
Attack Net Penetration Testing
J.P. McDermott

Department of Computer Science

James Madison University

Harrisonburg, Virginia 22807

mcdermot@cs.jmu.edu

Abstract

T h e m o d e l i n g o f pe ne t r a t i on tes t ing as a Petr i ne t is su rp r i s ing ly usefu l . I t re ta ins key a d v a n t a g e s o f the
f l aw h y p o t h e s i s and a t t ack tree a p p r o a c h e s whi l e p r o v i d i n g s o m e n e w benef i t s .

1 Introduction

Penetration testing is a critical step in the development of any
secure product or system. While many current businesses define
penetration testing as the application of automated network vul-
nerability scanners to an operational site, true penetration test-
ing is much more than that. Penetration testing stresses not only
the operation, but the implementation and design of a product or
system.

A large part of penetration testing is art rather than science. The
effectiveness of penetration testing depends on the skill and ex-
perience of the testers. Penetration testers need firm grounding
in the first principles of information security but they also need
an almost encylopedic knowledge of product or system trivia
that have little apparent relationship to principles. Penetration
testing also requires a special kind of insight that cannot be sys-
tematized.

In spite of this, there are widely used process models for pen-
etration testing. Penetration testers that follow these models are
more effective in their use of resources. Penetration testing pro-
cess models are structured around some paradigm that organizes
the discovery of potential attacks on the live system. In this pa-
per we describe a new process model for penetration testing that
uses the Petri net as its paradigm. Surprisingly, this approach
provides increased structure to flaw generation activities, with-
out restricting the free range of inquiry. This technique is par-
ticularly useful for organizing penetration testing by means of
distributed or cooperative attacks. It also has the nice properties
of easily depicting both refinement of specific attacks and at-
tack alternatives in a manner similar to attack trees.

2 Penetration Testing

Penetration testing is a fundamental area of information system
security engineering. The earliest published open reference to

penetration testing is a paper by R.R. Linde [2]. Penetration
testing usually follows one of two approaches: flaw hypothesis
[6] or attack tree [4]. The flaw hypothesis approach began life
as a proprietary testing process of SDC. It is now in general use
and remains the best current approach to penetration testing of
new products at the end of development. We describe the basic
flaw hypothesis approach here as a sequence of six activities:

1. Define penetration testing goals.

2. Perform background study.

3. Generate hypothetical flaws.

4. Confirm hypothesis.

5. Generalize discovered flaws.

6. Eliminate discovered flaws.

The flaw hypothesis approach [8] defines "[a] flaw [as] a dem-
onstrated undocumented capability, which can be exploited to
violate some aspect of the security policy." Penetration testing
is first planned by setting the scope, establishing ground rules
and objectives, and defining the purpose of the testing. Next, a
background study is performed using all available resources.
This background study may include system design documenta-
tion, source code, user documentation, and results of unit and
integration testing. After the background study is complete, the
penetration test team generates hypothetical flaws using brain-
storming sessions, the Delphi technique, or similar approaches.
The generated list of flaws is analyzed, filtered, and ordered
according to priority. The hypothetical flaws are then confirmed
or refuted by test or source code analysis. The confirmed flaws
are then analyzed for patterns, to see if the mistake that lead to
the flaw might have been repeated elsewhere in the system. Fi-
nally, recommended fixes for the flaw are developed.

The complete flaw hypothesis approach is much richer than the
high-level summary we provide here. Many of the concepts

15

used in other forms of penetration testing originated with the
flaw hypothesis approach, including assessment of the hypo-
thetical attacker's motives, behavior, and goals; assigning pri-
orities in order to perform the most critical tests first; and the
importance of personal ethics for penetration testers.

The attack tree approach was developed at Sparta. The attack
tree approach is intended for penetration testing where there is
less background information about the system to be tested. The

basic idea is a combination of the work breakdown structure
from project management and the familiar tree representation of
a logical proposition. There are several ways to combine these
ideas into an attack tree; we will describe a typical attack tree
approach that starts with the target or goal as the root of the
tree. Our example attack tree is taken from B. Schneier [5] and
shows an attack on a physical safe.

P i c k L o c k

T h r e a t e n

O p e n Sa fe

L e a r n C o m b o C u t O p e n S a f e

F i n d W r i t t e n G e t C o m b o
C o m b o F r o m O w n e r

~ ~ - .~------

B l a c k m a i l E a v e s d r o p

/ / a n c l ~

L i s t e n to
C o n v e r s a t i o n

Figure 1: Representative Attack Tree

The root and most of the nodes in the tree are disjunctive nodes.
The attack is accomplished if any of the actions described by its
children are accomplished. Disjunctive nodes represent alterna-
tive attacks. For the example shown in Figure 1, the action Get
Combo From Owner may be accomplished either by threats,
blackmail, eavesdropping, or bribery. The lowest interior node,
Eavesdrop, is a conjunctive node and requires all of its children
to be accomplished before it is considered accomplished. In the
example attack on the safe, the penetrators must not only listen
for the combination, they must also trick the owner into repeat-
ing it out loud while the eavesdropping is taking place. Con-
junctive nodes represent decomposition or refinement of a spe-
cific attack.

Ins ta l l
I m p r o p e r l y

Br ibe

G e t O w n e r to
S ta te C o m b o

The nodes of attack trees can be assigned various attributes,
such as cost or likelihood, in order to analyze a given penetra-
tion testing situation and assign priorities to certain attacks. The
power of the tree structure for showing decomposition is par-
ticularly helpful in organizing penetration tests of undocu-
mented products or of operational systems. Attack trees are a
top-down approach to penetration testing.

3 A t t a c k N e t s

Our proposed new approach is to organize penetration testing
according to an attack net. An attack net is a (disjunctivel)
Petri net with a set P={ p0, p l, p2 pn } of places representing
interesting (e.g. control or knowledge of) states or modes of the
security relevant entities of the system of interest. The attack
net also has a set T={t0, tl, t2, ..., tin} of transitions that

1 A disjunctive Petri net allows transitions to fire when at least one of its incoming places has a token, at nodes that are designated as
disjunctive nodes. Otherwise, all incoming places must have a token to fire the transition.

16

represent input events, commands, or data that cause one or
more security relevant entities to change state. Places are con-
nected to transitions and transitions are connected to places by
directed arcs. The attack net has a set of tokens. Tokens move
from place to place along the directed arcs to indicate the
progress of the attack. If a token is at a place, then the attacker
has gained control of the corresponding entity, in the state rep-
resented by the place. If place pi precedes place pj in the attack
net, then the attack must achieve the control or knowledge rep-
resented by place pi before the control or knowledge repre-
sented by place pj is possible.

An example will clarify this. Figure 2 shows an attack tree rep-
resentation of the so-called Mitnick attack, a combination of
SYN flooding, TCP session hijacking, and Unix .rhosts trust
relationship spoofing. Place p0 represents the starting state of
the exploit: the attacker with root access to some host on a
TCP/IP network. Transition tO represents an initial

reconnaissance of the target system by the attacker, using fin-
ger, showmount, rcpinfo, ping, etc. A successful reconnaissance
replicates the token into all three places pl, p2, and p3, concur-
rently. Place pl represents identification of a routable but un-
used address on the target network. (Strictly speaking, the at-
tacker does not have complete control, but the lack of other con-
trois gives the same practical effect.) Place p2 represents the
identification of a trusted (spoofable) host and place p3 repre-
sents the identification of a trusting (target host). Transition tl
represents the construction of a SYN flood packet with a false
source address, by the attacker. Transition t3 represents investi-
gation of the trusted host's TCP sequence numbers by the at-
tacker. Place p5 represents the attacker's ability to predict the
trusted host's TCP sequence numbers. Transition t2 represents
the initiation of a SYN flood attack on the trusted host and place
p6 represents the system state when the trusted host's queues
are flooded.

p4

p l

t l

t5 p6

t2

p 0

tO

p2

t3

t4

p7

p3

Figure 2: Attack Tree Representation of the Mitnick Attack

Now the attack net looks like Figure 3, below. Transition t4 is

17

the spoofing of a TCP session with the trusting host; place p7
represents the system state where the trusting host has estab-
lished a (bogus) trusted TCP session with the attacker. We

include, just for nice, a transition t5 that represents the modifi-
cation of the trusting host's .rhosts file, which will give the at-
tacker root access on the trusting host, thus allowing repetition.

t5

p l

t l

p4

t3

p0

tO

p2

t2

t4

p7

p3

Figure 3: Trusted Host SYN Flooded

Attack nets do not need to have cycles describing recursive at-
tacks. In most cases, they will not, since penetration testing
seeks to improve the development or operation of systems. Es-
tablishment of a successful initial violation of some policy or
security model of a system is sufficient to achieve that goal. For
an example of an acyclic attack net, Figure 4 below models a
generic distributed denial of service attack on a single host. The
first place, holding the single token, represents the attacker's
initial control of the attacking host. The first level of transitions
are high-level abstractions of the actions taken to gain control of
multiple accomplice hosts. The multiple places in the middle

represent the attacker's control of the accomplice hosts. The
second level of transitions from these places represent the gen-
eration of spurious service requests by the accomplice hosts.
The last place represents the condition where the victim host is
flooded and cannot respond.

The key features of attack nets are

• modeling concurrency and attack progress with tokens

• modeling intermediate and final objectives as places

• modeling commands or inputs as transitions

18

Figure 4: Attack Tree Representation of Generic Distributed Denial of Service Attack

Attack nets are not intended to model the actual behavior of a
system or component during an attack, in the sense of attack
signatures [1] used by intrusion detection systems or the abuse
cases [3] used by abuse case based assurance arguments. They
are used to organize the development of plausible attack sce-
narios. Attack nets are a notation for discovering and discussing
scenarios under development.

W e c a n a l so u s e d l a b e l e d t o k e n s to i n d i c a t e w h i c h
a t t a c k e r is r e s p o n s i b l e fo r m o v i n g a p a r t i c u l a r c o m -
p o n e n t o f the s y s t e m o f i n t e r e s t in to a p a r t i c u l a r s ta te .

T h i s m i g h t b e m o s t u s e f u l w h e n m o d e l i n g s o - c a l l e d

"s tea l th" a t t a cks tha t a re d e s i g n e d to e s c a p e i n t r u s i o n

d e t e c t i o n b y d i v i d i n g the a t t a c k r e s p o n s i b i l i t y a m o n g

s e v e r a l a t t a c k e r s , o r w h e n w e n e e d to m o d e l m i s t a k e s

on the pa r t o f the d e f e n d e r s .

4 Attack Net Penetration Testing

Although it might seem more reasonable to organize attack net
penetration testing along lines similar to attack tree testing, in
fact it is better to use an approach similar to flaw hypothesis
testing. We will see why shortly, but for now we propose the
following high-level organization for an attack-net-based pen-
etration testing project:

Define goals

Background study

Attack net generation

Hypothesis verification

Flaw generalization

Flaw elimination

All of the steps we use are the same as the flaw hypothesis ap-
proach, except we use attack nets to construct hypothetical
flaws or attacks.

In our limited experience, the best way to construct an attack
net is to start with a flaw database or background study and con-
struct attack subnets. Most security flaws can be described (or
hypothesized) as a single command or action that takes a prod-
uct or system into an undesirable state. We model these as (the
smallest possible nonempty) disjoint attack nets: two places
connected by a single transition, as show by Figure 5 below.

Figure 5: Initial Subtree Used to Model Individual Flaws

As an example of what we mean, we will show how a specific
flaw can be translated into one of these initial single transition
attack nets. Our example flaw concerns linuxconf, a graphical
user interface for administration of the Linux operating system.
In versions of linuxconf that were in use at the time this paper
was written, there is a flaw that allowed ordinary users to retain
the privilege of shutting down or restarting the system, after the
linuxconf tool had configured their permissions to deny this.
This was an implementation flaw that allowed an unsafe condi-
tion to arise. The administrator had established a policy that
user x may not restart the system, but user x still had that

19

privilege. This did not result in compromise of an account with
root privileges, or even unauthorized disclosure. However, it
may be used in conjunction with other flaws to compromise an

account with root privileges. We depict this as the following
single-transition attack net.

Root decides to use linuxconf
to administer access control for
shutdown/restart.

Once we have a sufficient collection of single-transition attack
nets, we then examine relationships between the interesting
places by attempting to arrange transitions between them. In
this way we can build up an attack tree that indicates the pos-
sibility of more serious flaws. The notation is sufficiently flex-
ible to denote a wide range of hypothetical or confirmed flaws
during brainstorming sessions. The notation also serves as a
record of complex dependencies or causal relationships that
may be suggested during the formulation of a hypothesis.

We mentioned earlier that we would use attack nets for penetra-
tion testing in circumstances similar to those most suited to the
flaw hypothesis approach, rather than the attack tree approach.

User x still has shutdown~restart
access.

User x is marked as no access
to shutdown~restart by linuxconf.

Figure 6: Linuxconf Flaw

We suggest this because attack nets are so useful for investigat-
ing combinations of flaws. This type of activity is more in keep-
ing with the hypothesis generation process. Attack nets can be
a powerful bottom up approach to penetration testing. While we
could also use them top-down, it is not clear what the benefit
would be. It is true that the diagrams can be more descriptive
than attack trees. Consider the leaf nodes Listen to Conversation
and Get Owner to State Combo of our example attack tree,
shown in Figure 1. The conjunctive node indicates that these
two actions must be accomplished together in order to complete
the action Eavesdrop, but there is no indication of sequence or
dependency. The assumed semantics of the actions makes it
clear in this case, but an attack net could depict the situation as
shown in Figure 7.

Owner seated at Accomplice discussing
bugged table, safe combinations.

Listen to conversation.

Conversation being
recorded.

Get Owner to State Combo. I

Combo O
Eavesdropped.

Figure 7: Attack Subtree For Eavesdrop Action

Since the original example did not have this much detail, we are
supposing some conditions. However, it is clear that the attack
net model can provide much more information than the attack
tree. We can see a necessary sequence: that the action of getting
the owner to state the combination must take place after we

have achieved a situation where his conversation is being re-
corded. We could also be more specific about distinctions be-
tween actions and resulting states. Furthermore, an insight may
arise from consideration of the place (state) where the owner's
conversation is being recorded. We may discover other signifi-
cant attacks from consideration of a security state where the

20

safe owner's conversation is being recorded.

5 Conclusions

The attack net approach to penetration testing is a departure
from both the flaw hypothesis model and the attack tree model
but it retains the essential benefits of both. Any penetration test-
ing process is unavoidably dependent upon the flaw hypothesis
process model. Any valid penetration testing process model will
retain many of its features and so does the attack net model.
Nevertheless, the attack net penetration testing process brings
more discipline to the brainstorming activity without restricting
the free range of ideas in any way. Attack nets also provide the
alternatives and refinement of the attack tree approach. It is not
clear whether attack nets are better than attack trees for top-
down testing of poorly documented operational systems.

Attack nets provide a graphical means of showing how a collec-
tion of flaws may be combined to achieve a significant system
penetration. This is important since an attack net can make full
use of hypothetical flaws. Attack nets can model more sophisti-
cated attacks that may combine several flaws, none of which is
a threat by itself. The ability to use discovered transitions (i.e.
security relevant commands) to connect subnets allows penetra-
tion teams to communicate easily about the cumulative effects
of several minor flaws.

The separation of penetration test commands or events from the
attack states or objectives also increases the descriptive power
of this approach. The basic notion of an initial security relevant
state, the hostile test input, and the resulting security state is
captured by the minimal Petri net representation.

In addition to specifying composition or refinement, attack nets
can also model choices. The use of disjunctive transitions al-
lows the movement of some tokens while other places are
empty, thus modeling vulnerabilities that could be exploited in
several ways or alternative attacks on a single goal.

Attack nets can readily depict the precedence and progress rela-
tionships in concurrent and distributed attacks. This could be
more significant as attacks become more sophisticated by mak-
ing use of concurrency and cooperation.

Finally, there is an enormous body of literature regarding Petri
nets. It seems reasonable to expect further improvements can be
made by applying some of these results.

References

1. ESCAMILLA, T. Intrusion Detection: Network Security
Beyond the Firewall. Wiley, 1998.

2. LINDE, R. Operating System Penetration. In Proceedings
of the National Computer Conference, Vol 44. AFIPS
Press, Montvale, NJ, 1975.

3. McDERMOTT, J. and FOX, C. Using Abuse Case Models
for Security Requirements Analysis. In Proceedings of
15th Annual Computer Security Applications Conference,
Phoenix, Arizona, December 1999.

4. SALTER, C., SAYDJARI, O., SCHNEIER, B. and
WALLNER, J. Toward A Secure System Engineering
Methodology. In Proceedings of New Security Paradigms
Workshop, Charlottesville, Virginia, September, 1998.

5. SCHNEIER, B. Attack Trees. Dr. Dobbs Journal, Decem-
ber 1999.

6. WEISSMAN, C. System Security Analysis/Certification
Methodology and Results. SP-3728, System Development
Corporation, Santa Monica, CA, October 1973.

7. WEISSMAN, C. Penetration Testing. In Information Se-
curity Essays. Abrams M.D., Jajodia, S., Podell, H. eds.
IEEE Computer Society Press, 1994.

8. WEISSMAN, C. Penetration Testing. In Handbook for
the Computer Security Certification of Trusted Systems.
Naval Research Laboratory Technical Memorandum
5540:082a, 24 January 1995.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted wi thout fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee,
New Security Paradigm Workshop 9•00 Ballycotton, Co. Cork, ireland
© 2001 ACM ISBN 1-58113-329-410110002. . .$5.00

21

