
Run-Time Security Evaluation: Can We Afford It? 

Cristina Serban* and Bruce McMillint 
Bell Laboratories Dept. of Computer Science 

Lucent Technologies University of Missouri-Rolla 
Murray Hill, NJ 07974 Rolla, MO 65401 
cristina@lucent .com ff&s.umr.edu 

Abstract 

The use of the run-time security evaluation (RTSE) 
method for a distributed application takes a toll in ouer- 
all application performance. The associated overhead 
and its major sources are discussed, along with possible 
solutions for improvements, and questions that remain 
still open. 

2 Overview of RTSE 

1 Introduction 

Earlier this year at Oakland we introduced the con- 
cept of run-time security evaluation (RTSE) for dis- 
tributed applications[6], as a necessary addition - and 
not a replacement - for verification, as it is traditionally 
performed at development time. 

The goal of the present paper is to discuss the feasi- 
bility and costs of using RTSE for real-life applications, 
in order to see what can and should be done to bring 
it to the easy-t-use realm. 

The new paradigm in RTSE does not concern the 
security model to be used or the type of policy to 
be enforced, but gives a new response to the question 
“ when to evaluate whether the security requirements 
given for an application are fulfilled?‘. The answer pro- 
posed is “At run-time” and along with it a method is 
introduced for evaluating if a given distributed appli- 
cation complies to the security requirements given for 
it, while the application executes. 

While the RTSE method itself is well-based and ma- 
ture from the theoretical point of view and it has been 
successfully used already for our prototype, its applica- 
tion involves costs that cannot be ignored and must be 
therefore taken into account and minimized, if feasible. 

The need for run-time evaluation of security comes 
from the likelihood of occurrence of abnormal run-time 
conditions that may appear in the underlying system 
(violating the assumptions about its behavior, as they 
were made for verification purposes at development 
time). Checking at run-time ensures that run-time con- 
ditions can be handled: RTSE covers hardware and 
software faults as well, and defines a security violation 
in the most general sense aa being any behavior that 
is not in accord with the given security specifications, 
regardless of the source of this behavior. 

* The work presented in this paper was performed while this 
author was with the University of Missouri - Rolla. 

+ This work was supported in part by the National Science 
Foundation under Grant Number MSS-9216479 and, in part, 
from the Air Force Office of Scientific Research under contract 
number F49620-92-J-0546 and F49620-93-l-0409. 

The problem to be solved is to evaluate for a given 
application and the corresponding security specifica- 
tions if the current execution of the application com- 
plies to the security specifications, or if any specifica- 
tion is not fulfilled, no matter the underlying cause, 
signal a security violation. 

We introduced the RTSE method to solve this prob- 
lem, and we achieved both a theoretical and a practical 
set of results (presented with all due details in [S]). The 
method is shown to have a sound foundation from the, 
theoretical point of view, and the prototype built using 
RTSE proves its feasibility for practical applications. 

The application is assumed to be composed of dis- 
tributed, independent processes, in a share-nothing 
configuration in which information is exchanged only 
by message passing. This type of environment is mod- 

68 



eled using CSP [2], and the tool used for actual pro- 
gramming is CCSP [4], an in-house developed tool that 
offers CSP-like syntax on top of a C environment and 
also a run-time support set of mechanisms. 

In the rest of this section an overview of RTSE is 
given in order to provide a basis for later discussions. 

The RTSE method takes a distributed application, 
the security specifications given for it, plus the current 
execution of the application, and checks whether the 
execution in progress complies to the given specifica- 
tions or if at a certain moment this is not the case, a 
security violation is detected at that moment. 

The steps involved in the RTSE method are: 

Specify the security properties of the targeted 
computing application using formal logic. 

Collect run-time event/trace histories, the causal 
structure of the execution, and 

Evaluate security properties of the application on 
the event/trace histories. 

At step 1, for security requirements evaluation, we 
use an algebraic approach, in which the security speci- 
fications are expressed as a set of executable assertions 
that can be evaluated on application traces using set 
operations. In general, assertions express boolean in- 
variants; executable assertions are assertions that can 
be embedded into code and evaluated at run-time. For 
security evaluation, the executable security assertions 
are obtained at this step from the security specifica- 
tions, then the assertions are embedded into the appli- 
cation’s code and their evaluation takes place at run- 
time, using step 3 of this method. 

At step 2, we have developed algorithms to obtain 
a run-time hist.ory and to build the causal structure of 
the execution. The run-time history of a distributed 
application is obtained by collecting and partially or- 
dering events occurring in the application. 

Each process collects the events it observes into 
its own-history, updating it with new events as soon 
as they become known. The process also records 
the events it observes into out-histories (collections of 
events observed since previous communication with the 
respective process the out-history is maintained for), 
one for each process with which it communicates. At 
communication time, the process exchanges its respec- 
tive out-history with the process it communicates with, 
permitting in this manner the events to diffuse wit,hin 
the system. 

0.b) 

IrcapaaiM 

d 

Figure 1. The Augmented Communication 

Each message-passing communication between two 
processes is expanded to a 2-phase operation called 
augmented communication (presented in Figure 1). 
The phases of an augmented communication are: 

1. 

2. 

Primary Communication: The sender process PO 
sends message msg to the receiver process Pl, 
according to functional requirements. 

Auxiliary Communication: 

(4 

(b) 

Exchange of Histories: PO sends to Pl the 
out-history PO collected for Pl, containing 
all the events observed by PO since the last 
communication with Pl. Similarly, Pl sends 
to PO its out-history for PO. 

Incorporation of Histories: Upon receiving 
the latest updates from Pl, PO incorporates 
these events into its own-history, and also 
into the out-histories. The out-histories for 
the partners in communication are cleared. 
As of this moment PO and Pl have the same 
image of the application - and this is also 
a synchronization moment for their vect.or 
clocks. 

While a process incorporates each event from a re- 
ceived history into its own-history and into the out- 
histories, it performs a consistency check: if an event 
from the received history has the same timestamp as 
an event from the own-history (or an out-history) and 
both events occurred at the same process, then the 
event information must be the same for both events 
(up to differences given by sanitization procedures that 
might have modified parts of the event information for 
the two events on their respective arriving paths). 

69 



If the consistency check fails, an inconsistency is de- 
tected, signaling a problem (i.e., a faulty process or a 
security violation) in the application. 

Also during the incorporation of received histories 
into out-histories at a given process, beside the consis- 
tency checks one more type of checking is necessary. If 
the process incorporates all the event.s it received into 
all its out-histories (to be sent to all processes it com- 
municates with), an unrestricted flow of information 
results, compromising any confidentiality requirements 
that exist for the application. 

Therefore, before incorporating an event into an 
out-history, the process must check whether any con- 
straint exists, according to the security specifications, 
on disseminating that particular event to the process 
for which the out-history is built. Such constraints are 
expressed in RTSE by a set of dissemination restric- 
tions we derive from the security specifications. 

A dissemination restriction indicates if an event can 
be incorporated into an out-history without any con- 
straint, or it may not be incorporated at all, or it may 
be incorporated only after it is sanitized. The specific 
sanitization procedures are also derived from the 
security specifications. 

At step 3, we apply the set of executable assertions 
to verify whether the collected event history satisfies 
the security specifications of the application as formal- 
ized at step 1. Since an event history is a sequence of 
events occurring within the application, it represents 
a process’ observation of all the processes during exe- 
cution. This history can be utilized to do evaluation 
of assertions at run-time. The evaluation is a simple 
matter, then, to break down the assertions into pred- 
icate calculus expressions quantified over this history 
sequence. If the run-time behavior violates its specifi- 
cations, then appropriate actions should be taken. 

During the operational evaluation step in RTSE the 
assertions are evaluated using the data provided by 
the histories of events in a distributed checking, in 
which each process checks each assertion on each event 
in its own-history to ensure the checking is complete 
and meaningful. 

3 The Area of Concern: Overhead at 
Run-Time 

To check the validity of our method for a real appli- 
cation, we built a prototype - the Boots System - based 
on a model problem introduced by Colin O’Halloran[5]. 
This prototype is a distributed, transactional applica- 
tion that controls the movement of footwear by sending 
orders from HeadQuarter to specialized processes, un- 

I 2’ II Prim I 
Time 

Aux Comm 1 Asser 1 Total 
Orders Comm Xch Ops Total tions 

20 20 10 0 10 0 30 
40 53 25 1 26 1 82 
60 81 40 2 42 2 125 

Table 1. Timing Results for Boots System 

der given security constraints. The Boots System was 
implemented as a set of independent processes which 
communicate by message passing to exchange informa- 
tion. 

The events in the Boots System are modeled as mes- 
sages, and the histories contain the messages exchanged 
by processes, along with the names of sending and re- 
ceiving processes and the timestamp. 

Initially, in the first version of the Boots System, the 
performance of the application when using assertions 
and histories of events for RTSE was severely degraded 
by comparison with the Boots System with bare func- 
tionality. This was due to the unbounded growth in size 
of event histories when all the events were collected and 
kept since the beginning of the execution. 

Clipping the old events from histories was there- 
fore necessary, and we adopted the gossip technique[l], 
in which events about which all processes know can 
be discarded from histories, as being too old’. This 
solved the problem of overflowing histories and increas- 
ing times for maintaining them, but the overhead due 
to event histories and assertions is still important. 

The timing results are presented in Table 1, and 
they are composed of times for primary communication 
(which represent the bare functionality of the Boots 
System), plus times for auxiliary communication (ex- 
change of histories and operations on histories) and 
evaluation of assertions (which constitute the part re- 
quired by RTSE for security evaluation). 

The overhead measured in execution times for the 
Boots Syst,em reaches values as high as 40% - a value 
that might be still acceptable for “almost batch” appli- 

‘In the gossip algorithm, an event is considered too old when 
its timestamp is less than all local values for vector clocks. 

70 



cations (alas, these are really few nowadays), but not 
too much so for applications with tight time constraints 
for response and overall performance. 

The factors we identified as responsible for overhead 
are the following: 

1. Extra communication for exchange of histories: 

When two processes communicate, the primary 
communication is required by functionality and 
the sender’s out-history for the receiving process 
and its vector clock are piggybacked to the ac- 
tual message, so the only extra time is due to a 
longer message to be sent. From the other di- 
rection though, for the receiver to send its out- 
history and vector clock to the sending process, 
an extra communication is needed, which was not 
required by functionality - and this represents a 
significant increase in communication time. 

2. Less-than-optimum communication: 

Our tool CCSP was very useful in developing the 
prototype, providing mechanisms for collecting 
and updating histories of events, and evaluating 
security assertions on these histories. However 
the tool itself was not built having the applica- 
tion’s performance as a goal, and so communica- 
tion for instance is not optimized - which explains 
part of the overhead we obtain for execution. 

3. Less-than-perfect methods for performance eval- 
uation in distributed systems: 

Measuring the time necessary for several indepen- 
dent processes to complete a given global task is 
a difficult operation, due to the lack of a global 
clock and view, and also to the different speeds 
actions can be performed in different processes 
leading to potentially different interleavings of 
actions at each run of the system. There is no 
perfect way to monitor a distributed application’s 
performance, unless specialized hardware[3], soft- 
ware, or a combination of both[7] is available be- 
side the application itself. 

4. Complexity and quantity of operations to per- 
form for event histories and evaluation of security 
assertions: 

The creation and maintenance of event his- 
tories involve a significant quantity of opera- 
tions (collection of directly observed events into 
own-history and out-histories, exchange of out- 
histories between communicating processes, in- 
corporation of newly received events into own- 
history and out-histories, consistency checks). 

The executable assertions in turn may have com- 
plex forms, and the application may require many 
security assertions to be checked on the event his- 
tories, as a direct consequence of the security re- 
quirements given for the application. 

4 Possible Solutions 

Considering the major sources of overhead for our 
prototype, as presented above, we noticed that we have 
solutions for some, but we do not for others. 

We do not have a better solution for the first prob- 
lem, the extra communication for exchange of histe 
ries: this communication is the only way to send out 
required information (out-history and vector clock) in 
response to an unsolicited message. 

We can (and actually plan to, as part of future re- 
search) optimize CCSP and have it use a minimum 
amount of time for communication between processes, 
such that the total communication time might be re- 
duced . 

For the third problem, the timing results obtained 
for the Boots System depend on the method used 
to take time measurements. The Boots System is a 
transaction-type system, in which an order originat- 
ing from HeadQuarter generates a multitude of actions 
throughout the system. In such a setting, timing mea- 
surements taken by adding up the times of all processes 
are not an adequate basis for comparison, as actions 
occurring at processes in the “middle” of the system 
can be interleaved arbitrarily and do not have an use- 
ful meaning for comparison. A better approach is to 
measure the time at the “boundaries” of the system, 
either at the beginning process (HeadQuarter in this 
case, which is the source of orders for the whole Boots 
System), or at the ending process (Archive in this case, 
as it is the final point information from orders reaches). 

Each choice has its problems though. When taking 
times at HeadQuarter, the number of orders emitted 
is known, but for different runs the orders still be- 
ing processed may not have reached the same point 
in their processing. For the other end, when timing 
at Archive the number of orders completely processed 
(i.e., archived) is known, but there is no way bo tell ex- 
actly how many other orders are being processed within 
the system, but have not reached Archive yet. 

We opted for HeadQuarter as the process at which 
to take timing measurements, counting the number of 
orders emitted, under assurance that a fair, compara- 
ble amount of processing for these orders is performed 
downstream, with no points of accumulation or bottle- 
necks that would bias a comparison in favor of a system 

71 



with a fast-emitting source, but with no or little pro- 
cessing further on. 

The last source of overhead mentioned above - com- 
plexity and quantity of operations involved in RTSE 
- is actually the point where discussions in the work- 
shop would be most useful, as we do not have up to 
this moment a good way to reduce this complexity or 
the amount of brute force work needed for run-time 
evaluation. 

5 Conclusion 

The conclusion is that RTSE as a method for secu- 
rity evaluation comes at a cost that may prove to be 
unacceptably high for certain applications or reason- 
ably high for others, and this brings the question: Can 
we afford it for real-life applications? 

Nevertheless, there are two points that counter- 
balance this concern. 

First, the benefits of using RTSE are real - for in- 
stance for an application for which formal verification 
was not performed, run-time evaluation appears as a 
must to insure the security requirements are met - 
and these benefits may offset the actual costs of using 
RTSE. Even when verification at development time was 
done and was successful, run-time security evaluation 
brings added assurance that the application behaves 
within the boundaries imposed by its security specifi- 
cations, or if not - a violation is detected. 

Second, improvements can and should be made for 
RTSE to be less costly and easier to use for real imple- 
mentations. Such improvements constitute the object 
of further study. Hopefully, discussions on RTSE and 
the related overhead will suggest new solutions for the 
current problems. 

6 Post-Workshop Thoughts 

The comments and discussions during (and even af- 
ter) the workshop presentation raised a few points of 
interest: 

l The method is useful and it should be used - in 
the proposed form, or in a simpler version - wher- 
ever applicable, as the potential benefits are sig- 
nificant . 

l Optimizations are feasible, using software engi- 
neering techniques, to reduce the amount of over- 
head. 

l How acceptable or unacceptable is the degrada- 
tion in performance induced by RTSE on the ap- 

plication is in final analysis a matter of point of 
view: 

- In normal business and industry settings, 
any security-related overhead of more than 
5% is hard to be accepted, and anything 
over 10% is out of question. 

- In highly sensitive environments, if a signif- 
icant increase in assurance is feasible, the 
related overhead is acceptable to be in the 
range of a whole order of magnitude. 

References 

[ll 

M 

[31 

[41 

151 

PI 

[‘I 

A. Bernstein and P. Lewis. Concurrency in Program- 
ming and Database Systems. Jones and Bartlett Pub- 
lishers, 1993. 
C. Hoare. Communicating Sequential Processes. 
Prentice-Hall International, London, UK, 1985. 
R. Hofmann, R. Klar, B. Mohr, A. Quick, and M. Siegle. 
Distributed performance monitoring: Methods, tools, 
and applications. IEEE Transactions on Parallel and 
Distributed Systems, 5(6):585-598, June 1994. 
B. McMillin and E. Arrowsmith. CCSP - a formal sys- 

tem for distributed program debugging. In Proceed- 
ings of the Software for Multiprocessors and Supercom- 
puters, Theory, Practice, Ezperience, pages 260-269, 
Moscow, Russia, Sept. 1994. 
C. O’Halloran. On requirements and security in a CCIS. 

In Proceedings of the Computer Security Foundations 
Workshop V, pages 121-134, Franconia, June 1992. 
C. Serban and B. McMillin. Run-time security evalua- 
tion (RTSE) for distributed applications. In Proceedings 
of the IEEE Symposium on Security and Privacy, pages 

222-232, Oakland, CA, May 1996. 
J. Tsai, K. Fang, and H. Chen. A noninvasive archi- 
tecture to monitor real-time distributed systems. Com- 
puter, 23(3):11-23, Mar. 1990. 

72 


