
A Distributed Trust Model

Aifarez Abdui-Rahman & Stephen Hailes
(FAbduiRahman, S.Hailes}@cs.ucl.ac.uk

Department of Computer Science, University College London,
Gower Street. London WC1 E 6BT, United Kingdom.

Abstract

The widespread use of the Internet signals the need for a better

understanding of trust as a basis for secure on-line interaction. In

the face of increasing uncertainty and risk, users must be allowed

to reason flectively about the trustworthiness of on-line entities.

In this paper, we outline the shortcomings of current security

approaches for managing trust and propose a model for trust,

based on distributed recommendations.

1. Introduction

The Internet of the past is one of limited services and a fixed set

of users, mainly academics and scientists. From this, it has

developed into a pervasive utility, playing host to a vast range of

services. The future will see it being used for serious commercial

transactions by anyone and from any location.

With all this comes greater uncertainty and risk arising from the

intentional hostility or carelessness of on-line entities. Existing

examples of the risks include viruses and Trojan horses, applets

and macros embedded in documents, subverted databases of

sensitive financial information, etc. The level of expertise and

experience required to recognise potential risk in every on-line

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is gmnted without fee provided that copies
are not made or distrihutcd for protit or commercial advantage and that
copies hear this notice and the full citition on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

1997 New Security Paradigms Workshop Langdale, Cumbria UK
Copyright ACM 1998 O-89791-98641971 9...$5.00

interaction is currently beyond the ability and resources of the

average user. To help with this situation, users must be given the

ability to assess the trustworthiness of entities it encounters.

Current security technology provides us with some capability to

build in a certain level of trust into our communication. For

example, cryptographic algorithms for privacy and digital

signatures, authentication protocols for proving authenticity and

access control methods for managing authorisation. However,

these methods cannot manage the more general concept of

‘trustworthiness’. Cryptographic algorithms, for instance, cannot

say if a piece of digitally signed code has been authored by

competent programmers and a signed public-key certificate does

not tell you if the owner is an industrial spy, Current security

technology is cunently lacking the complementary tool for

managing trust effectively.

In this paper, we propose our approach to the problem of trust

management with a distributed trust model, and a

recommendation protocol.

We will continue by clarifying our notion of trust in $2, followed

by the motivation behind this work in 13. Other related work is

discussed in 54. An introduction to our proposal is given in $5,

followed by a detailed description of the trust model in $6. We

then describe the Recommendation protocol in 97. An algorithm

for calculating trust, using values in recommendations, is

described in 38. Further discussion, including feedback from the

New Security Paradigms 97 participants, and future work, is in

$9. Finally, we conclude the paper in $10. A glossary of

definitions is given at the end of this paper.

48

2. Definition of trust control’ model which acknowledges that malicious agents may

Before beginning our discussions on trust, we must clarify our

definition of trust, as it is such a subjective and elusive notion. In

this paper, we use Diego Gambetta’s definition of trust:

“trust (or, symmetrically, distrust) is a particular level of the

subjective probability with which an agent will perform a

particular action, both before [we] can monitor such action (or

independently of his capacity of ever to be able to monitor it) and

in a context in which it affects [our] own action” [GamBO].

Gf importance here are three points made in the definition above:

1) that trust is subjective, 2) trust is affected by those actions that

we cannot monitor, and 3) the level of trust depends on how our

own actions are in turn affected by the agent’s ’ actions.

3. Motivation

In the previous section, we gave brief examples illustrating the

need for more effective trust management techniques. We now

discuss in more detail the properties of cunent security practices,

and its issues which motivate a need for complementary trust

management schemes. The following trends in current security

practice impact the management of trust.

3.1 Hard security

Cryptographic algorithms and firewalls are examples of hard

security mechanisms, and they have the general property of

allowing complete access or no access at all. Hard security also

assumes complete certainty. As the notion of trust prechtdes some

element of uncertainty, an alternative ‘soft’ approach will be more

suitable for trust management. ‘Soft security’ is the term used by

Rasmussen et al [RJ96a, RJ96b, RR1961 to describe a ‘social

exist among benign ones, and attempts to make them known.

3.2 Centralised protocols

In central&d protocols, a common trusted intermediary, call it the

‘Trusted Authority’ (TA), is used to form trust relationships.

Hierarchical and Trusted Third Party (Tl’P) protocols contain

examples of these. However, a TA can never be a good enough

‘authority’ (or recommender of trust) for everyone in a large

distributed system. Its credibility depletes, and its

recommendations increase in uncertainty, as its community of

trustees grows.

3.3 Implicit definitions and inconsistent

assumptions

In common practice, the ‘trusted’ label is given to systems that

have been tested and proven to have met certain criteria

However, the ‘trusted’ label is misleading. Firstly, this is due to

the failure of ‘trusted systems’ designers to provide a concrete

definition of ‘trust’. This, secondly, leads to the often misleading

assumption that ‘trusted’ implies ‘nothing can go wrong’, which

in turn implies that the tests covered all eventualities, This is not

always true, and is difficult to guarantee*. ‘Ihe Trusted Computing

Base guideline [DoD85] is one such area that faces this problem

of ambiguous definition of trust’.

3.4 Transitivity

A common assumption of most authentication protocols is that

trust is transitive, i.e. the assumption that

’ In this paper, an entity is any object in the network, and an agent
is an entity that is capable of making trusting decisions.

’ In Bruce Schneier’s words: “No amount of general beta testing
will reveal a security flaw, and there’s no test possible that can
prove the absence of flaws” [Sch97].

An interesting report on a conference panel regarding this
subject can be found in [Z&7].

49

(Alice trusts Bob) .Br. (Bob trusts Cathy)

j Alice trusts Cathy

This is not generally true [J#s96, CH96]. We posit that transitivity

may hold if certain conditions are met. We have termed this

conditional transitivity and the conditions that may allow

transitivity are (with reference to the example above):

a) Bob explicitly communicates his trust in Cathy to Alice, as a

‘recommendation’.

b) Alice trusts Bob as a recommender, i.e. recommender trust

exists in the system.

c) Alice is allowed to make judgements about the ‘quality’ of

Bob’s recommendation (based on Alice’s policies).

d) Trust is not absolute, i.e. Alice may trust Cathy less than Bob

does, based on Bob’s recommendation.

In this paper, we will adopt the conditionul transitivity of trust, i.e.

transitivity based on conditions a) - d) above.

4. Related work

Yahalom et al (YKB) [YKB93, YKB94] discussed in significant

detail the concept of trust in distributed systems. They highlighted

the fact that there is no effective formal way to reason about trust

in distributed systems and that a formal tool to analyse trust

requirements in security protocols is required. To remedy this

situation, they defined trust classes, made the distinction between

direct and recommemfution trust and proposed a formalism for

analysing trust in authentication protocols. However, their work

falls short of defining a framework for building protocols with

extended trust information.

Rasmusson and Jansson [RJ96a, RJ96b] introduced the idea of

social control, which is a ‘soft’ approach to security. The open

system modelled in their work represents an electronic

marketplace, which consists of buyer and seller ‘actors’. It is up to

the good actors to identify ‘cheaters’ and propagate this

information throughout the system. Social control attempts to

remedy the situation where there is no easy way for a component

to know all the other components in open systems, by relying on

group behaviour to influence the behaviour of its group members-

This approach fits in well with our notion of a distributed trust

model. Furthermore, their contribution gave clues on how to build

a framework, or model, for distributed trust, which YKB does not

provide.

The contribution of this work to our research is essentially the

paradigm in which we attack our problem. Just as in the electronic

marketplace scenario, our agents do not have to rely on

centralised mechanisms. Trust information is propagated

throughout the system via the interaction of the agents themselves,

and the ‘quality’ of this information is calculated on the basis of

the perceived trustworthiness of recommenders‘. Trust is then

revised upon receipt of new recommendations or new

experiences.

Other related work includes Pretty Good Privacy [Zim94], which

helped inspire the distributed nature of our model. Trust is also

being used as a basis for cooperation among autonomous agents in

the area of Distributed AI by Marsh wat94]. His approach

involves the addition of perceived risk and utility of committing

resources in a cooperative relationship, which results in a complex

trust calculation algorithm.

5. Proposal

Our proposal extends and generalises current approaches to

security and trust management, based upon four goals:

I. To adopt a decentrallsed approach to trust management.

2. To genendlse the notion of trust.

‘A recommender is a source of trust information, also called
‘recommendations’.

50

3. To reduce ambiguity by using explidt trust statements.

4. To facilitate the exchange of trust-related information via a

recommendation protocol.

We provide further justification for these goals below.

5.1 Decentrallsation

With decentralisation, each rational agent will be allowed to take

responsibility for its own fate. This is a basic human right. Its

policies need not be communicated, so there is less ambiguity and

no effort involved in trying to understand them. Each agent then

makes decisions for itself, on its own policies.

The disadvantage of decentralisation is that more responsibility

and expertise is required from the agent for managing trust

policies. However, without leaving this model, agents on the

network will still have the option of defaulting to centralised trust

models so that this responsibility can be assigned to their trusted

authority, if so desired. Decentralisation does not completely

replace current central&d approaches, but it gives agents a choice

of managing their own trust.

5.2 Generalising trust

When we say we trust someone, we know, with a large amount of

certainty. exactly which arpects of trust we are referring to. For

example, we trust that our car mechanic will carry out a

satisfactory job of car servicing, but not that she will handle our

domestic plumbing needs. Them are also instances when we trust

one entity more than another, e.g. we trust car mechanic Gary

more than mechanic Eric for some reason. This hints at different

levels of trust.

To be able to capture this potentially large amount of trust

information, we need to generalise trust information. In our

model, we use trust categories to represent which aspect of trust

we are referring, and trusr values for the different levels of trust

within each category.

5.3 Explicit trust statements

The reason for making trust explicit is straightforward, i.e. to

lessen ambiguity in recommendations which contain trust

statements. The issues relating to implicit assumptions are

discussed in $3.3. In our model, trust categories and trust values

serve to make trust statements more explicit,

5.4 Recommendations

In a large distributed system, it is difficult to obtain knowledge

about every entity in the network, let alone first hand knowledge

and experience of them. Yet, any entity in the network is a

potential target of communication. Human beings cope with

unknown entities via first impressions, and word of mouth.

Entities in the network represent human beings one way or

another, and they exist in their own social system. Consequently,

it makes sense for them to have, as far as possible, the capability

to reason about trust in the same ways in which humans would.

First impressions rely on complex sensory perceptions. Thus, the

only option open to network agents for coping with uncertainty is

via word of mouth, or recommendations.

The need to consider the basis of trust is also important Although

it is the ideal case to have complete information about tbe basis of

a recommender’s trust in another entity, this is virtually

impossible to attain. Constraining the basis for trust will not be a

remedy to this situation as this assumes that trust is objective.

Trust, as defined in 92, is subjective, and there will always be

hidden factors (intentional or subconsciously) behind a decision to

trust or distrust.

By allowing agents to choose their own trusted recommenders, the

uncertainty resulting from the ‘hidden factors’ may be

accommodated. With repeated interaction, the subjective ‘quality’

of a recommender’s recommendations can be judged with

increasingly better accuracy.

51

We have proposed a Recommendation Protocol to facilitate the

propagation of trust information. A protocol is essential as a

standard vehicle for the exchange of trust information, and to

avoid ambiguities in queries or requests for recommendation. We

argue that it makes sense to recommend trust because in the

absence of an infinite pool of resources, agents, just as humans do,

rely on information from others.

5.5 Novelty and suitability of proposed approach

Our approach is intended to complement current security practices

by forming a general model within which trust can be managed

more effectively. This is not ‘yet another certification

mechanism’. In a world where people live with uncertainty, our

model copes with these uncertainties by allowing agents to reason

with different degrees of trust, and obtain information from

sources that they trust.

In this work, we are concerned with the general notion of trust,

one that goes beyond cryptographic protocols. This is important

because agents need a flexible means to ascertain a variety of

properties about a variety of other entities. For this to work we

need to generalise trust.

We believe that our model will be most suited to trust

relationships that am less formal, temporary or short-term trust

relationships, or ad-hoc commercial transactions. Our model will

not be suited to formal trust relationships based on legally binding

contracts. In such contractual relationships, trust is placed in the

‘Trusted Authority’ to enforce the law upon parties that breach the

contract.

6. The Trust Model

In this section, we explain how trust is defined in the trust model

by describing its elements. This section can also be regarded as

containing the assumptions that we have made in designing our

trust model.

6.1 Agents

Entities that are able to execute the Recommendation Protocol are

called agents. This is to differentiate them from static entities like

printers and disk volumes. Any entity may be recommended, but

only agents can send and receive recommendations.

6.2 Trust relationships

A trust relationship exists between Alice and Bob when Alice

holds a belief about Bob’s trustworthiness. However, the same

belief in the reverse direction need not exist at the same time. In

other words, Alice’s trust relationship is unidirectional.

The properties of a trust relationship in our model are:

1. It is always between exactly two entities.

2. It is non-symmetrical (or unidirectional).

3. It is conditionally transitive.

If mutual trust exists between the same entities, we represent them

as two separate trust relationships. This allows each of these

relationships to be manipulated independently.

Two different types of relationships are distinguished. If Alice

trusts Bob, then there is a direct trust relationship. If Alice trusts

Bob to give recommendations about other entities’

trustworthiness, then there is a recommender trust relationship

between Alice and Bob.

Al* --------------
Bob

- Direct trust relationship.

-----+ Recommender trust relationship.

Figure 1 Types of trust relationships

Trust relationships exist only within each agent’s own database.

Therefore. them is no such thing as a ‘global map’ of trust

relationships in our model. This also makes trust relationships in

our model highly volatile. The ability for each agent to revise the

52

properties of each relationship at any time also makes trust

relationships potentially unstable.

By relaxing the constraints on how to build trust relationships, we

are able to allow this model to be used for any type of trust

architecture’, e.g. hierarchical, digraphs or hybrids. Most

architectures are policy driven, i.e. the shape of the architecture

reflects the policies used to build them. Since we do not

incorporate policies in our model, it is open to arbitrary

architectures.

6.3 Trust Categories

Agents use trust categories to express trust towards other agents

in different ways depending upon which particular characteristic

or aspect of that entity is under consideration at that moment. For

example, we trust a CA to certify public keys (category “Sign-

key”), but not to attest to the key-holder’s credit status (category

“Credit”).

6.4 Trust Values

Trust vaIues are used to represent the different levels of trust an

agent may have in another.

Naturally, there is no one universal value system because its use is

application specific. However, standardisation is important for

interoperability. Therefore, it is important that a value system is

proposed, even if we must base its semantics on pure intuition.

Below, we outline the trust values and their meaning as used in

our trust model.

Trust values in our model are constrained within each category

and are independent of values in other categories.

The qualitative nature of trust makes it difficult to represent trusl

with continuous values with any meaningful accuracy. Thus,

discrete levels of trust are used in this model.

’ The combined graph of trust relationships.

Two types of values are used, and they relate to the types of trust

relationships described in $6.2:

1. Direcr trust value: This is relevant to direct trust

relationships.

2. Recommender trust value: This is relevant to recommender

trust relationships.

The values and their descriptions are given below.

Value Meuninn Description

-1 Distrust Completely untrustworthy.

0 Ignorance Cannot make trust-related judgement

about entity.

1 Minimal Lowest possible trust.

4 Complete Completely trust this entity.

Table 2 Direct Trust Value Semantics

Value Meaning

-1 Distrust

Description

Completely untrustworthy.

I I 0 Ignorance Cannot make trust-related judgement
I

I I I about agent. I

I

2 ‘Closeness’ of recommender’s judgement to own

3 judgement about trustworthiness.

4

Table 1 Recommender Trust Value Semantics

53

6.5 Reputation and Recommendation

The concatenation of an agent’s ID or name, the trust category

and a trust value is called a Reputation:

Reputation = (Name, Trust-Category, Trust-Value)

A Recommendation is a communicated trust information, which

contains reputation information.

Each agent stores reputation records in its own private database

and uses this information to make recommendations to other

agents.

7. Recommendation Protocol

For brevity and clarity, we will leave out details on message

integrity and privacy issues and concentrate on the trust-related

content of the recommendation protocol messages. To recap, each

agent may be a recommender, or a requestor of a

recommendation. Any entity may be a target for a

recommendation.

7.1 Message structure

A requestor issues a recommendation request message, or an RRQ ,

and receives a Recommendation message. Recommendations

can be refreshed or revoked using the Refresh message. These

messages have the following structure (shown in BNF-like

format):

7.1.1 RRQ

MQ ::= Requestor-ID, Request-ID, Target-ID,

Categories, RequestorPKC, GetPKC,

Expire

Categories ::= SET OF (Category-Name)

7.1.2 Recommendation

Recommendation ::= Requestor-ID, Request-ID,

Rec.-Path, ISEQUENCE OF

(Recommendation-Set, TargetPKC) 1 NULL]

Rec.-Path ::= SEQUENCE OF {Recommender-ID)

Recommendation-Set ::= SET OF

Recomendation-Slip

ReconnnendationS1i.p ::= SET OF SEQUENCE

(Target-ID, Category-Name, Trust-Value,

Expiw)

7.1.3 Refresh

Refresh ::= Recgath, Recormnendation-Set

RequestorJD, Request-ID, Target-ID and

Recon'unender-ID are&f-expkmatory. Categories is aset

of category names that the requestor is interested in enquiring

about. RequestorPKC is the public-key certificate of the

requestor which can be used to encrypt Recommendat ion-Set

if the recommender wishes to do so. GetPKC is a Boolean flag

which, when set to true, indicates that the requestor would also

like a copy of the target’s public key certificate for further

communication. If a public-key certificate is available, it is

retumedinthe Reconnnendation,intheTargetPKCfield.

The Ret-Path field contains an ordered sequence of

recommender IDS. This shows the path through which the

Recommendation propagated from the recommender to the

requestor.

The Recommendation-Set contains multiple instances of the

Recommendation-Slip, which contains the actual trust

information that the requestor is interested in. For each category,

there is a sequence containing the Category_Name, the

54

Trust-value of the target with respect to this

Category_Name, and the Expiry.

The Expiry field contains the expiry date for the RRQ or

Recommendation. In the case of the RRQ, this is used to

discard any old RRQs that may still be floating around in the

system. In the case of each Recommendation-Slip, this is

used to indicate the validity period of the recommendation, after

which the recommendation should not be relied upon any further.

If the RRQ reaches a dead end in its path, and fails to reach a

recommender who is able to provide a recommendation, the fields

Recommendation-Set and TargetPKC will be replaced by

NULL values.

7.2 Protocol flow

The protocol flow is best described using an example, as depicted

in Figure 2.

Alice -.-.-.-.-b Bob ------- + Cathyvpr Eric

Figure 2 Example: Can Alice trust Eric the mechanic?

7.2.1 Requests and Recommendations

Let us assume that Alice (the requestor) is requesting a

recommendation from Bob (the recommender) about Eric (the

target). Alice is interested in Eric’s reputation for servicing cars,

especially VW Golfs, one of which Alice drives (trust category =

“CarService”). The protocol run is as follows.

1. Alice->Bob: Alice, rrqAO1, Eric, [Car-Service], T,

20000101

2. Bob->Cathy: Bob, rrqBO1, Eric, [Car-Service], T,

20000101

3. Cathy->Bob: Bob, rrqBO1, [Cathy],

[(Eric,Car~Service,3,20000131)], PK,

4. Bob-iAlice: Alice, rrqAO1, [Cathy, Bob],

[~En’c,Car_Service,3,20000131)], PK,

The protocol is simple and straightforward. Each RRQ is sent to

the requestor’s set of recommenders, trusted to recommend in the

category in question. In the example above, Alice sends an RRQ to

Bob because she trusts Bob as a recommender for car servicing

mechanics, and Bob trusts Cathy in a similar capacity. Since Bob

cannot say anything about Eric with respect to “CarJ+rvice”,

Bob forwards Alice’s RRQ to Cathy, who may know. Cathy, in

fact, knows about Eric’s workmanship, and Cathy believes that

Eric’s reputation for it is good, i.e. in Cathy’s opinion, tic’s trust

value with respect to category “CarService” is 3.

Cathy replies to Bob with a recommendation in message 3. Notice

that the Requestor-ID and Request-ID represents the last

sender (or forwarder) of the RRQ in the forward RRQ chain, and

not the original issuer of the RRQ. This is designed this way to

encourage Recommendations to be retnrned using the forward

path, which contains at least one trusted node (the original

recommender Bob). Cathy also appends Eric’s public key

certificate to the end of the recommendation.

Bob receives the recommendation from Cathy, and changes the

RequestorJD and Request-ID fields. Bob also adds his

own ID to the tail of the Ret-Path list. He then forwards this to

Alice.

7.2.2 Revoking and refreshing Recommendations

The reputation of entities changes over time so there is a need to

update the reputation information in the system. The classic

method for handling this is through revocation where revocation

messages are sent out to revoke certificates. In our trust model

there is a need to revoke, as well as refresh recommendations. In

fact, revoking is a subset of refreshing; it is contained in the same

Refresh message type. To revoke, a recommender resends the

same recommendation with trust value 0. The receiver will treat

this as any other O-value recommendation. Changing the trust

value to any other value (i.e. (-1 ,1..4)) will refresh the

recommendation.

In our previous example, if Cathy found out that Eric had made

several bad jobs of servicing her car, Cathy may decide that Eric

is not trustworthy after ah, and would like to inform her previous

requesters of this. These messages show how this will be carried

out.

5. Cathy->Bob: [Cathy], [(Eric,Car~Sewice,1,2t.XMO131)J

Bob, upon receiving message 5 also decides to propagate this

Refresh message to bis previous requesters, who, in this example,

concerns just Alice.

6. Bob->Alice: [Cathy, Bob],

[(En’c,Car-Service, 1,20000131)]

Alice <-Bob - Cathy

Figure 3 Refreshing recommendations (arrow points direction of

Refresh message flow)

Public keys are not included in Refresh messages because Refresh

messages are for refreshing trust, not keys. Keys are just

piggybacked on Recommedations to avoid another round of

protocol for obtaining keys.

The Recommendation Protocol makes revocation easier. All that

is required is for the original recommender to re-send the Refresh

message to all previous requesters of the same target and

category. With traditional certificate mechanisms, the target entity

itself carries the certificate, and it is not easy to determine whom

it will present the certificate to next; therefore, distributing the

revocation certificate is harder. Furthermore, since them are

potentially more recommenders in our model than CAs in normal

certification architectures, most recommenders would normally

have fewer agents to broadcast revocations to, since

decentralisation increases the number of message sources

(recommenders) and reduces the number of requestors for each

recommender. This shows how much simpler trust management is

through decentralisation.

One major risk in sending Refresh messages is the propagation

delay of messages through the system. This depends on the

availability of the agents in the propagation path and the

promptness of each agent in the path in forwarding protocol

messages. However, since the protocol is decentrahsed and any

agent may bc a recommender, it is suspected that the availability

of the refreshed reputation messages will be higher than in a

centralised system.

In short, the Recommendation Protocol makes revoking and

refreshing trust information easier and improves availability of

Refresh messages.

7.2.3 Recommendation about recommenders

In the example above, if Alice does not know Cathy before, then it

is difficult for Alice to judge the ‘quality’ of Cathy’s

recommendation about Eric. In this case, Bob may help Alice, by

sending Alice a recommendation about Cathy to accompany

Cathy’s recommendation. ‘Ibis, for example, may come after

message 4 above:

4a. Bob->Alice: Alice, rrqAO1, [Bob],

[(Cathy,Rec-Car-Service,3,

19981231)J NULL

Here in message 4a, “Ret-Car-Service” is used to represent the

trust category for “recommending car servicing agents”.

7.2.4 ‘Shopping’ for recommendations

There may be instances when the requestor needs to acquire

service, but does not know from which agents to obtain the

56

service. In this case, the requestor may send out an RRQ to request

a ‘catalogue’ of recommended agents. A question mark ‘?’ in the

Target-ID field of the RRQ may be used to indicate this desire, for

example, Alice’s request to Bob may look like this

7. Alice->Bob: Alice, rrqAO1. ?, [Car-Service], T, 2OooO101

and Bob may give his own recommendations

8. Bob->Alice: Alice, rrqAO1, [Bob],

[(Freci,Car~Service,3,20000131).

(Jim,Car~~eivice,3,20000131)], PK,

Bob may also forward Alice’s RRQ to Cathy, which would return

message 3.

8. Computing trust

The trust value of a target for a single recommendation path is

computed as follows:

tv,(T) = tv(Rl)/# X tv(R2Y4 X . . X tv(Rn,V# X rtv(T) (1)

tv(T) = Averageftv,(T),.., tv$T))

We will illustrate this algorithm with our previous example with

Eric the mechanic. From the previous example, we have the

recommendation path from Cathy to Alice (refer to this as Rec-

path-l):

Cathy + Bob+ Alice

Furthermore, we have the following trust statement:

. Cathy trusts Eric value 3 (from example).

Assume further that:

. Alice trusts Bob’s recommender trust value 2.

. Alice trusts Cathy’s recommender value 3 trust (after

recommendation from Bob).

We also assume that Alice had sent out a second RRQ for the

same trust category “CarJGrvice” to David, another of her trusted

recommenders, and had received a recommendation from him

about Eric (refer to this as Ret-path-2).
Where,

Alice calculates trust for Eric on Ret-path-l as follows:
fv(Ri): Recommender trust value of recommenders in the

return path including the first recommender (who

received the original RRQ) and the last recommender

(who originated the Recommendation).

m(T): The recommended trust value of target T given in the

recommendation.

tvF(T): The trust value of target T derived from

recommendation received through return path p.

A requestor may have multiple recommendations for a single

target and thus the recommendations must be combined to yield a

single value. For the moment, we have adopted the averaging

method used by Beth et al in [BBK94]. Averaging evens out the

impact of any single recommendation. The final single trust value

for target T is computed as follows:

tv,(Eric) = tv(Bob)/# Xtv(Cathy)f# XrtvfEric)

=U4X3/4X3

= 1.125

We assume that by using the same algorithm (1). Alice obtains a

value of 2.500 (tv~(Eric) = 2.500) on Ret-parh-2. Now Alice can

apply algorithm (2) to obtain the following:

tv(Eric) = Average(tv,(T),tv,(T))

= Average(l.125,2.500)

= 2.375

Computing trust is a difficult area and, at this moment, the trust

computation algorithm above was derived largely from intuition.

A standard algorithm is necessary to lessen ambiguity in trust

value recommendations, and to allow most requesters to be

57

confident that what is received in recommendations comes close

to a universal6 standard.

9. Discussion and Future Work

The workshop provided an excellent forum for the proactive

analysis of new ideas for security and this work has benefited

greatly from it. We highlight the important issues that were raised

below.

a) The role of reputation

It was pointed out that in some societies, reputation and

recommendation does not work well. In China for example,

personal and family relationships overcome public reputation.

Clearly, in such a community, complementary methods for

managing trust will be used, in addition to those proposed here.

Although the notion of reputation was proposed as the guiding

information for making trust decisions, the model is not limited to

just that. Since the model does not strictly define the basis of

relayed trust information (in other words, the context of the

information), the social mechanism of personal and family

relationships can be built into the model as an identity-based

model of trust (‘7 trust you because you’re my uncle Ching’s

daughter-in-law”). Obviously, the trust algorithm for calculating

trust based on this model will be different. In short, the model

does not completely rule out relationships that are not built on

reputation.

b) Clearly defined terms

In an atea as elusive as trust, it is important that the terms used are

clearly defined. The participants seemed happy with the definition

of ‘trust given in $2 above. Various participants wanted a more

fn discussions about areas as subjective as trust, it makes more
sense to think of the tezm universal as being constrained by a
particular application domain where common standards exist, e.g.
the domain of business or finance, instead of taking ‘universal’ as
a synonym for ‘global’.

precise definition of risk when discussing trust, a notion which is

very tightly related to risk. One suggestion was that Nancy

Leveson’s discussion on risks be studied in this context [I-ev95].

c) Actions of agents

When discussing trust, we are concerned with the behaviour of

agents as our disposition to trust depends on our prediction of

their course of action. With regards to this, there are different

kinds of actions that we need to consider. The first is i) proper

action, i.e. doing the right thing. In addition, we should also

consider three other possible actions: ii) misfeasance. i.e.

performing the wrong action, iii) malfeasance, i.e. performing the

right action incompetently and iv) nonfeasance, i.e. performing no

action when action is required. Each agent differs in their

probability in i) - iv) above. Therefore, care in determining the

likelihood of each possible types of action will ensure a more

appropriate trusting decision and fairer dissemination of

reputation information.

d) Concreteness of tvfJ

The trust calculation algorithm tv() was critic&xl for being too ad-

hoc, and the authors acknowledges this fact. However, an

algorithm is required to evaluate the recommended trust values. In

the absence of concrete formulas, we were forced to devise a

version of the algorithm intuitively, until more work reveals a

better algorithm. There was also the suggestion of providing user

guidelines for the use of recommended trust values, and give a

specific algorithm as merely an example, as any algorithm will be

ad-hoc. In relation to this, one participant commented that as a

psychological phenomenon, trust is not even partially ordered.

Another alternative suggestion at the workshop was for trust to be

represented as fuzzy, rather than ordinal, values. To add to this

array of possible representations of trust, the authors themselves

have thought about representing trust as a relation between agents,

rather than absolute trust values. The representations will

58

basically have the form of “Alice is more trustworthy than Bob’

in the requestor’s database. It is unclear how these relations may

be exchanged and used more effectively than values and more

work is certainly needed in investigating the vast possibilities of

representing trust ‘values’ concretely and mathematically.

9.1 Issues ignored

So far, we have ignored a large number of issues in our work,

which include provisions for anonymity, entity naming, memory

requirements for storing reputations, and the behaviour of the

Recommendation Protocol. These issues have been ignored

deliberately so that the more complex and understudied area of

trust can be satisfactorily pursued, since the issues above are

being tackled in work by other researchers. For example, the work

in SPKI [El1961 includes a novel attempt at eliminating the need

for global name spaces and interfaces well to what we proposed,

as a means of delivering information.

9.2 Future work

One of our concerns is the lack of understanding in the meaning

of trust in computer systems. Currently, we are looking into this

problem by surveying the different semantics of trust within areas

as diverse as sociology, psychology and philosophy, as well as

distributed systems.

There is also a need to look into monitoring and revising trust of

other entities, to maintain the dynamic and non-monotonic

properties of trust in the model.

Finally, we intend to test the behaviour of our protocol and trust

calculation algorithms, based on simulation.

10. Conclusion

In this paper, we highlighted the need for effective trust

management in distributed systems, and proposed a distributed

trust model based on recommendations. This work, and those

being carried out by other researchers, has barely scratched the

surface on the issues related to the complex notion of trust.

Nevertheless, it is an issue vital to the engineering of future secure

distributed systems, and an area with much scope for work

Glossary

Entity Any object in a network.

Agent Any entity that is capable of making trust-

related decisions (therefore able to

participate in the Recommendation

Protocol).

Direct trust Trust in an entity, within a specific category

and with a specific value.

Recommender Trust in an agent to recommend other

trust entities.

Trust Category The specific aspect of trust relevant to a

trust relationship.

Trust Value The amount of trust, within a trust category,

in a trust relationship.

Reputation Trust information that contains the name of

the entity, the trust category, and a trust

value.

Recommendatio Reputation information that is being

n communicated between two agents about

another entity.

Acknowledgements

We are extremely grateful to Prof. Jon Crowcroft for his help in

the preparation of this paper, and to the anonymous referees and

workshop participants for their critical comments. We also

express our gratitude to the ever-helpful workshop organisers for

funding Alfarez’s attendance at the workshop.

59

Re femnces

[Abd97]

[BBK94]

[DoD85]

[El1961

[c+=n901

[J&61

[Lev951

M-1

[RJ96a]

Alfarez Abdul-Rahman. The PGP Trust Model. EDI-

Forum, April 1997. Available at

http://www.cs.ucl.ac.uklstaff/F.AbdulRahmanldocsl

Thomas Beth, Matte Borchedring, B. Klein. Valuation

of Trust in Open Networks. In Proceedings, European

Symposium on Research in Computer Security 1994,

ESORKS94, pp 3-18.

U.S. Department of Defense. Department of Defense

Trusted Computer System Evaluation Criteria. DoD

5200.28-STD, 26 December, 1985.

C.M. Ellison, B. Frantz, B. Lampson, R Rivest, B.M.

Thomas, T. Yionen. Simple Public Key CerQicate,

Internet Draft, 29 July 1997. Available at

http://www.clark.net/pub/cm~tml/spki.html.

Diego Gimbett~ Can We Trust Trust?. In, Trust:

Making and Breaking Cooperative Relations,

Gambetta, D (ed.). Basil Blackwell. Oxford, 1990, pp.

213-237.

Audun J@sang. The right type of trust for distributed

systems. In Proceedings, New Security Paradigms ‘96

Workshop, 1996.

Nancy Leveson. Safeware: System Safety and

Compurers. Addison-Wesley. New York, 1995.

Stephen Marsh. Formalising Trust as a

Computational Concept. Ph.D. Thesis, University of

Stirling, 1994.

Lars Rasmusson, Sverker Jansson. Simulated Social

control for Secure Inremet Commerce (position

paper). In Proceedings, New Security Paradigms ‘96

Workshop.

[RJ96b]

W-961

WJ961

[Sch97]

[YKB93]

[YKEi941

[Zim94]

[Zur97]

L. Rasmusson, S. Jansson. Personal Security

Assistance for Secure Internet Commerce (position

paper). In Pmceedings, New Security Paradigms ‘%

Workshop.

Ronald Rive&, Butler Lampson. SDSI - A Simple

Distributed Securiry Infrastructure.

http://thwry.lcs.mit.edu/tis/sdsi.html.

Lars Rasmusson, Andreas Rasmussen, Sverker

Jansson. Reactive Security and Social Control. In

Proceedings, 19’ National Information Systems

Security Conference, Baltimore, 1996.

Bruce Schneier. Why Cryptography Is Harder Than It

Looks. Information Security Bulletin, Vol. 2 No. 2,

March 1997, pp. 31-36. Available at

http://www.counterpane.com.

Raphael Yahalom, Birgit Klein, Thomas Beth. Trust

Relationships in Secure Systems - A Distributed

Authenrication Perspective. In Proceedings, IEEE

Symposium on Research in Security and Privacy,

1993.

R.Yahalom, B.Klein, T.Beth. Trust-Based Navigation

in Distributed Systems. Computing Systems v.7 no. 1.

Phil Zimmermann. PGP User’s Guide. MIT. October

1994.

Mary Ellen Zurko. Panels al the 1997 IEEE

Symposium on Security and Privacy, Oakland, CX,

May 5-7, 1997. CIPHER, Electronic Issue #22, 12

July, 1997. Available at

http:Nwww.itd.nrl.navy.mil/ITD/554O/ieee/cipher/

60

