, 1995. LNCS no. 950.

R. Bate and M. Schaefer. ‘tsupdood? re-
packaged problems for you and mmi. In
Proc. New Security Foundations Workshop
1995, pages 2-10. IEEE Computer Society
Press, 1995.

D. Cooper and C. Pfleeger. Security and
privacy tc. IEEE Computer, pages 118-9,
March 1996.

D. Davis. Compliance defects in public-key
cryptography. In Proc. 6th USENIX Se-
curity Symposium, pages 171-8. USENIX,
1996.

P. D’haeseleer, S. Forrest, and P. Helman.
An immunological approach to change de-
tection: Algorithms, analysis, and implica-
tions. In Proc. 1996 IEEE Symposium on
Security and Privacy, pages 110-9. IEEE,
1996.

[DFW96] D. D ean, E. Felten, and D. Wallach. Java
security: from hotjava to netscape and
beyond. In Proc. 1996 IEEE Symposium
on Security and Privacy. IEEE, 1996.

[Dil94] A. Diller. Z: An. Introduction. to Formal
Methods. John Wiley and Sons, second edi-
tion, 1994.

[Dye921 M. Dyer. The Cleanroom Approach to Qua-
lity Sof-/ware Development. John Wiley and
Sons, 1992.

[FHSL96] S. Forrest., S. Hofmeyr, A. Somayaji, and
T. Longstaff. A sense of self for unix pro-
cesses. In Proc. 1996 IEEE Sym.posium on
Security and Privacy, pages 120-8. IEEE,
1996.

[Fin961

[Gri81]

K. Finney. Mathematical notation in for-
mal specification: Too difficult for the mas-
ses? IEEE Trans. Software Engineering,
22(2):158-g, February 1996.

D. Gries. The Science of Programming.
Springer-Verlag, 1981.

[KepW

[Ker96]

[Kuh’iO]

[McC96]

[Nat881

[NatSla]

[NatSlb]

[Ne194]

[Ne195]

[RL96]

[RZ94]

[Spi92]

[Sul96]

J. Kephart. A biologically inspired immune
system for computers. In Artificial Life IV,
pages 130-9. MIT Press, July 1994.

D. Kerr. Barbarians at the firewall. Byte,
21(9):80NA3-8, September 1996.

T. Kuhn. The Structure of Scientific Revo-
lutions. University of Chicago Press, 1970.

S. McConnell. Daily build and smoke test.
IEEE Software, 13(4):144-3, July 1996.

National Computer Security Center. Glos-
sary of Computer Security Terms. NCSC,
1988. Document NCSC-TG-004.

National Computer
Security Center. Integrity-Oriented Con-
trol Objectives: Proposed Revisions to the
Trusted Computer System Evaluation Cri-
teria (TCSEC) DOD 5&00.28-STD. NCSC,
1991. Document C Technical Report lll-
91.

National Research Council. Computers at
Risk: Safe Computing In the Information
Age. National Research Council, 1991.

R. Nelson. What is a secret - and - what
does that have to do with computer se-
curity. In Proc. New Security Paradigms
Workshop, pages 74-81. IEEE Computer
Society Press, 1994.

R. Nelson. Unhelpfulness as a securit.y po-
licy, or, it’s about time. In Proc. New Secu-
rity Paradigms Workshop 1995, pages 29-.
32. IEEE Computer Society, 1995.

R. Rivest and B. Lampson. SDSI: A sim-
ple distributed security infrastructure. This
appears on Ron Rivest’s web page, 1996.

J. Rosenschein and G. Zlotkin. Rules of En-

counter: Designing Conventions for Auto-
mated Negotiation am.ong Computers. MlT
Press, 1994.

J. Spivey. The Z Notation: A Reference
Manual. Prentice Hall, second edition,
1992.

E. Sullivan. Internet soft.ware problems
drive home security issue. PCWeek,
13(10):1, March 1996.

15

[Tho84]

[Tzu91]

[VerSG]

[von93]

[Win961

[WSL95]

K. Thompson. Keflections on trusting trust.
Communications of the ACM, August 1964.
Turing Award Lecture.

Sun Tzu. The Art of War. Shambhala
Press, 1991. tr. T. Cleary.

Verisign, Inc. I;erisign C~‘erVification Pruc-
tice Slalcnlenl. Verisign, Inc., 1996. version
1.1.

C. von Clausewitz. On War. Alfred A.
Knopf, 1993.

I. Winklcr. The non-technical threat, to
computing systems. CJornputing Systems.
9(1):3-14. 1996.

J. Williams. M. Schaefer, and D. Landoll.
Pretty good assurance. In Proc. New A’ecu-
rity Paradigms Workshop, 1995, pages 8%
89. IEEE Computer Society Press 1995

16

