
Integrating Formalism and Pragmatism: Architectural Security

Ruth Nelson
Information System Security

48 Hardy Ave.
Watertown, MA 02172

Abstract

Two major schools have dominated computer security research
and thinking for the last twenty to twenty-five years - formalism
and pragmatism. In spite of all their work, progress has been
limited, system designers do not incorporate security principles
and security is seen as a detriment to functionality. This paper
suggests that an architectural approach, fostered by better
communication among security researchers and between the
security and operational communities, may yield more practical
and effective security solutions. These axhitectural solutions are
not totally general, but they have a structure and are applicable to
large classes of problems.

Introduction

Two major schools have dominated computer security research
and thinking for the last twenty to twenty-five years. One of
these, which I will call the formalist school, focuses its work on
correctness and on universality. They have developed
abstractions of security properties, notably access control, which
are intended to apply in a system independent manner. Assurance
in a computer system means that the system is designed to
preserve these security properties, and that the design has been
proved to do so, using a variety of formal methods.

The other school, the pragmatists, are concerned with attacks on
and countermeasures for real systems. The best known efforts are
the research and development work in intrusion detection[1 1, and
the event management provided by the CERT, etc. These efforts
deal with systems as they are deployed, concentrating on
detecting and Gxing bugs, rather than on changing or influencing
system principles and design.

There seems to be a lack of communication between these
schools, and a resulting dearth of pragmatic but structured
security solutions. This paper suggests some areas where an
integration of these two approaches may provide some insight,
and discusses some areas of current success. It does not reject
current security models, paradigms, or methods of working, but
rather points out some of their limitations and proposes remedies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or dktrihuted for profit or commercial advantage and that
copies hear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redis+ihute to lists,
requires prior specific permission and/or a fee.

I997 New Security Paradigms Workshop Langdale, Cumbria UK
Copyright ACM 1998 O-89791-986--6/97/ 9...%5.00

The paper presents new security paradigms on two levels. First, it
suggests an integration of two schools of research, a new
methodology for solving security problems with an architectural
approach, not completely general and not specific to a single
implementation. Second, it highlights some areas where new
approaches are needed to meet current problems, and it suggests
some avenues for analysis and synthesis of solutions.

Limitations of the Formalist Approach

The use of security models and fiarneworks has been very much
of a specialty area, divorced from mainstream system design and
operation. This is due to a number of factors, including the way
models are formulated and presented. The emphasis is on
precision, so that formal reasoning can be applied to show the
correctness of the system specification and design with respect to
general security properties. Much less effort has been applied to
the more difficult to formalize problem of understanding what the
desired properties are for a specific system. The formal models
emphasize two areas of security: access control enforced by
operating system kernels and security protocols. In other areas of
security, there is a desire for more assurance, but little support
from well-understood and agreed-upon policies, principles and
structures.

Secure Systems are not being built
The major effort of the formalists has been in the area of secure
operating systems, leading to secure computer systems. The
primary security abstraction in this area has been in the area of
access control, enforced by a small trusted reference monitor that
has been shown to be “correct” with respect to the model. The
users, and programs operating on their behalf, are “subjects;” the
system controls their access to “objects,” which a.re containers of
data. In systems enforcing MAC (mandatory access control), the
mechanism enforces a lattice model of user privilege and data
classification that is independent of the untrusted parts of the
system. This abstraction is attractively simple and general
purpose, especially for the type of time-sharing, user driven
systems of the 197Os, when the security modeling effort began.
Various formalizations of this model[2,3] have been created and
used in system developments, and it is the basis of most of the
security evaluation criteria[4] and secure system designs to date.

However, this effort has had little effect on the security of most
systems used today. One of the main premises in this effort is that
security must be designed in corn the start, not added on; in fact,
the access control is generally enforced by a small part of the

operating system, the security kernel. Today, we have well-
established commercial operating systems, with a large and
growing investment in applications software. These systems were
designed for commercial appeal and functionality, not for security.
In some cases, they have been augmented or modified to meet
security evaluation criteria, but then the commercial version
continues to evolve and the evaluation becomes out of date. In
addition, for both economic and political reasons, manufacturers
are not willing to produce systems secure enough to conform to
the formal security definitions, especially Mandatory Access
Control (MAC).

The research into secure operating systems has produced
significant understanding of secure design, but has not produced
secure, commercially viable systems.

A smallev focus with good effect
The newer efforts in protocol analysis are having more impact on
current design(5 1. It is significant that this work attempts to
produce and show correctness of a smal.I, well-defined part of an
information system, rather than the system as a whole. The area
of authentication and cryptographic protocols is recognized as
critical to commercial use of the Internet and other information
networks, and the efforts of the formalists are (generally)
appreciated and fruitful.

Between these extremes of secure systems and secure special-
purpose protocols, there is a gap. Architectural analysis and
synthesis are needed to discover and address issues such as
appropriate use of authentication protocols in a larger system
context.

Limitations of the pragmatic approach

The intrusion detection community, the CERT, and other
pragmatic security practitioners perform a critical service for the
Internet users and providers by detecting misuses and
recommending fixes. However, they deal with the status quo, not
with new designs or architectures. Moreover, their analyses focus
on specific flaws in specific systems, as they must. There is little
effort in this community towards new security architectures or
even mechanisms. Their focus is on managing the current crises,
of which there are an ample supply. Some of the intrusion
detection tools do embody an understanding of more general
patterns of vulnerability and abuse. These, as well as the
anecdotal data of attacks, can give reality to the analysis suggested
above.

Karl Levitt[6 land some of his students have characterized UNIX
vulnerabilities and have a program that detects suspicious
behavior in UNIX systems. This behavior is “legal,” at least in
some circumstances, but it has been exploited to attack UNIX
systems. An example is root privilege, needed by many system
programs to access tiles and directories, but a popular way to
attack UNIX systems.

The UNIX security work has led to the fixing of numerous bugs in
the system and to many advisories on system configuration and
operation. The basic design of the system has not been affected.

The UNIX intrusion detection work exposes a deeper question: Is
it necessary, or even good design, to base the privilege of a

program on the privilege of the user ?unning” it? The type
enforcement in the LOCK[7] program, and the Clark and Wilson
model[8] address this issue to some extent, but also have not led
to new design

The missing link between these schools
The formalists have had major impact on the design and
evaluation of secure systems, though their effect is waning.
Because existing systems are far t?om being either secure or
correct, however, their work has not encouraged or even allowed
the use of COTS, and especially not the new and constantly
changing commercial products. Efforts on composition of
systems have emphasized the bad effects of composing good
components, rather than the possibility of making trustworthy
systems out of untrustworthy but available components.
Meanwhile, systems are being built with little or no concern for
security, or with security mechanisms and features included in ad
hoc and probably ineffective ways.

The pragmatists see the effects of undisciplined growth, poor
design and little security. They see the attacks on the systems and
their results. However, their knowledge is seldom integrated into
new designs or architectures; rather it goes towards fixing bugs in
existing systems. The same basic design flaws remain through
generations of releases.

We need new security architectures that are both realistic and
structured. We need to understand the relationships between
security properties of systems and their current or planned
functionality. These efforts can be done only if we can integrate
the formal and the experiential. Then our abstractions of security
will accurately describe our systems, though possibly with less
generality and less precision than the current, more universal
models.

The Process: Integrating Understanding

We can use high level abstractions of security properties to
understand the experiential data, and we can use experience to
refine our understanding of security and produce more secure
designs. We can use this interactive and iterative process to
develop security solutions that are both structured and flexible,
and that can address the evolving functions and systems of
information technology.

The integrated understanding of the high level abstractions and
the detailed observations can sometimes be captured in an
architectural approach. This intermediate level of synthesis is
useful to describe general but not universal countermeasures that
prevent classes of observed attacks from being successhrl in
disrupting systems.

Architectures can capture the physical components of a system,
with elements such as servers, clients, tiewalls, etc. Architecture
can also refer to protocols, specifying layering, peer or client-
server interactions, or the state space of a particular protocol.
Architecture can also refer to the allocation of fUnctional@ within
a system, including security firnctionahty, and including the use of
security mechanisms that reinforce each other to provide
resistance to attacks (security in depth). It is not necessary to
think of a system as being totally described by a single

architecture; systems can have all of the kinds of architectures
described above. The point is to see some general structure in the
system, expressed in terms of its design components or
requirements. Within this structure, one can see critical security
areas: places where attacks have previously been detected, places
where critical functionality is located, places where an attack could
damage critical system resources. Rigorous security engineering
methods, including formal analysis, can be directed to those
aspects of the system where there is the most need and the most
potential payoff.

System architectures are seldom determined by security
requirements; functionality and the use of existing components
generally take precedence. Security analysis of the architecture
can help us understand which parts are security-critical, and it is in
these areas that we may be able to affect the design. The
examples in this paper illustrate security’s place in the system.
We have had little impact in areas like operating systems, which
are central to all system requirements. We have had more impact
in smaller, security-critical areas such as cryptographic protocols.

Example Problems

These examples illustrate several different aspects of the security
problem, areas where interactions occur or where the models and
policies we have do not accurately reflect the systems we build.
They also illustrate what is meant by an architectural approach
that is general but not universal.

Authentication and access control
Authentication and access control interact. Correct access control
decisions cannot be assured when the identity of the requester is
not certain [9 1. Most of the formal work in access control has
dealt with the separation of information within a system,
distinguishing among authorized users and preventing data
belonging to a user or marked with a sensitivity label from leaking.
The systems with strong access control are designed to enable
partitioning of the information and control sharing within the
system. If there is misauthentication of privileged users, the
access control decisions cannot be effective.

The access control models assume completely correct
identification of subjects; they focus on the subject-object
relationship. Authentication methods yield only a probabilistic
identification (though the probability can be very high in some
cases), leaving a residual risk. The interaction between the
authentication uncertainty and the access control policy is often
not even analyzed.

A different situation is posed by the use of strong authentication
to allow commerce over the Internet. In this scenario, the user is
strongly identified to the system. If these systems do not have
strong access control within them, however, there is a risk that
users can claim more privilege than they are entitled to, by
breaking the internal boundaries. For example, a shopper might
get access to other shoppers’ card numbers, if they are stored in
the system without sufficient protection. Or someone who had
paid for a certain level of access might get more, again by breaking
internal boundaries. Interactions of this kind need to be addressed
so that the security mechanisms for authentication and access
control can be effective, not misleading.

Object protection and mobile code
In the usual (KZSEC) model for access control, subjects are active
entities that have access to passive objects. This model does not
distinguish clearly between code and data, nor does it uniquely
distinguish execute access fi-om other types of access. Most of the
code in the system is considered untrusted; it is constrained not to
leak data, but otherwise its actions are ignored.

The Clark and Wilson model does make a clear distinction
between code and data. It, however, assumes a few (large?)
programs, which can be called bv authorized users to act on
appropriate data.

We now have systems (e.g., JAVA[10 1) that send and receive
large numbers of small sobare programs via the Internet or other
networks. These are run interpretively, but they do cause
execution of system functions. The question is how to constrain
access to these programs by users, how to import and run these
programs safely, and how to protect the programs, users and
systems from each other. In this model, it is hard to tind a passive
entity. The security architecture for JAVA does exist, but it
acknowledged that it has flaws, especially in the area of
continement. Can we understand the differences and similarities
between the mobile code model and our older security models?
Can we develop a structured approach to securing these systems7

It is interesting that the formal models for operating system
security assume a subject-object model, and the evaluation criteria
essentially require a model of this sort. It is also interesting to
notice that the intrusion detection work has found problems with
the identification of user and software privilege in cases where the
so&rare requires more privilege than the user is normally entitled
to. Attacks are already being reported that use mobile code agents
and exploit the privileges that are necessary for the programs to
work. This may be an area where our experience could lead us to
understanding significant security risks and possibly developing
some more secure architectures.

Internet Security
About ten years ago, we at GTE developed an architecture for
Internet Security[11 1. This architecture was based on the DOD (or
ISO) protocol layering. The most critical portion of this
architecture was in the IP layer of protocol, responsible for the
delivery of packets between end systems. We were aware even
then of IP spoofmg and its dangers. The requirement for security
at this layer was called the Internet Security Service (ISS). This
included protection, on a per packet basis only, in line with IP.
Required protection was confidentiality, packet integrity (ability to
detect modification) and packet source authentication. With the
ISS, TCP and other higher level protocols could add service like
integrity of the data stream and detection of missing or delayed
data. The only real service we considered at higher levels was
message security, which was special because the messages had to
be protected while in storage at an intermediate system. End-to-
end encryption was the preferred method for providing both the
ISS and message security, since this reduced the security demands
on intermediate systems and lowered the risk.

This security architecture was introduced into the Secure Data
Network System (SDNS) program[l2 1, and is now reflected, after
a long history of change and rediscovery, in the lP/Sec standard.
With this kind of protection between systems or between

Intranets, the risk of network attachment can be significantly
lowered.

Most data traveling the Internet is not end-to-end encrypted. Most
systems do not have hardware encryption devices, and
cryptographic key management is still a difficult problem.
Cryptography is being used to protect sensitive pieces of
information, such as passwords and credit card numbers. In this
changed environment, what kind of security architecture makes
sense? Some kind of authentication is required at the IP level to
thwart IP spooting attacks, but with what mechanisms and to what
degree? We need to update our approach so that it is effective,
feasible and suitable for the way the Internet is evolving.

Conclusions

The pragmatists have and are collecting large amounts of
information about how systems do and do not work. We need to
develop abstractions of security based on this information, giving
us an understanding that is formally rigorous and that also
accurately describes the security problem.

An integration of the formal and the pragmatic will:

. Structure functional security architectures to protect required
system functions;

. Identify critical dependencies and functions, allowing the use
of formal methods and new design where they are most
important to improve security;

. Facilitate the use of existing system components in
trustworthy systems, with the recognition that most systems
cannot be custom-made or even redesigned.

These results will provide system designers with incentives to
improve security in systems without undue redesign or
compromise in system turrctionality. Only then will we security
professionals be able to have significant impact on systems as
they change and evolve, since then our solutions will fit the
problems.

References

1 S. Kumar, Classification and Detection of Computer
Intrusions. Ph.D. Thesis, Purdue University, 1995.

2 D.E. Bell and L.J. LaPadula, “Secure Computer Systems: A
Mathematical Model,” ESD-TR-73-278 Volume 2, MITRE,
November 1973.

3 J.A Goguen and J. Meseguer. Security Policies and Security
Models. Proceedings 1984 IEEE Symposium on Security and
Privacy, April 1982

4 Department ofDefense Trusted Computer Security
Evaluation Criteria, DOD 5200.28-STD, National Computer
Security Center, December 1985.

5 C. Meadows, “Applying formal methods to the analysis of a
key management protocol,” .l. Computer Security, 1(1):5-36,
1992

6 C. Ko, K. Levitt, and G. Fink, Automated detection of
vulnerabilities in privileged programs by execution monitoring.”
In Proceedings of the Tenth Annual Computer Security
Applications Conference, December 1994.

7 0. S. Saydjari, J. M. Beckman, J.R. Leaman, “Locking
Computers Securely.” In Proceedings of the 10th National
Computer Security Conference, Baltimore, MD, 1987.

8 D. Clark and D. Wilson, “A Comparison of Commercial and
Military Computer Security Policies,“Proceedings of the 1987
IEEE Symposium on Security and Privacy, Oakland, CA, April
1987.

9 R. Nelson, D. Becker, J. Bnmell and J. Heimarm, “Mutual
Suspicion for Network Security,” Proceedings of the 13th
National Computer Security Conference, Baltimore, MD,
September 1990.

10 T. Lindholm and F. Yelhn. The Java VirtualMachine
Specification. Addison-Wesley, Menlo Park, CA, 1997.

11 R. Nelson, D. Becker, J. Heimarm, J. Sonsini, “Internet
Architecture for the DOD” [SECRET], presented at MILCOM 88,
October 1988, San Diego, CA.

12 R. Nelson and J. Heimann, “SDNS Architecture and End-to-
end Encryption,” presented at CRYPT0 ‘89 and published in
Lecture Notes in Computer Science 435, Springer-Verlag, 1990

