
Developing and Using a “Policy Neutral” Access Control Policy 

Duane Olawsky, Todd Fine, Edward Schneider and Ray Spencer 
Secure Computing Corporation 

2675 Long Lake Road, 
Roseville, Minnesota 55113-2536 

Email: olawsky@sctc.com. fine@sctc.com, spencer@sctc.com 

December 2.1996 

ABSTRACT 

The foundation for security enforcement is access control. Re- 
sources must be protected against access by unauthorized entities. 
Furthermore, authorized entities must be prevented from accessing 
resources in inappropriate ways. A major challenge to the devel- 
oper of an access control policy is to provide users the flexibility 
to protect their resources as they see fit; system policies that am 
inconsistent with user needs are inadequate. In particular, systems 
that enforce a single, hard-coded policy cannot satisfy the needs of 
all users. 

As part of the Distributed Trusted Operating System (DTOS) 
program, we have developed and implemented a flexible security 
architecture using the Mach microkemel. In this architecture, the 
security rules enforced by the system are defined by a system com- 
ponent outside the microkemel. This reduces the problem of sup 
porting other security policies to redefining this system component; 
the same microkemel can be used to support a wide range of policies. 

Formal methods were used to provide a rigorous approach for 
the development of the policy. Recognizing that most people are 
uninterested in reading security requirements stated in formal speci- 
fication languages, an approach was developed for representing and 
maintaining the policy in a tabular format. This paper describes the 
flexibility of the DTOS security architecture and the approach used 
in developing the access control policy for this flexible architecture. 
It also gives examples of how to detine a component that makes 
security decisions for the microkernel.’ 

1 INTRODUCTION 

One of tbe goals of the Distributed Trusted Operating System 
(DTOS) program is to investigate an approach for developing au 
operating system microkemel that supports a wide range of secu- 
rity policies. Rather than simply following the guidelines in the 
Trusted Computer Security Evaluation Criteria (KSEC) [ 121 and 
implementing Discretionary Access Control (DAC) and Multilevel 
Security (MIS), the DTOS microkemel must provide a framework 

‘This work was suppxted in patt by the Maryland F’mcurement Office, contract 
MDA904-93C-4209 and was performed in cooperation with mscarchers at the Infor- 
mation Security Computer Science Rcseaxh Division of the Department of Jkfense. 

that encompasses these policies as well as others. The DTOS pro 
gram is exploring this framework through prototyping and study 
efforts. 

Given that secure system developments have traditionally fo- 
cused on implementing a particular security policyp a natural ques- 
tion to ask is why we think supporting a wide range of policies is 
important. One reason is that different sites need to protect against 
different threats. A site controlling a nuclear reactor needs to pro- 
tect the integrity of the processes and data used to run the reactor. 
A site containing proprietary or confidential data needs to protect 
that data from unauthorized disclosure. A site managing medical 
records needs to protect the records both from unauthorized disclo- 
sure and inappropriate modification. While access control policies 
are appropriate for each of these examples, a different type of ac- 
cess control policy might be desired for each. Policies such as Type 
Enforcement [3] and Clark-Wdson [S] can be used to address in- 
tegrity concerns. Other policies such as MIS, Chinese-Wall [4], 
and ORCON [lo] can be used to address confidentiality concerns. 
However, no single policy is appropriate for all cases. 

A second reason for supporting a wide range of policies is that 
the set of threats against which each site must protect is constantly 
evolving. Some threats that am of concern today might not be of 
concern next year. Furthermore, the system must protect against new 
threats that exploit previously unknown security flaws in existing 
applications and security flaws introduced through new applications. 
A system that is hard coded to enforce a single security policy will 
have much more trouble adapting to the evolving set of threats than a 
systemsupporting a flexible security architecture. This is especially 
tme when high assurance is a goal. Then, time is required to model 
the system, state the policy, and perform the assurance analysis. By 
basing the assurance for a specific site on assurance performed on 
a policy neutral system. the time required to assure the final system 
can be greatly reduced. 

Without policy flexibility, users must either make due with a 
system that does not provide exactly the type of protection they 
would like or must wait until someone develops a system that does. 
Given that the development of a secure system takes a significant 
amount of time, the threats against which a user needs protection 
typically will have changed between the time that development 
begins and the time a new system is completed. Thus, users are 
constantly forced to make due with the policies provided by existing 
systems. 

In Section 2 we describe the DTOS architecture for a policy 
flexible system, and in Section 3 we describe the method used in 
DTOS to develop a flexible, policy-neutral access control policy. 
Section 4 presents two examples of the use of the architecture to 
implement a high-level policy (MIS and Clark-Wdson), and Sec- 
tion 5 discusses the range of policy flexibility supported by DTOS. 

%he Data Secure Unix system desclibed in mfemnce [ 17’j is an exception 
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Figure 1: DTOS Architecture 

Section 6 describes the use of composability analysis [l] to deduce 
properties of the system. Section 7 notes some related research. 
Finally, Section 8 summarizes results and open issues. 

2 AN ARCHITECTURE FOR POLICY 
FLEXIBILITY 

The DTOS security architecture [ 111, depicted in Figure 1, supports 
policy flexibility by separating the making of policy decisions from 
the enforcement of those decisions. The policy decisions are made 
by security servers. A security servera is simply a process execut- 
ing in the system that makes decisions based on a set of security 
rules. The enforcement of these decisions is performed by each 
system component managing the objects protected by the policy. A 
manager is the only subject able to directly access some collection 
of objects that it manages. It receives a sequence of requests from 
various client subjects to perform actions on its objects and must 
decide, based on its current state (possibly augmentedby new access 
decisions received from a security server), whether or not to carry 
out tbat request. 

The manager receives requests from other subjects,including the 
Security Server, and it sends accessdecisionrequests to the Security 
Server. The Security Server sends responses to the access decision 
requests to the manager. The manager and Security Server each 
have internal data that records their processing state. The Security 
Server’s data includes adecisionpoiicy which is the data and/orcode 
governing the Security Server’s policy decisions. The manager’s 
data includes an enforcementpolicy specifying the required access 
decisions that the manager associates with each manager request 
and a set of retained decisions specifying access decisions that the 
Security Server has previously made which have been cached by the 
manager. 

When requesting a security decision, the manager must provide 
information indicating the subject that is requesting the service and 
the object upon which the service is to operate. Thus, it suffices 
for an object manager to associate security information with each 
object that it manipulates as a result of client requests. The process 
manager4 manages the subjects and therefore associates security 
information with each subject. In addition to providing the security 
information for the accessing subject and for the entity acted upon, 
the manager also provides the type of operation that is desired. The 
operation type is specified by a permission name. In response, the 
Security Server provides a set of decisions, called an access vector, 
indicating which operations the accessing subject may perform on 

3Wc use “a security s.erver” when referring to security scrve~~ in general and “the 
Sccutity Server” when xfening to the security ~crver pnxent in a given instance of 
DTOS. 

?he pmcess managerin DTDS is the Mesh microkernel. 

the entity. Although the Security Server could simply respond with 
a yes/no answer as to whether the requested operation is permitted. 
WC return an access vector for efficiency. By caching the returned 
access vector and consulting the cache before requesting decisions 
from the Security Server, the manager can avoid interactions with 
the Security Server when the necessary information is in the cache.5 

The security information that a security server needs in order to 
make access decisions depends on the particular policy implemented 
by that security server. For example, a security server enforcing an 
MLS policy makes its decisions based on the security levels of the 
accessing subject and the accessed entity. However, having the 
manager provide security levels to the Security Server would be 
incorrect since it would hard code into the manager that each entity 
has a security level. To be truly policy flexible, the manager cannot 
contain any policy specific iuformation. Thus, the manager asso- 
ciates a label called a security identifier (SID) with each manager 
object. The Security Server defines a mapping between SIDs and 
securily contexts. This mapping defines the meaning of each SID. 
In the case of an h4LS policy. a security context might consist of 
simply a security level. In the case of a Type Enforcement [3] pal- 
icy, the security context associated with a subject SID might contain 
only a domain while the securit context associated with an object 
SID might contain only a type. % The level of indirection provided 
by SlDs allows the same manager to he used regardless of how the 
Security Server interprets SlDs and makes access decisions. The 
Security Server provides an interface allowing managers and other 
tasks to map SlDs to their associated contexts and vice versa.7 Of 
course, a security server may restrict access to this information if 
this is required by its policy goals. 

There are several types of policy involved in a systemusing this 
architecture. The first is the high-level system policy. Some exam- 
ples are MIS, Clark-Wilson and ORCON. This is the policy that 
would be hard-ceded into a system using a traditional architecture 
not designed for policy flexibility. In the DTOS architecture this 
policy emerges from the interaction of the manager and the Security 
Server, each of which is implementing its own policy. 

%c interaction between the manager and Security Server in DlTX is slightly 
morccomplicated than that described hae. Forexample. there are also f&lit& for&e 
Security Serverto instruct tbc manager not to cache certain parts of the returned access 
vectors and to flush vectors from tbc cache. Such features are nexssaty to support 
policies in which BCCCBSCS can be twoked. 

65pe JZ?nfor.xmentconImls subject-to-subjacte on a domain-todonuinbtis 
and subject-toabject BCCCSS on adorn&-to-typebasis. Thus. the secuity information 
needed to make decisions consists of domains and types. 

‘The developerof any puticularsccurity server must d&de whether it is important 
to the goals of the policy that SlDs be cryptographically pmtectcd (or even opaque) 
fmm interpretation by other taska Such protection is not quinxJ by the architecture. 
However. to maintain policy-neutrality, all managers should be written with the BS- 
sumption that SIDs are opaque. If this guideline is violated. the manager will not work 
correctly with any security server that dow not supply transparrnt SlDs with the same 
strucbJm. 
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The manager’s enforcementpolicy defines the security require- 
ments goveming when the manager provides service. In particular, 
this policy identifies the points in the manager processing at which 
a security decision needs to be obtained. It also indicates which 
security decision is needed at each point. This policy defines what 
it means for the manager to enforce policy decisions made by the 
Security Server. It will be the same no matter what decision policy is 
supplied by the security server. Each manager is trusted to correctly 
implement its enforcement policy. 

The Security Server’s decision policy defines the security m- 
quirements on how the security server makes access decisions. 
Since the intent is to allow different security servers to make se- 
curity decisions differently, them is no single security server policy. 
However, there is a welldefined interface that the managers expect 
each security server to implement. The main requirement on the in- 
terface is simply that whenever the Security Server sends the results 
of a security decision, the results am consistent with the decision 
policy that the Security Server is imp1ementing.s 

Although a manager could be any of a variety of components 
including a hle server enforcing access decisions made on files and 
an application enforcing access decisions on application specific 
data, the remainder of this paper considers only the enforcement 
by the DTOS microkernel of access decisions made on microkernel 
subjects and objects. 

3 DEVELOPING THE DTOS 
MICROKERNEL ENFORCEMENT POLICY 

To explore the use of the DTOS architecture, a primary focus of 
the DTOS program has been to modify the Mach microkernel to 
serve as a manager in that architecture. In doing so, we have added 
suplxat to Mach for a wide range of access control policies. This 
has been accomplishedby inserting control logic in the microkernel. 
The processing of each microkemel request has been modified to 
request a security decision by a security server before providing a 
service. We have also implemented a prototype user-space security 
server that makes these security decisions for the microkernel. The 
security-enhanced microkemel and the prototype Security Server 
have been released to a number of sites for use in research on secure 
systems. Some sites am developing their own security server while 
others are developing additional policy-flexible applications. Addi- 
tional information on the implementation of both the microkemel 
and the Security Server can be found in [ 111. 

Although the work described hem deals with enhancing Mach 
to function as a policy-neutral object manager, this is merely an 
example. The architecture is general enough to be applied not only 
to other microkemels but to a wide variety of managers. 

3.1 APPROACHES TO POLICY 
DEVELOPMENT 

Traditionally, there have been two related but distinct approaches to 
developing security policies. The first approach, the threat-based 
approach, is to identify the system threats that are of concern and 
developrequirements that address the threats. The second approach, 
the criteria-based approach is to interpret a set of requirements 
specified by an evaluation criteria document (such as [12]) for the 
target system. The relation between the two approaches is that in the 
second approach it is assumed that the developers of the evaluation 
criteria have already identified all of the relevant threats. 

The criteria-based approach is infeasible for DTOS due to the 
goal to support a wide range of policies. Regardless of whether 
an evaluation criteria document contains MIS, integrity, or avail- 
abiity requirements, there is always the possibility that the user of 

‘A security server may also provide specialized interfaces for use by particular 
managers. 

a DTOS system will want to enforce some other type of security. 
Consequently, the DTOS policy must provide a framework in which 
a variety of policies can be supported rather than simply interpreting 
requirements in au existing evaluation criteria. 

Thus, the DTOS policy development is threat-based. However, 
the threats identified are of a different nature than those traditionally 
identified. When developing the policy for a system that is intended 
to enforce a single policy, the identified threats typically are specific 
to that policy. For example, while covert channels [12] are a threat 
with respect to MIS policies, they are typically not a threat with 
respect to integrity policies. Since the DTOS policy is intended to 
provide a framework that supports a wide variety of policies, the 
threats identified for DTOS must be policy independent. 

The intent is for usem to be able to counter threats to their 
systems by appropriately conliguring DTOS. Furthermore, as the set 
of threats against which a site must protect evolves, administrators 
shouldbe able toreconfigureDl7X toaddressthenew set of threats. 
This requires controls to be placed on essentially all services. For 
example, DTOS must control the setting of the scheduling priority 
for a thread since some users will want to protect against service 
denial to user threads. Although the denial of service threat might 
be of little concern to most users, the possibility that some users 
might be concerned suggests viewing it as a real threat. Since 
providing protection against every conceivable threat is impossible, 
a judgement call must be made on the set of threats that am of 
concern. 

The approach taken in defining the enforcement policy for the 
DTOS microkernel is to view any access of the microkernel state 
as being a potential threat. By viewing each access as a potential 
threat and providing appropriate control mechanisms, the goal of 
supporting multiple policies can be achieved.g 

3.2 POLICY DEVELOPMENT 

Although developing a policy for a system intended to be “policy 
neutral” seems paradoxical, the “paradox”is largely resolved by the 
separation of security enforcement from security decision making. 
In this section we describe a process for defming the hardcoded 
enforcement policy in the manager. We use the DTOS microkernel 
enforcement policy as an example. In Section 4 we give examples 
of how to de6ne a decision policy in a security server to achieve a 
given high-level policy. 

The process we have used for defming the enforcement policy 
of the DTOS microkernel consists of the following primary steps: 

1. Identify the services that are provided by the microkemel, 

2. Relate each microkemel service to one or mom access deci- 
sions that must be obtained for the service to be performed. 

3.2.1 IDENTIFYING SERVICES 

To perform the lirst step we determine the following information 
about the system: 

l the microkernel data structums, and 

0 the requests that clients may make to access those structures. 

Wtth this information in hand we proceed to identify the services 
provided by the microkernel that need to be controlled. We dii- 
tinguish the following two classes of service: transformation and 
invocation. A iransfomation service is one that is defined in terms 
of a change to one or mom of the data structums that comprise 
the system state. For example, one component of the DTOS 
system state is ezisting-tasks, the set of existing tasks. Since 
any change to a set involves adding or removing elements (or 

‘See the DlDS Gcnerali2u.l Security Ftalicy Specification [ 141 formomon support- 
ing multiple policies 
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both), these are two natural services to associate with this com- 
ponent. Consideration is then given to whether a threat is posed 
by the ability to add or remove elements from this set. The abil- 
ity to remove an element poses a denial of service threat. Thus, 
we define a service, TerminatesTaak(task) to be any modifi- 
cation to the contents of the system state that results in task 
being removed from ezisting-tasks. Any system transition in 
which an element is removed from etisting-tasks is an instance 
of this transformation service. As another example, each task 
has au associated priority that determines the initial priority of 
its threads. The service SetsTaakPriority(task) is de&4 as a 
modification to the system state that results in the priority of task 
changing. The AllocatesReadRegion( task, page-index) service 
is delined as a state change in which a new page is allocated 
at page-index for task and the protectious of that page include 
read access. The Allocates WriteRegion( task,page-index) and 
AllocatesExecuteRegion(task,page-index) services denote the 
allocation of pages with write and execute access, respectively. 

In all of these examples, a service is equated with a charactexiz- 
ing property of state transitions. Any state transition satisfying the 
characterizing property is considered to have provided the service. 
Conversely, a state transition that does not satisfy the characterizing 
property is considered not to have provided the service.” 

Not all microkemel requests alter the modeled state of a mi- 
crokemel entity. Some of them only observe the modeled state 
of some entity, and these requests cannot easily be characterized 
as performing transformation services. For example, consider the 
Mach taskinfo request which returns information on the state of a 
specified task. Since this operation simply observes data, no trace is 
left in the contents of the system state to indicate when the operation 
has beenperfonned. For each such request we define an invocation 
service.’ Any system transition in which one of these requests is 
invoked is au instance of the corresponding invocation service. 

Unlike a transformation service, which may be performed by 
multiple requests, au invocation service is associated with exactly 
one Equest. Since transformation services address the ways in 
which subjects can modify the system state, they address primarily 
denial of service and integrity concerns. In contrast. invocation 
services address ways in which subjects can observe objects, thus 
focusing on confidentiality concerns. 

3.2.2 STATING THE POLICY 

The second step in the development of an enforcement policy is 
to deiine the relationship between the manager’s services and the 
accessdecision computations that must be requested of the Security 
Server by the manager. The manager enforcement policy must 
indicate which accessdecisionsneed tobe checkedbefore providing 
each scrvicc.” Thus, the enforcement policy must map each service 
to a triple consisting of the SIDs of the subject and object involved 
together with the permission requested. 

For example, the DTOS microkemel’s enforcement pol- 
icy maps the service SetaTaakPriority(taak) to the permis- 

“One issue that might be taken with the t& priority example is that a request 
that sets a task’s priority to the same value BS the task% current priority will not be 
recognizedasa SetsTasWriority setvice. As tbercqucstiseff~tivelyano~p,we 
maintainthattbercisnoncedtoviewthercquestasp~vidingascrvicc. Ofcoutse.there 
SIX also covert channel issues that must be addwazd when the permission checks are 
being implemented. Cam must be taken that if the service is disallowed an “insticient 
pctission” status is rctumcd even when the operation would be a no-op. Otherwise. if 
aclient c doesnot havepennissiontoobtainaserYice SetsTcsLPriority(t,). then 
c could determine the priority of tl by attempting to set tl ‘s priority and observing 
whether the ram status indicates “success”or”insuflicient petition’: (Rrmition 
checks in DTOS arc implemented in a way that prevents this channel.) 

“Them are B few Mach rquwts (e.g.. task+zL~pe&Lport) for which multiple 
invocationscrvicesarcdefined.Thisallowsfiner-grainadcontroldependinguponwhich 
system state informationis mquested as specified in the parametersof the Fcquest. 

‘2Rccell that we allow the possibility that the result of an asa decision requestis 
cached. If the msult of a required wxss decision can be obtained from tbe cache. then 
the microkernel will not make a new request for that access decision. 

Requirements on client to task Accesses 

‘lkansibrmation Service Required Permission 

SetsTaakPriority(task) Change-task-priority 
TerminateaTask(taak) Terminate-task 

Table 1: Tabular Policy Example 

sion Change-task-priority and the SIDs for the client13 and 
task (the target). In other words, the microkemel policy re- 
quixes that the client have Change-taakqriority permission 
to task before providing the service SetaTaakPriority(task) 
to the client. Similarly, the DTOS enforcement pol- 
icy maps the service TerminateaTask(task) to the per- 
mission Terminate-task and the SIDs for the client and 
task. The services AllocateaReadRegion( taak,page-index), 
Allocates WriteRegion(taak,page-index) 
and AllocateaExecuteRegion(task,page-indez) are mapped to 
Have-read, Have-write and Have-execute permission, respec- 
tively, and to the SIDs for task and the indicated page. 

The DTOS enforcement policy is stated in two different forms. 
To provide a clear, precise statement, the policy is formal&d 
in the Z specification language [la]. This requires formaliz- 
ing the system state and the transformation services. Then 
the enforcement policy can be formalized as a relation between 
the services, the permissions and the SIDs. The expression 
kernelAllows( taaksid(client), task-portsid( task)) denotes 
the set of permissions allowed from the SID of the client to the 
object SID of the target task. It thus models the access vector asso- 
ciated with the pair of SLDs. The formalization of the requirements 
on SetaTaakPriority is as follows: 

V Transition; task : TASK 
l SetsTaakPriority 

+ Change-task-priority 
E kernel-alZows(tasksid(client), 

Bask-portlrid( task)) 

Experience has shown that most people are uncomfortable read- 
ing such mathematical statements. Consequently, formal security 
policies are to a great extent ignored by all but formal methods ad- 
vocates. This is unfortunate since people such as systemdevelopers, 
evaluators. accrediters, andusersneed tounderstandthe system pol- 
icy. After all. the distinguishing characteristic of a secure system is 
that it has a policy that it is assured to satisfy. 

The DUOS enforcement policy addresses this by providing a 
tabular representation of the policy as well as the formal Z state- 
ment. Tables 1 and 2 contain brief excerpts that illustrate the tabular 
representation of the policy. 

The heading of a table indicates the SIDs that should be used 
for the permission checks specified in the table. Each row of a 
table identifies a binding between a service and a permission. One 
such table is de6ned for each pair of entity types for which there 
are associated permission checks. A similar approach is used for 
invocation services. The only difference is that the tables associate 
permissions with DTOS requests instead of transformation services. 
The system developers have found the tables to be a convenient 
representation of the policy. This has allowed the people coding 
the security checks to obtain a better understanding of the security 
checks than if the policy was documented only in the Z specification 
language. 

“lhe client is the tzxk that initiated a tquest for service. 
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Requirementson task to pagesid( task,page-indez) Accesses 

lhnsformation Service Required Permission 

AllocatesReadRegion(task,page-indez) Have-read 
Allocates WriteRegion(task,page-indes) Have-write 
AIIocatesEzecuteRegion(task,page-indez) Have-execute 

Table 2: A Second Example 

To help maintain consistency between the enforcement policy, 
the design documents and the microkemel itself, we have written 
tools that automatically extract information on services and permis- 
sions from underlying data tables. These tools analyze the data 
tables to produce the following: 

The policy requirements (both the formal Z versions and 
the tables shown above) included in the enforcement policy 
document, 

The lists of permissions needed to invoke each request (there 
may be several), 

The list of permissions associated with each class of object, 
and 

C files defining the permissions used in the microkemel and 
the checks to be performed. 

These tools have proved useful in maintaining consistency between 
the assurance and implementation efforts as the system evolved. 

Although the tabular representation of the policy has been quite 
useful, it is incomplete without the definitions of each of the services. 
In the DTOS approach, the service definitions are given informally 
in English and formally in Z. Although the Z formalization could be 
omitted, some benefits have been achieved from the formalization. 
First, the formal dehnitions are much mom precise than the informal 
ones. This additional precision is especially useful in capturing 
some of the more subtle aspects of the system such as the transfer 
of capabilities. The lack of precision in informal detinitions can 
lead to inconsistencies between how the security requirements am 
interpreted by the people implementing the systemversus the people 
analyzing the system. Second, the formalization of the policy has 
allowed other tools to be used in the development of the policy. For 
example, a parser can be used to check the syntax and typing of the 
mquimments. In particular, referencing a service that has not been 
formally defined results in an undefjned function being reported 
when the formal policy statement is generated and parsed. This has 
actually cccurred on the DTOS program when systemimplementors 
have added new services to the tables. In these cases, parsing the 
formal policy identifies that the new services still need to be formally 
defined. 

3.2.3 EVALUATION OF THE APPROACH 

The two-step process described here was relatively straightforward 
to apply to DTOS. The microkemel documentation describes the 
system data structures and microkemel requests from which the 
service definitions are derived. The approach worked well for the 
initial development of the policy as well as for the incorporation of 
system components that were added later. Having a well-defined 
process for identifying the services is much more desirable than 
using an ad hoc approach. Since there is nothing Mach-specific 
to this approach, it is of use to other secure system developments, 
too. This includes operating system and application developments 
as well as other microkernels. The only assumption made by the 
approach is that the systemuses the client-server paradigm. 

We note that it would be possible to define one or more invoca- 
tion services for each system request and not dehne any transforma- 
tion services. This would eliminate the need to model the system 
state in the enforcement policy specification. However, we prefer 
the use of transformation services whenever possible because re- 
quirements based on them provide general enforcement statements. 
A transformation service defines a state transition that might be 
provided by multiple system requests. For these cases, detining the 
security requirements in terms of a common transformation service 
ensures a more coherent policy. Rather than a separate permis- 
sion checkbeing specified for each individual request providing the 
service, a single permission is globally associated with the service 
regardless of what requests ate implemented in the system. This 
has the following advantages: 

Robustness - If the system interface is modified, we only need 
analyze what services are performed by the modifiedladded 
system calls. 

Support of High-Level Reasoning - 
Transformation services allow general high-level reasoning 
about permission checking without repeated analysis of all 
the requests that perform a given service. 

In contrast, the invocation services control the invocation of requests 
rather than the providing of services. A requirement that a client 
have get-task-info permission to a task in order to invoke the 
task-info request on that task places no restrictions on other ways in 
which the client can obtain information about the task. To perform 
higher level reasoning about which tasks “know” a given piece 
of information for a particular task, one must first identify all of 
the requests that return that information. Then, the permissions 
associated with each of these requests must be analyzed to ensure 
that the policy is satisfied. 

However, even for transformation services, it is still necessary 
at some point to determine which requests provide the transfor- 
mation service. In particular, the system developers will need to 
determine which portions of the code provide a given service so that 
the access decision requests requited by the enforcement policy can 
be included. Thus, while transformation services have advantages, 
they might complicate arguments that the implementation obeys the 
enforcement policy. 

The number of permissions detined in DTOS is much greater 
than those defined for other systems. For example, most MLS 
systems reduce the set of permissions to read and write. In DTOS, 
there am currently about 150 different microkemel permissions. 
Not coincidentally, there are approximately 150 tnicrokemel calls 
in Mach. Thus, the large set of permissions is necessary to support 
tine-grained control. For example, there are different types of “read” 
accesses in Mach that a given policy might wish to differentiate. limo 
such read accesses are 

a read a task’s address space, and 

l read a task’s IPC name space by copying a port right from the 
task. 
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Since the goal of DTOS is to support a wide range of policies, a 
large set of permissions is necessary. Otherwise, DTOS will not be 
able to support system policies that require fine-gramed control. 

Fine-grainedcontrol is very closely linked to the concept of least 
privilege. An enabling design principle for secure systems is to limit 
the privileges held by each subject to the minimum required. Then, 
the system decision policy can be relied upon to prohibit the subject 
from performing unwanted operations. Thii allows the majority of 
the assurance analysis for the subject to focus on demonstrating that 
the subject correctly performs the operations that it is permitted to 
pXf0l-Jl-l. 

The large number of permissions raises two concerns: 

l the complexity of inserting code to check so many permis- 
sions, and 

l the effect on performance of checking so many permissions. 

In DTOS, most microkernel calls require only a single permission 
check, andmost of these permissionchecks can be done at the same 
point in the code before processing of the request is dispatched to 
the individual processing routines. This resolves the first concern 
to a large extent 

To address the second concern, we implemented an access vec- 
tor cache in the microkernel. To reduce cache searching, pointers 
from key data stmctures to associated cache entries am maintained 
by the microkernel. Heavy use of Mach send-once rights reduces 
the effectiveness of this secondary caching mechanism (the point- 
ers). A few preliminary timing studies have been performed, but 
they are not sufficient to draw solid conclusions. They suggest that 
the impact on performance is determined largely by the effective- 
ness of the caching scheme. That is, if access vectors am easily 
available, permission checking does not have a significant effect on 
performance. The data are probably obscured by other factors such 
as paging performance and page alignment of microkemel code 
as well as disk fragmentation and contention. See [ll] for more 
information on the implementation and the performance tests. 

4 EXAMPLE SECURITY SERVERS 

A security server has complete freedom to make each security deci- 
sion in whatever manner it wants. The particular high-level policy 
enforced by the system is a function of the decision policy im- 
plemented by the Security Server and the enforcement policy im- 
plemented by a manager. One possible decision policy grants all 
permissions. If we combine such a security server with the Mach 
microkemel, the resulting system would be essentially equivalent 
to vanilla Mach. This is, of course, not very interesting from a 
security standpoint. In this section we give a brief sketch of two 
decision policies for DTOS that are mom interesting with regard 
to security. When combined with the DTOS microkemel, the first 
example implements a high-level policy consisting of MLS with 
Typ Enforcement, and the second implements the Clark-Wilson 
integrity policy [5]. We have also investigated the ORCON policy 
[lOI. 

4.1 MLS WITH TYPE ENFORCEMENT 

The only security server currently included in Secure Computing’s 
DTOS release is one that performs level-based and type enforcement 
security checks [7]. This security server 

l maps each subject SlD to a leveldomain pair, 

l maps each object SID to a level-type pair, and 

l makes security decisions based on the levels, domains, and 
typs associated with the SlDs provided by the microkernel 
according to the usual level dominance and type enforcement 
conventions. 

4.2 CLARK-WILSON 

The Clark-W&on integrity policy [S] is concerned with the correct- 
ness of data and the prevention of fraud rather than the prevention 
of disclosure. The data items that are to be protected are called 
constrained da& items (CDIs). The primary way in which CDL 
comctness is protected is by allowing CDIs to be modified only 
by certain programs, called transformation procedures (TF’s), that 
have been certified to take the set of CDIs from one valid state to an- 
other. (Validity is defined in some application-specific way.) Each 
TP is certified to manipulate only certain sets of CDIs in a single 
execution. 

Prevention of fraud is furthered by providing mechanisms for 
the separation of duty. A user u is allowed to modify a CDI, c, only 
if there exists a set of CDIs, S. and a TP, t, such that 

0 c is an element of S, 

l u modifies c by executing t, 

l u is certified to execute t to modiiy the CDls S. 

Consider a check-writing program that requires a purchase order 
to be entered into the system before a check will be printed. With 
the above requirement, we can prevent the person who can run the 
check-writing program from also running the equipment purchasing 
program. In this way no single person can produce a purchase 
order, discard it, and then write a check to pay for an item which is 
never ordered. Fraud then requires at least two people conspiring 
t0gether.l’ 

In defining the decision policy of a Clark-Wdson security server 
the primary consideration is the maintenance of a history for each 
Tp execution. Each process is assigned a unique subject SlD (and 
thus a unique subject context).” A subject context indicates the 
user in whose name the process is executing and the TP that the 
process is executing. Every time a process p, executing a TR t, 
is granted write access for the first time to any CD1 cl, this event 
is recorded iu the Security Server. Let CDI-history(p) denote 
the set of all CDIs for which p has been granted write permission. 
When p requests write access to a CD1 ca, the Security Server 
checks the CD1 history associated with p. Write. permission for ca 
is granted only if { ca} U CDI-history(p) is a subset of some set 
5’1 of CDIs that TP t is certified to manipulate and some set Sa 
of CDIs that the user is certitied to manipulate via t. In this way 
the Security Server ensures that granting p write access to ca will 
not allow p to manipulate a set of CDIs in violation of the Clark- 
Wilson constraints. This example decision policy shows that the 
architecture can suppon dynamic policies. 

5 RANGE OF POLICY FLEXIBILITY 

The example decision policies in Section 4 demonstrate some of 
the flexibility of the DTOS microkemel enforcement policy. In 
this section we discuss in more general terms the capabilities and 
limitations of the enforcement policy in supporting high-level policy 
flexibility. 

We have aheady seen an example of a decision policy that pro 
vides a dynamic policy that is sensitive to the history of granted 
permissions. DTOS can also support dynamic policies that are 
environment-sensitive. For example, DTOS could be used to im- 
plement a time-of-day policy in a bank where different decision 
policies are used during banking and non-banking hours. This can 
be achieved by writing a security server that monitors the system 

“For brevity, we have omitted some of the rcquinmentsof Clark-Wilson. Tkse 
reouirementsareconsidendin 1141. 

‘aThecumntvemionof D?DSdownotadequa~lysupportthiaone-lo6nerelation- 
ship between subjects and SIh It can be obtained but may require modifications to 
many plograms. include some that are not secwity wxre. Of course. the inadequate 
support is not a concern if it is acceptable to view all pmc- with tbc same SID as 
king the same. logical “p-“. 
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clock and alters its method of making decisions at the appropriate 
times. DTOS also supports both transitive and intransitive decision 
policies. A transitive policy is one where if a subject A can modify 
an object dA and if a subject B can detect the modifications made 
by A to dA and can itself modify a data item dB. then A can ako 
modify dB . Any policy that does not satisfy this constraint for all 
subjects and objects is intransitive. 

As observed in Footnote 15, DTOS does not adequately support 
a one-to-one relationship between processes and SIDs. A second 
limitation is that the DTOS microkemel does not send the parameters 
of a request to the Security Server. This prevents the implementation 
of certain policies. For example, suppose someone wishes to imple- 
ment a policy that allows each task ti to set the priority of a task ta 
to any value p such that min-pri(tr, t2) 5 p < maz-pri(tl, t2) 
where min-pri and maz-pri am functions that map a pair of tasks 
to a priority. To support this type of high-level policy, the microker- 
nel would have to send the desired priority to the Security Server 
as part of the access decision request. This effectively defines a 
unique permission (and service) for each possible value of a task’s 
priority. The DTOS enforcement policy does not support this level 
of granultity. 

Another limitation results from the fact that all access decision 
requests are in terms of a pair of SIDs. It would probably be useful 
to allow access decision requests with mom than two SIDs. For 
example, we might want to control port requests in Mach based 
upon a SID-triple containing the client, the target port and the task 
receiving from the target port. As another example, a Clark-Wdson 
decision policy could probably be implemented with much less 
history information if the Security Server interface allowed a process 
to request access to an entire set of CDIs in one interaction. 

DTOS allows the Security Server to specify that an access deci- 
sion is non-cachable and to request that a decision be removed from 
the microkemel’s cache. However, in the first several releases of 
DTOS. because of the way in which memory access is controlled in 
Mach, both of these abilities had no effect on read, write and execute 
permissions. This limited the ability of DTOS to support policies 
that must retract permissions that have already been granted.‘6 We 
note that this does not make the system insecure, it only limits the 
policy flexibility supported by the DTOS microkernel. 

Obviously, this permission retraction problem applies only to 
the DTOS microkernel and does not affect any other manager that 
might be used in a DTOS system. Furthermore, the other limitations 
discussedin this section really only apply to the microkernel and the 
current Security Server. A new security server could allow an arbi- 
trary number of SIDs or additional parameter information to be sent 
in a decision request. If Clark-Wilson CDIs were managed by a file 
server rather than the microkernel, then the file server could request 
access to a set of CDL5 in a single interaction. We also point out 
that each manager is responsible for dehning and enforcing its own 
policy. A security server can be written or extended to make policy 
decisions for any such manager. Thus, an MIS DBMS acting as the 
manager for database objects can have its own enforcement policy 
dealing with tuples, attributes and relations. A security server could 
be defined to supply access vectors instructing the MIS DBMS on 
which operations are to be allowed and which rejected. 

6 COMPOSABILITY 

A question to be answered in any system with the DTOS amhi- 
tecture is whether the interaction of a manager and security server, 
each following its own policy, guarantees that the system as a whole 
enforces the high-level system policy. We are using composability 

t%x problem is that Mach caches pmtcctions in the page table, and removing 
permisionsfmm the axes-s vactorcachc hss no effect on the page. table. This problem 
was lrcmedied in the October 1!3!36DlDS release by having the micmkemel walk the 

theory [l, 151 to perform this analysis [6]. To do so we first specify 
for each component (i.e., the manager and the Security Server) the 
component’s behavior and the assumptions the component makes 
about the actions of its environment including the other compo 
nents of the system and the environment of the entire system. In 
both cases, we focus on safety properties. After showing that no 
component violates the environmental assumptions of any other 
component, we compose the two specifications by taking their con- 
junction. Using this method we can analyze access control policies 
such as simple security, the *-property and integrity. 

The advantage of applying composability analysis to the system 
is that we need demonstrate the correct implementation of tbe en- 
forcement policy in the manager only once. When a new Security 
Server is developed, its decision policy and the composition of this 
Security Server with the manager must be analyzed. However, any 
analysis that has aheady been performed on the manager can be 
reused. We expect the manager to normally be much larger and 
more complicated than the Security Server, so most of the analysis 
is in fact reused. 

7 SOME RELATED WORK 

Page et al. [ 131 proposes the use of rule-based policies to obtain pol- 
icy flexibility. Lie the DTOS separation of manager and security 
server, this allows the system policy to be altered without changing 
the manager. The way in which the rules in a rule-based policy are 
interpreted by an object manager is roughly equivalent to what we 
call an enforcement policy. Abrams et al. [2] presents a framework 
(GFAC) for studying and constructing access control policies. An 
access control policy is viewed as rules expressed by authorities 
in terms of access control information and context. Much of the 
information in Section 5 regarding the range of policy flexibility in 
DTOS came from an effort similar to the GFAC work to categorize 
policies according to what they require of the enforcement policy 
and the interface between the manager and security server. Hosmer 
[8,9] considers a Decider-Enforcer architecture in which the De- 
cider may incorporate multiple policies. These policies are related 
via metapolicies which capture the similarities between policies and 
the ways in which their decisions may be combined when they are 
being used in the same Decider. 

8 CONCLUSIONS 

This paper describes the approach used to develop a policy-neutral 
enforcement policy for the DTOS microkemel. The approach is 
clarified through small examples of its application to DTOS. This 
paper also provides examples of the combination of that enforce- 
ment policy with a decision policy to implement a system with a 
desired high-level system policy. Overall, the approach seems quite 
effective. The policy developed provides a fine degree of control 
which can be used for both confidentiality and integrity policies. 
The approach has also allowed the policy development to be mom 
closely integrated with the system implementation by using a tabular 
representation of the policy. Tools have been developed to maintain 
consistency between the assurance and implementation efforts as 
the policy evolves. 

Although we have presented a process for systematically de- 
veloping an enforcement policy for a policy-neutral system, this 
process is not entirely objective. Choices must frequently be 
made regarding the level of granularity of the services. For ex- 
ample, others might choose to split the SetsToskPriority(tasl;) 
service into two services: IncreasesTaskPriority( task) and 
Decreases TaskPriority( task). This would provide fmer control 
by allowing, for example, a task to have permission to increase a sec- 
ond task’s priority but not decrease the priority. Some users might 
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want even tiner-grained control such as that described in Section 5 
with regard to specific ranges of allowed priorities. 

At the other end of the spectrum is the question of whether 
other parts of the DTOS enforcement policy have an unnecessarily 
fiue grain. That is, are there service distinctions in DTOS that no 
policy will ever need to use? Artificial examples can be created of 
policies that require each of the permissions that we have defined. 
However, the real question is what permissions wiJl people actually 
need to support the policies they want to implement. Our current 
approach for selecting the granularity is stih rather ad hoc and is 
based upon our perceptions of the likelihood that a policy will need 
to make different decisions with respect to the sub-services. Further 
analysis is required to determine which of the currently de&ted 
permissions are really necessary to support the policies of interest 
to users. 

Finally, the DTOS architecture has the advantage that a system 
with a new high-level policy may be implemented merely by sub- 
stituting a security server that implements a new decision policy. In 
assuring this new system policy we do not need to redo analysis that 
has already been Performed upon the manager for the assurance of 
other policies. 
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