
Evaluating System Integrity

Simon N. Foley,
s.foley@cs.ucc.ie

Department of Computer Science,*
University College,

Cork, Ireland.

Centre for Communications Systems Research,
University of Cambridge,

Cambridge CB2 3DS, UK.

Abstract

Conventional models of system integrity tend to be
implementation-oriented in tha t they define integrity in
terms of specific controls such as separation of duties, well-
formed transactions, and so forth. In this paper we propose
a formal definition of integrity tha t is based on the notion
of dependability and is implementation independent. Using
a series of examples, we argue that separation of duties,
assured pipelines, fault-tolerance, and cryptography may
be viewed as implementation techniques for achieving in-
tegrity.

1 I n t r o d u c t i o n

Conventional integrity models such as [2, 4, 22] limit them-
selves to the boundary of the computer system and tend to
define integrity in an operational and/or implementation-
oriented sense. For example, the Clark-Wilson model [4]
recommends that well-formed transactions, separation of
duties and auditing be used to ensure integrity. How-
ever, the model does not a t tempt to address what is meant
by integrity--evaluating a system according to the Clark-
Wilson model gives a confidence to the extent that good
design principles have been applied. For instance, when we
define a complex separation of duty policy, we cannot use
the model to guarantee that a user of the system cannot
somehow bypass the intent of the separation via some un-
expected circuitous route.

Traditional Requirements Analysis [20] typically identi-
fies the essential functional requirements tha t define what
the system must do. An implementation defines how the
system operates and must take into consideration the fact
tha t the infrastructure that is put in place to support the re-
quirements may be unreliable. For example, experience tells

*Address for correspondence.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and 'the full citat=on on the first page.
7o copy otherwise, to republish, to post on servers or to
redistribute 'to lists, requires prior specific permission and/or a fee.
1995 NSPW 9/98 Charloltsvil le, VA, USA
© 1999 ACM 1-58113-1 68-219910007_. $5.00

us that a system's infrastructure should include a suitable
backup and restore subsystem. While not par t of the essen-
tial requirements, it is a necessary part of the implementa-
tion since the infrastructure can corrupt data. Infrastruc-
ture is everything that serves the requirements--software,
hardware, users, user-procedures, and so forth.

In [13], integrity is characterised as just one attr ibute of
dependability, that is, "dependability with respect to absence
of improper alterations", and dependability is "a property
o] a computer system such that reliance can be justifiably
placed on the service it delivers". If a system is built on a
perfect infrastructure tha t never fails then it is dependable.
Such a system would include functionally correct and reli-
able computer systems~ completely t rustworthy users who
follow procedures exactly, and so forth. However, in prac-
tice, it is not possible to build such an enterprise. Even if
the system is functionally correct, the infrastructure is al-
most always sure to fail: users may be dishonest, not follow
procedures properly, and so forth.

In this paper we characterise dependability as a form of
ref inement--a system is sufficiently robust such that even
in the presence of infrastructure failures it can be shown to
implement (refine) the top-level requirements. In addition
to integrity, authentication and confidentiality are other at-
tributes of dependability [13], and in this paper we argue
that our notion of dependability encompasses them.

Section 2 introduces the notion of local refinement and
argues how it can be used to characterise dependability.
Clark and Wilson identify external consis tency-- the correct
correspondence between data objects and the real world ob-
jects they represent--as the abstract requirement tha t in-
tegrity mechanisms such as separation of duty seek to en-
force, and we characterise this in terms of local refinement.
A series of simple examples are given in Section 3 to illus-
trate how separation of duties, cryptography, fault-tolerance
and assured pipelines may be regarded as implementation
techniques used to achieve dependability. Section 4 investi-
gates some general properties of dependability.

Local refinement is formalised in terms of event systems.
Rather than building and reasoning about an event-system
from first principles, CSP [10] is used in the paper to present
the theory and examples in a convenient and unambiguous
manner. The Appendix gives a brief summary of CSP and
its trace semantics.

40

I - . 7
I . " .

[.

: System

[Enterprise "

Figure 1: A simple payment enterprise

2 I n t e g r i t y a n d D e p e n d a b i l i t y

E x a m p l e 1 A simple enterprise receives (equal-value) ship-
ments, and generates associated payments for a supplier.
Requirements Analysis identifies events snote and pay cor-
responding to the arrival of a shipment (note) and i t ' s asso-
ciated payment , respectively. Enterprise behaviour is speci-
fied by CSP process ConsReqo, where

ConsReqo = (snote ~ ConsReql)
ConsReq, -= (pay -+ ConsReq~_t

[snote ---+ ConsReq,+l)
(i > o)

Figure I outlines a possible implementa t ion of this require-
ment. A clerk verifies shipment notes and enters invoice
details (event inv) to a computer system, which in turn,
generates payment (pay) for the supplier. This is specified
as

Clerk = (snote -4 inv -4 Clerk)
System =(inv -4 pay -4 System)

and the enterprise design is specified as Conslmp =
Syst emil Clerk.

Intuitively, integri ty is mainta ined if, even in the pres-
ence of failures within the infrastructure, the implementa-
tion ConsImp suppor ts requirement ConsReqo at i t ' s exter-
nal interface E with the supplier. A

The example above i l lustrates tha t integri ty may be
characterised as a form of refinement--Conslmp refines
ConsReqo. In the traces model of CSP~ process S is a
(safety) refinement of process R if o~R -- a S and traces(S) C
traces(R), tha t is, every possible trace of S is pe rmi t t ed by
R [10]. For example, the process P ---- (snore -4 pay -4 P)
which al ternates between snore and pay, is a refinement of
process ConsReqo.

The Supplier (Example 1) is oblivious to ' in ternal ' event
(inv) and interacts with Conslmp abs t rac ted through inter-
face {snote, pay}, tha t is, Cons[mp@{snote, pay}, where for
process S and set of events E,

s ~ E ~ { t : traces(S) • t t E }

and t r E is the trace t with events not in E re-
moved. Every trace the supplier can observe from
ConsImp~{saote, pay} is pe rmi t t ed by ConsReqo and we
say tha t ConsImp locally refines ConsReqo at tha t interface,
tha t is, ConsReqo E {$"°te'pay} ConsImp.

D e f i n i t i o n 1 (Local Refinement) R is locally refined by S
at event interface E iff R CE S, where, R E E S ev- E C
a R C aS A S@E q R@E.

E x a m p l e 2 Continuing Example 1, we assume tha t the
computer system will behave rel iably (according to System).
However, it is not reasonable to assume tha t the clerk will
always act rel iably according to Clerk. In practice, an un-
reliable clerk (Clerk) can take on any behaviour involving
events snote and inv.

Clerk =- RUN{~,ote,i,v}
Conslmp2 ~ ConsSysll Clerk

We argue tha t Conslmp2 is a more realistic representat ion
for the actual enterprise tha t will be fielded. I t more ac-
curate ly reflects the rel iabil i ty of its infras t ructure than the
previous design Conslmp. However, for external interface
E -- {snore, pay}, since t ---- (inv, pay) C traces(Conslmp2),
and t F E = (pay) ~ traces(ConsReq) then ConsReq ~E
Conslmp2, tha t is, the design is not robust enough to be
able to suppor t , in a safe way, the original requirements
ConsReq. A

In [13], integri ty is given as one a t t r ibu te of dependabil-
ity; other a t t r ibutes include confidentiali ty and authent ica-
tion. Dependabi l i ty is characterised as a property of a com-
puter system such that reliance can be justifiably placed on
the service it delivers [13]. We argue tha t this notion of de-
pendabi l i ty may be viewed as a class of refinement whereby
the na ture of the reliabil i ty of the enterprise is explicit ly
specified.

D e f i n i t i o n 2 (Dependabi l i ty)]f R gives behavioural re-
quirements for an enterprise and S is i ts proposed imple-
mentat ion, including details about the na ture of the relia-
bil i ty of its infrastructure, then S is as dependably safe as R
at interface E if and only if R E E S. Zx

According to Clark-Wilson [4], external consistency is
the "correct correspondence between data objects and the real
world". Another way to view this is tha t an external ent i ty
can achieve consistent interactions with the enterprise, even
in the presence of failures within the infras t ructure of the en-
terprise. We characterise this notion of external consistency
in terms of dependabil i ty.

D e f i n i t i o n 3 (External Consistency) Let Sill and SI]I de-
scribe the behaviour of system S opera t ing within reliable,
and unreliable, infrastructure I and I , respectively. ~Ve say
that S is externally consistent at interface E if SHI is as
dependably safe as Sill , tha t is, SIII C E SI]7.

E x a m p l e 3 Given the na ture of an unrel iable clerk (Exam-
ple 2), ConsImp2 is not as dependably safe as ConsReq at
the interface E. Similarly, System is not external ly consis-
tent at interface E, since System [[Clerk ~ (System[[Clerk).
A

41

. " 3
. : . " [I

it
• : : i',

u s i,

j~ ~ t .:r ~ . . ' . __ . .~_ . . .~_ . . g~ ezo:r,? ? ~ i,,

i Nnter~mse .. i
L . . J

Figure 2: Supporting separation of duties

3 D e p e n d a b l e S y s t e m s

3.1 S e p a r a t i o n o f D u t i e s

Separation of duties is a common implementation technique
for achieving integrity• While fault-tolerant techniques repli-
cate an operation, separation of duties can be thought of as
a partitioning of the operation.

E x a m p l e 4 Suppose that when a shipment arrives a clerk
verifies the consignment at goods-inwards (entering details
cons into the system). When an invoice arrives, a differ-
ent clerk enters details into the system, and if the invoice
matches a consignments, a payment is generated. So long
as the operations are separated then a single clerk entering
a bogus consignment cons or invoice inv can be detected by
the system. For simplicity, we assume that both cons and inv
arrive at the same time in snore; this is depicted in Figure 2.

To distinguish shipments, events are prefixed with iden-
tifiers drawn from .N', the set of shipment-identifiers. For
example, n.pay corresponds to the payment resulting from
shipment-note n.snote. While shipment-identifiers are in-
tended to be unique, it is possible tha t a supplier may re-
use identifiers. Thus, n:ConsReqo (process ConsReqo with
events prefixed by n) describes the behaviour required when
processing shipments identified by n E Af. The top-level re-
quirement is

ConsReq : II,:H(n:ConsReqo)

The proposed application system allows arbitrary clerks
u and v verify the consignment (n.cons.u) and invoice
(n.inv.v) for consignment n, after which, payment is gen-
erated.

AppSys =Dn: N (n.cons.u ----~Q.:u (n.inv.v --+ n.pay ~ AppSys))
u : U

This system allows the same clerk to perform both oper-
ations, and a separation of duty mechanism is required to
limit certain behaviours. Specification

Sep~ = STOP(. , } I I R U N { i }

separates clerks u and v who may process invoices and con-
signment, respectively, but not vice-versa. If we assume that
the infrastructure has only two clerks U = {x, y} then a dy-
namic separation of duty mechanism, allowing a clerk vary

operation between shipments is specified as DynaSep.

• m DynaSep = II.:~(n:&p~ [] ~.Sepy)
StatSep = (] l . : ~ : S e p X) [] (i l . : f ~ : S e p ;)

StatSep describes a static separation of duty mechanism
requiring a clerk to perform the same operation for all
shipments• The overall (reliable) system is described as
SepSys = AppSysl lDynaSe p.

A reliable clerk u processing shipment n is expected to
behave according to n: Clerk", where

C l e r k ~ = (snote ~ (cons.u ~ Clerk ~ I inv .u ~ Clerk~))

However, we make the assumption that, of our two clerks
x and y, one may take on an unreliable or arbitrary be-
haviour. Thus, the unreliable infrastructure behaviour is
Clerks, where

Clerks = Un:H n:(Clerk*llRUN~cle,.ky
[] ClerkYllRU1Gc,~,k.)

Since the system and separation mechanism ensures that one
failing clerk cannot influence the generation of a payment,
without the assistance of the other clerk, then, we can prove
that for any n : .Af and n:E = {n.snote, n.pay},

ConsReq E ":E (SepSys H Clerks)

As currently defined, our specification favours the payment-
enterprise, not the supplier: payments may be very late, or
effectively not be made at all, but are never bogus• If a clerk
fails then payment is not made. In reality, the infrastructure
contains many additional components; audit logs to record
failures and supervisors, who make judgements and rectify
these inconsistencies.

E x a m p l e 5 Example 4 illustrates how separation of duties
may be regarded as an implementation technique for achiev-
ing dependability. The implementation also maintains ex-
ternal consistency on shipments, since,

s~ps~sll Clerks E ~:~ sep&~ll Clerks

where Clerks -- 61,:~ n: (Clerk~ II Clerk~) characterises a com-
pletely reliable infrastructure.

42

3.2 C r y p t o g r a p h i c T e c h n i q u e s

Our enterprise model is comparable to the network model
used in the analysis of cryptographic-based authentication
protocols [5, 15, 16]. The authentication protocol corre-
sponds to the reliable system component being studied,
while the network corresponds to the infrastructure, with
the protocol attacker (Spy) choosing to have normal or ab-
normal behaviour.

E x a m p l e 6 Suppose that the system and supplier (Exam-
ple 1) share a secret cryptographic key (unknown to the
clerk). The supplier includes a Message Authentication
Code (MAC) with snote to ensure the authenticity of the
note and this, in turn, provides authenticity for each invoice
entered by the clerk.

Let A.4 be a datatype representing shipment-identifiers
plus associated MAC fields. Let .Af be the set of all values
from .A4 that represent cryptographically secured shipment-
identifiers, that is, the MAC component corresponds cor-
rectly to the identifier. Let ~" represent all other values
in .M \ A f. The top-level requirement is as before, except
that we expect only cryptographically secured shipment-
identifiers to be used.

Cons Req = IIn:H(n: Cons Reqo)

The system will generate payment only for valid invoices
that it has not seen before. A system that has processed
P C_ .hf shipment-identifiers has behaviour

MacSysp = (Dn:H\p (n.inv ~ n.pay ---+ MacSyspu{n}))
[]
(•n :~vP (n.inv --~ MacSysp))

Invoices processed in the past (P), or with invalid identifiers
~" are processed, but payment is not generated.

A reliable clerk has behaviour MClerk = [[,,:~¢(n:Clerk)
(Example 1). An unreliable clerk engages in arbitrary
events, generating identifiers in ~i~, and using identifiers it
has already processed. However, we assume that the clerk
cannot forge messages from Af.

MClerkp = (On:At (n.snote -.+ Clerkpu{~}))
[]

([],,:)TuP (n.inv ~ Clerkp))

Given this characterisation of an unreliable clerk we can
prove that the resulting enterprise is as dependably safe as
the original requirement, that is,

ConsReq E ~:E MaeSys{}lIMClerk{}

Since our notion of dependability is independent of any
particular implementation technique, it should be straight-
forward to combine different techniques. For example, we
did not consider how the enterprise might establish the se-
cret key between the supplier and the system. Suppose that
a supervisor is given this responsibility. So long as the su-
pervisor (infrastructure) and the snote-processing clerk are
different people, then a failure by one cannot result in an
unexpected behaviour at the external interface. This should
be included as part of the implementation specification. A

The analysis performed in the example above is not un-
like the approaches used in the analysis of authentication

protocols [5, 15, 16]. A key difference is that we take a re-
finement approach while the other techniques may be viewed
as verifying, what is in effect, a form of external consistency
on an interface of an implementation. For example, verify-
ing that external consistency is maintained at the interface
of the supplier gives us

MacSys{} tlMClerk ~n:~ MacSys{} IIMClerk{}

In the case of an authentication protocol, external consis-
tency is provided on the interfaces that make up the princi-
ples involved ('Alice' and 'Bob').

3.3 C o n f i d e n t i a l i t y

Sections 3.1 and 3.2 illustrate that the attributes of integrity
and authentication may be formalised in terms of depen-
dency refinement. Confidentiality is a further attr ibute of
dependability [13] and, for the sake of completeness, this
section illustrates how multilevel security might be formally
characterised in terms of refinement.

E x a m p l e 7 By our fault model, the reliable part of a mul-
tilevel secure system is the TCB while the operating system
and applications make up the unreliable infrastructure. The
TCB has to be sufficiently robust to be able to provide an
externally consistent interface to a low user regardless of the
behaviour of a high application, that is, the TCB running a
high application Ah is as dependably safe as TCB running
any other high application A~. Or, in other words, that the
TCB is externally consistent at the low interface.

V At, Ah, A~ I nAt = Lo A o~Ah = aA~ = Hi

• (A~IITCBIIA,) E L° (AhlITOBIIAt)

This can be shown to simplify to (TCBIISTOPHi) C L° TCB,
and simplifies further to (TCBHSTOPHi)@Lo ---- TCB@Lo.
This corresponds to non-information flow [7, 12] as related
to uon-deducability [21]. If Lo and Hi partition the entire
alphabet of TCB then it simplifies further to non-inference
[14]: TCB@Lo C TCB.

3.4 F a u l t - T o l e r a n c e

Another approach to dealing with unreliable systems (infras-
tructure) is to replicate the faulty components and make the
system fault tolerant. We can make the payment enterprise
fault tolerant if we replicate the clerk. We assume that every
shipment is processed by 2k + 1 replicated clerks. The sys-
tem votes(on the 2k + 1 invoices) to decide whether or not a
consignment is valid. In this case, the abnormal behaviour
of the infrastructure is represented by at least k + 1 clerks
having normal behaviour, and we argue that the resulting
enterprise is as dependably safe as ConsReq at interface n:E.

Non-interference techniques have been previously used to
verify fault-tolerance [19, 23]. Faulty behaviour is modelled
using special fault events and the system is fault-tolerant if
the fault events are non-interfering with the critical events
of the system. In essence, engaging a fault event changes the
system from normal to abnormal behaviour, and what may
be thought of as external consistency must be preserved on
the the critical events tha t make up the external interface.

43

[. . .

.

', i dl!
c o n s , :

• i : i : :
InY d2

' ~ ~ :
' i [nf-rastructure ~ _ ~ :
, . : Application System
L . . J

Figure 3: Appl icat ion running on a TCB

3.5 S e c u r i t y K e r n e l s

In Example 4 we considered the integri ty of the enterprise
with respect to the external supplier and assumed tha t
SepSys was reliable, tha t is, secure. A conventional secure
applicat ion system is usually buil t in terms of un t rus ted (un-
reliable) appl icat ions running on an underlying t rus ted com-
put ing base (TCB).

E x a m p l e 8 Consider the appl icat ion system used by the
payment enterprise (Example 4}. Figure 3 depicts a design
of this system based on a simplist ic model of an assured
pipeline [3] composed of domains D1, D2 and D3. The ap-
plications form the infrastructure which is composed of pro-
grams 91, P2 and P3 which may run in domains D1, D2 and
D3, respectively. The integri ty of an appl icat ion buil t on an
assured pipeline relies on the separat ion enforced between
domains, and the 'correctness ' of the appl icat ions along the
pipeline.

We specify a model of the assured p ipe l i ne - -p roba b ly
over-simplified, bu t serving as a useful il lustration• Event
n .d l represents en t ry into domain D1 by program P1 (pro-
cessing shipment n). Events n.d2 and n.d3 have similar
interpretat ions. The pipeline enforces a str ict ordering on
domain entry.

Pipeline =D,~:~ (n .d l --+ n.d2 ~ n.d3 ~ Pipeline)

When a cons event is engaged the program enters domain
D1, and similarly for inv (these events will eventual ly be
prefixed by shipment identifier).

P1 = O . : u (cons.u ~ dl -+ P1)
P2 = O . : u (inv.u ---+ d2 ---+ P2)

The payment program P3 behaves slightly differently. Once
the pipeline enters domain d3 a payment may be generated.

P3 = d3 --~ pay ~ P3

Our failure model assumes tha t programs P1 or P2 may
fail and engage arbi t rar i ly events. Failure of program P3
can result in mult iple payments and therefore it is necessary
to t rea t the payment program P3 as a reliable component .
This is not an unreasonable assumption: for example, a typ-
ical guard pipeline regards tha t par t tha t generates the out-
put as t rus ted [9]. Thus, the infrastructure is model led as
Apps --- [I,~:.N'(n: Trans), where Trans specifies the unreliable
processing of a single shipment.

Trans = ((PI[[RUN,~p2) [] (P2HRUN~p1))[]P3

And we can prove tha t AppSys E_,~AvpSy, PipeLinellApps"
A

4 E v a l u a t i n g D e p e n d a b i l i t y

4.1 D e p e n d a b i l i t y a n d S a f e t y

I t follows from its definit ion tha t t race refinement preserves
dependabi l i ty , tha t is,

R ~ S
[EC_~R]

R E E s

However, the converse does not necessarily hold. For Exam-
ple 7, we might prove tha t TCBIISTOPm _E TCB which, by
the law above, implies tha t TCBIISTOPm •Lo TCB holds.
However such a TCB is not of much use - - fo r every trace t
of TCB then t ~ Hi = (}- - i t is not willing to engage in any
Hi event!

If we take the view tha t refinement is a proper ty [11],
then since trace refinement is expressed as a predicate on
traces it can be regarded as a safety p roper ty in the usual
sense of [1]: the predica te (t E traces(R)) holds for every
trace t of S. On the other hand, local refinement is ex-
pressed as a predica te on sets of t races and we therefore
regard i t as an information-flow [12] or securi ty proper ty
[18]: the predica te (3 t ' : traces(R) • t' [E = t [E) holds
for every t race t of S. This also applies to external consis-
tency and is not surprising in light of the examples s tudied
in Section 3. Thus, we see no reason why our definition
could not be re-cast in te rms of other non-interference style
frameworks such as [6, 17]. Doing this would provide ac-
cess to a wide range of results on unwinding, composit ion,
model-checking, verification, and so forth.

4 .2 I n c r e m e n t a l E v a l u a t i o n

We in terpre t R . ~ n SHis ' to mean tha t the system S is
sufficiently resilient to the faults in Is to be able to (safely)
suppor t the requirements R. This dependable component
may then be used in place of R, which in turn, may be
used in place of some other more abs t rac t requirement . In
general, the following law holds

n _EE S[lIs, S E '~s P[lIp

R .~s (PlllPIlls)

44

E x a m p l e 9 We have from Example 4 and Example 8 that ,
for n E .hf and E = {snote, pay},

ConsReq E n:E AppSyslIDynaSepllClerks

AppSys D_ QAeps~" PipeLinellApps

and it follows tha t

ConsReq E ~:E PipeLinellAppsllDynaSeplt Clerks

Thus, a TCB composed of the pipeline and dynamic separa-
tion of duty mechanism is sufficiently resilient to infrastruc-
ture failures (clerks and programs) and supports the original
requirement ConsReq.

4.3 C o m p o s i t i o n

Under certain circumstances, if systems S and S t are de-
pendable (according to requirements R and R') then so is
their composition.

R E E S , R' D ~ S'
[a R D a R ' g E]

.RIIR' E E SIIS'

We note, however, that if the side-condition a R D a R ' C E
does not hold then, R]IR' E ~ S}]S' does not necessarily hold
since synchronisation on events in (aRM aR ') \ E may result
in behaviour restrictions in RI}R' that are not restricted in
S l I S ' .

4.4 U n w i n d i n g

Given t E traces(P) then P / t is the process P after engaging
in trace t and P i t may be viewed as a possible state of P.
Thus, the set of all reachable states of P is states(P) = {t :
traces(P) • P / t } and provides a way for us to view P as
a state transit ion system. Engaging event e E o~P in state
p E states(P) results in a new state p/(e).

Dependability refinement may be unwound into a condi-
tion on states and state transitions. An abstract state r :
states(R) is related to its concrete equivalent s : states(S)
by a refinement abstraction relation r .~ s. To prove that
R E aR S it is necessary to prove that the result of transi-
tions on concrete states are consistent with transit ions on
abstract states, as related by ~. Formally, we have the rule

V r : states(R); s : states(S); e : a S •
r = s ^ e ~ ~ R ~ r / (e) = s / (e)
r = s ^ e ~ a n ~ r ~ s / (e)

R D~a S

It is interesting to compare this with the unwound form for
non-interference: (r ~ s A e C o~R ~ r/(e) .~ s/(e)) is
comparable to a no read-up rule, and (r ~ s A e ~ a R
r ~ s / (e)) is comparable to a no write-down rule.

5 D i s c u s s i o n

We think it more appropriate to refer to the kind of property
reflected by local refinement as a safe-dependability property,
rather than an information-flow or security property [18].
Being based on a traces model it is a safety-style property,
but as argued in Section 4.1, more expressive. Alternative
local refinement relations could be developed. For example,

local refinement based on CSP's failures-divergences model
would provide the basis of a liveness-dependability property.

A number of observations may be drawn from the exam-
ples in this paper. Throughout the paper it has been nec-
essary to treat a n.pay output as being on a trusted path,
that is, any component generating n.pay has to be reliable.
In practice, if we know that only one message can be out-
put at the end of an assured pipeline (as in [9]), then we
could regard the P3-make-payment program (Example 8) as
a potentially unreliable filter or integrity verification proce-
dure (IVP), whose failure cannot result in the generation of
multiple n.pay outputs.

By choosing to support only one unit of payment (no
payment amount) we avoided the problem of a failing pro-
gram modifying the payment amount. In a practical system
such a failure should be detected at some point by appro-
priate double-entry book-keeping on payments and invoices,
and dealt with by generating an additional payment or an
invoice. If payment is viewed as something that can occur
in stages then we believe that such a system, if specified
properly, could be shown to be dependable.

6 C o n c l u s i o n

By considering the nature of the entire enterprise we provide
a meaningful and implementat ion- independent definition for
integrity and dependabili ty in general. This systems view
has not been adopted by conventional integrity models, such
as Clark-Wilson [4], which limit themselves to the boundary
of the computer system and tend to define integrity in an
operat ional/ implementat ion-oriented sense.

In some respects, our definition of dependability blurs
the distinction between the at t r ibutes discussed in this pa-
per (integrity, authenticat ion and confidentiality); indeed,
the Clark-Wilson model incorporates authenticat ion as one
component (rule El) of its model of integrity. Example 3.2
illustrates that, what are in effect authenticat ion techniques,
may be used to achieve external consistency, that is, in-
tegrity (in the Clark-Wilson sense). Therefore, as in [8],
we speculate that the verification of 'security' should be re-
garded as the verification of correctness. In this paper we
use local refinement and a fault model articulates the na-
ture of the possible attacks on the system. This suggests a
paradigm for the development of a secure system:

1. Develop top-level Requirements.

2. Design an implementation, incorporating a fault model.

3. Verify that the implementat ion refines the requirement.

If a top-level requirement is not available then external con-
sistency may be verified.

A c k n o w l e d g e m e n t s

This work was done while I was a member of the CCSR, on
leave from University College, Cork. I 'd like to express my
gratitude to Stewart Lee for inviting me and thank him, and
the members of the Cambridge Computer Security Group,
for a most enjoyable visit. Thanks also to Kan Zhang for
discussions tha t helped to solidify my understanding of ex-
ternal consistency, to Dieter Gollman who suggested that
external consistency might be a form of dependabili ty and
to the reviewers and delegates at NSPW for their useful
feedback on this work. This work was supported, in part,
by a basic research grant from Forbairt (Ireland).

45

Refe rences

[1] ALPERN, B., AND SCHNEIDER, F. Recognizing safety
and liveness. Distributed Computing 2 (1987), 181-126.

[2] BIBA, K. Integrity considerations for secure computer
systems. Tech. Rep. MTR-3153 Rev 1 (ESD-TR-76-
372), MITRE Corp Bedford MA, 1976.

[3] BOBERT, W., AND KAIN, R. A practical alternative to
hierarchical integrity properties. In Proceedings of the
National Computer Security Conference (1985), pp. 18-
27.

[4] CLARK, D. D., A N D WILSON, D. R. A comparison of
commercial and military computer security models. In
Proceedings Symposium on Security and Privacy (Apr.
1987), IEEE Computer Society Press, pp. 184-194.

[5] FOCARDI, R., GHELLI, A., AND GORRIERI, R. Using
noninterference for the analysis of security protocols.
In Proceedings of DIMACS Workshop on Design and
Formal Verification of Security Protocols (1997).

[6] FOCARDI, R., AND GOnRIERI, R. A taxonomy of se-
curity properties. Journal of Computer Security 3, 1
(1994).

[7] FOLEY, S. A Model and Theory of Secure Information
Flow. PhD thesis, National University of Ireland, 1988.

[8] GOOD, D. A position on computer security founda-
tions. IEEE Cipher Newsletter (Jan. 1989), 24-25.

[9] GREVE, P., HOFFMAN, J., AND SMITH, R. Using type
enforcement to assure a configurable guard. In Pro-
ceedings of the 13th. Annual Computer Security Appli-
cations Conference (1997).

[10] HOARE, C. Communicating Sequential Processes. Pren-
tice Hall, 1985.

[11] JACOB, J. The varieties of refinement. In Proceedings
of the 4th Refinement Workshop (1991), J. M. Morris
and R. C. Shaw, Eds., Springer-Verlag, pp. 441-455.

[12] JACOB, J. Basic theorems about security. Journal of
Computer Security 1, 4 (1992), 385-411.

[13] LAPRIE(ED.), J. Dependability: Basic Concepts and
Terminology. Springer Verlag. IFIP WG 10.4-
Dependable Computing and Fault Tolerance.

[14] O'HALLORAN, C. M. A calculus of information flow.
In Proceedings of the European Symposium on Research
in Computer Security (Oct. 1990), G. Eizenberg, Ed.,
AFCET, pp. 147-159.

[15] PAULSON, L. The inductive approach to verifying cryp-
tographic protocols. In Proceedings of the IEEE Com-
puter Security Foundations Workshop (1997).

[16] ROSCOE, A. Using intensional specifications of secu~
rity protocols. In Proceedings of the IEEE Computer
Security Foundations Workshop (1996).

[17] ROSCOE, A., WOODCOCK, J., AND WULF, L. Non-
interference through determinism. Journal of Computer
Security 4, 1 (1995).

[18] SCHNEIDER~ F. Enforcable security policies. Tech. Rep.
TR98-1664, Cornell University, Jan. 1998.

[19] SIMPSON, A. Safety through Security. PhD thesis, Ox-
ford University, Computing Laboratory, 1996.

[20] S.M. McMENAM1N, J. P. Essential Systems Analysis.
Prentice Hall, 1984.

[21] SUTHERLAND, D. A model of information. In Pro-
ceedings 9th National Computer Security Conference
(1986), U. S. National Computer Security Center and
U. S. National Bureau of Standards.

[22] V. S. DEPARTMENT OF DEFENSE. Integrity-oriented
control objectives: Proposed revisions to the trusted
computer system evaluation criteria (TCSEC). Tech.
Rep. DOD 5200.28-STD, U. S. National Computer Se-
curity Center, Oct. 1991.

[23] WEBER, D. Specifications for fault-torerance. Tech.
Rep. 19-3, Odyssey Research Associates, Ithaca, NY,
1988.

A A p p e n d i x

L e m m a 1 Given processes P and Q and interface E then

(PI[Q)@E c_ (P@E)I[(Q@E)

a P M a E C_ E ~ (PI]Q)@E = P@EJ[Q@E

PROOF: Found in [7]. []

T h e o r e m 1 Givensystems S and P, and their correspond-
ing infrastructures Is and Ip, then

R E ~ SliTs ^ S E~s PIITP
R E E (P I l IP I l I s)

PROOF: If S C as PIITv, then t e traces(PIITP) ~ t [aS e
traces(S), implies that t E traees(Pl]Ipl[Is) ~ t [(a S u
aIs) E traces(SilTs). Thus, S E_ as P[[Ip implies that
(PllTpllTs)@(aSUTs) c_ traces(S[lIs), and since E C a R C
a S U aTs, then it follows that (P[[IpI[Is)@E C (S[[Is)@E
and from the hypothesis (SliTs) C_ traces(R), and by tran-
sitivity of C the theorem follows. []

T h e o r e m 2 Given requirements R and R' and systems S
and S' and an interface E such that a R n aR' c E, then

R E ~ S A R' E ~ S'
RIIR' E E SllS'

PROOF: If S@E C_ R@E and S'@E C_ R'@E, then it fol-
lows that S@E[IS'@E C_ R@E[[R'@E. Since, by defini-
tion aR C_ aS and hypothesis aR n caR' c_ E, we have
E C aS and, similarly, E C_ aS'. Lemma 1 implies that
(S]]S')@E c_ S@E[[S'@E and since aR n aR' c E then
(RHR')@E = R@EI[R'@E. Thus, (S[]S')@E C (RllR')@E
and the theorem follows.

We should note that if a R M a R ' C E does not hold
then, from Lemma 1, (P[[Q)@E = P~EI[Q@E does not
necessarily hold and thus R E E S A R' E E S' ~ R[]R' EE
SIIS' does not hold in general. []

46

T h e o r e m 3 Given requirement R and system S then there
exists a suitable abstraction relation ~ such that then

(V r : s t a t e s (R) ; s : s ta tes (S) ; e : a S .
r ~ s A e ~ a R ~ r / (e) ~ s l (e)
r ~ s A e C a R ~ r ~ s l (e))
R _E ~a S

PROOF SKETCH: Semantically, the trace model may only
be used to reason about deterministic systems, and its cor-
responding state- transi t ion mach ine - - a labelled t ransi t ion
sys tem-- is deterministic. The usual relationship between
trace refinement and (safety) refinement for a labelled t ran-
sition system implies that:

(Vr : s ta tes(R); s : s t a t e s (S @ a R) ; e : c u R .
r ~ s ~ r / (e) ~ s / (e)) ~ R E S ~ R

where ~ is a suitable abstraction relation. The set
s t a t e s (S @ a R) effectively induce a set of equivalence classes
on the set s ta tes (S) and we can re-construct the abstraction
relation ~ to preserve this relationship~ such that~

(Vr : s ta tes(R); s : s ta tes (S) ; e : oLR •
r = s ~ r l (e) ~ s l (e)) ^

(V r : s ta tes(R); s : s ta tes (S) ; e : a S \ c~R .
r ~ s ~ r ~ s / (e))

R _E S @ a R

where, transit ions on events e E a S \ a R are viewed as
' internal ' events (to an interface aR) that keep a state (of
S) in the same equivalence class.

The unwinding is also a sufficient condition for local re-
finement. If S a P C R then define an abstraction relation
such that (R / t~ ~ S / t ,) ~ t~ [a R = t,, for t~ E t races(R)
and t, E t races(S) , and the unwinding conditions follow. []

B C o m m u n i c a t i n g S e q u e n t i a l P r o c e s s e s

In the traces model of CSP [10] the behaviour of a process
is represented by a prefix-closed set of event traces. If P is
a process then t races (P) C_ (aP)* gives its traces and a P
its alphabet. We use a subset of the CSP algebra to specify
system behaviour; the trace semantics of the operators used
is given below.

traces (S T O P A)

traces (R UNA)

traces(a --4 P)
t races((a ~ P

I b ~ Q))
t races (P [] Q)

traces(P11 Q)

= {0}
~ A *

= { t : t races (P) i (a) ~ t } U {0}

= traces(a --~ P) U traces(b ~ Q)
= t r a c e s (P) U t r a c e s (Q)

= { t : (a P U a Q) " I
t [cup E t races(P) A
t r ~ Q e t races (Q)}

While not used for specifying processes, the after operator is
useful for reasoning about processes in an abstract manner .

t r a c e s (P / t) -= { s : (aP)* I t ~ s E t races (P) }

In the paper we also used a indexed form of concurrency
and external choice. For example, ([]i:sP(i)) corresponds
to the concurrent composition of each P (i) indexed over
i : I . Processes may also be specified recursively~ in the
form P = F (P) . For example, P = a ~ P, which has
a unique f ixed-poin t - -a process tha t repeatedly engages in
event a.

47

