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Abstract 

T h e  m o d e l i n g  o f  pe ne t r a t i on  tes t ing  as a Petr i  ne t  is su rp r i s ing ly  usefu l .  I t  re ta ins  key  a d v a n t a g e s  o f  the  
f l aw  h y p o t h e s i s  and  a t t ack  tree a p p r o a c h e s  whi l e  p r o v i d i n g  s o m e  n e w  benef i t s .  

1 Introduction 

Penetration testing is a critical step in the development of any 
secure product or system. While many current businesses define 
penetration testing as the application of automated network vul- 
nerability scanners to an operational site, true penetration test- 
ing is much more than that. Penetration testing stresses not only 
the operation, but the implementation and design of a product or 
system. 

A large part of penetration testing is art rather than science. The 
effectiveness of penetration testing depends on the skill and ex- 
perience of the testers. Penetration testers need firm grounding 
in the first principles of information security but they also need 
an almost encylopedic knowledge of product or system trivia 
that have little apparent relationship to principles. Penetration 
testing also requires a special kind of insight that cannot be sys- 
tematized. 

In spite of this, there are widely used process models for pen- 
etration testing. Penetration testers that follow these models are 
more effective in their use of resources. Penetration testing pro- 
cess models are structured around some paradigm that organizes 
the discovery of potential attacks on the live system. In this pa- 
per we describe a new process model for penetration testing that 
uses the Petri net as its paradigm. Surprisingly, this approach 
provides increased structure to flaw generation activities, with- 
out restricting the free range of inquiry. This technique is par- 
ticularly useful for organizing penetration testing by means of  
distributed or cooperative attacks. It also has the nice properties 
of easily depicting both refinement of specific attacks and at- 
tack alternatives in a manner similar to attack trees. 

2 Penetration Testing 

Penetration testing is a fundamental area of information system 
security engineering. The earliest published open reference to 

penetration testing is a paper by R.R. Linde [2]. Penetration 
testing usually follows one of two approaches: flaw hypothesis 
[6] or attack tree [4]. The flaw hypothesis approach began life 
as a proprietary testing process of SDC. It is now in general use 
and remains the best current approach to penetration testing of 
new products at the end of development. We describe the basic 
flaw hypothesis approach here as a sequence of six activities: 

1. Define penetration testing goals. 

2. Perform background study. 

3. Generate hypothetical flaws. 

4. Confirm hypothesis. 

5. Generalize discovered flaws. 

6. Eliminate discovered flaws. 

The flaw hypothesis approach [8] defines "[a] flaw [as] a dem- 
onstrated undocumented capability, which can be exploited to 
violate some aspect of the security policy." Penetration testing 
is first planned by setting the scope, establishing ground rules 
and objectives, and defining the purpose of the testing. Next, a 
background study is performed using all available resources. 
This background study may include system design documenta- 
tion, source code, user documentation, and results of unit and 
integration testing. After the background study is complete, the 
penetration test team generates hypothetical flaws using brain- 
storming sessions, the Delphi technique, or similar approaches. 
The generated list of flaws is analyzed, filtered, and ordered 
according to priority. The hypothetical flaws are then confirmed 
or refuted by test or source code analysis. The confirmed flaws 
are then analyzed for patterns, to see if the mistake that lead to 
the flaw might have been repeated elsewhere in the system. Fi- 
nally, recommended fixes for the flaw are developed. 

The complete flaw hypothesis approach is much richer than the 
high-level summary we provide here. Many of  the concepts 
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used in other forms of penetration testing originated with the 
flaw hypothesis approach, including assessment of the hypo- 
thetical attacker's motives, behavior, and goals; assigning pri- 
orities in order to perform the most critical tests first; and the 
importance of personal ethics for penetration testers. 

The attack tree approach was developed at Sparta. The attack 
tree approach is intended for penetration testing where there is 
less background information about the system to be tested. The 

basic idea is a combination of  the work breakdown structure 
from project management and the familiar tree representation of  
a logical proposition. There are several ways to combine these 
ideas into an attack tree; we will describe a typical attack tree 
approach that starts with the target or goal as the root of the 
tree. Our example attack tree is taken from B. Schneier [5] and 
shows an attack on a physical safe. 

P i c k  L o c k  

T h r e a t e n  

O p e n  Sa fe  

L e a r n  C o m b o  C u t  O p e n  S a f e  

F i n d  W r i t t e n  G e t  C o m b o  
C o m b o  F r o m  O w n e r  

~ ~ -  .~------ 

B l a c k m a i l  E a v e s d r o p  

/ / a n c l ~  

L i s t e n  to  
C o n v e r s a t i o n  

Figure 1: Representative Attack Tree 

The root and most of the nodes in the tree are disjunctive nodes. 
The attack is accomplished if any of the actions described by its 
children are accomplished. Disjunctive nodes represent alterna- 
tive attacks. For the example shown in Figure 1, the action Get 
Combo From Owner may be accomplished either by threats, 
blackmail, eavesdropping, or bribery. The lowest interior node, 
Eavesdrop, is a conjunctive node and requires all of its children 
to be accomplished before it is considered accomplished. In the 
example attack on the safe, the penetrators must not only listen 
for the combination, they must also trick the owner into repeat- 
ing it out loud while the eavesdropping is taking place. Con- 
junctive nodes represent decomposition or refinement of a spe- 
cific attack. 

Ins ta l l  
I m p r o p e r l y  

Br ibe  

G e t  O w n e r  to 
S ta te  C o m b o  

The nodes of attack trees can be assigned various attributes, 
such as cost or likelihood, in order to analyze a given penetra- 
tion testing situation and assign priorities to certain attacks. The 
power of the tree structure for showing decomposition is par- 
ticularly helpful in organizing penetration tests of undocu- 
mented products or of  operational systems. Attack trees are a 
top-down approach to penetration testing. 

3 A t t a c k  N e t s  

Our proposed new approach is to organize penetration testing 
according to an attack net. An attack net is a (disjunctivel)  
Petri net with a set P={ p0, p l, p2 .... pn } of  places representing 
interesting (e.g. control or knowledge of) states or modes of the 
security relevant entities of the system of interest. The attack 
net also has a set T={t0, tl,  t2, ..., tin} of  transitions that 

1 A disjunctive Petri net allows transitions to fire when at least one of its incoming places has a token, at nodes that are designated as 
disjunctive nodes. Otherwise, all incoming places must have a token to fire the transition. 
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represent input events, commands, or data that cause one or 
more security relevant entities to change state. Places are con- 
nected to transitions and transitions are connected to places by 
directed arcs. The attack net has a set of tokens. Tokens move 
from place to place along the directed arcs to indicate the 
progress of the attack. If a token is at a place, then the attacker 
has gained control of the corresponding entity, in the state rep- 
resented by the place. If  place pi precedes place pj in the attack 
net, then the attack must achieve the control or knowledge rep- 
resented by place pi before the control or knowledge repre- 
sented by place pj is possible. 

An example will clarify this. Figure 2 shows an attack tree rep- 
resentation of the so-called Mitnick attack, a combination of 
SYN flooding, TCP session hijacking, and Unix .rhosts trust 
relationship spoofing. Place p0 represents the starting state of 
the exploit: the attacker with root access to some host on a 
TCP/IP network. Transition tO represents an initial 

reconnaissance of the target system by the attacker, using fin- 
ger, showmount, rcpinfo, ping, etc. A successful reconnaissance 
replicates the token into all three places pl,  p2, and p3, concur- 
rently. Place pl represents identification of a routable but un- 
used address on the target network. (Strictly speaking, the at- 
tacker does not have complete control, but the lack of other con- 
trois gives the same practical effect.) Place p2 represents the 
identification of a trusted (spoofable) host and place p3 repre- 
sents the identification of a trusting (target host). Transition tl 
represents the construction of a SYN flood packet with a false 
source address, by the attacker. Transition t3 represents investi- 
gation of the trusted host's TCP sequence numbers by the at- 
tacker. Place p5 represents the attacker's ability to predict the 
trusted host's TCP sequence numbers. Transition t2 represents 
the initiation of a SYN flood attack on the trusted host and place 
p6 represents the system state when the trusted host's queues 
are flooded. 

p4  

p l  

t l  

t5 p6  

t2 

p 0  

tO 

p2  

t3 

t4 

p7  

p3  

Figure 2: Attack Tree Representation of the Mitnick Attack 

Now the attack net looks like Figure 3, below. Transition t4 is 
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the spoofing of a TCP session with the trusting host; place p7 
represents the system state where the trusting host has estab- 
lished a (bogus) trusted TCP session with the attacker. We 

include, just for nice, a transition t5 that represents the modifi- 
cation of the trusting host's .rhosts file, which will give the at- 
tacker root access on the trusting host, thus allowing repetition. 

t5 

p l  

t l  

p4  

t3 

p0  

tO 

p2  

t2 

t4 

p7 

p3 

Figure 3: Trusted Host SYN Flooded 

Attack nets do not need to have cycles describing recursive at- 
tacks. In most cases, they will not, since penetration testing 
seeks to improve the development or operation of systems. Es- 
tablishment of a successful initial violation of some policy or 
security model of a system is sufficient to achieve that goal. For 
an example of an acyclic attack net, Figure 4 below models a 
generic distributed denial of service attack on a single host. The 
first place, holding the single token, represents the attacker's 
initial control of the attacking host. The first level of transitions 
are high-level abstractions of the actions taken to gain control of 
multiple accomplice hosts. The multiple places in the middle 

represent the attacker's control of the accomplice hosts. The 
second level of transitions from these places represent the gen- 
eration of spurious service requests by the accomplice hosts. 
The last place represents the condition where the victim host is 
flooded and cannot respond. 

The key features of  attack nets are 

• modeling concurrency and attack progress with tokens 

• modeling intermediate and final objectives as places 

• modeling commands or inputs as transitions 
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Figure 4: Attack Tree Representation of  Generic Distributed Denial of  Service Attack 

Attack nets are not intended to model the actual behavior of a 
system or component during an attack, in the sense of attack 
signatures [1] used by intrusion detection systems or the abuse 
cases [3] used by abuse case based assurance arguments. They 
are used to organize the development of plausible attack sce- 
narios. Attack nets are a notation for discovering and discussing 
scenarios under development. 

W e  c a n  a l so  u s e d  l a b e l e d  t o k e n s  to  i n d i c a t e  w h i c h  
a t t a c k e r  is  r e s p o n s i b l e  fo r  m o v i n g  a p a r t i c u l a r  c o m -  
p o n e n t  o f  the  s y s t e m  o f  i n t e r e s t  in to  a p a r t i c u l a r  s ta te .  

T h i s  m i g h t  b e  m o s t  u s e f u l  w h e n  m o d e l i n g  s o - c a l l e d  

"s tea l th"  a t t a cks  tha t  a re  d e s i g n e d  to e s c a p e  i n t r u s i o n  

d e t e c t i o n  b y  d i v i d i n g  the  a t t a c k  r e s p o n s i b i l i t y  a m o n g  

s e v e r a l  a t t a c k e r s ,  o r  w h e n  w e  n e e d  to  m o d e l  m i s t a k e s  

on  the  pa r t  o f  the  d e f e n d e r s .  

4 Attack Net Penetration Testing 

Although it might seem more reasonable to organize attack net 
penetration testing along lines similar to attack tree testing, in 
fact it is better to use an approach similar to flaw hypothesis 
testing. We will see why shortly, but for now we propose the 
following high-level organization for an attack-net-based pen- 
etration testing project: 

Define goals 

Background study 

Attack net generation 

Hypothesis verification 

Flaw generalization 

Flaw elimination 

All of the steps we use are the same as the flaw hypothesis ap- 
proach, except we use attack nets to construct hypothetical 
flaws or attacks. 

In our limited experience, the best way to construct an attack 
net is to start with a flaw database or background study and con- 
struct attack subnets. Most security flaws can be described (or 
hypothesized) as a single command or action that takes a prod- 
uct or system into an undesirable state. We model these as (the 
smallest possible nonempty) disjoint attack nets: two places 
connected by a single transition, as show by Figure 5 below. 

Figure 5: Initial Subtree Used to Model Individual Flaws 

As an example of what we mean, we will show how a specific 
flaw can be translated into one of these initial single transition 
attack nets. Our example flaw concerns linuxconf, a graphical 
user interface for administration of the Linux operating system. 
In versions of linuxconf that were in use at the time this paper 
was written, there is a flaw that allowed ordinary users to retain 
the privilege of shutting down or restarting the system, after the 
linuxconf tool had configured their permissions to deny this. 
This was an implementation flaw that allowed an unsafe condi- 
tion to arise. The administrator had established a policy that 
user x may not restart the system, but user x still had that 
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privilege. This did not result in compromise of an account with 
root privileges, or even unauthorized disclosure. However, it 
may be used in conjunction with other flaws to compromise an 

account with root privileges. We depict this as the following 
single-transition attack net. 

Root decides to use linuxconf 
to administer access control for 
shutdown/restart. 

Once we have a sufficient collection of single-transition attack 
nets, we then examine relationships between the interesting 
places by attempting to arrange transitions between them. In 
this way we can build up an attack tree that indicates the pos- 
sibility of more serious flaws. The notation is sufficiently flex- 
ible to denote a wide range of hypothetical or confirmed flaws 
during brainstorming sessions. The notation also serves as a 
record of complex dependencies or causal relationships that 
may be suggested during the formulation of a hypothesis. 

We mentioned earlier that we would use attack nets for penetra- 
tion testing in circumstances similar to those most suited to the 
flaw hypothesis approach, rather than the attack tree approach. 

User x still has shutdown~restart 
access. 

User x is marked as no access 
to shutdown~restart by linuxconf. 

Figure 6: Linuxconf Flaw 

We suggest this because attack nets are so useful for investigat- 
ing combinations of flaws. This type of activity is more in keep- 
ing with the hypothesis generation process. Attack nets can be 
a powerful bottom up approach to penetration testing. While we 
could also use them top-down, it is not clear what the benefit 
would be. It is true that the diagrams can be more descriptive 
than attack trees. Consider the leaf nodes Listen to Conversation 
and Get Owner to State Combo of our example attack tree, 
shown in Figure 1. The conjunctive node indicates that these 
two actions must be accomplished together in order to complete 
the action Eavesdrop, but there is no indication of sequence or 
dependency. The assumed semantics of the actions makes it 
clear in this case, but an attack net could depict the situation as 
shown in Figure 7. 

Owner seated at Accomplice discussing 
bugged table, safe combinations. 

Listen to conversation. 

Conversation being 
recorded. 

Get Owner to State Combo. I 

Combo O 
Eavesdropped. 

Figure 7: Attack Subtree For Eavesdrop Action 

Since the original example did not have this much detail, we are 
supposing some conditions. However, it is clear that the attack 
net model can provide much more information than the attack 
tree. We can see a necessary sequence: that the action of getting 
the owner to state the combination must take place after we 

have achieved a situation where his conversation is being re- 
corded. We could also be more specific about distinctions be- 
tween actions and resulting states. Furthermore, an insight may 
arise from consideration of the place (state) where the owner's 
conversation is being recorded. We may discover other signifi- 
cant attacks from consideration of a security state where the 
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safe owner's conversation is being recorded. 

5 Conclusions 

The attack net approach to penetration testing is a departure 
from both the flaw hypothesis model and the attack tree model 
but it retains the essential benefits of both. Any penetration test- 
ing process is unavoidably dependent upon the flaw hypothesis 
process model. Any valid penetration testing process model will 
retain many of its features and so does the attack net model. 
Nevertheless, the attack net penetration testing process brings 
more discipline to the brainstorming activity without restricting 
the free range of ideas in any way. Attack nets also provide the 
alternatives and refinement of the attack tree approach. It is not 
clear whether attack nets are better than attack trees for top- 
down testing of poorly documented operational systems. 

Attack nets provide a graphical means of showing how a collec- 
tion of flaws may be combined to achieve a significant system 
penetration. This is important since an attack net can make full 
use of hypothetical flaws. Attack nets can model more sophisti- 
cated attacks that may combine several flaws, none of which is 
a threat by itself. The ability to use discovered transitions (i.e. 
security relevant commands) to connect subnets allows penetra- 
tion teams to communicate easily about the cumulative effects 
of several minor flaws. 

The separation of penetration test commands or events from the 
attack states or objectives also increases the descriptive power 
of this approach. The basic notion of an initial security relevant 
state, the hostile test input, and the resulting security state is 
captured by the minimal Petri net representation. 

In addition to specifying composition or refinement, attack nets 
can also model choices. The use of disjunctive transitions al- 
lows the movement of some tokens while other places are 
empty, thus modeling vulnerabilities that could be exploited in 
several ways or alternative attacks on a single goal. 

Attack nets can readily depict the precedence and progress rela- 
tionships in concurrent and distributed attacks. This could be 
more significant as attacks become more sophisticated by mak- 
ing use of concurrency and cooperation. 

Finally, there is an enormous body of  literature regarding Petri 
nets. It seems reasonable to expect further improvements can be 
made by applying some of  these results. 
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