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Abstract 

Security protocols are essential to protecting electronic 
information, but security protocols are much more complex 
than many people think. Twenty years of research has failed 
to ensure security protocol effectiveness. We propose a new 
paradigm to protect secure enclaves. Using Dynamic 
Security Protocol Analysis, we will monitor executing 
security protocols and detect attacks in real-time by 
comparing ongoing activity to an accumulated knowledge 
base. The technique is founded on previous research in 
security protocol verification and on computer and network 
intrusion detection. Our thesis has several embedded 
research components. The following items summarize our 
challenges. 

1. Define the methodology to identify malicious behavior 
2. Gather distributed security protocol activity information 
3. Accumulate the attack detection knowledge-base 

Future protection of the Internet will rely on security 
protocols. We must use dynamic security protocol analysis 
to protect from attack by sophisticated intruders. 

1. Introduction 

Secure electronic communication relies on the application of 
cryptography. Cryptographic techniques are used to provide 
the confidentiality, integrity, non-repudiation, and 
authentication services necessary to exploit the capabilities 
of the Intemet in the face of ever more sophisticated 
intruders. Even with perfect encryption, communication may 
be compromised without effective security protocols. 
Unfortunately, security protocols are known to be h/ghly 
susceptible to subtle errors. To date, we have relied on 
formal methods to tell us if our security protocols are 
effective. These methods provide static evaluation that is 
largely dependent on the skill of the analyst. Further, they 
provide no complete or measurable level of security of the 
protocols they evaluate. As a result, secur/ty protocols are in 
operation that have known and unknown flaws. While static, 
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off-line methods are incomplete, we are not aware of any 
methods or attempts to analyze security protocols on-line, 
dynamically. In this paper, we propose a new paradigm of 
on-line security protocol verification, Dynamic Analysis of 
Security Protocols. 

In the past year, the visibility of attacks has increased. 
Propagation of the Melissa and ILOVEYOU viruses along 
with the devastating Distributed Denial of  Service Attacks 
(DDoS) has raised public awareness of problems that 
computer security experts have known about for years. The 
vulnerabilities that these attacks illustrate will not be easy to 
solve. In fact, in the February 15th issue of Crypto-Gram, 
Bruce Schneider suggests that there is no solution to DDoS 
attacks under the current Internet architecture. We contend 
that only the establishment of authenticated enclaves secured 
by cryptography can protect against such attacks by filtering 
traffic from unknown sources at enclave boundaries and by 
limiting the pool of effective zombies to the attacker. The 
cryptography that provides these enclaves will rely on 
effective security protocols. 

Additionally, there has recently been an explosion in the 
growth of Public Key Infrastructure technology, where 
centralized or partially centralized services provide addresses 
and keys for participants desiring to establish secure channels 
with one another. These trusted services are worthy targets 
for intruders since successful intrusion would have wide- 
ranging impact. If a central trusted service can be 
compromised, it might be possible to use that service as an 
oracle, to compromise communications between any two 
participants using that service or to masquerade as any 
participant with virtually no trace. Such attacks are already 
manifesting [36], with little corresponding effort to address 
this threat in a systematic way. 

Procter [43] confirms the rapid spread of encryption 
technology used to protect Intemet packets. He points out 
that: "Encryption sleeves are becoming very common at all 
levels of the network, from virtual private networks (VPNs) 
to session encryption, such as secure shell (SSH) and 
application encryption such as secure socket layer (SSL) 

The security of the information provided by encryption 
services is dependent on security protocols. Extensive work 
has been done to test [22] and verify [16] security protocols, 
and significant progress has been made in these areas. 
Nonetheless, no method provides complete, or even 
measurable, confidence in security protocols. In fact, based 
on the nature of security protocols and their environment, it 
may be impossible to accurately predict their performance 
through formal analysis or automated testing. In [15] the 
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authors show how attacks can be constructed through 
interaction of two simultaneously executing protocols, even 
though both protocols are "secure" when run independently. 

The work on verification of security protocols has been 
largely theoretical, since cryptographic systems are few in 
comparison to the overall scope of the Internet. Conversely, 
Intrusion Detection System (IDS) research has been highly 
successful in meeting practical, low assurance security 
requirements in an Internet environment [4, 7, 11, 18, 35]. 
IDS techniques focus on characteristics of "normal" network 
traffic, and normal user behavior as identified through 
network and host activities. Historical data is tracked and 
modeled by statistical measures providing a baseline to 
compare new activities against. Two examples of the data 
considered by IDSs are: 

1. The commands a user routinely issues to a host 

2. The type of traffic generated by an application 
on the network (identified by the Interuet Protocol (IP) port). 

More recently, efforts have been made to extend intrusion 
detection techniques to a slightly different environment. In 
[11], Jou, Gong, et al. show how network protocol traffic can 
be analyzed to protect the network routing infrastructure. 

In the same way, we believe that established intrusion 
detection techniques apply to active analysis of the 
environment that surrounds trusted services in high assurance 
systems. In this paper, we provide a framework of how IDS 
technology can be applied to the security protocol 
environment, and extend this work by categorizing attacks in 
order to determine appropriate responses to detected 
anomalies and intrusions. While there has been intense 
research in security protocol analysis and verification and 
equal emphasis on research in intrusion detection, the two 
fields have not been considered together. We suggest that 
combining these technologies can create a tool that will 
automatically detect attacks on trusted security services 
through identification of anomalies in the security protocol 
traffic. This technology can also characterize potential 
intrusions in order to suggest a proper action to take in 
response to the noted anomaly. 

The cnmuiative result is that this research will provide a 
mechanism for active defense and response to attack for 
security services. The mechanism will ensure reliable, 
effective performance of critical security services and will 
prevent sophisticated attackers from utilizing or 
masquerading as these security services. 

2. Security Protocol Verification 

Security protocols are intended to provide secure services. 
Most often, these services entail establishing a secure 
channel between two communicating principals. 
Unfortunately, security protocols are subject to flaws that are 
not easy to detect. If  the protocols underlying the secure 
channel are flawed, then the security objectives of the 
participants are undermined, possibly at great financial, 
physical, or other risk to the participants. [26] first 
highlighted vulnerabilities of security protocols, and a 

mountain of research amassed since that time aimed at 
ensuring the effectiveness of these security essentials. 

Protocol verification attempts have generally fallen into one 
of four categories: 

1. Testing tools designed to reduce the search 
space of possible errors [22] 

2. Epistemic logics [2] 

3. Theorem proving techniques [12, 33, 28, 24] 

4. Symbolic Model Checkers [29,30] 

Other, less mature paradigms have emerged based on formal 
semantics [39], and Brackin has been successful in finding 
flaws by combining application of security protocol design 
principles with logical protocol analysis [3]. BeUare and 
Rogaway proposed provably secure protocols in [42]. Still, 
each of these techniques are static in the sense that they are 
performed on protocols in a laboratory environment in 
symbolic execution only and consider theoretic 
vuinerabilities based largely on the form of the messages. 
The results are not based on actual protocol execution, but 
are founded on a mathematical representation (model) of the 
protocols used (mathematically) to prove security properties. 

Protocol verification results to date are mixed. On the 
positive side, many protocol vulnerabilities were (and still 
are being) identified that likely would not have been found 
without formal methods. In fact, the literature is filled with 
uncounted errors detected in proposed, production, and 
contrived protocols. So many attacks were found that they 
were categorized in 1994 when Syversun produced a 
taxonomy of protocol attacks [32]. The categories of attacks, 
and corresponding protocol vulnerabilities, range from 
misuse of  encryption (signing encrypted messages) to 
dangerous message formatting (components in one message 
are not clearly distinguishable from components in another 
message of the same protocol). 

Interestingly, clever intruders that utilize multiple concurrent 
sessions exploit most of the detected vulnerabilities, often 
when the protocol was written (intentionally or not) to be run 
independent of any other sessions I. As a result, much of the 
existing security protocol verification research reflects this 
paradigm, where a protocol is shown to be resistant (or 
vulnerable) to attacks accomplished by an intruder that 
simultaneously engages one or more hosts in multiple 
sessions of the [single] protocol to be verified. Tjaden [34] 
and Kelsey et al. [15] address the more realistic environment 
where each principal is executing multiple sessions of many 
varying protocols. The challenges to static protocol 
verification in a multi-user, multi-protocol environment are 
even more daunting. 

I In [19], Lowe demonstrates an attack on a famous protocol 
by using that protocol in a subtly different context than it was 
originally intended for [41]. 
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The successes of  verification techniques in finding errors 
notwithstanding, none of  these methods have been shown to 
be effective in showing measurable security in any protocol 
or class of  protocols. So, while no protocols devised to date 
are proven secure, there is no evidence in the literature that 
anyone has considered dynamic analysis of  real protocol 
traffic to detect compromise or attack. That is the focus of  
this paper. 

3. The Operating Model 

3.1. Definitions. 

We consider the vulnerabilities to centralized security 
services to occur through protocol sessions that provide 
system-wide secure channels and that shield these channels 
from attacks from lower layer attacks. Terminology 
applicable to secure channels is often confused with that 
associated with normal network traffic. Here, we present a 
few definitions to distinguish our discussion of  messages, 
sessions, etc. 

Principals are participants in a protocol session, 
distinguishable by a unique identifier. Our focus is on 
special principals that we refer to as security servers, trusted 
servers, and at times Key Distribution Centers. The common 
characteristic of  each of these three terms is that they 
represent principals that provide a security service to other 
principals, and are, thus, integral components of  the security 
infrastructure, with significant impact on the security for 
those principals that they serve. 

The messages that we are interested in are only those used in 
a protocol session. Anonymous messages, network overhead, 
and other traffic not associated with security protocols for 
trusted services are not messages in our sense. To 
distinguish the traffic of  interest to us, we define a "message" 
as a tuple of  at least four elements: 

1. The identifier of  a principal representing the source 
(originator) of  the message 

2. The identifier of  a principal representing the 
destination (recipient) of  the message 

3. The message payload which may be a structured 
element comprised of  one or more data elements to 
be conveyed from the source to the destination. 

4. A protocol identifier 

A protocol is a fixed sequence of  messages predefined to 
principals that either originate or receive the message(s). 
Each principal may recognize and utilize multiple protocols. 
A principal recognizes a protocol i f  the protocol is stored in 
the principal's private memory. Principal Alice utilizes 
protocol P if one protocol session exists or existed where 
Alice is either an originator or recipient of  a message with 
the protocol identification field of  P. 

A protocol session is an instantiation of  a protocol. Thus, it 
is a set of  messages that correspond to the form of a protocol, 
where the generic source aad destination identifiers are 
replaced with actual identifiers and an actual payload 
replaces the generic payload. Notice that every message that 

meets our definition is a message of  a protocol session. We 
recognize that there will be many non-protocol transmissions 
on any network, but for our purposes, we ignore 
transmissions that are not messages by our definition. 

3.2. Traces. 

It is normal practice to specify protocols as an execution 
trace [38] of  actions between principals, with each principal 
taking turns. These protocols are listed as though the 
messages are executed sequentially, on a single processor, 
when they are intended for concurrent execution, in a 
distributed environment. In practice, any principal may be 
executing multiple protocols concurrently. In this case, a 
trace is the set of  all messages executed by a principal. A 
trace may be thought of  as an interleaving of  protocol steps 
as described in [32] and [13], meaning the execution of  the 
steps of two different protocol sessions are intermixed. 

It is important to distinguish between the symbolic execution 
of a protocol and an actual execution. For existing methods 
of protocol verification, symbolic protocol execution is 
examined. That is, protocols are encoded with generic 
values and readable, symbolic identifiers to facilitate 
reasoning about the results of  the protocols. It is this 
symbolic version of  the protocol that is recognized (as 
defined above) by principals. Conversely, when protocols 
are executing, they contain actual data that are not routinely 
readable to a human. For example, random numbers are 
largely unrecognizable to the human eye. Fortunately, 
protocols are executed on computers that can recognize 
random numbers and other protocol components, and can 
match the actual messages to their symbolic counterparts, 
even when executing multiple, complex protocols in a highly 
concurrent environment. 

A protocol trace is the accumulation of  actual messages sent 
and received by a principal in the order that they were sent 
and received. For a protocol session running alone, the trace 
is simply the listing of  the messages in the protocol. If  
multiple protocols (or multiple instances of  the same 
protocol) are executing concurrently, the trace will be 
extensively interleaved. This is a common occurrence in 
networking; where any large host may be concurrently 
executing requests from many different sessions for logon, 
file access, computations, etc. It is this type of  interleaved 
trace that present intrusion detection technology targets. 

3.3. The Man-in-the-Middle. 

The Man in the Middle model has been around for a long 
time. In [8] and later [1], the authors formally define such an 
environment, where every message in the communication 
system must pass through a powerful intruder. We target this 
model and the extensions from [37], because it is a powerful 
model, and it is easy to understand. Some of  the 
characteristics of  this model are that: 

- All messages to~from every principal (including the 
KDC) are to/from a single party (i.e. the intruder) 

- Principals operate in their own "address space". 
Personal memory changes only by receiving new 
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information through the network, or by performing 
computation on information that is already stored. 
This personal memory represents the local state of  
the principal. 

- The only knowledge that a principal can acquire 
about other principals is through the network. 

3.4. Challenges of  Man in the Middle. 

It is clear that assuming such a powerful adversary presents 
challenges to our ability to detect and respond to intrusions. 
Among the consequences of  our choosing the model are the 
following specifics. 

a. The Intruder knows much more than we do. 
Unless we make assumptions about the underlying 
communications [e.g. that we use a broadcast medium] or 
inject a distributed information gathering mechanism such as 
roving agents, we cannot see all messages. In fact, we 
assume to see only a very limited subset of the 
communications that may be used to generate an attack 
against us, to the extent that a KDC can rarely expect to see 
all (or even most) messages exchanged in a protocol. On the 
other hand, the intruder is assumed to see (and have 
immediate access) to ALL messages on the network. 

b. We are limited by realistic resource 
assumptions. In order to provide useful information about 
intrusions, even more critical for response, we must consider 
response time as a limiting factor for our methods. 
Conversely, because we assume the intruder is very 
powerful, they may conduct resource intense activities, such 
as gathering information over a long period and conducting 
fast searches over extensive databases in real time. 

Assuming the strongest model is essential when addressing 
the effectiveness of  security protocols. Applications using 
this environment will have a strong assumption of  security 
and, thus, will pass more sensitive and/or valuable 
information. Additionally, unlike existing network services, 
because of  the necessarily centralized nature of  security 
services, the impact of  a single intrusion can have broad 
scope, compromising a large volume of  transactions. The 
ability to detect these attacks, hopefully before they occur, 
and to reduce the impact if  they are successful is essential to 
network security, recovery, and deterrence. 

4. Intrusion Detection. 

InWasion Detection is a fertile research area since the mid- 
1980's and it continues to be a topic of  intense research [7], 
[35], [17]. A principal technique used in intrusion detection 
is profiling, detailed in Denning's seminal paper [5]. We will 
show how monitoring activity to detect and respond to 
attacks mirrors the environment that Denning addresses. 

The problem is deeper than simply detecting all attacks, since 
we could meet this chellenge by simply signaling "possible 
attack" for every protocol action taken. Of  course this would 
provide no useful functionality, since we could not take 
effective action based on that feedback. With that in mind, 
we recognize two measures of  our effectiveness as false 
negatives and false positives. 

a. Do we detect all attacks (false negative)? If  not, 
what percent of  attacks will we detect? We call 
this metric: percentage of  attacks detected. While 
we can empirically analyze our system utilizing 
this metric, it is only useful in a laboratory 
environment, since in an actual environment we 
cannot know how many attacks that we do not 
detect. 

b. Do we incorrectly detect activities that are not 
attacks (false positives)? If  so, what percent of  
activities will produce false alarms? This metric is 
termed: ratio of false alarms to activities. This 
important metric can be analyzed in a laboratory 
and in production use. We must have the goal of  
keeping this metric as low as possible to ensure 
that appropriate actions arc taken when attacks arc 
detected. 

4.1. 2Behavior as an Attack Indicator. 

Intrusion detection is focused on the behavior of  
communicating principals. The assumption is that, while it 
may be disguised, a principal's behavior will reflect their 
intentions. There are two fundamental behaviors that are 
used to identify potential intrusions: 

a. That which was previously shown to result in 
compromise 

b. That which significantly deviates from the norm 

4.2. Signatures. 

In the first category we include characteristics of  known 
attacks on cryptographic protocols as well as intuitively 
dangerous behavior. These attacks may be characterized by 
sequences of  activity traces, similar to methods for virus 
scanning and for network intrusion detection [4]. The pattern 
of  these sequences produces a signature for the known 
attack. Traces that match these signatures are always 
suspect, and in some cases may be enough evidence to affect 
a protective or damage control response in and of  
themselves, with no corroboration necessary. An example, 
given in the same reference is that any program that sets UID 
during execution should be flagged as a high risk. Another 
example of  an activity pattern that is always suspect given by 
Denning [5] is a high rate of  password failures by any user. 

Since the famous attack on the Needham and Schrueder 
protocol in [6], uncounted attacks have been documented on 
contrived and production protocols. Syverson produced a 
taxonomy of protocol attacks [32] that may allow abstract 
construction of  signatures for intrusion detection through 

protocols in much the way that Spafford's taxonomy [14] of 

2 Throughout this paper, we use the terms behavior and 
activity almost interchangeably. Behavior is used to reflect 
observed activity, as well as some intention that preceded the 
action. Most often, behavior refers to activities that are 
abnormal rather to that which is inherently dangerous. 
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network intmsious provides a framework for identifying 
signatures for network attacks in IDIOT. 

Examples of  dangerous behavior in a security protocol 
envimument include: 

- Simultaneous triangular sessions (A->B, B->C & C- 
>A). 

- Sequential triangular sessions (A->B, B->C & C->A) 

- Request to encrypt with a public key followed by a 
request to sign with the same key. 

- Simultaneous Group Protocols 

- Failed protocol sessions 

- Suspended or partially completed protocol sessions 

- Repetitive use of one cryptographic key 

4.3. Profiles. 

Profiling essentially means recording observed activity of  a 
principal over time and producing a data structure that 
reflects normal activity of  that principal. This data structure 
is called a profile. The fields in the profile contain data that 
models the activity in some predefined way. We will select 
models that allow us to accomplish the two goals that we just 
laid out, of  detecting a high percentag~ of attacks and of  
producing a low percentage of  false alarms. 

4.3. Prof'fling for Abnormal Behavior. 

The second category of  behavior that we are interested in is 
anomalous activities. If  we assume that intrusions are not 
routinely accomplished, then ! is reasonable to infer that 
abnormal behavior is more likely to be an intrusion than is 
normal behavior. Denning states it this way in [5]: 

The model [for the use of  profiling] is based on the 
hypothesis that exploitation of  a system's 
vulnerabilities involves abnormal use of  the 
system; therefore, security violations could be 
detected from abnormal patterns of  system usage. 

If  we accept this premise, then we can reduce our problem of 
detecting intmsiuns to one of detecting abnormal behavior. 
First, we must categorize behavior in order to be able to 
distinguish that which is normal from abnormal. For a 
shared computer environment, Denning categorizes behavior 
based on activities on objects, where the objects are 
resources ("...files, programs, messages, records, terminals, 
printers, and user- or program-created structures."[5]). 

Our view of intrusions is based more exclusively on 
activities; specifically, activities carried out through security 
protocols. We expect that, after sufficient data has been 
gathered to reduce the impact skew and after usage has 
stabilized after initial system usage, normal behavior will be 
recorded. Thus, we can characterize the behavior of  each 
principal (Alice) based on measurable criteria such as: 

4.3.1. Which protocols has Alice utilized by 
originating the first message7 A legitimate 

principal (or an intruder that has compromised a 
legitimate principal) that initiates a protocol that 
they do not normally use may indicate an attempt 
to generate data that may allow an attack. 

4.3.2. Which protocols has Alice utilized as recipient 
of  the first message? A legitimate principal (Alice) 
that receives an unusual request for service may 
indicate that the originator is making an attempt to 
utilize Alice as an oracle. 

4.3.3. How frequently does Alice utilize each protocol 
as originator of  the first message? An increase in 
frequency of  use of  a protocol could reflect an 
attempt to generate a value in a data field necessary 
to construct an attack. 

4.3.4. How frequently does Alice utilize each protocol 
as recipient of  the first message? A legitimate 
principal (Alice) that receives an unusual number 
of  requests for service may indicate that the 
originator is making an attempt to utilize Alice as 
an oracle. 

4.3.5. What other principals are normal recipients for 
each protocol that Alice utilizes and where she 
originates the first message? A sudden change in 
the targets of  requests for service by Alice may 
indicate that Alice has been compromised and is 
now being used to gather information for an attack. 

4.3.6. What other principals are normal originators for 
each protocol that Alice utilizes and where she is a 
recipient of  the first message. A sudden change in 
the sources of  requests for service from Alice may 
indicate that another principal has been 
compromised and is now being used to gather 
information for an attack. 

4.3. 7. In what order does Alice utilize protocols where 
she is the first message originator? Multiple 
sudden changes in the order of  requests for service 
from Alice may indicate that Alice is making an 
attempt to gather information for an attack. 

4.3.8. In what order does Alice utilize protocols where 
she is the first message recipient? Multiple sudden 
changes in the order of  requests for service to Alice 
may hdicate that another principal is making an 
attempt to gather information for an attack. 

4.3.9. How often does Alice exercise an encryption 
followed by signature? While signing an 
encrypted message is considered a vulnerable 
activity, a principal may, after careful 
consideration, conduct certain ordered activities 
without concern. A change in this ordering pattern 
may indicate that an attack is ongoing. 

4.4. Trace profiles. 

In our earlier definition of  traces, we referred to the tendency 
of  protocol analysis to focus on the symbolic execution. We 
again consider the symbolic execution of  protocols, not as 
derived from a preconceived or contrived execution for test 
purposes, but the symbolic representation of  messages 
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executed in a production protocol environment. Rather than 
constructing the interleavings from the protocols, we 
reconstruct the symbolic trace from the execution trace of  the 
protocols as they occur in the system. 

Symbolic trace information may be extracted from state data 
maintained by the host representing each principal as the 
protocols are executed, or a sophisticated listener monitoring 
communications on the network may infer it. Since we are 
concerned with activities that correspond to a trusted 
principal, we can assume that the necessary state information 
will be available to translate actual messages into symbolic 
form in real t ime? 

Because we can recover the symbolic representation of  
protocols as they execute, we can construct profiles of  
protocol usage base on their symbolic characteristics. For 
example, we can record the symbolic representation of  every 
protocol that executes on the monitored computer and record 
statistical information about the sessions, and about each 
message. We can determine which protocol that the 
monitored principal participates in. We can determine who 
the monitored principal communicates with and can gather 
statistics regarding the time and sequencing of application of 
these protocols. These statistics can be translated into the 
model information discussed in the next paragraph. 

4.5. Statistical Models. 

The metrics described in paragraph 4.1 can be represented in 
statistical models that Denning describes [5, pp122-3]. For 
example, the metrics described in paragraphs 4.3.4 and 5 can 
be analyzed using the operational model, mean, and standard 
deviation as given by Denning in par 5.2.1 and 2 and by the 
multivariate model from Denning's 5.2.1.3. The Markov 
Process Model as given in Denning's 5.2.4 can measure the 
metrics we describe in paragraphs 4.3.1, 2, 5, and 6. The 
Time Series Model Denning presents in paragraph 5.2.5 are 
applicable to the events we describe in paragraphs 4.3.3, 
4.3.4, 4.3.7, 4.3.8, and 4.3.9. 

Such modeling will serve to improve both the percentage of  
attacks detected and the ration of  alarms to activities, similar 
to the results of  intrusion detection systems. 

A sample profile for measuring Trenfs activity may include a 
three dimensional array, where one dimension represents 
each protocol that Trent recognizes, another represents each 
other principal that Trent commanicates with, and the third 
distinguishes whether Trent was the originator or recipient of  
the first message. 

5. Categorization of Attacks. 

5.1. Taxonomies of attacks. 

3 We consider evaluation of  actual protocol messages and the 
explicit program actions that result to be an uncharted 
research arena, with roots in classic intrusion detection 
methodology. We leave that discussion for another time. 

We now turn from our focus from detecting attacks on 
trusted principals to categorizing attacks for the purpose of  
formulating appropriate responses. This is a classic problem 
in intrusion detection, including deciding what to do when an 
attack is detected, and what to do when behavior is 
encountered that is neither categorized as an attack, nor as 
normal behavior. We earlier pointed out taxonomies for 
intrusions into computer systems [14] and for attacks against 
protocols [32]. The latter is of  particular importance to us, 
and assists us in categorizing behavior for selecting an 
appropriate response. 

Syverson partitions attacks against protocols into two major 
categories of  external and internal attacks. These are further 
decomposed into categories and sub-categories. These 
categories and responses follow: 

- Interleaving attacks (including replays) requiring 
contemporaneous execution of  more than one 
protocol. An appropriate response to detection of 
contemporaneous execution of  two protocols that 
are vulnerable to such an attack would be to 
suspend or cancel one session or the other. 

- Replay attacks that need not require contemporaneous 
execution of  more than one protocol. The proper 
response in this ease would be dependent on the 
state of  the principals involved when the attack is 
detected. If the attack is detected during execution 
of  the reference session, keys may be updated, 
certifications revoked, and existing sessions may 
be aborted. If  the attack is detected during the 
attack session, the attack session would be aborted. 

- Message deflection attacks. I f  message deflection is 
detected, there are two responses required. First, 
the principal that was the intended destination for 
the deflected message must be notified and damage 
control actions taken. Second, the principal that 
received the message should be notified and the 
protocol session, i f  it is still active, aborted. 

- Message reflection attacks. The impact of  message 
reflection is centralized to one principal that is the 
originator and recipient of  the message. Again, the 
proper response depends on the timing of  the 
detection. I f  the attack session is still under way, it 
should be aborted. If  the attack session has ended, 
the victim should be notified of  the details of  the 
attack and should initiate local damage control 
activities. 

5.2. Other categorizations of attacks. The 
above taxonomy provides a comprehensive view of  protocol 
vulnerabilities from the perspective of  interleavings of  
messages. We take another perspective of  these 
vulnerabilities to consider the intent of  attackers and discuss 
responses related to these intentions. Once an attack is 
detected, at least three goals must be considered when 
constructing a response: 

a. Assess and correct the damage of  the compromise. 

b. Prevent further compromise. 

82 



c. Catch and prosecute the perpetrator. 

In the following discussion, we consider Alice and Bob to be 
uncompromised principals, Trent is a principal that provides 
trusted services, and Mallory is a malicious attacker. 

- Compromise secrecy. This is the canonical attack. 
Alice and Trent need to share information 
privately. Mallory wants to know the information 
and constructs an attack that will divulge the 
message meaning to her. Terminating the session, 
changing session or key exchange keys, identifying 
and gathering appropriate log files may be 
appropriate responses. 

- Compromise integrity. Mallory may attack the 
system in order to provide inaccurate information 
to Alice or Trent. When such an attack is detected, 
data from the attacked session should be validated. 
Audits from previous sessions should be held. 

- Compromise nonrepudiation. If Mallory can sign 
messages as i f  she were Alice, then she can 
incorrectly attribute actions or information to 
Alice. Detection of  such an attack should result in 
correction of  any signatures generated during the 
attack session and should initiate review of  records 
of  previous transitions involving signature by 
Alice. Depending on the nature of  the attack, long 
term key change may be in order. 

- Compromise availability. Mallory may desire to 
prevent Alice from receiving one or more 
messages while preventing Alice from recognizing 
that the message(s) have been delayed or destroyed 
undelivered. The appropriate response to a denial 
of  service attack is to restore the secure channel 
and notify other principals of the loss of  service so 
that any lost transmissions may be recreated. 

- Attempt to masquerade as Alice to Bob. If  Mallory 
can convince Bob that she is Alice, she can 
compromise secrecy, integrity, and nonrepudiation 
between Alice and Bob. Response to detection of  
such an attack is dependent on its success. If  the 
masquerade has been successful, affected 
participants should be notified and long-term keys 
changed. At a higher level, the nature of  the attack 
should be evaluated and the security vulnerability 
removed. Participants should be notified of the 
vulnerability until it is resolved. 

- Attempt to masquerade as Alice to Trent. If  Mallory 
can convince Trent that she is Alice, she can 
compromise secrecy, integrity, and nonrepudiation 
between Alice and all other principals. 

- Attempt to masquerade as Trent. If  Mallory can 
convince all other principals that she is Trent, then 
Mallory can compromise secrecy, integrity, and 
nonrepudiation between all principals. Because of  
the widespread ramifications, these are the most 
dangerous masquerade attacks. Response to an 
attempt to masquerade as a trusted service must 
first focus on controlling the damage. 

- Attempt to use Alice as an oracle. I f  Mallory can 
devise a general method of  utilizing Alice as an 
oracle, then Mallory can masquerade as Alice to 
any other principal, compromising secrecy and 
nonrepudiation. 

- Attempt to use Trent as an oracle. I f  Mallory can 
devise a general method of  utilizing Trent as an 
oracle, then Mallory can masquerade as Trent. 

6. Protocol-oriented, State-based Attack 
Recogni t ion 

To date, the only known provably secure protocols are zero 
knowledge protocols p] that do not generally have broad 
applicability. Since we expect any protocol that protects 
trusted services has flaws (that are either known or unknown) 
we select a protocol with a known flaw to illustrate how an 
attack on a cryptographic protocol can be dynamically 
detected using intrusion detection-like technology. The 
protocol we present is the canonical Needham and Schroeder 
Public Key Protocol [26] with the public-key acquisition 
steps omitted, given in Figure la, with a known attack given 
in Figure lb. This is a parallel session attack and an insider 
attack, because it is only possible for an intruder (Mallory) to 
accomplish the attack when a principal (Alice) begins a 
session with Mallory, where Mallory is known and trusted by 
Alice. It also requires that Alice and Mallory know some 
third party (Bob) that trusts both Alice and Mallory. 

As we noted earlier, the concurrent execution of  security 
protocols by a group of  principals can be represented by a 
serialized, interleaved execution trace of  the steps in each 
protocol session. This trace provides the environment for our 
dynamic protocol analysis. For this illustration, we show 
how we might dynamically detect the attack on the Needham 
and Schroeder Public Key Protocol (NSPKP) by identifying 
its signature. We recognize that NSPKP has many 
signatures, but for the purpose of  simplicity, we start by 
focusing on the source and destination of  the messages. The 
signature that we will recognize is given in Figure 2. 

Needham and Schroeder Public Key Protocol 

1. A -> B: [na]PKb 
2. B ->A: [na,nb]PKs 
3. A -> B: [nb]PKb 

Figure la  

1. A -> M: [na]PKm 
1'. Ma -> B[n~,A]PKb 
2'. U -> A: [ns,nb]PKe 

2. M -> A: [ns,nb]PKa 
3. A -> M: [nb]PKm 

3'. M -> B: [nb]PKb 

Figure I b 

We model the behavior of  this trace with the state transition 
machine given in Figure 3. The machine represents a 
protocol signature by mapping the sender/receiver pair for a 
message into one of  the possible segments of  a trace. We 
assume valid participants are members of  some population P. 
In our illustration, A, B, M ~ P. For example, from the start 
state, he machine will transition into Si when a valid 
principal begins a session with another valid principal. 
When the originating principal sends a message to another 
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(different) principal, the machine transitions into $2. When 
the recipient of  the second message sends a message to the 
originator of  the first message, the machine transitions into 
$3 and SO on. 

In the simplest case, where the steps are executed in exactly 
the sequence given in Figure 3, without any other activities 
in between, this model will detect an attempt by Mallory to 
defeat the NSPKP. You may notice that recognition of  the 
execution of  messages in this sequence does not guarantee 
that an attack has occurred. Fortunately, dynamic attack 
detection does not rely on guarantees. Beaconing on 
suspicious behavior is often sufficient to provide the 
necessary level of  protection. Moreover, we humbly leave 
the issue of  false positives for our future work section. 

There are many positive qualities of  this simple model. One 
may consider that transition through the table reflects the 
likelihood that an attack is under way. 
When the machine is in the Start state A - > M  
(there are no active messages that meet the Ma "> B 
format), there is no chance that an attack is B -> A 
under way. When the first recognized 
message is received, it is still unlikely that B -> A 
it is the first message of  an attack sequence, A -> M 
but it is more likely than when no messages Ma -> B 
were being processed. A more significant 
jump in likelihood may occur when the Figure2 
second message meeting the format is detected. Similarly, as 
the machine reaches larger state numbers, the likelihood that 
an attack is underway increases. This monotonic property 
may be used to signal probability of  attack to a system 
monitor or combined with other sensors to give a network 
threat picture. 

New State Transition Old State 

A -> M Start 

A 4 -> B S 1 

B -> A S ,  

M -> A $3 

A - >  M $4 

A-> B 86 

1 $1 

2 Sz 

3 $3 

4 $4 

5 Ss  

6 Beacon 

Figure 3 

While this simple model has some relevant semantic 
meaning, it is also obvious that it also has problems. For 
example, it is possible that, under this model, an actual attack 
sequence may be masked by legitimate sequences. This is 

4 We model this step as originating from Alice because the 
intruder is considered all powerful and can, thus, pose as any 
other valid principal as far as sending and receiving 
messages is concerned. We also address issue of  recording 
this information for distributed principals in the "Future 
Work" section. 

illustrated by the case where after starting a session with 
Mallory, Alice starts a legitimate session with Bob (or 
Debbie, etc.), followed by Mallory's masquerade message as 
Alice. The machine would be out of  synchronization with 
the actual attack, masked by Alice's valid message. We could 
spawn a new machine every time such conditions occur. It is 
also possible to remove this hindrance by slightly extending 
the model. 

The root of  that problem with our simple illustration was that 
the signature does not contain sufficient specificity. We can 
increase the specificity of  our recognizer by keeping track of  
the protocol session for each message. This allows us to 
prevent the masking we noted above in a systematic way by 
spawning only a single new machine when we recognize that 
a possible third session in the proper format exists, as shown 
in Figure 4. 

We illustrated this new paradigm with a very simple 
example, then extended the example slightly to show the 
power that can be attained with only a little additional 
information. We do not believe that the two illustrations 
exhaust the utility of  information available to a dynamic 
protocol analysis mechanism. In the illustrations given here, 
we do not consider any information passed as the payload of  
the message, and note that it is on payload information that 
traditional protocol verification base their entire analysis. 
While getting at that information in a dynamic environment 
will be more than a trivial challenge, its potential is evident. 

Old New 
Message Session State State 

A -> M 1 Start  S I 

A - > B  2 $1 Sz 

A - >  C 3 S 2 Spawn 

B -> A 2 $2 S3 

M - > A  1 $3 $4 

A - > M  1 $4 Ss 

A -> B 2 S 6 Beacon 

Figure 
4 

7. Future Work 

This effort is in its early stages. While experimental data is 
not available to support this thesis, the theoretical 
foundations are rock solid. The ability to analyze execution 
traces in real time was shown for operating system and 
network intrusion detection systems [4, 18, 35, 7]. The 
ability to describe existing attack is shown in Syverson's 
taxonomy [32], and the ability to detect previously unknown 
attacks using profiling techniques described by Denning [5] 
has been proven [18]. 

Many challenges lay ahead. We will first tackle the problem 
that we illustrate with the example in Section 6 of  detecting 
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known attacks using a signatme-based approach. In order to 
fully implement this paradigm, we must accomplish reliable 
remote protocol execution tracing capability. Many are 
addressing how to gather distributed information through 
agent-based mechanisms [27] and mobile code [10]. Others 
are focused on protecting remote agents [31]. We will first 
consider an integrated environment where principals 
cooperate so the necessary information may be easily 
gathered. We give a detailed description of this environment 
in [40]. We also intend to consider broadcast-only 
transmission environments that will become more prominent 
for secure enclaves as wireless technology advances. 
Finally, there is a clear application for intelligent, mobile 
agents to gather information that would complement other 
information sources. 

We have addressed many issues in this research direction in 
this paper in detail, and have addressed several others in 
general terms. We recognize that there are many open 
questions (theoretical and practical) that we have not 
addressed that must be resolved before dynamic analysis of 
security protocols becomes reality. Among them: 

How will we protect the detection system itself? 
How will we prevent tool misuse? 

- How will we systematically formulate appropriate 
responses for the numerous different behavior 
categories? 

- Will this IDS work within performance and storage 
constraints? 

We have already begun to establish the laboratory tools 
necessary to test and implement this mechanism. We are 
producing a compiler that will translate protocols specified in 
a language created for protocol verification into executable 
modules that we can implement on closed network security 
laboratory. 

We are further encouraged in this initiative by the allowable 
imprecision of the result. Our goal will not be 100% 
detection of assaults on security protocols with zero false 
positives. Rather, we will endeavor to produce a mechanism 
that meets or exceeds the qualitative standard set in recent 
intrusion detection system evaluations [18]. 

Finally, we believe that dynamic, on-line analysis of security 
protocols will provide a foundation for providing complete 
network situational awareness and active response to attacks 
and suspicions activity. As we mention in Section 6, this 
technique can recognize when a complete attack sequence 
has occurred, or when a partial attack sequence has occurred. 
We believe that this characteristic will allow appropriate 
responses to be systematically constructed for each global 
state. Responses will be generated based on factors such as 
the complexity, likelihood, scope, potential damage, etc. of 
the attack as well as other aspects of situational awareness 
(e.g. the current network threat posture). 

8. Conclusion 

We present a method to provide active defense for 
distributed security services. We have shown how proven 
intrusion detection technology combined with knowledge 

gained by formal analysis of security protocols can be 
applied to this problem. Our method involves addressing 
behavior relative to protocol activation and use rather than 
considering activities against objects, s is conducted in 
classic intrusion detection. We categorized protocol-based 
attacks and showed how this method can be used to increase 
situational awareness and threat picture by considering 
classes and characteristics of attacks and of suspicious 
behavior. 

Until recently, the requirement for trusted services essentially 
resided with the federal government and a few large 
corporations, where key exchange was most often carried out 
by courier, with the key material stored on paper tape or 
diskette. Present technology demands extension of the 
protection provided by cryptography. This necessitates 
extension of key distribution and, thus, authentication 
services. These centralized services are attractive targets for 
sophisticated intruders. The method we prescribe offers to 
protect this vital link to our security infrastructure. 
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