
Security Architecture-Based System Design
Edward A. Schneider

Institute for Defense Analyses
1801 N. Beauregard St.

Alexandria, VA 22311-1772
eschneider@ ida.org

Abstract

We present a new view of information security based on concepts
from the Defense Goal Security Architecture. This view looks at
security according to the desire to protect and to share information
without regard to either the hardware or the software architecture.
The result is a separation of concerns and a security architecture
that is based on system security requirements without including the
network topology or the process interactions. The primary construct
of the architecture is the information domain in which authorized
users share information that has a common set of protection
requirements. The system design is formed as a product of the secu-
rity, the hardware, and the software architectures.

Keywords

Security architecture, security policy, information domain, infor-
mation system design

1. Introduction

Traditional security models closely tie security to either the system
or the software architecture. These models express security require-
ments in terms of services that either network gateways, operating
systems and middleware, or software servers supply. The Defense
Goal Security Architecture (DGSA) is an architectural framework
in which system architects instead define security according to the
requirements to protect information [2,3,6,8]. This definition is
independent of which high-level software components operate on
the information, or which network elements contain the informa-
tion. The product of the security, software, and system architectures
then forms a composite architecture that satisfies the constraints of
each of its constituents. Separating the security requirements from
those of computation and communication seems to greatly simplify
these requirements.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
1999 New Security Paradigm Workshop 9•99 Ontario, Canada
© 2000 ACM 1-58113-149-6/00/0004... $5.00

This paper presents the use of a security architectural framework in
terms of the concepts of the DGSA. Rather than simply promoting
these concepts, we demonstrate the benefits of a system design that
starts with a definition of security that is separate from the system
and the software architectures. As a result, our presentation of the
DGSA concepts is somewhat different from that in [2] which inter-
mingles the description of the security architecture with its interac-
tion with the other architectures.

We start with a description of architectures. We then present the
security architecture. This is followed by a discussion of how this
architecture interacts with the system and the software architec-
tures. We conclude with some comments on the support required by
the underlying system for this architecture.

2. Architectures

An architecture provides a structure through which a large or com-
plex system can be understood and reasoned about. Weaknesses can
be identified before the system is built. In creating this structure, the
system architect chooses to represent a set of components and var-
ious connections between the components while abstracting away
other details of the system, thus forming a particular perspective.
Different choices of components or connections will provide differ-
ent architectures, and therefore different perspectives, of the sys-
tem.

For any system type (e.g., office buildings, highways, information
systems) there are usually a small number of architectural styles,
each with its own strengths and weaknesses, from which to choose.
A style determines a vocabulary of components and connectors that
the architect uses to define an instance of that style, along with con-
straints on their combinations [4]. The designer of a new system
usually starts with a style for which the strengths best meet the
needs of the system, perhaps selecting one that was successful for a
similar system.

An information system architect can specify several complementa-
ry architectures, each providing a perspective on a different con-
cem. A system architecture describes the hardware components and
the communication channels that connect them to form a distributed
or networked system. A software architecture [4] describes the
computational components and the information and/or control
flows between them; styles include pipes and filters, object based,
and layered. These two architectures are somewhat independent in
that many software components may reside on a hardware compo-
nent, or a single software component may span many hardware

25

components (although performance and fault-tolerance consider-
ations normally strongly influence the mapping between the archi-
tectures). A third architecture, the information architecture, gives
an information-centric view of the system: its components are col-
lections of information, and its connections define the ways in
which these collections relate to each other.

The DGSA defines an information architectural style (or generic
architecture) in which the need to protect and to share information
determines conceptual components, called information domains,
and constraining connections between them. The DGSA compo-
nents are independent of components of the system and the soft-
ware architectures. For example, a server in a client-server software
architecture might manage objects that require different protections
and must therefore be in different information domains. Alterna-
tively, several servers might manage objects of different types that
are used together under a single protection policy in a single infor-
mation domain. Likewise, information domain boundaries do not
necessarily correspond to hardware platform boundaries.

3. Security Architectures

The desired protection of information and the need to share that
information determine a DGSA-style architecture. We first define
information domains and their connections. We then demonstrate
their use through an example. Finally, we discuss the control of
management information and other implementation concerns.

3.1. Information Domains

Information domains partition the information in the system such
that all information in a domain has the same protection require-
ments--there are no security-relevant distinctions among informa-
tion in a domain. The properties of the information that the system
security policy uses to define the protection requirements, referred
to as security attributes, help define the domains; each domain has
a specific value for these attributes.

The need to share information further refines the domains by requir-
ing that a set of principals (referred to as users in [2]) share all of
the information in a domain. A principal may correspond to some
individual, a cryptographic key, a principal acting in a role, a con-
junction of principals, or a principal acting on behalf of another
principal [1]. As with information, the characteristics of principals
that the system security policy uses to define requirements are
referred to as security attributes; the value for a principal deter-
mines if it belongs to a particular domain and how it may access
data in that domain.

The transfer of information from one domain to another forms a
connection between components. A principal can make a transfer if
the system security policy allows it to share information in both the
source and the destination domain and to make the transfer. Thus,
the security policy defines the constraints on the connections. If the
security policy forbids an information transfer from one principal to
another, there can be no transfers from a domain in which the first
principal modifies information to one in which the second can
observe information.

The security requirements that pertain to the information in a
domain, along with the need to share that information, are used to
derive a domain security policy. This policy specifies which princi-
pals may operate in the domain and in what ways each of these
member principals may access the information. The accesses
allowed may include ways to modify or observe the information, or
the transfer of information to or from the domain. The domain secu-
rity policy may also specify identification and authentication
requirements for the principals and auditing requirements for
accesses. Finally, the policy may specify Quality of Service require-
ments.

Information domains as described above are similar to Distributed
Compartments [5], and much of the process that we describe in sub-
sequent sections would apply to a system with this security archi-
tecture. One difference is that DGSA information domains have no
a priori structured relationships. The relationships created by the
ability to transfer information might form a partial order, but they
also might have cycles or be nontransitive. Also, while the ability to
transfer information between two domains implies that the domains
have at least one principal in common, the principals in the destina-
tion domain need not be a subset of those in the source domain.

3.2. Example System

Consider an information system that a university uses to maintain
grades for various courses. The security policy for this system is
that professors may enter or modify scores for assignments and
exams, record attendance, and calculate course grades for those
courses that they teach. Individual students may observe informa-
tion about themselves, but not about other students. A recorder
(which is internal to the system and does not correspond to any
external individual) maintains the distribution of grades for each
course, which anybody may observe. Thus, the security attributes
for assignments, attendance, and course grades are the professor
that teaches the course and the student to which it pertains. Because
the security policy does not distinguish among the grade distribu-
tions, they share a single attribute value. The principals in the sys-
tem are the professors, the students, and the recorder, each with an
identity attribute. There must be a s c o r e s information domain for
each professor-student pair containing the scores, attendance, and
course grades assigned by the professor to that student. There also
would be a distribution domain for the grade distributions and a
separate personal domain for each professor and each student. The
security policy for a sco res domain specifies that the professor
may observe and modify information in the domain, the student and
the recorder may observe information, and no other principals have
any access. The policy might also specify that additions and chang-
es by a professor and observations by the recorder must be audited.

Information sometimes must be available in multiple domains, in
accordance with the system security policy. In the grading system,
test grades that a professor calculates in his personal domain must
be available in the appropriate sco res domains after grading is
complete, and grades from the scores domains must be available
in the distribution domain. Information in one domain can be trans-
ferred to another domain either by copying it (information added to
the distribution domain remains in the s co re s domain also) or by

26

moving it (after a grade has been placed in a scores domain, it is
no longer needed in the professor's personal domain). In either
case, the transferred information assumes the security attributes of
the domain to which it is transferred.

A transfer is accomplished by a principal acting in both the sending
and the receiving domains. Thus, moving a test score from a profes-
sor's personal domain to a scores domain requires that the profes-
sor act in both domains. As with any other operation on the
information of a domain, the security policy for the sending and the
receiving domains must permit the transfer by the principal making
the transfer. The security policy for a scores domain must allow the
professor associated with that domain to receive information from
the professor's personal domain, and it must allow the recorder to
copy information to the distribution domain. Figure 1 shows the
domains for the grading system and the routes by which informa-
tion may be transferred between them.

3.3. Management Information

A Management Information Base is the information used to man-
age an information domain; the security-related portion is referred
to as a Security Management Information Base (SMIB). A SMIB
may include the security attribute values for the information in the
domain, the principals that are members of the domain (possibly
using the values of the security attributes of those principals),
authentication and auditing requirements, and access control
restrictions for each of the various principals. Principals are added
to or removed from a domain by modifying the SMIB for that
domain.

Because a SMIB is information, it is contained in one or more infor-
mation domains that control access to it. There are two options for

how the domains containing a SMIB relate to the domains that the
SMIB describes:

• The SMIB is part of the domain that it describes. Thus, the
security policy for the management information is the same
as for the rest of the information in the domain.

• The SMIB is not part of the domain that it describes, but is
instead in separate domains with security policies that dif-
fer from those of the domains to which it refers. (This leads
to a recursive situation because there must now be a SMIB
for the separate domains: eventually for some domain the
first option will be used.)

For the university grading system, the SMIB contains the security
attributes for each of the information domains and the set of princi-
pals permitted to access the domains. The security policy might be
that only a registrar principal may modify the SMIB. Because this
policy differs from those of the domains already described, it must
be in a domain different from those shown in Figure 1 (the second
option). The SMIB for this new domain is also only accessible by
the registrar and therefore is contained in itself (the first option).

The collection of information domains in a system is frequently not
static but changes over time. For example, students may add and
drop classes. To create or destroy a domain, SMIB entries for that
domain are created or destroyed. Thus, the security policies for the
domains containing the SMIB control what principals may create
and destroy domains. The security policy for the university SMIB
domain permits the registrar to create and destroy SMIBs.

The security policy related to some information may change over
time. A coalition or business alliance might be forged that requires
wider dissemination of plans, or a document might be finalized so
that further modification must be forbidden. These changes are

Professor... A

Professor B

A-U scores

A-V scores

B-V scores
° . .

Distribution

Student U

~.. Student V
Yl

Professor P
principal: P
policy-- P may:

observe, modify, transfer
to/from P-S scores

P-S scores
principals: P, S, Recorder
policy-- P may: transfer to/from

Professor P;
S may: copy to Student S;
Recorder may:
copy to Distribution

Distribution
principals: Recorder, A, B, U,

V , . . .

policy-- Recorder may: ob-
serve, modify, copy from
P-S scores;
P,S may: observe-distri-
bution

Figure 1. Domains for the Grades Example

Student S
principal: S
pol icy-- S may:

observe, modify, copy
from P-S scores

27

made to the policy representation in the SMIB and are controlled by
the policy pertaining to the SMIB.

3.4. Implementation Concerns

The DGSA requires that information systems support a protection
strategy of strict isolation. Except when the security policy allows
information transfers, information domains must be isolated from
each other. Because different domains have separate security poli-
cies, information must not be inferable in domains other than the
one to which it belongs. In the university grading system, a profes-
sor's activities in the scores domains for different students in his
classes must be isolated from each other.

A set of security services is used to isolate information domains and
to enforce their security policies. The DGSA defines these services
to be authentication, access control, data integrity, data confidenti-
ality, non-repudiation, and availability. Security management func-
tions, including audit and key management, support these services.
These services come in a range of strengths, with stronger versions
usually incurring greater overhead or difficulty in use. For example,
authentication ranges from short user-generated passwords to cryp-
tographic cards to biometrics. The strength of service for each of the
domains depends on the domain security policy, the sensitivity of
the information, and the environment in which the system resides.
In the grades example, the integrity of the data in a sco res domain
is very important (future employment for the student may depend
on the values), while availability is not a major concern. Alterna-
tively, availability to a student's personal domain may be very
important if it contains an assignment that the student must com-
plete by that afternoon.

4. Information Domains and System Architec-
tures

The previous description of information domains is independent of
any hardware configuration. Information domains are defined by
the needs to share and to protect information without concern for
the location in the system of either the principals or the information.
Principals and the information that they are using might be on the
same hardware component, or they might be located on different
continents and connected by a public network. The grades system
could be implemented entirely on a main frame, or the professor
and student personal domains could be on separate personal com-
puters with the scores and distribution domains on a central serv-
er. The security architecture is the same in both cases. We will refer
to the components of a system architecture as end systems and the
connections as a communication network.

The combination of a security architecture and a system architec-
ture forms a new sited-domain architectural perspective that is a
refinement of both the security and the system architectures. A com-
ponent of this architecture is a sited domain (Figure 2), consisting
of the information from an information domain of the security
architecture that is present on a particular end system of the system
architecture (information in transit is assumed to remain on the
source end system until it is received by the destination). The prin-
cipals e r a sited domain are those that are members of the informa-

End
Systems

e

sited domain (d,e)

J

I

d Information
Domains

Figure 2. Security-Hardware Architecture

tion domain and are operating on the end system. Note that an
association is required between the representation of principals in
the domain security policy and the principals operating on the end
system, possibly using handles [5]. The security policy for a sited
domain is the same as that of the information domain from which it
is derived. Thus, the information in an information domain is the
union of the information in the sited domains derived from it, and
the members of an information domain are the union of those in the
sited domains. Note that a piece of information from a domain
might be replicated or otherwise represented on multiple end sys-
tems, so that the pieces of information in a domain do not necessar-
ily exactly match the pieces of information in the sited domains
derived from it.

The DGSA makes two important restrictions on sited-domain
architectures. The first is that connections occur only along the
Information Domain or the End System axis. Thus, information
may be transferred between end systems within a domain, or
between domains on a single end system. This restriction is due to
a general lack of security services provided by the communication
networks that connect the end systems. In the grading system,
assume that the student personal domains are on personal comput-
ers and the s c o r e s domains are on a common server. The restriction
implies that copying scores to a s tudent domain must be done
either on the server, requiring that the s tudent domain also contain
a sited domain on the server, or on the student's personal computer,
requiring that the scores domain have a sited domain on the per-
sonal computer.

The second restriction is that each end system supporting a domain
must adequately provide the required security services. Also an end
system supporting more than one information domain must be able
to provide strict isolation for those domains. For example, as argued
above, strong data integrity must be provided for the s co re s
domain. Because a student's personal computer cannot be trusted to
prevent the student from altering scores, the sited domain (scores,
personal computer) must be empty. Further, the personal comput-
er does not have the services needed to provide strict isolation
between domains. Thus, the scores domain cannot be represented
on a student's personal computer and copying from it to a student
personal domain is represented in the sited domain architecture as

28

End
Systems

server

personal computer L

personal computer

I I I I

- I - - ~ - - - I - - -
I I I
I I

. . . .

I I
. . . .

I I I I

A-U scores S tuden t U

®

Figure 3. Refinement of copy from A-U scores to Student U

sited domain

no sited domain

Information
Domains

a copy from (scores , server) to (personal , s e rve0 , possibly fol-
lowed by a move to (personal , personal computer) , as shown in
Figure 3. Security services in a strength sufficient for each student's
personal domain must be provided by the common server. In par-
ticular, while authentication on the student's personal computer can
be provided by physical means (a locked dorm room), a password
or other method must be used to gain entry to sited domain (per-
sonal, server).

The flow of information between domains internal to an organiza-
tion and those external to that organization is frequently controlled
by a firewall. This is an end system containing both internal and
external domains, along with a security policy regulating the flow
between them. The firewall must provide the security services
required by any of the domains, but the internal end systems do not
need to provide support for the external domains (external domains
do not extend inside the firewall), and the external systems are not
relied on to provide services in support of internal domains (internal
domains do not extend outside the firewall).

The sited domains supporting a common information domain on
different end systems must maintain the protections required by the
information domain security policy while communicating with
each other. A security association is the totality of communications
and security mechanisms and functions that securely binds together
these sited domains [2]. A security association must ensure that:

• the destination end system is accredited to handle informa-
tion of the sensitivity and category that the source may pro-
vide,

• the identical security policy is enforced by the sited
domains,

• data confidentiality and data integrity are maintained dur-
ing transit,

• the policy availability constraints are satisfied, and

accountability for the transit is maintained, if required by
the security policy.

Frequently, the communica t i on ne twork canno t ensure con-

fidentiality, integrity, and accountabi l i ty dur ing transit . The

end sys tems mus t cooperate to provide these services.

5. I n f o r m a t i o n D o m a i n s and S o f t w a r e Arch i -
tec tures

Just as the description of information domains is independent of the
system architecture, it is also independent of the software architec-
ture. A principal may need to simultaneously access information of
different types, each managed by a different object manager (also
called a server in a client-server architecture). Thus, different com-
ponents of the software architecture, such as test scores and atten-
dance records in the grading example, may coexist in an
information domain. Conversely, software objects such as files or
test scores, implemented by a single manager, will be in different
information domains if the security policy requires that they be pro-
tected differently. Note that a manager may exist on several end sys-
tems, and an object that it manages may be replicated on several of
those end systems.

The combination of a security architecture and a software architec-
ture forms a new managed-domain architectural perspective that is
a refinement of both the security and the software architectures. A
component of this architecture is a managed domain (Figure 4),
consisting of the information from an information domain of the
security architecture that is represented as objects by a particular
manager or server of the software architecture. The principals of a
managed domain are those that are members of the information
domain and are permitted accesses supported by the manager. The
security policy for a managed domain is the same as that of the
information domain from which it is derived. Thus, the information
in an information domain is the union of the information represent-
ed by objects in the managed domains derived from it, and the
members of an information domain are the union of those in the
managed domains.

Intradomain security policies are enforced by the managers (or by
wrappers applied to them) that define the effects of various opera-

29

Software
Managers

m

managed domain (d,m)

/

I

d Information
Domains

Figure 4. Security-Software Architecture

tions. Enforcement of an integrity policy, permitting a particular
principal to observe but not modify information in an information
domain, depends on knowing that the implementation of an update
operation modifies information and therefore that execution of
upda te by that individual is a security violation. Note that the
information in a managed domain includes the manager's private
state, in that this state can affect future actions performed by the
manager; strict isolation requires that state changes that result from
an operation in one information domain must not affect other infor-
mation domains.

While all objects representing information in a domain must have
the same security atttributes, the different managers may each
implement different sets of operations and therefore require differ-
ent permissions for the principal that attempts to invoke those oper-
ations. Thus, in the distribution domain of the grading example,
there will be sco res objects copied from a sco re s domain and
managed by a sco res manager, in addition to the distribution
objects. The observe-distr ibution operation is not implemented by
the s co re s manager and therefore the professors and the students
are unable to access scores objects in the distribution domain.
Similarly, the modify operation might have different semantic
meaning for sco res or distribution objects.

The ability of a manager to cross information domain boundaries
means that moving information between domains need not be com-
putationally expensive. The information does not need to be physi-
cally moved or reformatted. All that needs to be done is to change
the security attributes associated with it to reflect the protection pro-
vided to the data in the new domain. The file manager is trusted on
most systems to enforce different sets of protections on different
files, and the protection given to a file can be changed (the file
moved to a different domain) by changing the owner or the protec-
tion bit fields. However, a manager that crosses domain boundaries
must be trusted to maintain strict isolation between those domains,
as described in Section 3.

Frequently, code that is not trusted either to enforce the security
policy or to maintain strict isolation must be used. Such code must
be completely contained within a domain such that any principals
that are permitted to execute it have all permissions within the

domain, except perhaps to transfer information into and out of the
domain. The only interaction allowed between this code and code
in other domains is through controlled domain transfers. The dam-
age that can be done by such code is thus isolated to the domain, and
transfers between this and other domains are tightly controlled. In
the student grading system example, all code that modifies scores
or calculates grades is run in a professor's personal domain on
beha l fo fa pseudo-principal that is not allowed to transfer informa-
tion into or out of the domain. Before the code is run, the professor
transfers the minimal collection of information into the domain.
Upon completion, the professor checks the results before transfer-
ring them to a s co re s domain.

6. U s i n g the A r c h i t e c t u r e

A three-dimensional information system architecture has been pre-
sented, of which security is one independent dimension (Figure 5).

Software
Managers

m

End /
Information, Principals, and

S e c u r i t g ; c y (d,m,e)

I
I

/

/
/

d Information
Domains

Figure 5. 3-Dimensional Information System Architecture

Each component of the architecture is the information from one
domain (d) that is represented on an end system (e) and managed
by a particular software manager (m), together with the principals
that are members o fd and active on e, subject to the security policy
of d as interpreted by m. This architecture must next be translated
into an implementation.

A computation on a system constructed using the concepts present-
ed here occurs in a domain containing the minimal amount of infor-
mation necessary. Confidentiality is maintained by limiting the set
of individuals that belong to a domain and by controlling to which
other domains results can be transferred. Integrity is maintained by
limiting the sources of information that may be transferred into a
domain. Nontransitive security policies, in which allowing infor-
mation flows from a to b and from b to c does not necessarily allow
information to flow directly from a to c, can easily be established;
this is currently a difficult problem for systems based on a hierar-
chical security structure. Untrusted software can be safely executed
within a domain to which required information is copied and from
which the results are tightly controlled.

30

The underlying system support for information domains must
ensure strict isolation. All interaction between principals must
occur as the result of changes to information in a domain to which
they all belong. What is needed are separate address spaces for each
information domain, connected by channels that are subject to a
transfer policy enforcement mechanism. To the extent possible,
system resources such as files, printers, etc, should be permanently
assigned to a domain. Within each domain address space, principals
can be represented as threads of control. Entry by a principal into
the domain is represented by thread creation and exit by thread
destruction. However, unlike most operating systems with light-
weight threads, these threads must be separately identified by a set
of attributes. These attributes are checked against the security poli-
cy whenever the thread issues a command for service, and are sent
with any transfer request, The underlying system must also guaran-
tee any availability requirements of the security policy in its sched-
uling of the threads.

Enforcement of security occurs in the implementation of access to
the information. When information is transferred to a new domain,
a different security policy is applied to that information. This policy
change can be managed by separating policy definition from the
enforcement, defining a Security Policy Decision Function for each
information domain. A large class of security policies can be repre-
sented in this manner [7].

Security Associations are required between end systems that mutu-
ally support a domain. These associations must establish an agree-
ment on the protocols and protections to use during
communications, the policy to be enforced by each end system, and
the strength of services required for that enforcement. In order for
an association like this to work, there must be a trust relationship
between the end systems that each will honor the agreement.

Current commercial systems do not provide the needed support for
the architectures developed using the methods described in this
paper. The required isolation has not been a design goal for current
systems, and consequently most are inadequate. Also, either their
security mechanisms are transitive, or they are discretionary and
therefore overall properties of information flow are hard to guaran-
tee. As the use of mobile code increases, we hope to see better iso-
lation mechanisms that supply the needed support.

Acknowledgements

This work was supported by the National Security Agency under
contract DASW01-98-C-0067; the views expressed are those of the
author and do not reflect the official policy or position of the U.S.
Government or the Department of Defense. Many of the ideas pre-
sented are the result of collaboration with Ed Feustel on designing
information systems for a complex and dynamic policy environ-
ment, and to discussions with Terry Mayfield. Finally, a special
thanks is due to the attendees at the NSPW for the lively discussion.

References

[1] Martin Abadi, Michael Burrows, Butler Lampson, and Gordon
Plotkin. A calculus for access control in distributed systems.

[2]

[31

[4]

[5]

[61

[7]

[8]

ACM Trans. on Programming Languages and Systems •5(4):
706-734, September 1993.

Defense Information Systems Agency, Center for Standards.
Department of Defense (DoD) Goal Security Architecture
(DGSA), Version 3.0, April 1996. Volume 6 of Department of
Defense Technical Architecture Framework for Information
Management (TAFIM).

Edward A. Feustel and Terry Mayfield. The DGSA: Unmet
security challenges for operating system designers. Operating
Systems Review 32(1): 3-22, January 1998.

David Garlan and Mary Shaw. An introduction to software
architecture. In Advances in Software Engineering and Knowl-
edge Engineering, edited by V. Ambriola and G. Tortora,
World Scientific Publishing Company, 1993.

Steven J. Greenwald. A new security policy for distributed
resource management and access control. In Proceedings of
the New Security Paradigms Workshop, pages 74-86, Lake
Arrowhead, CA, September 1996.

Tom Lowrnan and Douglas Mosier. Applying the DoD Goal
Security Architecture as a methodology for the development
of system and enterprise security architectures, lnProeeedings
of the Thirteenth Annual Computer Security Applications
Conference, pages 183-193, San Diego, CA, IEEE Computer
Society, December 1997.

Duane Olawsky, Todd Fine, Edward Schneider, and Ray
Spencer. Developing and using a "policy neutral" access con-
trol policy. In Proceedings of the New Security Paradigms
Workshop, pages 60-67, Lake Arrowhead, CA, September
1996.

Edward A. Schneider, Edward A. Feustel, and Ronald S. Ross.
Assessing DoD Goal Security Architecture (DGSA) Support in
Commercially Available Operating Systems and Hardware
Platforms. IDA Paper P-3375, November 1997.

31

