
SafeBots: A Paradigm for 
Software Security Controls 

Robert Filman and Ted Linden 

Software Technology Center 
Lockheed Martin Missiles and Space 
3251 Hanover Street OIH1-41 B/255 

Palo Alto, California 94304 
Fihuan@stc.lockheed.com 

415-354-5250 

Abstract 

We propose a security paradigm in which software security 
controls are implemented as ubiquitous, communicating, 
dynamically confederating agents that monitor and control 
communications among the components of preexisting 
applications. These agents remember events, communicate 
with other agents, draw inferences, and plan actions to 
achieve security goals. Key features of this paradigm are: 
(1) linguistic mechanisms for specifying agents, security 
models, and communications, (2) compilation mechanisms 
that automatically create and install agents as wrappers 
around existing application components, (3) algorithmic 
definitions of how agents communicate to increase the 
security of systems, and (4) a library of agent code 
fragments, used by the compilation mechanism, to build 
actual agents. By automating the generation and 
administration of security agents, we expect to m‘ake it 
cost-effective to install enough redundant agents so that 
subversion of system software or of some agents can be 
detected and responded to effectively. 

Introduction 

We propose a paradigm shift in our approach to software- 
based computer security controls. In order to guarantee the 
integrity of software controls, the traditional focus has been 
on controls that are simple, passive, verifiable, and built 
into system software. In our new paradigm, software 

controls are: 
l Flexible and context sensitive 
l Active in responding to threats 
l Reliable through redundant checking 
l Incrementally added to existing systems 

We believe the first step toward achieving these goals is to 
wrap convention,al software components with programs that 
‘analyze communications into and out of applications, 
appropriately monitoring and controlling these 
communications. To be effective, such programs need 
inherent goals, independent processing, communication 
facilities, and persistence. This combination of features 
defines sofrware agents [Riecken 94, Wooldridge and 
Jennings 951. Building on the notions of robots, soflbots 
(software robots) and safety, we call our system SafeBotsTM. 
Individual security agent programs arc called safebots (note 
capitalization.)’ 

While there ‘are many challenges facing the SafeBots 
paradigm, ongoing advances in information technology 
favor the ultimate success of an agent-based paradigm for 
security. This paper addresses three key issues that are 
critical to the ultimate success of a SafeBots approach to 
security: 

1. What can safeboLs do’? 
2. How can safebots be protected from subversion. 
3. How can ubiquitous, redundant, communicating 

safebotq be crested, administered, and controlled so they 
<are cost effective ‘and commercially viable. 

Our SafeBots p‘aradigm emerges from lessons learned about 
previous paradigms ‘and from new technology opportunities. 

1 w c cmphasizc that the work descrihcd in this ppcr is 
conceptual and is not augmented hy actual implementalion. 

45 



We begin with a background section that summarizes 
lessons learned and a technology opportunities section that 
suggests it is time to break away from old assumptions 
about how to approach security. 

Background 

In the early 1970s as the first computer networks emerged, 
computer security became a compelling issue. An early 
problem was that, while the shared-access operating 
systems of that era had mechanisms to prevent one user 
from accidentally interfering with the work of others, none 
of these mechanisms were effective against deliberate efforts 
to violate protection boundaries. Several research efforts 
were launched to remedy this problem. Many applied repair 
efforts continued through the 70s~and were uniformly 
unsuccessful. The research community learned that repairing 
existing commercial operating systems against deliberate 
intrusions was futile. 

Since repairing flaws doesn’t work, attention turned to 
designing multi-user secure operating systems using two 
approaches: 

1. lhe operating system provides reliable mechanisms 
that higher level software can use to enforce various 
security models and policies. Most of this research 
pursued a generalization of capability-based addressing. 
[Needham 72, Lampson et al. 76, Linden 76, Neumann 
et al. 771. 

2. An operating system kernel enforces a well-defined 
security model such as the Bell and LaPadula multi- 
level security model Bell ‘and LaPadula 731 

Examples of each of these approaches eventually reached the 
marketplace in commercial products. IBM’s System 38 used 
capability-based addressing but did not exploit it 
significantly for security. Security kernels that were 
certified to enforce security policies also were marketed, but 
did not achieve much commercial success. The moral was 
that security features that impact time to market or 
performance are unlikely to be built into successful 
commercial products. 

By the 1980s. personal computers were becoming 
commonplace. The personal computer temporarily avoided 
the problem of shared access by concurrent users, and 
surrendered all pretense that any effective security control 
was provided by the operating system. Of course, once 
personal computers are linked together, the security 
concerns burgeoned. 

Recent work on security controls has centered on 
encryption, firewalls, and intrusion and anomaly detection 
techniques. These techniques can be implemented with a 
manageable level of reliance on software integrity, and the 
marketplace for all of these security techniques is 
exploding. (Not all products on the market minimize their 
reliance on software integrity, and not all are resistant to a 
determined intruder.) 

By the late 8Os, it seemed that even the research 
community had largely given up on the idea of developing 
software-based security controls that will resist the attacks 
of a determined intruder. Yet many privacy, security, and 
availability requirements cannot be satisfied if the only 
rigorous tools av‘ailable are hardw‘are isolation, encryption, 
rigid tirewalls, and network-watching intmsion detectors. 
The key problem with software-based security controls is 
that it is very difficult to ensure the integrity of software 
when one is concerned about deliberate efforts to bypass and 
subvert the controls. A Maginot Line approach does not 
work. We need ways to build software-bas& defenses whiIe 
minimizing the danger that a determined intruder will 
simply bypass or subvert the controls. 

The Technology Opportunities 

Several recent trends in computer technology enable new 
approaches and new paradigms that have not been practical 
in the past. 

l Distributed systems. Dislribution introduces 
additional complexity and vulnerabilities that make 
security more difficull. However, as we learn to 
manage complexity and use encryption routinely to 
protect communications between processors, it 
becomes possible To view distribution as an advantage 
for security. Hardware isolation and encrypted 
communications can be used to protect distributed 
software with differing levels of confidence. Even a 
complete subversion of controls at one node need not 
lead to catastrophic failure. With enough redundancy in 
the controls, it is feasible that no single failure will 
lead to any significant security lapses. 

l Decreasing hardware costs. Large amounts 
processor time ‘and communications bandwidth can now 
be devoted to security without degrading response. 
While it has often been assumed that security should 
not consume more than about 10% of the 
computational resources, processing is becoming 
virtually free. In the future, software controls that 
consume 90-99X of the resources can be very cost 
effective. (In many current applications, user interface 
graphics consume 90% of the resources and no one 
complains about that.) Over time, it will also become 
increasingly cost-effective lo install security controls 
on dedicated processors where they are more easily 
protected. 

l High-level protocol standards. Emerging 
standCards like HTML and CORBA make it increasingly 
practical for security controls to monitor and understand 
component interactions. Security controls can be 
inscrced as cxcensions of well-defined component 
interfaces. and well-defined interfaces make ir feasible 

46 



Original 
System 

SafeIb;sysr-pped 

usu 
IEd 
IISI 

L l 1 IO3 
Figure I: Existing applications evolve into 

survivable applications by automated addition of 
safebot wrappers, agencies, and expert assistants 

to automate the generation of security wrappers that 
protect components. 

l Very high level specification languages. 
Improving technology for automatically compiling 
specifications into operational software allows the 
creation of security systems from high-level 
requirements. If security controls are going to be 
pervasive and redundant, then we will have to automate 
more of the generation, installation, administration, 
and validation of these controls. 

What SafeBots Do 

The SafeBots concept is that software security controls 
become active agents that wrap insecure components, 
communicate with each other, and are smart enough to 
adapt their actions to the local and global context. Since 
safebots are agents, they can be programmed to perform 
authentication, access control, intrusion detection, or other 
security controls. In practice, safebots are structured either 
as wrappers for application components [Genesereth and 
Ketchpel 941, or as independent safebot agencies 
[Wiederhold 921 that support the coordination of safebot 
activities. 

Safebots monitor communications by wrapping an 
application’s components. A safebot provides a level of 
security that is appropriate for the local resource it is 
protecting, without imposing local constraints on the 
global system.2 When wrapping a component, application, 
or computer, X, one replaces it with another component, 

2 With networks that cross many independent administrative 
domains. security mechanisms based on imposing policies on 
others are doomed to failure. With ;I distrihuted approach to 
security, one can put walls and gates in one’s own territory and 
cooperate with (hut not completely trust) well-behaved 
neighbors. 

application, or computer, Y, such that Y receives all 
messages to and from X, censors or edits them, and passes 
them on to X or to an alternative recipient. Safebots can 

l Detect errors or suspicious patterns of activities 
l Block inappropriate actions 
l Require further authentication before allowing access 
l Add to the history of the user, session, or component 
l Communicate with other safebots about potential 

intrusions 
l Fix or randomize the duration of the component call to 

thwart use of timing covert channels, and 
l Check that responses do not leak sensitive information. 

Figure 1 shows how SafeBots preserves the structure and 
code of a distributeri application while extending it into a 
highly secure and survivable application. In this figure, 
some safebot wrappers run on the same nodes as the 
application components they are protecting, and some run 
on dedicated processors and intercept ‘all communications to 
or from a protected component. 

Other safebots are independent ugencies that accumulate 
information to be selectively sh‘ared ‘among safehots. These 
safebot agencies support communication and collaboration 
among safebots. Safebot agencies provide common 
mechanisms for controlled sh‘aring of information about 
users, computers, sites, system status, normal patterns of 
behavior, histories of intrusions, recent attack patterns, 
corrupt software, and the status of other safebots. Some 
safebot agencies are expert assistants supporting security 
officers. By being voluntary services with limited trust in 
other safehots, agencies respond to open networks 
composed of many independent administrative domains. A 
given safebot may confederate with different agencies for 
different purposes [Filman and Linden 961. 

Safebot agencies support different security functions; for 
example, different agencies will provide services that 
support: 

l Authentication of both users and services 
l Security status monitoring 
l Behavior proliling. 
l Rapid communication about known attack patterns, for 

example, safebot agencies may disseminate 
dynamically updated information ahout known viruses. 

l Reasoning about the trust to place in communications 
from other safebots. 

l Security officers. 
l Security administrators. 

Figure 2 illustrates some of the potential safebot agencies. 
As an ex‘ample of the additional tlexibility that can be 
achieved with safebot agencies, consider their potential role 
in supporting very flexible user authentication. Conven- 
tional authentication is usually a rigid, static decision 

47 



security Authentication 
Status aaencv Aaencv 

Behavior Socurlly Offlcer 

Safebot Wrapped Components 

Figure 2. Sufebot agencies support 
communication and collaboration among sclfebots. 

removed from supporting context like the user’s location, 
rwent terminal idle time, ‘and the session’s recent history of 
anomalous or suspicious actions. An authentication agency, 
in addition to storing the information needed to authenticate 
a user at a remote site, can collect reports about user actions 
and dynamically determine a contidence level in the user’s 
identity. This information cran be shared as a user connects 
to multiple sites. A safebot protecting a critical resource 
may check with the user’s authentication service before 
granting a request for especially sensitive information, and 
then may demand redundant authentication. In one approach 
to reauthentication, the authentication service maintains a 
list of user-provided memories that no one else is likely to 
know. The advantage of this approach is that it requires IN> 

special hardware and can be used when the user is at a 
location where authentication hardw,are is missing or 
broken. 

Protecting Safebots from Bypass and 
Subversion 

SafeBots builds on, complements, and extends the security 
provided by encryption mechanisms. We assume that 
encryption protects safebot-to-s‘afebot communications from 
eavesdropping and spoofing. The communications of the 
application programs being protected may or may not 
already be encrypted. If they ‘are, safebot wrappers monitor 
the communications before encryption and after decryption. 
If the application communications are not encrypted, 
safebot wrappers are a convenient way to add encryption, 
and safebot agencies <are a way to support ke.y management. 
Encryption can also help sequester application components 
and prevent the safebot froin being bypassed. 

The overall security controls enforced by safebots must 
continue to function reliably even when some of the 

safebots or the operating system underneath them been 
subvcrtcd. In a distributed system, approaches for dealing 
with this threat include running safebots on dedicated 
hardware, employing conlinuous mumal vetting of 
distributed safebots, reasoning about the level of trust to 
place in communications from other safehots, and isolating 
rogue safebots. 

The SafeBots System 

Our vision of the SateBots system (as a software system) is 
fancifully illustrated in Figure 3. The system has three 
major parts: OntoSec, a language for describing safebot 
specifications, component behaviors, and inter-safebot 
communications; Swathe, a compiler of specifications and 
library components into safebot wrappers, stand-alone 
safehots, and installation scripts, and SecLib, a libmry of 
reusable safebot components and code fragments. SecLib 
components come with both code and an OntoSec 
description of what the code does and how it is to be knit 
into a safebot. (Some SecLib elements are purely OntoSec 
description, useful when Swathe knows how lo expand such 
a description by itself or when the description expands out 
into other defined components.) SecLib has two parts: (1) 
generic comportems useful in any application involving 
wrapping agents ~u~cl (2) components that are pnrticularly 
suited for security algorithms. Ex‘amples of generic 
components include inter-safebot communication. database 
mechanisms for long-term memory and short-term 
tmnsactions, pattern-matching. and generic wrappers for 
particukar protocols (e.g., WWW and CORBA). Examples 
of security components include p‘articular implementations 
of authentication mechanisms, predefined agencies, 
algorithms for computing trust factors and inlrusion 
detectors. 

The user of SafeBots does two things: 
l Adds components to SecLih. These ‘are code and 

OnroSec descriptions of that code. 
l Develops inputs for Swathe. 

Swathe, given (1) an OntoSec specification of the desired 
goals ~JKI behavior of the new safehots, (2) an OntoSec 
specification of the interface of the to-be-wrapped 
applications, (3) a SecLib of appropriate code fragments, 
and (4) target information about the locations of the to-be- 
wrapped applications, produces (1) a set of snfebots (both 
wrapper agents and agencies) and (2) a scrip1 for perfoiming 
the wrapping and installing the safehots. Executing the 
script performs the wrapping. 

The application is now more secure. The systems 
generated by Swathe scripts call span several applications 
011 multiple machines and may be created piecemeal over 
time. 

We discuss each componenl in more detail below. 

48 



UBOI 
Swcificaiona - 42 

VW 
Compnnto 

a I tallatio 
Scripts 

abol 

Figure 3: Swathe takes user specifications written in 
OntoSec, combines them with the library of security 

components and produces safebots and instullation scripts 
for these sufebots. 

OntoSec 

Our premise is that safehots communicate. Our 
subpremise is that we will generate safebots from a 
specification of their desired properties. We use a common 
language for both safebot specification and safebot 
communication. We call this language OntoSec, for 
“ontology for security.” OntoSec is a language for 
representing security requirements, specifications, goals, 

p~arttcular file, database or 

operator 
~ May 

1 Class An application program 
1 Relation 1 Permission 

Item Relation A data item within a resource 
OnMachine Function An operation on a particukar 

re.snlucc 
HasPrivilege Relation Connects privileges with 

pefions or sessions 
Knows Modality Expresses a safebot’s or 

rxzrson’s knowledge 
Gal Modality Expresses the goal or policy 

of a safebot 
Probability Modality Expresses probability of an 

assertion 
Figure 4. By providing primitives for the conceptunl entities 

of the security domuin, OntoSee entlbles both ,formd 
speci$ctltion of systems and inter-xlfebot communication. 

actions, events, and knowledge of agents. For example, 
OntoSec can describe protrxols; the security properties of 
resources and components; the privileges of users and 
sessions; events, actions to be taken on events, and 
semantic bindings for implementing those actions; and 
histories of users and systems. OntoSec provides a 
vocabulary for specifying the security properties to be 
enforced by safebots and for s‘afebots to communicate with 
each other and with security personnel. 

Important dimensions of OntoSec are that: 
l It is expressive enough for safebots to express their 

policies, status, knowledge, beliefs, and concerns. It 
must support safebots in determining the level of trust 
to place in the messages and requests of other safebots. 

l It is directly computable; that is, we want a system 
that infers the consequences of a collection of security 
statements in a reasonable amount of time. 

l It provides a way of unifying programmatic behavior 
with reasoning. 

Figure 4 lists some typical classes, predicates, and 
imperatives that need expression in OntoSec. Security 
systems must deal with people. things that happen, both 
currently and in the past, actions to be taken on p‘articular 
events, and the properties of individual applications. The 
ontology must be able to discuss permissions and 
obligations, the physical configuration of elements, and the 
knowledge of individuals and their goals and deal with 
probabilistic zuid evidential reasoning. Figure 5 shows 
typical OntoSec statements in an informal logic, including 
examples of “user predicates” (e.g., TrustedFriends), 
permissions for a particukar component, the consequences of 
allowing execution of an unbounded program, and actions 
to be taken on events (e.g., warnings on repeated password 
failures and blockages after raised suspicions). Note that the 
kanguage has “second order” or “modal” aspects, in that it 
expresses notions such as goals. knowledge, and 
probability. 

This notion of ontological specification of desired 
behavior is an important theme in current Al research 
[Neches et. al. 5) 11. Ex‘amples of ontological approaches to 
security include Yialelis et. al [Yialelis et. al. 061 and the 
dcontic logic work of Bieber and Cuppens [Bieber and 
Cuppens 931. An important element in the generation of 
communicating intelligent agents is an appropriate 
underlying communication protocol; KQML [Finin et. al. 
941 is one such language. 

Wrapping with Swathe 

SafeBots is based on the wrappability of applications and 
components. We assume that components to be protected 
(1) are specified-that is, have a well-defined, formally 
representable interface, (2) can be sequestered-that is, 
placed where intruders cannot invoke them directly, and 

49 



I John E TrustedFriends (LockheedMartin) 
May(p,Write,DB42,x,y) + May(p,Read,DB42,x,y) 
May(p,Read,item(DB42,Salary(q)) + 

(p’q I WorksFor (p,qN 
May(p,s,OnMachine(k, Shell), x, y) & 
UserProgram +May(p.x.OnMachine(k, m), x, y) 
Owner(p,r) + Vm.May(p,m,r,x,y) 
FailedPasswordTries(s,h,r) > 5 + 

Notify (SessionHolders (s), PasswordHacking( & 
Vr x y. -May(User(s),s, r. x, y) 

Goal(Suspicious(p) + -May(p,r,a,x,y)) d 
Figure 5. Because OntoSec provides a language for 

expressing security concepts, SafeBots systems have a 
richer environment of behaviors and responses 

(3) can be substituted-that is, a replacement component 
can be introduced into the system in their place. This 
replacement component supports the specified inlerface, 
performs whatever security actions are associated with the 
call, and invokes the sequestered, original function IO do the 
actual work. Examples of wrapped components range from 
network proxy servers through UNIX executable shells on 
to tracing in Lisp. 

Manual wrapping is labor-intensive, cumbersome, 
error-prone, and inconsistent. We argue for the need for 
tools that perform such wrapping automatically. Such a 
tool (which we call Swathe) k?kes as inputs: 

l The interface definitions of the application components 
l OntoSec specifications of desired security properties 
l A library of security algorithms and safebot code 

fragments (&Lib) 
l The physical organization of the system (e.g., 

locations of existing applications) 

and produces 
l A w-rap@ application or component that conforms to 

the specified security properties and 
l An installation script for that wrapped application. 

Note that Swathe is not dealing with the semantics of 
application component interfaces-security programmers 
will write SecLib routines that can do things with the 
information content being passed. Rather, the automatic 
programming of Swathe adjusts the safcbots code to deal 
with the syntax of communications-a more tractable and 
quite useful activity. 

An important element of this scheme is the existence 
of SecLib-Swathe works primarily by selecting 
appropriate elements from this library and coherently 
knitting them together. The SafeBots algorithms discussed 
above would be realized from such components. 

When a safebot intercepts a method invocation to or 
from the wrapped component, Swathe makes additional 
parameters available to the safebot. These parameters 

identify the calling session, its security context, and the 
responsible human source of the call. (Additional 
p‘arameters like these arc already passed by CORBA remote 
procedure call implementations such as Orbix.) 

SecLih 

SecLib is an extcnsiblc collection of algorithms, 
mechanisms, and satehot code fragments that understand 
Onto&c and can be automatically assembled into safebots. 
These fragments enable safehots to: 

l Sense and evaluate their environment to detect security 
threats 

l Understand ‘and reason about OntoSec specifications 
l Communicate with other safebots 
l Reason about actions to best enforce security policy in 

the current context 
l Reason about communications received from other 

safehots. (For example: Have they been subverted’! 
What information should I send them’? Should we 
collectively ostracize them’? How does their 
communication affect my understanding of my 
context’!). 

Additional salebot fragments implement specilic security 
algorithms. They focus on redundant user authentication, 
data aggregation, statistical analysis, access control, denial 
of service due to system overloading, and other specitic 
threats and co~itrols. 

Swathe weaves these safebot fragments into safebots 
capable of enforcing OntoSec specifications for the 
application component around which they are wrapped. 

Safebots dynamically form federations, joined by 
interest in the behavior of particular users, systems, or 
sessions. They check on each other and evaluate the trust 
they place in communications from other safcbots. Since 
safebots are created by the owners (or “p‘artial owners”) of 
components, SafeBors technology supports the realization 
of systems embodying multiple, overlapping adminislrative 
concerns. 

Genetic diversity 

By including multiple versions of algorithms and fragments 
in SecLih. we e~iahle Swathe lo introduce “genetic 
diversity” into its space of wrapped organisms. Thus, a hole 
in one particular implementation of a component dots not 
render vulnerable every user of the semantics of that 
component. A diverse ecology of security mechanisms is 
less vulncrahle IO a single-disease catastrophic failure than 
is a monoculture of idenlical organisms. Similarly, a 
system composed of security elements that trust each other 
less than cornplctely and whose “genetic code” varies is less 
exposed to a single point of failure, much as biological 
systems use inulliplc immune responses to prolect against 
a v,arirty of parasites However, aside from work on geuctic 

50 



algorithms, it is difficult IO get interesting, complex 
computer programs to evolve on their own. 

Research Concerns and Potential Limitations 

While safebots have many advantages for security, they also 
have disadvantages-especially in the near term: 

Safebots wrap only application components that have 
well-detincd application program interfaces (APIs), 
specified in a supported interface definition language 
(IDL). Applications with complex GUI’s or interpreters 
(e.g., shells, programming environments) ‘arc not good 
candidates for wrapping. 
We need to determine if safebots can detect subversion 
of the lower level softw‘ue running bcnealli anolher 
safebot that they have trusted in the past. 
Initially, safebots will make security administration 
more complex. It will be difficult for the average 
security officer to understand everything that is going 
on. Configuring snl’ebots to check ou each olhcr will 
be complicated. Eventually, the benefits of redundancy, 
high-level specilications, and visualization will make 
the security officer’s job easier, but it will be so111c 

time before we achieve enough redun&mcy to COVL’I 
mistakes in administering security. 
Safebots themselves can become a source of 
catastrophic failure. Subverting a safebot could become 
a way to attack systems, &and inept security designers 
could design safebots that reduce rather than enhance 
survivability. SafeBots is designed so safebots can 
check on each other and limit their trust in other 
safehots. We need to determine the extent to which 
these mechanisms are practical. 
Safebots will use computational resources and ~111 

degrade response time. AI a time of crisis, heightened 
safcbot activity could tie up a system just when it is 
most needed. Assigning safebots to run on their own 
hardware is a partial solution to this concern. 
Eventually, debots can also reason about the effect 
they are having on perform‘ance. Faster h‘ardware and 
c,areful &sign ‘are also key to long-range mitigation of 
this concern. 

Conclusion 

SafeBots is a vehicle for experiments with the cost- 
effectiveness of redundant security agents dislribuled 
pervasively throughout applications. The long term goal 01 
SafeBots is to make defensive controls dramatically less 
expensive ‘and force intruders to breach redundant barricrs- 
turning the adv‘antagc to securily defense and fundamcnlilly 
changing the balance between penetralors and security 
personnel. 

Heferences 

[Bell and L:tPaduh 731 D. Bell and I,. Lapadula, Secure 
Computer Systems, Air Force Electronic Sysrcms 
Division, ESD-TR-73-278, Nov. 197.3. 

[Bichrr and Cuppe~ls 931 P. Biebcr a11d F. Cuppens, 
“Expression of Confidentiality Policies with Dconlic 
I.ogic,” in J. Meyer and Ii. Wicringa (Eds.) fI~~~fic Logic 
in Computer Sciencc~: Nortwtive System Spec(ficrr,ion, 
Wiley, 1003. 

[Fihnmi and Linden 961 R. Filman and T. Linden, 
“Communiarting Security Agems,” Prowrcling.~ of the 
FtJh Workshops on Endtlin,~ Technologies: It@mrructure 
for Collahorrr~ive Enterprises. Stanford, CA, June 1006, 
pp. X6-01. 

[Finin et. al. 5141 ‘1’. Finin, R. Fritzson, D. McKay and R. 
McEntire. “KQML as XI Agent (communication 
Language,” Proc. 3rd In! ‘I Coqfirence on I~fitrtmlion untl 
Kno~~kdge Mrmn~~rwwnt. 1904. 

[Gencscreth and Kctchpel 041 M. Cicnescrelh and S. P. 
Ke~chpcl, “Soliw;u-c A~CIIIS,” Cortm. ACM 37 7 1004, I . 
pp. 48-53. 

~L~ullpsllIl et :d. 761 B. I.nmpson & H. Sturgis, 
“Rsllectious on au Operating System Design.” Comtrl. 
ACM. IY,5. May 1076, pp. 251-266 

[Linden 761 T. A. Linden, “Operating System Structures to 
Support Security and Reliable Software.” Computing 
Surveys, 8.4. Dee. 1076, pp. 409-445. 

[Neches et. al. 911 R. Neches, R. Fikes, T. Finin, 1’. 
Grubcr. Ii. Pntil, T. Senator, B W. R. SW~IIIOUI. “ln~~bling 
‘Technology for Knowledge Sharing,” AI Mqozine, 12, 3, 
1001, pp. 16-36. 

iNecdh:un 721 R.M. Needham, Protection syhstrms and 

protection iInpleIIleIlt~ItioIls. AFIPS Cool’. Proc., 1972 
FJCC, AFIPS Press, Nontvale, NJ. 41, pp 571-57X. 

[Riccken 941 I>. Kiecken, (iucst Editor, “Special Issue: 

lutelligent Ag~ts.” Cotntn. ACM 37, 7, 1094. 

[ Wiederhold 921 G. Wiederhold, “Mediators in the 
Architccturc of’ Fu~urc Information Systems,” IEEE 
Computer 25, 3. 1902, pp. 3X49. 

[Wooltlridge ;uld Jennings OS] M. J. Wooltlridge and N. R. 
Jennings, “Agem Theories, Architectures, and Languages: 

A Survey,” in M. J. Woddridgc aud N. K. Jennings (Us.) 
Proc. ECAI-94, Workshop on Agent Theories, 
Architecmres ml Lmgrq~rs, Springer-Vcrlag Lecture Notes 
in Artificial Irltelligence-890, 1905. pp. I-39. 

[Yialelis et. a1. 961 N. Yinlclis, E. I,upu, and M. Sloman, 
“Role-Based Security I’or Distributed Object Systems”, 
hoc. lEEi: Fiji11 Workshops on ~htrh/in~y ~~chno~o~ie,s: 

In,fhl.slr~cc~tur~~ ,fiJr Colldm=~r~ive I3li~rpri.w.v. 1006. 

51 


