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Abstract 

This paper discusses the necessity of bringing security mea- 
sures to very complex systems, and some ideas for how to 
do so. It has long been the hope that we would never reach 
such a situation - that security technology would eventu- 
ally succeed in harnessing software technology and bring- 
ing it to heel. This has not happened, and it is now time 
to expand security technology to cope with the seemingly 
intractable problems of huge heterogeneous systems. The 
consideration of paradigms from other fields may be useful. 

This paper hopes to motivate research into a fundamen- 
tal and difficult problem that affects Internet security to- 
day: unpredicted or unintended dynamic behavior that can 
degrade or destroy the ability of the network to deliver mes- 
sages. We will argue that the source of the problem is hidden 
variables that adversely affect composition of network sys- 
tems at any service level: physical, link, network, transport, 
application, and even the end-user. 

Introduction 

The Internet is being knitted into our society so tightly and 
rapidly that it will soon become indistinguishable from so- 
ciety itself - life before the Internet will be unimaginable. 
This intermeshing of a complex system, human civilization, 
with a malleable and extensible technology, computers and 
communication, will not yield a simple, easily analyzable 
result. Consequently, our thinking about network security 
must take on a more comprehensive view, one that meshes 
technology with paradigms taken from social structures. 

We cannot expect to develop an all-encompassing model 
of computer and network security in our society, because we 
are rapidly moving towards a world that is completely inter- 
twined with and co-existent with its computer technology. 
Every system that connects to the Internet introduces secu- 
rity complications that we are unprepared to analyze; there 
is no foreseeable time when security expertise will catch up 
with reality. 
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Assuring some strong forms of security for very large net- 
works is a pressing problem, one that has grown far away 
from the seminal ideas that engendered computer security 
thinking in the past. It is now necessary to deal with sys- 
tems that are not only large, but ill-defined, dynamic, and 
increasingly linked to mechanisms that control our physical 
safety and security, even in non-computer areas. 

Security thinking must encompass the totality of a sys- 
tem, attempting to go beyond what can be directly speci- 
fied and formally analyzed. New factors, including physical 
phenomena, should be included when considering what con- 
stitutes a secure system. 

In the past, approaches that limited design choices to 
analyzable structures were strongly recommended. Designs 
that limit and partition system capabilities have been viewed 
as total solutions because they factor the vuhrerabilities into 
isolated areas. However, military and business needs con- 
stantly push at these boundaries, and the need to intercon- 
nect, and thus to complicate, is irresistible. 

Two particular approaches are addressed in this docu- 
ment. One is the discovery of vulnerabilities in complex 
systems through constant self-examination, using heuristics 
oriented towards engineering paradigms. Another is the 
use of simulated software warfare to develop and hone the 
heuristics. The techniques for implementing the approaches 
cross the fields of formal security, intrusion detection, safe 
systems, practical computer security, artificial intelligence, 
mobile agents, and secure network protocols. 

Availability must be considered as important as any other 
aspect of security if we are to have survivable, resilient net- 
works. This brings networked system analysis up against 
difficult problems. Denial of service is rarely addressed by 
network security models. Formalization of it is problemati- 
cal, and when applied to huge-scale network systems, it must 
address the real-world behavior of millions of independent 
entities - hosts, routers, users, services. 

By regarding the network as a composition of dynamic 
systems, and by discovering the variables that control their 
macroscopic behavior, many classes of failure can be elim- 
inated. If the vulnerabilities are not eliminated, it may be 
impossible to ever rely on the Internet as a global tool, and 
much of the promise of the Information Age may be lost. 

Dynamic Behavior 

This section concerns a particular class of system faults: 
positive feedback loops leading to resource unavailability. 
This is a generic problem with interconnected systems, one 



that can cause denial of service and the paralysis of secu- 
rity mechanisms. These faults should be considered part 
and parcel of secure system analysis, and they can often be 
anticipated by system modeling and monitoring. 

Many computer system mechanisms that are relevant 
to security can be readily enumerated: the semantics and 
representation of authentication information, authentication 
protocols, access control and auditing, privacy mechanisms. 
Classical security is concerned with the correctness of the 
mechanisms. Intrusion detection takes a more dynamic view 
and looks for suspicious patterns, and database security ad- 
dresses the problem of inference of the whole from its parts. 

These all rely on a fairly static definition of a system 
- the mechanisms are static, the attributes that can be 
garnered by observation or logging are known in advance, 
the privileges and roles are defined uniformly for the domain 
of interest, which is limited to machines with particular IP 
addresses. 

If we want to analyze a system for vulnerabilities that 
are related to dynamic conditions, or attributes that may 
affect the ability of the security mechanisms to operate (such 
as resource availability), we must create a model of that 
system, and we face the problem of finding parameters and 
mechanisms for the model. 

Ideally, the system builders would identify all the pa- 
rameters in advance. Realistically, they will specify much 
of what is important, but not all. The modeling task will 
involve incorporating new parameters constantly. For exam- 
ple, local network technology was stable for many years but 
is now changing rapidly, necessitating the incorporation of 
MTU, speed, and latency information as variables affecting 
subnets. 

Because unknown components might be introduced via 
interconnection, system changes, or changes in user behav- 
ior, we need descriptions provided by the designers, but we 
don’t know in advance what parameters are important. Fur- 
ther, the parameters of the model must change - we cannot 
model the entire system within itself [Eco]. We need to know 
if we can achieve a useful level of granularity for the model- 
ing, if the model can be analyzed, how to trim away useless 
detail, and how to acquire new parameter sets. 

When models are available, they can be used in conjunc- 
tion with guards to discover failure modes, and to institute 
defensive measures. The model can predict possible failures, 
the guards can detect them, analysis can refine the guards, 
and a new model and specialized guards can be developed. 
We give two examples. 

Example 1: A boot specification might say that a sys- 
tem will find some remote server, say for name/address reso- 
lution or for downloading boot code, without explicitly bind- 
ing the server - it will be discovered via a broadcast proto- 
col, for example. There might be several “deadly embrace” 
scenarios possible, but the LAN configuration will have ap- 
propriate server assignments so t.hat this doesn’t happen. 
Whenever the system configuration files change, however, 
the analysis that demonstrates this must be repeated. The 
assignment of the server roles for a LAN must be a discov- 
erable attribute, if not an explicit property of the LAN. 

As an alternative, the LAN configuration software must 
prevent the system administrator from introducing a deadly 
embrace either by specific server assignments or by configur- 
ing a client to use an algorithm that seeks a non-achievable 
set of servers. 

A model of the systems and their rebooting behaviors 
can be used to validate a particular configuration, to prove 

that it has an achievable solution. An active guard might 
be generated to ensure that the reboot configuration files 
do not change and that at least one achievable server set 
remains in service. 

Example 2: Electronic mail and newsgroup systems 
give users the privilege of storing material on remote systems 
and utilizing their network services for transmittal. These 
resources can be exhausted maliciously or inadvertently, re- 
sulting in denial of service for all users. Two common and 
similar abuses are the mailing list “mail loop” and the cross- 
posted “empty reply” news item. In each case, the original 
message is prefaced by headers and retransmitted to several 
sites. There is software for detecting and preventing this 
phenomenon, but it is specific to the particular services in 
question. 

A generic model analysis could detect the possibility of 
the loops and the resource threat by simply “knowing” that 
a function for reinjecting messages exists anywhere in the 
message handling subsystem. The feedback loop 

message = hdr 1 message 

signals a potential resource exhaustion problem. 
Once the possibility of the loop is identified, it is not nec- 

essary to change the software providing the service; one need 
only inject an active guard at the point of message delivery 
or storage. A generic guard which monitored network traffic 
for bhe simple case of replies could be easily generated. 

When the guard sounded an alarm, human or machine 
assistant intervention could use attribute analysis to infer a 
pattern to use for specializing the guard to take an active 
role in preventing resource exhaustion. The specialization 
might lead to restricting traffic from the remote site initiat- 
ing the reflecting messages, or it might temporarily impose 
a limit of three reflections before canceling the messages. 

Designers must avoid inter-system behavior that leads to 
unbounded resource use, especially when it is exponential. 
On the other hand, stable systems do involve loops. A cen- 
tral challenge for designers is to identify and characterize 
the stable loops that define normal system behavior. 

There are three basic types of control loops in dynamic 
systems. Their behaviors are described by the solutions to 
differential equations controlling them. 

l Stable loops 

l Unbounded positive growth 

l Unstable growing oscillation 

Being able to detect these when they arise as emergent 
behavior would be a valuable tool in network management. 
The key to the solution is to find the minimum variable 
set describing the loop, and to inject control mechanisms to 
eliminate or ameliorate the behavior. 

It is customary to introduce negative feedback into a sys- 
tem to bound resource use. This often brings unwanted os- 
cillatory behavior. One strategy to damp out oscillations is 
to introduce drag, but this approach is complicated in prac- 
tice by the need for the right amount of negative feedback. 
The feedback must reflect system time constants, which fre- 
quently depend on external factors. Often there are unsta- 
ble operating regimes, discovered only when the system is 
subjected to the real world. 
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Some Classic Loop Failures 

Synchronization is another emergent behavior that can cause 
denial of service. 

An inadvertent behavior in handling routing updates 
caused Internet outages for several minutes out of every up- 
date cycle. Sally Floyd at LBNL diagnosed this perple.xing 
Internet behavior. She discovered that routers in the In- 
ternet backbone were synchronized by the I/O and compu- 
tation burden of routing updates. The updates tended to 
occur at synchronized intervals, causing all routers to give 
priority to updates until all updates were processed. The 
synchronization was not predicted, making it difficult to di- 
agnose. 

A danger is that synchronization could be induced by 
malicious parties in order to exploit outdated information 
- key revocation is a time dependent security mechanism 
that could be thwarted in this way. 

Whenever a process must lock a resource to use it, there 
is potential for inadvertent synchronization. If a process 
holds the resource too long due to an exceptional circum- 
stance, several other processes may block. When the re- 
source is finally released and the waiters are serviced, the 
waiters may become roughly synchronized. This can spoil 
performance of downstream subsystems that assume that 
work arrives at random intervals. 

One way to prevent this synchronization is to introduce 
random delays into the admission policy for the locked re- 
source, accepting some performance loss. A challenge is to 
detect synchronization at runtime, and add randomization 
only when needed. Of course, such a system is hard to an- 
alyze, and may be expected to develop different, more com- 
plex runtime pathologies - our version of the Heisenberg 
problem. 

Deleterious loops often occur in restart sequences. Re- 
starts are rarely tested thoroughly, and this can lead to se- 
vere problems when one system depends on another for its 
initial image. This illustrates the need for state analysis in 
the restart system when systems are composed - a degen- 
erate loop leading to lack of progress is a pernicious failure 
and very difficult to detect before it occurs. 

Exhaustive testing of all possible restart sequences of a 
complex system is usually impossible: There are too many 
combinations of partially available equipment, in too many 
possible intermediate stages of rebooting. Testing often re- 
quires that the system be out of service, and so must be 
limited to the most likely scenarios. When an unscheduled 
reboot is necessary, unpleasant surprises are frequent. 

A classic reboot failure occurred in January 1990, when 
long distance telephone service on the East Coast was dis- 
rupted for hours. ATT was introducing new software into its 
telephone switches. The new software seemed solid, having 
been introduced gradually over a period of weeks. One dif- 
ference in the new software was that rebooting a switch took 
longer. When the proportion of switches with the new soft- 
ware reached 35%, the reboot scheme became unstable. The 
problem surfaced when a switch went down for an unrelated 
cause. It began to execute automatic reboot, but an unan- 
ticipated interaction brought down the neighboring switch; 
the problem cascaded to bring down the entire network. 

Recently the Domain Name System was revealed to have 
a lack-of-progress problem when a bug in some systems re- 
sulted in propagation of unsound information to all systems. 
The lack of integrity made correct translation of name to 
address impossible for many entries, and no automated de- 
tection or recovery was possible. 

This is a degenerat,e loop, in which simple linear flow 
develops a parallel and incorrect flow. In this case correction 
cannot be done simply. 

How to Combine without Loops? 

Classic security models rely on non-int,erfering or partitioned 
systems. Unfortunately, the systems we need to analyze are 
necessarily interfering. The correct functioning of combined 
systems depends on stable behavior of shared parameters 
and the ability to damp out unbounded growth or oscilla- 
tion. Restrictions on the semantics of combinations - such 
as the use of firewalls, packet filters, and a policy of mutual 
suspicion - are too limiting for complex systems. 

We propose research into the study of the dynamic be- 
havior of composed systems in order to protect their re- 
sources and to ensure that the composed system remains 
functional even under finely tuned attacks on its dynamic 
behavior. 

A new form of system analysis is necessary to protect 
the security of the Internet, which is the largest composed 
system and arguably the largest possible composed system. 

Hidden Variables 

A central problem to be solved is the identification of vari- 
ables that seem unimportant in the individual systems but 
which are crucial to the behavior of the composed system. 

In the Internet routing example, the time to process an 
update and the average duration of the lock interval are 
hidden variables, that must be considered when composing 
systems. 

The failure of the Ariane 5 rocket on its maiden launch 
illustrated the general principle that a minor variable in a 
subsystem can cause massive failure in a composed system. 
In this case, the problem was the overflow of a variable that 
could not overflow in Ariane 4; this dependency of a subsys- 
tem on a precondition was not checked in Ariane 5, largely 
because the subsystem was viewed as stable (i.e. error free) 
and it would be unnecessary and unwise to modify it. An ad- 
ditional factor was that the variable was related to a function 
that had no purpose in Ariane 5. Nonetheless, the variable 
overflowed, the subsystem and its backup failed simultane- 
ously, and the main system sustained complete failure. 

In 1990 a fire in Hinden, Illinois disrupted cross-country 
telephone service because a large number of the long dis- 
tance cables passed through one building. Customers who 
thought they had purchased redundancy by acquiring sepa- 
rate telephone lines, often from multiple carriers, were sur- 
prised to find that there was little physical redundancy. The 
logically redundant lines were not truly redundant, because 
the underlying real-world implementation routed these lines 
through a single location. 

The system models discussed earlier are valuable when 
analysts already have a fairly good idea of what the system is 
and how it works. Bringing the model to bear on real-world 
phenomena such as social behavior or physical infrastructure 
is an area that has not been seriously addressed. Yet we need 
to discover errors in ill-specified systems, particularly where 
the loops lead to denial of service attacks or compromise 
fault tolerance by eliminating redundancy. 

And the Madness of Crowds 

Human response times are part of the feedback process - 
our systems must avoid both resonance and inadvertent syn- 
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chronization. Because human behavior is highly variable 
[MacKay], it can often explore regions of parameter space 
that were unanticipated by system designers. 

An example from the 1970s: A newspaper had a com- 
puter system for processing want-ads. Operators accepted 
telephone ads and entered them into the computer system 
in real time. The central computer had just enough capac- 
ity to keep up with the data entry terminals. The operators 
discovered that they could cause a coffee break by all hitting 
“enter” simultaneously. The computer would be temporar- 
ily swamped by the processing to complete each ad, and the 
terminals would refuse data entry for a few minutes. 

A more modern syndrome is the Flash Flood - a sud- 
den focusing of usage patterns onto a small part of the In- 
ternet. Flash Floods are usually caused by human behavior 
[Coates], and we can expect this form of global attention 
focusing to be an increasingly common part of life on the 
Internet. 

An example of this phenomenon occurred during the 
February 1996 chess match between Gary Kasparov and 
IBM’s Deep Blue computer. The games were carried live 
on the Net. They attracted much more interest than an- 
ticipated, and any server having anything to do with the 
games was swamped with HTTP requests. IBM’s WWW 
site for the match received millions of hits per day. The 
consequences in this case were merely annoyance and frus- 
tration, because no life-critical resource was in the path of 
the stampede. 

In October 1987 the US stock market lost one third of 
its value in one day, largely due to a selling wave that was 
amplified by software for automated trading. This illustrates 
that combining complex systems is a dangerous activity - 
very simple failure modes can be introduced, even when one 
of the systems is considered to have stood the test of t,ime 
(as one might argue that the modem stock market has). 

This is not the classic problem of composing security 
policies; it is an issue of system stability more than correct- 
ness. It was not incorrect for all programs to sell at once, 
it was not incorrect for the market to honor the requests 
(insofar as it was capable). Rather, the system as a whole 
operated outside the expectations of the designers - the 
sellers created an unexpected positive feedback loop with 
themselves. 

The implications obtained by extrapolating this behav- 
ior to a tightly connected global information system are as- 
tounding. Could we wake up one morning and find that 
information wars had been fought and won while we slept? 
Nations could disappear, whole economies might be elimi- 
nated. 

Research Challenges 

A pressing research challenge is to analyze specifications and 
code for ‘potential resonances. Our specifications must ex- 
plicitly include Time as a variable. For example, we must 
understand the interactions of timeouts in network commu- 
nications protocols. 

Another challenge is parameter discovery: Finding the 
important parameters that influence a system, while ignor- 
ing the unimportant ones. This can be particularly difficult 
when the parameter is not directly specified as a system vari- 
able, but is synthetic or emergent. Examples include spare 
capacity in all its guises. 

Another challenge is runtime detection and recovery from 
looping behavior: such as how to break a loop safely, and 
detection of reboot or start-over failures such as the afflicted 

ATT switch. Damaging loops may be detected during de- 
sign, test, or at runtime. Runtime detection is particularly 
attractive in conjunction with intrusion detection monitor- 
ing, and because it is independent of higher semantics, it 
has the potential to detect errors outside the model. 

A theory of restart stability is urgently needed for design- 
ing today’s distributed systems. This must extend down to 
the lowest levels of system restart. 

Recovery from unmodeled failure (hardware, transient, 
or Ariane-like) is very hard to analyze, of course, but this 
is an area for research and formalization - how widely can 
we define safe and secure restart? 

Security relevant system components, such as hierarchi- 
cal and replicated public key servers or third party authen- 
ticators are of special concern and should motivate the be- 
ginnings of such research. 

Infrastructure Representation 

Because society is attempting to represent itself via digi- 
tal descriptions to an ever increasing degree, this is an op- 
portune time to begin research into incorporating physical 
engineering information into OUT computer security models. 
The expectation that the world of the future will be largely 
monitored and described electronically is not unreasonable; 
this is happening not by fiat but because it is the most con- 
venient way to proceed. 

The possibility that the world will represent its critical 
physical infrastructure for our inspection is double-edged. 
The aggregation of that information is essential for the mod- 
eling and vulnerability detection that we propose, but the 
information may also become available to inimical forces. 
The modeling effort and the active guards must be protected 
with the severe restrictions that characterize classical secu- 
ri ty efforts. 

Social Phenomena 

Social phenomena also fit into this modeling scenario, al- 
though humans are unlikely to provide blueprints of their 
behavior for online analysis any time soon. Nonetheless, 
the possibility of synchronized user agents, where agents are 
mobile software or other lightweight distributed processes, 
is a system failure mode of great concern. 

In this case, the information aggregation is an even thor- 
nier problem, because we cannot expect Wall Street traders, 
for example, to indulge us by turning over their trading plans 
for public inspection. And in a world where several billion 
netizens are forming global communication cliques with high 
rapidity, we might not have time to detect and forestall de- 
structive synchronized behavior. 

For example, massive financial or social rearrangements 
could take place literally overnight, if a demagogue were to 
involve half the world’s population in an apocalyptic tele- 
conference. While we might not know what policy to follow 
in dealing with such scenarios, it is time to at least begin 
developing the technology for keeping pace with the brave 
new world that lurches toward us. 

Warring Software 

The active software guards of the previous section lend them- 
selves to generalization as globally mobile security agents. 
These agents can detect vulnerable configurations, and they 
might also implement security countermeasures. 
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Security agents have the potential for extending the def- 
inition of “secure system” to a highly disparate collection of 
computing resources, insofar as they have any communica- 
tions interconnection. They could allow the definition of a 
security policy for water supply management, for example. 
Water security software that “traveledn to computer sites 
dealing with water supply and evaluated security predicates 
dependent on inter-site cooperation - levels of impurities in 
supplies for adjacent neighborhoods - might be developed 
as a result of modeling efforts. 

Of course, hostile forces are expected to engage in similar 
activities with less benevolent intentions. This leads to the 
scenario of constantly warring software: the security soft- 
ware agents vs. hostile software agents seeking to find and 
exploit vulnerabilities. 

The dynamics of software wars will be difficult to predict. 
We will need to know how to build autonomous security 
agents, how they will interact with each other, and how to 
avoid having captured agents disclose sensitive information. 

Environments for conducting this research safely are a 
prerequisite for experimentation, and the facilities will con- 
tinue to be used to vet software agents before their release 
into the field. 

The paradigms for such software may resemble espionage, 
but they are probably much closer in mechanism to biolog- 
ical immune systems and antigen recognition. The software 
warfare test environments are analogous to viral research 
laboratories. 

Conclusion 

As the networking world becomes more complicated, our 
security models must become more flexible, encompassing 
notions like partial failure and degraded service. 

To cope with the complexity of the combined disparate 
elements that constitute large networks, those who profess 
expertise in security need to expand their analytic domain to 
include techniques from other areas: safety critical systems 
design, real-time systems, control theory, heuristic learning, 
engineering, physics, and psychology. Successfully melding 
selected elements from these fields into a new discipline is 
an exciting prospect. 
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