
User-Centered Security
Mary Ellen Zurko
zurko@opengroup.org

The Open Group Research Institute
Eleven Cambridge Center
Cambridge, MA 02142

Richard T. Simon
rsimon@opengroup.org

The Open Group Research Institute
Eleven Cambridge Center
Cambridge, MA 02142

Abstract- We introduce the term user-centered security to
refer to security models, mechanisms, systems, and software
that have usability as a primary motivation or goal. We discuss
the history of usable secure systems, citing both past problems
and present studies. We develop three categories for work in
user-friendly security: applying usability testing and tech-
niques to secure systems, developing security models and
mechanisms for user-friendly systems, and considering user
needs as a primary design goal at the start of secure system
development. We discuss our work on user-centered authoriza-
tion, which started with a rules-based authorization engine
(MAP) and will continue with Adage. We outline the lessons we
have learned to date and how they apply to our future work.

We evaluate the pros and cons of this effort, as a precursor to fur-
ther work in this area, and include a brief description of our current
work in user-centered authorization. As our conclusion points out,
we hope to see more work in user-centered security in the future;
work that enables users to choose and use the protection they want,
that matches their intuitions about security and privacy, and that
supports the policies that teams and organizations need and use to
get their work done.

II. USABILITY IN SECURE SOFTWARE

Keywords- user-centered, security, authorization

I. IN-fp0~UCrtoN

As computing power becomes more prevalent on the office
desktop and in the home, usability becomes increasingly important
in determining which software will be deployed and which soft-
ware will not. For example, usability made the World Wide Web
[l] a success. While the utility of the Web relies on a variety of
technologies such as its transport protocol and linking and naming
standard, for most people the World Wide Web is the browser. A
graphical, easy-to-use browser (Mosaic [11) made the Web accessi-
ble and desirable. End users will not purchase or use security prod-
ucts they cannot understand.

Usability has yet to greatly influence the security community.
This lack of impact is not from lack of need, nor from lack of
understanding usability’s importance in general and to security in
particular. In 1975, Saltzer and Schroeder identified psychological
ucceptubility as one of eight design principles for computer protec-
tion mechanisms [25]. While other principles such as least privi-
lege and fail-safe defaults have become standards in the security
literature, there has been very little work done on user-friendly
security. Much of the work that has been done has appeared in
publications for the Computer Human Interface (CHI) community
~~1~~~1~~~1~~~1~~~1~~~1.

In this paper, we hope to revive the study of user-friendly secure
systems within the security community. We introduce the term
user-centered security to refer to security models, mechanisms,
systems, and software that have usability as a primary motivation
or goal. The timing seems right for a renewal of interest in synthe-
sizing usability and security. There is increasing pressure on gov-
ernment funded researchers to produce results that can be used to
solve real world problems. The renewed interest in roles, led by
NIST [9], is motivated in part by the similarity between roles for
security and roles used in organizations. Baldwin’s work on roles
[2] was rooted in his experience with real users and the usability
problems of some long-standing database security models. We dis-
cuss the history of usability in the security community in the next
section of this paper. We then discuss the range of user-centered
security work to date. In the fourth section, we discuss our early
exploration of an authorization engine designed to support our
vision of user-centered authorization.

Usability can be measured in a variety of ways. Representative
users are assigned tasks to perform, and their performance is mea-
sured against usability goals couched in terms of number or type of
errors or time to complete the task. Usability goals can also take
the form of user satisfaction ratings gathered via survey after test-
ing or use of the software. In addition to setting usability goals,
usable software may be specified and designed based on interviews
or task analysis with target users. As with most aspects of com-
puter software (such as performance, modularity, extensibility, and
flexibility), it is rarely achieved unless it is designed in.

The history of merging security and usability does not make us
sanguine about its future. Secure systems have a particularly rich
tradition of indifference to the user, whether the user is a security
administrator, a programmer, or an end-user. The most widely used
authentication mechanism, the password, is unsuitable for provid-
ing both easy-to-use and effective security to most end-users. Peo-
ple tend to pick short or easy-to-guess passwords, making them
less effective. Measures that make passwords more effective (such
as computer-generated pronounceable passwords) make passwords
difficult to use. Military Multi-Level Systems (MLS) are prone to
“label float” - information gets overclassified as a by-product of
the mismatch between how users produce and use information and
how labelling is determined by the MLS model. Gasser [13]
reports a similar problem with Unix systems, which support the
setting of default access modes for new files on a per-session basis.
As a user’s work moves from public to private files, the user is
unlikely to remember to restrict their default access mode. A better
solution, provided by Multics and VMS, is to set the default access
modes on a per-directory basis. This example shows that consider-
ations for users’ natural working patterns can strengthen the secu-
rity of the system.

Secure systems and security applications produce their own spe-
cial challenges to usability. Since secure systems have been tradi-
tionally difficult to use, some people are under the impression that
usability and security are innately in conflict. Most research and
development in secure systems has strong roots in the military.
People in the military are selected and trained to follow rules and
procedures precisely, no matter how onerous. This user training
and selection decreased the pressure on early secure systems to be
user friendly. In another example of military influence, the first
security model to achieve widespread attention in the security liter-
ature (Bell and LaPadula [3]) encoded military classification levels
and need-to-know categories. Much effort was then spent trying to
apply this model to all uses of secure systems. Clark and Wilson
[5] redirected these efforts with a commercial model which could
not be emulated by the Bell and Lapadula military model. Mathe-
matical rigor was emphasized over usability. While social systems
can be. mathematically modeled, starting from a mathematical
model does not guarantee a system that emulates user intuitions or
current practice and is easy to use (although formal methods can
be of service to usable secure systems [1 I]).

Some aspects of secure systems are difficult to make easy to
use. In one example, the principle of Least Privilege [25] dictates a
user should only have the privileges needed to accomplish the par-
ticular task at hand. This principle guards against user mistakes
and trojan horses. However, defining the contents and limits of a
task is rarely attempted in systems supporting Least Privilege.
Some groupware systems are just beginning to make in-roads in
this area. In addition, users often multi-process, working on bits of
several tasks because of interruptions or limits on computer
resources. The correspondence between privileges and tasks has
been undefined by the system and is unclear to the user. Finally, it
is frustrating to the user to have to enable privileges explicitly that
they know they are cleared for and are necessary for the request
they have made.

III. DIRECTIONS IN USER-CENTERED SECURITY

Recall that user-centered security refers to security models,
mechanisms, systems, or software that have usability as a primary
motivation or goal. Most work on usability emphasizes design pro-
cess and testing (a situation that is partially familiar to secure sys-
tems engineers). Many techniques are available to help ensure
consideration user needs and work habits at design time, and to test
the utility and obviousness of proposed interfaces and features
with target users.

Since user-interface technology is constantly evolving and user
needs are so diverse, no particular technology or architecture is
always “user-friendly.” While some usability researchers work on
producing theoretical results that can be successfully used to guide
initial UI design, very few principles are robust enough to be gen-
erally applicable and specific enough to directly influence engi-
neering decisions. One of the earliest concrete UI design principles
is based on cognitive research which indicates that humans can
only keep “seven plus or minus two” chunks of information in
short-term memory. This guideline has helped bound menu and
display design, and task analysis. More recently, usability practi-
tioners have found the design philosophy of “affordances” [20]
useful. The affordances of an object help a potential user deter-
mine how that object can be used. For example, when picking up a
hammer, most people pick it up by the handle. The weight in the
head of the hammer feels like the heavy side of the head can be
used for knocking on things.

In the rest of this section, we consider several potential
approaches to achieving user-centered security. We discuss the
results available so far within each approach.

A. Applying Usability to Secure Systems

One obvious approach to synthesizing usability engineering and
secure systems is to apply established procedures for enhancing
usability to developing or existing secure systems.-Techniques for
enhancing the usability of software cover a wide range of context
and sophistication:

Contextual Design [27] uses in-depth studies of
potential users’ work habits and needs to determine
initial product goals.

Discount Usability Testing [22] involves user test-
ing with low-tech paper mock-ups to get rapid feed-
back on early design concepts.

In Lab Testing [24] users are asked to perform par-
ticular tasks with the software and their reactions
and problems are monitored.

Contextual Inquiry [27] provides usability testing
on a deployed product, where real users using the
system in their daily work chores allow observers to
record this use.

Given the rich set of tools available in the usability community
and the long history of their use, it is surprising that we have only
discovered two published studies on their application to secure
systems since 1985. Mosteller and Ballas [21] collected informa-
tion on the error behavior of users of a secure interactive system
that was instrumented to log error messages per user session. They
document the most common errors (indicating particular areas
where improvements could have the most impact) and report that
error patterns do not change with increased experience with the
system. Karat [15] goes farther towards the goal of usable secure
systems. She reports that they were able to set and meet the prod-
uct usability objective of a security application for data entry and
inquiry by using a combination of mock-ups and iterative testing
and design. These two datapoints suggest that secure applications
are no more resistant to usability enhancements than other prod-
ucts. In particular, Karat’s group was able to meet their usability
goals using the same methods for producing usability enhance-
ments that have been successful for other types of products.

B. Applying Security to Usable Systems

Another approach to synthesizing usability and security is to
integrate security services that have software with a strong usabil-
ity component, such as mass-market applications or groupware.
Groupware has been the focus of the majority of security work in
the Computer Human Interface (CHI) community. This is due to
the need to consider the interactions between multiple users in
groupware systems. Shen and Dewan [26] discuss a framework for
access control in collaborative environments. This framework sup-
ports positive and negative access rights and their inheritance
(much like Zurko’s [28] privileges and prohibitions). More
recently, Foley and Jacob [1 l] developed an approach for the for-
mal specification of functionality and confidentiality requirements
of Computer-Supported Cooperative Work (CSCW) applications.

Privacy has been an issue in groupware since the field began.
CSCW ‘92 had both a workshop [6] and a panel [16] on privacy
considerations, motivated by monitoring technologies such as
active badges that were beginning to appear in experiments. Active

28

badge technology allows the whereabouts of each member of a
group to be queried or monitored by others within any area
equipped with badge sensors. One research group in England even
equipped the local pub with them. Tutorials and workshops in
audiovisual conferencing [lo] and user interaction history logging
[141 include privacy as a major issue.

C. User-Centered Design of Security

A more recent approach to synthesizing usability and security is
the development of user-centered security models and applica-
tions. This approach takes consideration of user needs as a primary
motivator when defining the security model, interface, or features
of a system. The target user may be an end-user, an application
programmer, a system or security administrator, or a group of users
or social unit. The first security application to articulate a user-cen-
tered design philosophy was Privacy-Enhanced Mail (PEM) [181:
‘“The set of supported measures offers added value to users,
enhancing rather than restricting the set of capabilities available to
users.” This was a startling vision in the security community that
largely perceived security requirements as watching and restricting
users. While usability problems with the certificate authority infra-
structure kept PEM from being widely deployed, its primary moti-
vation to offer users desirable security services such as privacy for
their daily electronic mail remains a laudable goal still largely
unmet today.

Pretty Good Privacy (PGP) [12] attacked the most obvious
problem in PEM, the trust infrastructure. PGP’s trust model puts
each user squarely in the center of trust relationships. For each
public key on the user’s keychain, the user indicates how trustwor-
thy that key is when it vouches for other keys (unknown, untrusted,
marginally trusted, or completely trusted). The user then tells PGP
how many signatures of any type are required to certify a new pub-
lic key. This model has been referred to as a “web of trust.” But
that has inaccurate implications since the user is never more than
one hop away from a certified key. Moreover, the trust model
enables each user to designate who is trusted for what, overcoming
the problem with trusting a single rooted hierarchy of Certificate
Authorities (CAs).

PGP has other usability problems, notably the complexity of
managing keys and trust. It is unlikely that casual computer users
would be able to protect and manage their keys safely and effec-
tively. Nevertheless, PGP’s user-centered trust model is a step in
the right direction. More recent work in user-centered trust models
was done by Blaze, Feigenbaum, and Lacy on decentralized trust
management [4]. Their system allows any user or site to specify
what a key is trusted to do (including who a key is trusted to vouch
for). Users can specify their own policy or accept digitally signed
policy statements from someone else. Applications call this system
with key and request information to determine whether a request
will be granted.

IV. MAP: A PROTOTYPE OF A USER-CENTERED AUTHORI-
ZATION ENGINE

We had the opportunity to explore the implications of user-cen-
tered design on an authorization engine. MAP (Management of
Authorization for site Policy) [30] was a six-month project that
built prototype tools to support policy-oriented operations on a
site’s underlying authorization mechanism. This prototype aug-
mented an existing Access Control List (ACL) mechanism with
sensitivity labels, object groups, and access rules. We hypothesized
that a rules-based engine would more easily support natural lan-
guage site policy than one based on ACLs or capabilities, because

of the greater similarity of rules to user policy. We will continue
testing that hypothesis in our Adage work (see next section).
Because of the short time-frame for this prototype, we extended an
existing application (DCE-Web [7][171). and made use of the DCE
infrastructure, most notably its support for users and groups. The
implications of these constraints are considered below.

MAP extended the authorization engine of the DCE-Web Server
(Wand) with the label and rule mechanisms outlined below. We
also extended the Secure Local Proxy (SLP) client to provide a
Web forms-based user interface to our management functions. The
SLP is a small, local HTTP proxy server that speaks DCE to the
Wand Server on behalf of the user’s off-the-shelf Web browser.
The Wand Server and Secure Local Proxy were enhanced in two
general ways: the management of the rule and label databases, and
the use of the new authorization information. Users created rules
and labels using a simple forms interface. That interface was used
through an off-the-shelf Web browser that communicated with
DCE-Web’s Secure Local Proxy (SLP). The SLP used a new API
in the Wand Server to actually perform the management functions.
The functions provided were basic: rules and labels each had cre-
ate, delete, view, and modify functions. The following subsection
discusses MAP design in detail. The subsequent subsection sum-
marizes the advantages and disadvantages of the MAP work.

A. MAP: User-Centered Authorization for DCE- Web

ACLs allow users to create access policies for individual objects
by specifying lists of principals who can access the object and
what kinds of access are permitted. However, ACLs fail to provide
the mechanisms needed to categorize and group information
objects throughout the namespace or to apply ranked levels of trust
to principals. These criteria are often the ones used to express
security policies. In addition, ACLs do not have any generally
accepted well-defined semantics. Every system is different, and
this inconsistency makes using ACLs difficult when transferring
between different systems or working in a heterogeneous environ-
ment.

The Distributed Computing Environment (DCE) [23] allows
groups to be defined for users and stores the group memberships in
a user’s Privilege Attribute Certificate (PAC); these groups are
used in ACLs to make authorization decisions and so are analo-
gous to clearances or user labels. However, no similar group mem-
berships (analogous to sensitivity labels) are defined for objects in
DCE.

MAP added the following capabilities to the DCE-Web authori-
zation engine:

l the ability to define labels that can be applied to
objects. The object labels are lists of existing DCE
groups and perform two functions:

- they identify the group memberships of the
objects.

- they act as sensitivity labels for the data in
the objects. Sensitivity labels say what kind
of information is in an object and how or in
what way it is sensitive. They are a user-
defined measure of the damage incurred if
the information is revealed or corrupted.

l the ability to define rules that grant or deny access
based on the relationship between the principal’s
label (the list of groups from the PAC) and the
object’s label. Example rules are in the Results sub-
section below.

29

I) Object Labels
Object labels are lists of DCE groups. The object labels may be

applied to single objects or to all objects in one or more branches
of the object namespace. For example, all the objects in “/projects/
DCE-Web” might be labelled “AT0-Confidential,” while work in
progress in “/projects/DCE-Web/snapshot” might have the addi-
tional label “DCE-Web-team.” The branches covered by different
labels may overlap so objects may have more than one label
applied to them. The effective group membership for an object is
the union of all the groups in all the labels applied to the object
(with redundancies removed). We will refer to the effective group
membership of an object as “the object’s groups.”

2) Rules
Rules contain a list of groups and a relationship. Rules are

applied to objects in the same way labels are; rules may be applied
to single objects or to all objects in one or more branches of the
object namespace. These branches can overlap so objects may
have more than one rule applied to them. The access control policy
that applies to a given object is the conjunction of all rules that
apply to the object; every rule must be satisfied for access to be
granted.

The list of groups in a rule determines the groups to which the
rule applies. Generally, if the intersection of the groups in a rule
and the groups to which an object belongs is empty, then the rule is
not used to determine access to that object. The single exception to
this is if the list of groups in a rule is empty (in other words, there
are no groups defined for the rule); in that case, the rule is inter-
preted as applying to all the groups to which the object belongs,
rather than to no groups. This awkward syntax was motivated by
our use of standard DCE group semantics. It allowed us to con-
struct rules that refer to all of an object’s groups, whatever they
might be.

There are two kinds of rules defined by MAP: set rules and
range rules. The two kinds of rules treat the group memberships
differently.

Set rules. Set rules support the standard notion of groups and
roles. In a set rule, the groups are treated as an unordered list. The
relationships that can be required are:

AND - The principal’s label must contain all groups
in the intersection of the rule’s groups and the
object’s groups. So, if the rule specifies groups (Gl,
G2, G3) and the object’s groups are (Gl, G3) then
the principal’s label must contain both Gl and G3.
OR - The principal’s label must contain at least one
of the groups in the intersection of the rule’s groups
and the object’s groups. Using the example from
the preceding bullet, the principal’s label would
have to contain either Gl or G3.

Range rules. Range rules support the notion of levels in security
policies. In a range rule, the groups are treated as an ordered list.
The ordering is defined by the order in which the group names are
input at rule creation time, much like the way the parts of an enu-
meration type are assigned values in C or C++. This means that
group names do not have a predetermined numeric value, and so
could have different list positions and so different values in differ-
ent rules. This potential source of inconsistency came from our
decision to use unaltered DCE groups. The list of groups in a range
rule may not be empty.

Range rules work by computing and comparing sub-ranges of
group lists. Given a group ordering defined by a specific rule, two
intersections are computed: the intersection between the rule’s

groups and the object’s groups, and the intersection between the
rule’s groups and the groups in the principal’s label. If the intersec-
tion between the rule’s groups and the object’s groups is empty,
then the rule is not applied. Non-empty intersections are inter-
preted as a sub-range of the groups in the rule’s ordered list of
groups. For example, if a range rule defines the group order (Gl,
G2, G3, G4, G5) and the intersection of this list with the object’s
groups is (G2, G4), then the rule is applied to the sub-range (G2,
G3, G4), the G3 “gap” being ignored.

Range rules allow the following relationships to be used:

l >= The high end of the principal’s sub-range is
greater than or equal to the high end of the object’s
sub-range

l <= The low end of the principal’s sub-range is
greater than or equal to the low end of the object’s
sub-range

l = The principal’s sub-range is identical to the
object’s sub-range

l SUBSET - The principal’s sub-range fully encom-
passes the object’s sub-range

l SUPERSET - The principal’s sub-range is a sub-
range of the object’s sub-range

B. Results

The MAP prototype confirmed the potential of the user-centered
approach while pointing out pitfalls that should be avoided in the
Adage system.

I) Advantages
Flexibility. Using a rules-based system allows enormous flexibil-
ity in the kinds of policies that can be defined and enforced, while
allowing those policies to be expressed with tools more powerful
and user-friendly than ACLs. For example, a common Multi-Level
Secure (MLS) policy is based on the Bell and LaPadula model [3]
and requires the Simple Security Property (read up) and the *-
Property (write down) to be enforced. This policy can be easily
expressed by defining groups to represent the various security
classes and then rules that represent the two access properties. For
example, suppose the groups Unclassified, Confidential, Secret,
and TopSecret are defined. If both properties are enforced for all
objects, then this could be represented as a pair of server-wide
range rules at the root level of the server namespace. one for read
access and one for write access, such as (owner information has
been omitted from the table):

&!jjg m Relation m GtYQues

Simple I >= R Unclassified,
Security Confidential.

Secret, TopSecret

star

Pnwrty

I <= W Unclassified,
Confidential,
Secret, TopSecret

The Biba integrity model could also be enforced by adding two
similar rules. Furthermore, the portion of the namespace pro-
tected by each policy can be controlled by setting the scope of the
rules accordingly. So, objects in one branch could be protected by
these strict security policies, while others in a different branch
were left more openThis flexibility can overcome problems with
inflexible models such as Role Based Access Control (RBAC) [9].
Ferraiolo et. al point out that RBAC will not work for all objects in

30

the system (such as temp files), but offer no solution to this prob-
lem.

Accessible Graphical User Interface. Extending the DCE-
Web Secure Local Proxy (SLP) let us use World Wide Web HTML
forms as our user interface. This forms interface is familiar to most
users and accessible through widely deployed Web browsers. In
addition, it was easy to write forms to allow the creation and view-
ing of a label or a rule. The existence of the SLP gave us an infra-
structure for serving our forms and invoking DCE, saving
development time and providing an integrated view of the Web for
our users.

Object Groups and Labels. Allowing objects to be labeled
and collected into groups fixed a basic asymmetry between how
principals and objects were treated in DCE. Labeling and grouping
objects according to sensitivity or function is a natural thing to do,
and relying on namespace partitions to accomplish this (by placing
different kinds of objects in different places) is unnecessarily
restrictive and difficult to manage. Explicitly adding object groups
and labels allows objects with similar labels to be protected simi-
larly no matter where they are.

2) Pi?halls

Attachment of Labels and Rules to Namespace. The
ways that access was computed in the MAP prototype were com-
plex and often obscured exactly how any given object was pro-
tected. This difficulty stemmed from the fact that the protections
on an object were ultimately defined by its position in the
namespace rather than by the kind of object it was. While it is
occasionally useful to constNct parts of the namespace to reflect
the security policy, requiring this tight coupling is too constraining.
This difficulty showed up in several ways:

l It was not possible to specify exceptions to Nles
within a namespace branch. Another way to say this
is that the granularity of protection was not fine
enough. Because rules were attached to the
namespace, all objects beneath a rule’s point of
attachment were governed by the rule. There was
no easy way to alter the policy goveming some sub-
set of objects in that branch. If the connection
between Nles and the namespace were broken, then
finer grained control could be obtained more easily
(by having the scope of rules be governed by the
labels on objects no matter where they were, rather
than by their position in the namespace, for exam-
ple).

l It was hard to know exactly in which groups a given
object was and what Nles would be applied in any
given access decision. Part of this problem could be
solved with facilities designed to present this infor-
mation (see next pitfall). The tight coupling
between label and rule scope and object namespace
forced users to specify this information in a frag-
mented and sometimes unintuitive way.

The lesson here is that object labels and groups and the rules
that protect an object should be determined purely by what kind of
object something is and not by where it is. Security policy is natu-
rally organized around information content, not namespace place-
ment.

Inadequate Interface. An engine like MAP is designed as a
basis for a higher-level user interface. The MAP user interface was
good enough for prototype testing, but it was clear that a simple
forms interface would be inadequate for a full system. The forms
interface was awkward to use and failed to give the user sufficient
context to know if the information entered was correct or not. In
particular there was no way to see a high-level view of Nles and
labels for a given principal, object, or group. This made it hard to
know exactly what effect a new Nle might have.

Clarity of effect is crucial to the implementation of a coherent
security policy. Even with a design that offers clear relationships
among rules, labels, and groups, the overall scheme of protection
that is actually in force must be easy to perceive. This can only be
done through a carefully thought-out GUI that facilitates rule,
label, and group definition and perception of the overall protection
stmcture that is in force. The minimal requirements on this GUI
would be:

l Integrated management of rules, labels, and groups

l Convenient data entry of complex structures like
Nles

l Consistency checking between current rules and
ones being entered

l High-level overviews of rules, labels, and groups
and their effects

l Convenient querying of current policy constraints
(how is a given object or group of objects pro-
tected?)

User-centered security is as much about user interface as about
security mechanisms. A coherent, consistent GUI is itself a secu-
rity tool, not just window dressing.

Complex Internal Structure. One final area that we felt
needed improvement was the complexity of the actual data struc-
tures used to implement the design (see the appendix for details).
While not user-visible, these are important because it made the
code hard to work with and (we conjecture) would make a produc-
tion system built along the same lines difficult to debug and main-
tain.

The main problems were the visibility (to the programmer) of
the complex structures used to hold the rule and label information.
C has little provision for encapsulation and data hiding, and it was
easy to make mistakes in the way the structures were referenced.
Bugs often had to be tracked back through several levels of point-
ers and stNcture fields.

We believe that these problems can be alleviated by using an
object-oriented design approach and implementation language.
The complex stNctures required to implement rules, labels, and
groups seem to be a good match for encapsulation and data hiding.
The Adage system will be written in C++ and effort will be put
into the design to limit the areas of code where the internals are
visible.

V. FUTURE WORK

We are continuing to work on our vision of user-centered secu-
rity in the Adage project (Authorization for Distributed Applica-
tions and Groups) [29]. We are in the process of designing and
implementing Adage, so there are no results to report at this time.
Adage is specifically conceived to overcome the usability prob-
lems with authorization mechanisms for distributed applications in
use today. The first of these usability problems is that the applica-

31

tions unnecessarily export the underlying data structure as the user
model. The user metaphor for Access Control Lists (ACLs) is the
ACL data structure; for system masks it is the system mask. The
user is given a rudimentary formatted display of the information in
the data structure (or perhaps just a literal display of its values) and
must learn the algorithm that the computer software will use to
evaluate that data structure in order to understand what access con-
trol policy is actually instantiated. This problem is starting to be
addressed. GUI ACL editors provide a simplified display, graphics,
and contextual help. Some even support rudimentary user queries
about the access control policy, such as “What is my access to this
object?” and “What is user X’s access to this object?’ [S]

A large gap remains between security mechanisms and a user’s
or site’s security policy, stated in natural language. By analogy,
ACLs are the assembly language of security policy. They are a
complex, low-level language. Only an expert in a particular imple-
mentation of ACLs can hope to program it correctly the first time.
ACLs have the added disadvantage of being difficult to test without
making changes on a live system. One component of Adage will
be a higher-level authorization language that begins to close the
gap between security mechanisms and site security policies. It will
come with a visual builder that allows site security administrators
to build up an authorization policy from visible policy pieces. Fur-
thermore, these policies can be shared with other domains. The
primitives supported by this language will support a wide range of
user and application policies, because they will be based on secu-
rity policies actually in use [2][191 and on interviews with security
administrators.

One insight that Adage shares with current work on roles is that
within organizations it is natural to think about both users and
objects in terms of how they relate to each other and what place
they fill within the organizational structure. Adage will use group-
ings to reflect these intuitions. It will use groupings of objects and
of actions to more easily refer to objects and actions in a security
policy. Groups of users and their roles will receive particular atten-
tion. Adage will provide an infrastructure for defining the relation-
ships and restrictions on groups and roles that will allow it to
support models from both the security and groupware literature.
For example, two groups can be restricted to have no membership
overlap, to support static separation of duty in policies such as
[19]. Users taking on the role of Chair can be restricted to those
users in a particular group.

Adage will continue the work in user-centered trust models by
modeling common trust dimensions such as amount of trust (How
much do I trust you? How much do I distrust you?) and type. of
trust (What do 1 trust you for?). Adage will apply this trust model
to services whose information is used as input to authorization
decisions (such as authentication servers and group membership
servers). This will allow an enterprise to articulate a trust policy
and have it apply to all its authorization decisions. In addition, the
model will allow trusted services to introduce other trusted ser-
vices, forming chains of trust where the amount of trust degrades
over hops, much as real-life trust does.

VI. CONCLUSIONS

When considering the security of systems and applications in
their context of use, it is clear that the security mechanisms need to
be appropriately used to maintain their effectiveness. Mechanisms
and models that are confusing to the user will be misused. Addi-
tionally, in contexts such as the home market where the user makes
the buy decision about all software, security applications that are
difficult to use are unlikely to be deployed. Therefore, this paper
considers user-centered security as an appropriate goal for secure

systems. We have reflected on the usability problems of secure sys-
tems in the past, and provide three categories for work in user-
friendly security:

Applying usability testing and techniques to secure
systems

Developing security models and mechanisms for
user-friendly systems (such as groupware)

Considering user needs as a primary design goal at
the start of secure system development

We gathered together the work in usable secure systems from
the security and CHI literature as an aid to future development, and
sorted it into these categories. We believe the third category will
yield the richest developments and we are following that approach
in our Adage work. We discussed our early prototype user-cen-
tered authorization engine and our current direction towards a
user-centered authorization language and trust model. We found
that a rule-based authorization engine provides the flexibility to
support user-centered authorization, but more work is needed on
the interface and concepts presented to the user. We hope to hear of
other work in user-centered security, as we expect the need for
user-friendly security to grow more acute over time.

ACKNOWLEDGMENTS

The MAP work was funded by the DOD. The Adage work is
funded by ARPA under contract F30602-95-C-0293 (This paper is
Approved for Public Release Distribution Unlimited). This paper
has benefited from feedback from Marty Hurley, Rich Salz,
Howard Melman, Charlie Brooks, Keith Loepere, Scott Meeks,
and our anonymous reviewers.

[II

PI

131

[41

PI

WI

[71

BIBLICCRAPHY

Bemers-Lee, Tim, Robert Cailiau, Ari Luotonen, Henrik
Frystk Nielsen, and Arthur Secret. ‘The World-Wide
Web”, Communications of the ACM, August 1994

Baldwin, Robert W. “Naming and Grouping Privileges
to Simplify Security”, in Proceedings of the 1990 IEEE
Symposium on Security and Privacy, pages 116-132,
1990

Bell, D. E. and L. J. LaPadula. Secure Computer Sys-
tems: Unified Exposition and Multics, Technical Report
ESD-TR-75306, The MITRE Corp., March 1976.

Blaze, Matt, Joan Feigenbaum, and Jack Lacy. “Decen-
tralized Trust Management,” in Proceedings of IEEE
Conference on Security and Privacy, 1996.

Clark, David D. and David R. Wilson. ‘A Comparison of
Commercial and Military Computer Security Policies”,
in Proceedings of the 1987 IEEE Symposium on Secu-
rity and Privacy, pages 184-195. April 1987.

Clement, Andrew. “Privacy Considerations in CSCW,”
in Proceedings of CSCW ‘92.

DCE-Web home page, http:Nwww.osf.orglwww/
dceweb/index.html

32

PI

UOI

1111

[I21

1141

WI

[161

(171

iI81

WI

m

WI

r221

v31

WI

Digital Equipment Corporation. Visual ACL Editor On-
line Help..Available: Digital Equipment Corporation,
Littleton, MA. 1995.

Ferraiolo, Janet A. Cugini, and D. Richard Kuhn, “Role-
Based Access Control (RBAC): Features and Motiva-
tion,” in Proceedings of Eleventh Annual Computer
Security Applications Conference, December 1 1 - 15.
1995.

Fish, Robert S. and Robert E. Kraut. “Networking for
Collaboration: Video Telephony and Media Conferenc-
ing,” in Proceedings of ACM CHI ‘94.

Foley, Simon and Jeremy Jacob. “Specifying Security
for CSCW Systems,” in Proceedings of 8th 1EEE Com-
puter Security Foundations Workshop, June 13-l $1995.

Garfinkel, Simson. PGP: Pretty Good Privacy, O’Reilly
and Associates, Inc.. 1995.

Gasser, Mot-tie. “Building a Secure Computer System,”
Van Nostrand Reinhold Company, New York, 1988.

Hill, Will and Loren Terveen. “New Uses and Abuses of
Interaction History: Help Form the Research Agenda,” in
Proceedings of ACM CHI ‘94.

Karat, Glare-Marie. “Iterative Usability Testing of a
Security Application,” Proceedings of the Human Fac-
tors Society 33rd Annual Meeting, 1989.

Kling. Rob. “Controversies About Privacy and Open
Information in CSCW:’ in Proceedings of CSCW ‘92.

Lewontin, S. ‘me DCE-Web: Securing the Enterprise
Web,” http://www.osf.orgfwww/dceweb/papersl
Secure-Enterprise.html, 1995.

Linn, J. “Privacy-Enhanced Electronic Mail: From
Architecture to Implementation”, in Proceedings, IFIP
TCl 1 Seventh International Conference on Information
Security (IFIP/Sec ‘91). Brighton, UK, 15-17 May 1991.

Nash, M. and Poland, K., “Some Conundrums Concem-
ing Separation of Duty,” in Proceedings of 1990 IEEE
Symposium on Security and Privacy, May 1990.

Norman, Donald A., ‘The Design of Everyday Things”,
Doubleday, 1988.

Mosteller, William S. and James Ballas. “Usability
Analysis of Messages from a Security System,” Proceed.
ings of the Human Factors Society 33rd Annual Meet-
ing, 1989.

Nielsen, Jacob. “Usability Engineering,” AP Profes-
sional, 1995.

Rosenberry, Ward, David Kenney and Gerry Fisher.
“Understanding DCE,” O’Reilly & Associates, Inc.,
1992.

Rubinstein, Richard and Harry Hersh, ‘The Human Fac-
tor: Designing Computer Systems for People,” Digital
Press, 1984.

1251

WI

I271

WI

[291

[301

Saltzer, Jerome H. and Michael D. Schroeder. “The Pro-
tection of Information in Computer Systems”, in Pro-
ceedings of the IEEE, 63(g), 1975.

She”, HongHai and Prasun Dewan. “Access Control for
Collaborative Environments,” Proceedings of CSCW
‘92.

Wixon, Dennis, Karen Holtzblatt, and Stephen Knox.
“Contextual Design: An Emergent View of System
Design”, in CHI ‘90 Conference Proceedings.

Zurko, Mary Ellen. “Attribute Support for Inter-Domain
Use”, in Proceedings of The Computer Security Founda-
tions Workshop V, June 1992.

Zurko, Mary Ellen. Adage home page, http://
www.osf.orglwww/adage/index.html.

Zurko, Mary Ellen. MAP home page, http://
www.osf.org/www/map/index.html.

A. MAP Data Definitions

This section contains the DCE Interface Data Language (IDL)
definitions of the MAP rules and labels.

The rule structure had five fields:
typedef struct map-rule-s-t
i
mapname *name ;
/* the name of the rule */
URL-list-t *scope;
/* where the rule should be
applied */
user-or-group owner-type;
/* owned by a principal or
group? */
uuid-t owner;
rule-body-t body;
1 map-rule-t;

The body of the rule was itself a structure that contained:
typedef structrule-body-s-t
1
relation-t relationship;
/* such as AND, OR, <=,

etc.*/
see-aclgermset-t

permissions;
/* permission granted */
group-list-t

*groups;
/* groups covered by the

rule */
1 rule-body-t;

The label structure contained:
typedef structmap-label-s-t
C
mapname *name;
URL-list-t *scope;
/* where the label applies*/
user-or-group owner-type;
/* owned by a principal or

group? */
uuid-t owner;
group-list-t *groups;
} map-label-t;

33

