
Dynamic Analysis of Security Protocols
Alec Yasinsac

Department of Computer Science
Florida State University

Tallahassee, FL 32306-4530

Yasinsac(~,cs.fsu .edu

Abstract

Security protocols are essential to protecting electronic
information, but security protocols are much more complex
than many people think. Twenty years of research has failed
to ensure security protocol effectiveness. We propose a new
paradigm to protect secure enclaves. Using Dynamic
Security Protocol Analysis, we will monitor executing
security protocols and detect attacks in real-time by
comparing ongoing activity to an accumulated knowledge
base. The technique is founded on previous research in
security protocol verification and on computer and network
intrusion detection. Our thesis has several embedded
research components. The following items summarize our
challenges.

1. Define the methodology to identify malicious behavior
2. Gather distributed security protocol activity information
3. Accumulate the attack detection knowledge-base

Future protection of the Internet will rely on security
protocols. We must use dynamic security protocol analysis
to protect from attack by sophisticated intruders.

1. Introduction

Secure electronic communication relies on the application of
cryptography. Cryptographic techniques are used to provide
the confidentiality, integrity, non-repudiation, and
authentication services necessary to exploit the capabilities
of the Intemet in the face of ever more sophisticated
intruders. Even with perfect encryption, communication may
be compromised without effective security protocols.
Unfortunately, security protocols are known to be h/ghly
susceptible to subtle errors. To date, we have relied on
formal methods to tell us if our security protocols are
effective. These methods provide static evaluation that is
largely dependent on the skill of the analyst. Further, they
provide no complete or measurable level of security of the
protocols they evaluate. As a result, secur/ty protocols are in
operation that have known and unknown flaws. While static,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to fists, requires prior specific permission and/or a fee.
New Security Paradigm Workshop 9•00 Ballycotton, Co. Cork, Ireland
© 2001 ACM ISBN 1-58113-260-3/0110002...$5.00

off-line methods are incomplete, we are not aware of any
methods or attempts to analyze security protocols on-line,
dynamically. In this paper, we propose a new paradigm of
on-line security protocol verification, Dynamic Analysis of
Security Protocols.

In the past year, the visibility of attacks has increased.
Propagation of the Melissa and ILOVEYOU viruses along
with the devastating Distributed Denial of Service Attacks
(DDoS) has raised public awareness of problems that
computer security experts have known about for years. The
vulnerabilities that these attacks illustrate will not be easy to
solve. In fact, in the February 15th issue of Crypto-Gram,
Bruce Schneider suggests that there is no solution to DDoS
attacks under the current Internet architecture. We contend
that only the establishment of authenticated enclaves secured
by cryptography can protect against such attacks by filtering
traffic from unknown sources at enclave boundaries and by
limiting the pool of effective zombies to the attacker. The
cryptography that provides these enclaves will rely on
effective security protocols.

Additionally, there has recently been an explosion in the
growth of Public Key Infrastructure technology, where
centralized or partially centralized services provide addresses
and keys for participants desiring to establish secure channels
with one another. These trusted services are worthy targets
for intruders since successful intrusion would have wide-
ranging impact. If a central trusted service can be
compromised, it might be possible to use that service as an
oracle, to compromise communications between any two
participants using that service or to masquerade as any
participant with virtually no trace. Such attacks are already
manifesting [36], with little corresponding effort to address
this threat in a systematic way.

Procter [43] confirms the rapid spread of encryption
technology used to protect Intemet packets. He points out
that: "Encryption sleeves are becoming very common at all
levels of the network, from virtual private networks (VPNs)
to session encryption, such as secure shell (SSH) and
application encryption such as secure socket layer (SSL)

The security of the information provided by encryption
services is dependent on security protocols. Extensive work
has been done to test [22] and verify [16] security protocols,
and significant progress has been made in these areas.
Nonetheless, no method provides complete, or even
measurable, confidence in security protocols. In fact, based
on the nature of security protocols and their environment, it
may be impossible to accurately predict their performance
through formal analysis or automated testing. In [15] the

77

authors show how attacks can be constructed through
interaction of two simultaneously executing protocols, even
though both protocols are "secure" when run independently.

The work on verification of security protocols has been
largely theoretical, since cryptographic systems are few in
comparison to the overall scope of the Internet. Conversely,
Intrusion Detection System (IDS) research has been highly
successful in meeting practical, low assurance security
requirements in an Internet environment [4, 7, 11, 18, 35].
IDS techniques focus on characteristics of "normal" network
traffic, and normal user behavior as identified through
network and host activities. Historical data is tracked and
modeled by statistical measures providing a baseline to
compare new activities against. Two examples of the data
considered by IDSs are:

1. The commands a user routinely issues to a host

2. The type of traffic generated by an application
on the network (identified by the Interuet Protocol (IP) port).

More recently, efforts have been made to extend intrusion
detection techniques to a slightly different environment. In
[11], Jou, Gong, et al. show how network protocol traffic can
be analyzed to protect the network routing infrastructure.

In the same way, we believe that established intrusion
detection techniques apply to active analysis of the
environment that surrounds trusted services in high assurance
systems. In this paper, we provide a framework of how IDS
technology can be applied to the security protocol
environment, and extend this work by categorizing attacks in
order to determine appropriate responses to detected
anomalies and intrusions. While there has been intense
research in security protocol analysis and verification and
equal emphasis on research in intrusion detection, the two
fields have not been considered together. We suggest that
combining these technologies can create a tool that will
automatically detect attacks on trusted security services
through identification of anomalies in the security protocol
traffic. This technology can also characterize potential
intrusions in order to suggest a proper action to take in
response to the noted anomaly.

The cnmuiative result is that this research will provide a
mechanism for active defense and response to attack for
security services. The mechanism will ensure reliable,
effective performance of critical security services and will
prevent sophisticated attackers from utilizing or
masquerading as these security services.

2. Security Protocol Verification

Security protocols are intended to provide secure services.
Most often, these services entail establishing a secure
channel between two communicating principals.
Unfortunately, security protocols are subject to flaws that are
not easy to detect. If the protocols underlying the secure
channel are flawed, then the security objectives of the
participants are undermined, possibly at great financial,
physical, or other risk to the participants. [26] first
highlighted vulnerabilities of security protocols, and a

mountain of research amassed since that time aimed at
ensuring the effectiveness of these security essentials.

Protocol verification attempts have generally fallen into one
of four categories:

1. Testing tools designed to reduce the search
space of possible errors [22]

2. Epistemic logics [2]

3. Theorem proving techniques [12, 33, 28, 24]

4. Symbolic Model Checkers [29,30]

Other, less mature paradigms have emerged based on formal
semantics [39], and Brackin has been successful in finding
flaws by combining application of security protocol design
principles with logical protocol analysis [3]. BeUare and
Rogaway proposed provably secure protocols in [42]. Still,
each of these techniques are static in the sense that they are
performed on protocols in a laboratory environment in
symbolic execution only and consider theoretic
vuinerabilities based largely on the form of the messages.
The results are not based on actual protocol execution, but
are founded on a mathematical representation (model) of the
protocols used (mathematically) to prove security properties.

Protocol verification results to date are mixed. On the
positive side, many protocol vulnerabilities were (and still
are being) identified that likely would not have been found
without formal methods. In fact, the literature is filled with
uncounted errors detected in proposed, production, and
contrived protocols. So many attacks were found that they
were categorized in 1994 when Syversun produced a
taxonomy of protocol attacks [32]. The categories of attacks,
and corresponding protocol vulnerabilities, range from
misuse of encryption (signing encrypted messages) to
dangerous message formatting (components in one message
are not clearly distinguishable from components in another
message of the same protocol).

Interestingly, clever intruders that utilize multiple concurrent
sessions exploit most of the detected vulnerabilities, often
when the protocol was written (intentionally or not) to be run
independent of any other sessions I. As a result, much of the
existing security protocol verification research reflects this
paradigm, where a protocol is shown to be resistant (or
vulnerable) to attacks accomplished by an intruder that
simultaneously engages one or more hosts in multiple
sessions of the [single] protocol to be verified. Tjaden [34]
and Kelsey et al. [15] address the more realistic environment
where each principal is executing multiple sessions of many
varying protocols. The challenges to static protocol
verification in a multi-user, multi-protocol environment are
even more daunting.

I In [19], Lowe demonstrates an attack on a famous protocol
by using that protocol in a subtly different context than it was
originally intended for [41].

78

The successes of verification techniques in finding errors
notwithstanding, none of these methods have been shown to
be effective in showing measurable security in any protocol
or class of protocols. So, while no protocols devised to date
are proven secure, there is no evidence in the literature that
anyone has considered dynamic analysis of real protocol
traffic to detect compromise or attack. That is the focus of
this paper.

3. The Operating Model

3.1. Definitions.

We consider the vulnerabilities to centralized security
services to occur through protocol sessions that provide
system-wide secure channels and that shield these channels
from attacks from lower layer attacks. Terminology
applicable to secure channels is often confused with that
associated with normal network traffic. Here, we present a
few definitions to distinguish our discussion of messages,
sessions, etc.

Principals are participants in a protocol session,
distinguishable by a unique identifier. Our focus is on
special principals that we refer to as security servers, trusted
servers, and at times Key Distribution Centers. The common
characteristic of each of these three terms is that they
represent principals that provide a security service to other
principals, and are, thus, integral components of the security
infrastructure, with significant impact on the security for
those principals that they serve.

The messages that we are interested in are only those used in
a protocol session. Anonymous messages, network overhead,
and other traffic not associated with security protocols for
trusted services are not messages in our sense. To
distinguish the traffic of interest to us, we define a "message"
as a tuple of at least four elements:

1. The identifier of a principal representing the source
(originator) of the message

2. The identifier of a principal representing the
destination (recipient) of the message

3. The message payload which may be a structured
element comprised of one or more data elements to
be conveyed from the source to the destination.

4. A protocol identifier

A protocol is a fixed sequence of messages predefined to
principals that either originate or receive the message(s).
Each principal may recognize and utilize multiple protocols.
A principal recognizes a protocol i f the protocol is stored in
the principal's private memory. Principal Alice utilizes
protocol P if one protocol session exists or existed where
Alice is either an originator or recipient of a message with
the protocol identification field of P.

A protocol session is an instantiation of a protocol. Thus, it
is a set of messages that correspond to the form of a protocol,
where the generic source aad destination identifiers are
replaced with actual identifiers and an actual payload
replaces the generic payload. Notice that every message that

meets our definition is a message of a protocol session. We
recognize that there will be many non-protocol transmissions
on any network, but for our purposes, we ignore
transmissions that are not messages by our definition.

3.2. Traces.

It is normal practice to specify protocols as an execution
trace [38] of actions between principals, with each principal
taking turns. These protocols are listed as though the
messages are executed sequentially, on a single processor,
when they are intended for concurrent execution, in a
distributed environment. In practice, any principal may be
executing multiple protocols concurrently. In this case, a
trace is the set of all messages executed by a principal. A
trace may be thought of as an interleaving of protocol steps
as described in [32] and [13], meaning the execution of the
steps of two different protocol sessions are intermixed.

It is important to distinguish between the symbolic execution
of a protocol and an actual execution. For existing methods
of protocol verification, symbolic protocol execution is
examined. That is, protocols are encoded with generic
values and readable, symbolic identifiers to facilitate
reasoning about the results of the protocols. It is this
symbolic version of the protocol that is recognized (as
defined above) by principals. Conversely, when protocols
are executing, they contain actual data that are not routinely
readable to a human. For example, random numbers are
largely unrecognizable to the human eye. Fortunately,
protocols are executed on computers that can recognize
random numbers and other protocol components, and can
match the actual messages to their symbolic counterparts,
even when executing multiple, complex protocols in a highly
concurrent environment.

A protocol trace is the accumulation of actual messages sent
and received by a principal in the order that they were sent
and received. For a protocol session running alone, the trace
is simply the listing of the messages in the protocol. If
multiple protocols (or multiple instances of the same
protocol) are executing concurrently, the trace will be
extensively interleaved. This is a common occurrence in
networking; where any large host may be concurrently
executing requests from many different sessions for logon,
file access, computations, etc. It is this type of interleaved
trace that present intrusion detection technology targets.

3.3. The Man-in-the-Middle.

The Man in the Middle model has been around for a long
time. In [8] and later [1], the authors formally define such an
environment, where every message in the communication
system must pass through a powerful intruder. We target this
model and the extensions from [37], because it is a powerful
model, and it is easy to understand. Some of the
characteristics of this model are that:

- All messages to~from every principal (including the
KDC) are to/from a single party (i.e. the intruder)

- Principals operate in their own "address space".
Personal memory changes only by receiving new

79

information through the network, or by performing
computation on information that is already stored.
This personal memory represents the local state of
the principal.

- The only knowledge that a principal can acquire
about other principals is through the network.

3.4. Challenges of Man in the Middle.

It is clear that assuming such a powerful adversary presents
challenges to our ability to detect and respond to intrusions.
Among the consequences of our choosing the model are the
following specifics.

a. The Intruder knows much more than we do.
Unless we make assumptions about the underlying
communications [e.g. that we use a broadcast medium] or
inject a distributed information gathering mechanism such as
roving agents, we cannot see all messages. In fact, we
assume to see only a very limited subset of the
communications that may be used to generate an attack
against us, to the extent that a KDC can rarely expect to see
all (or even most) messages exchanged in a protocol. On the
other hand, the intruder is assumed to see (and have
immediate access) to ALL messages on the network.

b. We are limited by realistic resource
assumptions. In order to provide useful information about
intrusions, even more critical for response, we must consider
response time as a limiting factor for our methods.
Conversely, because we assume the intruder is very
powerful, they may conduct resource intense activities, such
as gathering information over a long period and conducting
fast searches over extensive databases in real time.

Assuming the strongest model is essential when addressing
the effectiveness of security protocols. Applications using
this environment will have a strong assumption of security
and, thus, will pass more sensitive and/or valuable
information. Additionally, unlike existing network services,
because of the necessarily centralized nature of security
services, the impact of a single intrusion can have broad
scope, compromising a large volume of transactions. The
ability to detect these attacks, hopefully before they occur,
and to reduce the impact if they are successful is essential to
network security, recovery, and deterrence.

4. Intrusion Detection.

InWasion Detection is a fertile research area since the mid-
1980's and it continues to be a topic of intense research [7],
[35], [17]. A principal technique used in intrusion detection
is profiling, detailed in Denning's seminal paper [5]. We will
show how monitoring activity to detect and respond to
attacks mirrors the environment that Denning addresses.

The problem is deeper than simply detecting all attacks, since
we could meet this chellenge by simply signaling "possible
attack" for every protocol action taken. Of course this would
provide no useful functionality, since we could not take
effective action based on that feedback. With that in mind,
we recognize two measures of our effectiveness as false
negatives and false positives.

a. Do we detect all attacks (false negative)? If not,
what percent of attacks will we detect? We call
this metric: percentage of attacks detected. While
we can empirically analyze our system utilizing
this metric, it is only useful in a laboratory
environment, since in an actual environment we
cannot know how many attacks that we do not
detect.

b. Do we incorrectly detect activities that are not
attacks (false positives)? If so, what percent of
activities will produce false alarms? This metric is
termed: ratio of false alarms to activities. This
important metric can be analyzed in a laboratory
and in production use. We must have the goal of
keeping this metric as low as possible to ensure
that appropriate actions arc taken when attacks arc
detected.

4.1. 2Behavior as an Attack Indicator.

Intrusion detection is focused on the behavior of
communicating principals. The assumption is that, while it
may be disguised, a principal's behavior will reflect their
intentions. There are two fundamental behaviors that are
used to identify potential intrusions:

a. That which was previously shown to result in
compromise

b. That which significantly deviates from the norm

4.2. Signatures.

In the first category we include characteristics of known
attacks on cryptographic protocols as well as intuitively
dangerous behavior. These attacks may be characterized by
sequences of activity traces, similar to methods for virus
scanning and for network intrusion detection [4]. The pattern
of these sequences produces a signature for the known
attack. Traces that match these signatures are always
suspect, and in some cases may be enough evidence to affect
a protective or damage control response in and of
themselves, with no corroboration necessary. An example,
given in the same reference is that any program that sets UID
during execution should be flagged as a high risk. Another
example of an activity pattern that is always suspect given by
Denning [5] is a high rate of password failures by any user.

Since the famous attack on the Needham and Schrueder
protocol in [6], uncounted attacks have been documented on
contrived and production protocols. Syverson produced a
taxonomy of protocol attacks [32] that may allow abstract
construction of signatures for intrusion detection through

protocols in much the way that Spafford's taxonomy [14] of

2 Throughout this paper, we use the terms behavior and
activity almost interchangeably. Behavior is used to reflect
observed activity, as well as some intention that preceded the
action. Most often, behavior refers to activities that are
abnormal rather to that which is inherently dangerous.

80

network intmsious provides a framework for identifying
signatures for network attacks in IDIOT.

Examples of dangerous behavior in a security protocol
envimument include:

- Simultaneous triangular sessions (A->B, B->C & C-
>A).

- Sequential triangular sessions (A->B, B->C & C->A)

- Request to encrypt with a public key followed by a
request to sign with the same key.

- Simultaneous Group Protocols

- Failed protocol sessions

- Suspended or partially completed protocol sessions

- Repetitive use of one cryptographic key

4.3. Profiles.

Profiling essentially means recording observed activity of a
principal over time and producing a data structure that
reflects normal activity of that principal. This data structure
is called a profile. The fields in the profile contain data that
models the activity in some predefined way. We will select
models that allow us to accomplish the two goals that we just
laid out, of detecting a high percentag~ of attacks and of
producing a low percentage of false alarms.

4.3. Prof'fling for Abnormal Behavior.

The second category of behavior that we are interested in is
anomalous activities. If we assume that intrusions are not
routinely accomplished, then ! is reasonable to infer that
abnormal behavior is more likely to be an intrusion than is
normal behavior. Denning states it this way in [5]:

The model [for the use of profiling] is based on the
hypothesis that exploitation of a system's
vulnerabilities involves abnormal use of the
system; therefore, security violations could be
detected from abnormal patterns of system usage.

If we accept this premise, then we can reduce our problem of
detecting intmsiuns to one of detecting abnormal behavior.
First, we must categorize behavior in order to be able to
distinguish that which is normal from abnormal. For a
shared computer environment, Denning categorizes behavior
based on activities on objects, where the objects are
resources ("...files, programs, messages, records, terminals,
printers, and user- or program-created structures."[5]).

Our view of intrusions is based more exclusively on
activities; specifically, activities carried out through security
protocols. We expect that, after sufficient data has been
gathered to reduce the impact skew and after usage has
stabilized after initial system usage, normal behavior will be
recorded. Thus, we can characterize the behavior of each
principal (Alice) based on measurable criteria such as:

4.3.1. Which protocols has Alice utilized by
originating the first message7 A legitimate

principal (or an intruder that has compromised a
legitimate principal) that initiates a protocol that
they do not normally use may indicate an attempt
to generate data that may allow an attack.

4.3.2. Which protocols has Alice utilized as recipient
of the first message? A legitimate principal (Alice)
that receives an unusual request for service may
indicate that the originator is making an attempt to
utilize Alice as an oracle.

4.3.3. How frequently does Alice utilize each protocol
as originator of the first message? An increase in
frequency of use of a protocol could reflect an
attempt to generate a value in a data field necessary
to construct an attack.

4.3.4. How frequently does Alice utilize each protocol
as recipient of the first message? A legitimate
principal (Alice) that receives an unusual number
of requests for service may indicate that the
originator is making an attempt to utilize Alice as
an oracle.

4.3.5. What other principals are normal recipients for
each protocol that Alice utilizes and where she
originates the first message? A sudden change in
the targets of requests for service by Alice may
indicate that Alice has been compromised and is
now being used to gather information for an attack.

4.3.6. What other principals are normal originators for
each protocol that Alice utilizes and where she is a
recipient of the first message. A sudden change in
the sources of requests for service from Alice may
indicate that another principal has been
compromised and is now being used to gather
information for an attack.

4.3. 7. In what order does Alice utilize protocols where
she is the first message originator? Multiple
sudden changes in the order of requests for service
from Alice may indicate that Alice is making an
attempt to gather information for an attack.

4.3.8. In what order does Alice utilize protocols where
she is the first message recipient? Multiple sudden
changes in the order of requests for service to Alice
may hdicate that another principal is making an
attempt to gather information for an attack.

4.3.9. How often does Alice exercise an encryption
followed by signature? While signing an
encrypted message is considered a vulnerable
activity, a principal may, after careful
consideration, conduct certain ordered activities
without concern. A change in this ordering pattern
may indicate that an attack is ongoing.

4.4. Trace profiles.

In our earlier definition of traces, we referred to the tendency
of protocol analysis to focus on the symbolic execution. We
again consider the symbolic execution of protocols, not as
derived from a preconceived or contrived execution for test
purposes, but the symbolic representation of messages

81

executed in a production protocol environment. Rather than
constructing the interleavings from the protocols, we
reconstruct the symbolic trace from the execution trace of the
protocols as they occur in the system.

Symbolic trace information may be extracted from state data
maintained by the host representing each principal as the
protocols are executed, or a sophisticated listener monitoring
communications on the network may infer it. Since we are
concerned with activities that correspond to a trusted
principal, we can assume that the necessary state information
will be available to translate actual messages into symbolic
form in real t ime?

Because we can recover the symbolic representation of
protocols as they execute, we can construct profiles of
protocol usage base on their symbolic characteristics. For
example, we can record the symbolic representation of every
protocol that executes on the monitored computer and record
statistical information about the sessions, and about each
message. We can determine which protocol that the
monitored principal participates in. We can determine who
the monitored principal communicates with and can gather
statistics regarding the time and sequencing of application of
these protocols. These statistics can be translated into the
model information discussed in the next paragraph.

4.5. Statistical Models.

The metrics described in paragraph 4.1 can be represented in
statistical models that Denning describes [5, pp122-3]. For
example, the metrics described in paragraphs 4.3.4 and 5 can
be analyzed using the operational model, mean, and standard
deviation as given by Denning in par 5.2.1 and 2 and by the
multivariate model from Denning's 5.2.1.3. The Markov
Process Model as given in Denning's 5.2.4 can measure the
metrics we describe in paragraphs 4.3.1, 2, 5, and 6. The
Time Series Model Denning presents in paragraph 5.2.5 are
applicable to the events we describe in paragraphs 4.3.3,
4.3.4, 4.3.7, 4.3.8, and 4.3.9.

Such modeling will serve to improve both the percentage of
attacks detected and the ration of alarms to activities, similar
to the results of intrusion detection systems.

A sample profile for measuring Trenfs activity may include a
three dimensional array, where one dimension represents
each protocol that Trent recognizes, another represents each
other principal that Trent commanicates with, and the third
distinguishes whether Trent was the originator or recipient of
the first message.

5. Categorization of Attacks.

5.1. Taxonomies of attacks.

3 We consider evaluation of actual protocol messages and the
explicit program actions that result to be an uncharted
research arena, with roots in classic intrusion detection
methodology. We leave that discussion for another time.

We now turn from our focus from detecting attacks on
trusted principals to categorizing attacks for the purpose of
formulating appropriate responses. This is a classic problem
in intrusion detection, including deciding what to do when an
attack is detected, and what to do when behavior is
encountered that is neither categorized as an attack, nor as
normal behavior. We earlier pointed out taxonomies for
intrusions into computer systems [14] and for attacks against
protocols [32]. The latter is of particular importance to us,
and assists us in categorizing behavior for selecting an
appropriate response.

Syverson partitions attacks against protocols into two major
categories of external and internal attacks. These are further
decomposed into categories and sub-categories. These
categories and responses follow:

- Interleaving attacks (including replays) requiring
contemporaneous execution of more than one
protocol. An appropriate response to detection of
contemporaneous execution of two protocols that
are vulnerable to such an attack would be to
suspend or cancel one session or the other.

- Replay attacks that need not require contemporaneous
execution of more than one protocol. The proper
response in this ease would be dependent on the
state of the principals involved when the attack is
detected. If the attack is detected during execution
of the reference session, keys may be updated,
certifications revoked, and existing sessions may
be aborted. If the attack is detected during the
attack session, the attack session would be aborted.

- Message deflection attacks. I f message deflection is
detected, there are two responses required. First,
the principal that was the intended destination for
the deflected message must be notified and damage
control actions taken. Second, the principal that
received the message should be notified and the
protocol session, i f it is still active, aborted.

- Message reflection attacks. The impact of message
reflection is centralized to one principal that is the
originator and recipient of the message. Again, the
proper response depends on the timing of the
detection. I f the attack session is still under way, it
should be aborted. If the attack session has ended,
the victim should be notified of the details of the
attack and should initiate local damage control
activities.

5.2. Other categorizations of attacks. The
above taxonomy provides a comprehensive view of protocol
vulnerabilities from the perspective of interleavings of
messages. We take another perspective of these
vulnerabilities to consider the intent of attackers and discuss
responses related to these intentions. Once an attack is
detected, at least three goals must be considered when
constructing a response:

a. Assess and correct the damage of the compromise.

b. Prevent further compromise.

82

c. Catch and prosecute the perpetrator.

In the following discussion, we consider Alice and Bob to be
uncompromised principals, Trent is a principal that provides
trusted services, and Mallory is a malicious attacker.

- Compromise secrecy. This is the canonical attack.
Alice and Trent need to share information
privately. Mallory wants to know the information
and constructs an attack that will divulge the
message meaning to her. Terminating the session,
changing session or key exchange keys, identifying
and gathering appropriate log files may be
appropriate responses.

- Compromise integrity. Mallory may attack the
system in order to provide inaccurate information
to Alice or Trent. When such an attack is detected,
data from the attacked session should be validated.
Audits from previous sessions should be held.

- Compromise nonrepudiation. If Mallory can sign
messages as i f she were Alice, then she can
incorrectly attribute actions or information to
Alice. Detection of such an attack should result in
correction of any signatures generated during the
attack session and should initiate review of records
of previous transitions involving signature by
Alice. Depending on the nature of the attack, long
term key change may be in order.

- Compromise availability. Mallory may desire to
prevent Alice from receiving one or more
messages while preventing Alice from recognizing
that the message(s) have been delayed or destroyed
undelivered. The appropriate response to a denial
of service attack is to restore the secure channel
and notify other principals of the loss of service so
that any lost transmissions may be recreated.

- Attempt to masquerade as Alice to Bob. If Mallory
can convince Bob that she is Alice, she can
compromise secrecy, integrity, and nonrepudiation
between Alice and Bob. Response to detection of
such an attack is dependent on its success. If the
masquerade has been successful, affected
participants should be notified and long-term keys
changed. At a higher level, the nature of the attack
should be evaluated and the security vulnerability
removed. Participants should be notified of the
vulnerability until it is resolved.

- Attempt to masquerade as Alice to Trent. If Mallory
can convince Trent that she is Alice, she can
compromise secrecy, integrity, and nonrepudiation
between Alice and all other principals.

- Attempt to masquerade as Trent. If Mallory can
convince all other principals that she is Trent, then
Mallory can compromise secrecy, integrity, and
nonrepudiation between all principals. Because of
the widespread ramifications, these are the most
dangerous masquerade attacks. Response to an
attempt to masquerade as a trusted service must
first focus on controlling the damage.

- Attempt to use Alice as an oracle. I f Mallory can
devise a general method of utilizing Alice as an
oracle, then Mallory can masquerade as Alice to
any other principal, compromising secrecy and
nonrepudiation.

- Attempt to use Trent as an oracle. I f Mallory can
devise a general method of utilizing Trent as an
oracle, then Mallory can masquerade as Trent.

6. Protocol-oriented, State-based Attack
Recogni t ion

To date, the only known provably secure protocols are zero
knowledge protocols p] that do not generally have broad
applicability. Since we expect any protocol that protects
trusted services has flaws (that are either known or unknown)
we select a protocol with a known flaw to illustrate how an
attack on a cryptographic protocol can be dynamically
detected using intrusion detection-like technology. The
protocol we present is the canonical Needham and Schroeder
Public Key Protocol [26] with the public-key acquisition
steps omitted, given in Figure la, with a known attack given
in Figure lb. This is a parallel session attack and an insider
attack, because it is only possible for an intruder (Mallory) to
accomplish the attack when a principal (Alice) begins a
session with Mallory, where Mallory is known and trusted by
Alice. It also requires that Alice and Mallory know some
third party (Bob) that trusts both Alice and Mallory.

As we noted earlier, the concurrent execution of security
protocols by a group of principals can be represented by a
serialized, interleaved execution trace of the steps in each
protocol session. This trace provides the environment for our
dynamic protocol analysis. For this illustration, we show
how we might dynamically detect the attack on the Needham
and Schroeder Public Key Protocol (NSPKP) by identifying
its signature. We recognize that NSPKP has many
signatures, but for the purpose of simplicity, we start by
focusing on the source and destination of the messages. The
signature that we will recognize is given in Figure 2.

Needham and Schroeder Public Key Protocol

1. A -> B: [na]PKb
2. B ->A: [na,nb]PKs
3. A -> B: [nb]PKb

Figure la

1. A -> M: [na]PKm
1'. Ma -> B[n~,A]PKb
2'. U -> A: [ns,nb]PKe

2. M -> A: [ns,nb]PKa
3. A -> M: [nb]PKm

3'. M -> B: [nb]PKb

Figure I b

We model the behavior of this trace with the state transition
machine given in Figure 3. The machine represents a
protocol signature by mapping the sender/receiver pair for a
message into one of the possible segments of a trace. We
assume valid participants are members of some population P.
In our illustration, A, B, M ~ P. For example, from the start
state, he machine will transition into Si when a valid
principal begins a session with another valid principal.
When the originating principal sends a message to another

83

(different) principal, the machine transitions into $2. When
the recipient of the second message sends a message to the
originator of the first message, the machine transitions into
$3 and SO on.

In the simplest case, where the steps are executed in exactly
the sequence given in Figure 3, without any other activities
in between, this model will detect an attempt by Mallory to
defeat the NSPKP. You may notice that recognition of the
execution of messages in this sequence does not guarantee
that an attack has occurred. Fortunately, dynamic attack
detection does not rely on guarantees. Beaconing on
suspicious behavior is often sufficient to provide the
necessary level of protection. Moreover, we humbly leave
the issue of false positives for our future work section.

There are many positive qualities of this simple model. One
may consider that transition through the table reflects the
likelihood that an attack is under way.
When the machine is in the Start state A - > M
(there are no active messages that meet the Ma "> B
format), there is no chance that an attack is B -> A
under way. When the first recognized
message is received, it is still unlikely that B -> A
it is the first message of an attack sequence, A -> M
but it is more likely than when no messages Ma -> B
were being processed. A more significant
jump in likelihood may occur when the Figure2
second message meeting the format is detected. Similarly, as
the machine reaches larger state numbers, the likelihood that
an attack is underway increases. This monotonic property
may be used to signal probability of attack to a system
monitor or combined with other sensors to give a network
threat picture.

New State Transition Old State

A -> M Start

A 4 -> B S 1

B -> A S ,

M -> A $3

A - > M $4

A-> B 86

1 $1

2 Sz

3 $3

4 $4

5 Ss

6 Beacon

Figure 3

While this simple model has some relevant semantic
meaning, it is also obvious that it also has problems. For
example, it is possible that, under this model, an actual attack
sequence may be masked by legitimate sequences. This is

4 We model this step as originating from Alice because the
intruder is considered all powerful and can, thus, pose as any
other valid principal as far as sending and receiving
messages is concerned. We also address issue of recording
this information for distributed principals in the "Future
Work" section.

illustrated by the case where after starting a session with
Mallory, Alice starts a legitimate session with Bob (or
Debbie, etc.), followed by Mallory's masquerade message as
Alice. The machine would be out of synchronization with
the actual attack, masked by Alice's valid message. We could
spawn a new machine every time such conditions occur. It is
also possible to remove this hindrance by slightly extending
the model.

The root of that problem with our simple illustration was that
the signature does not contain sufficient specificity. We can
increase the specificity of our recognizer by keeping track of
the protocol session for each message. This allows us to
prevent the masking we noted above in a systematic way by
spawning only a single new machine when we recognize that
a possible third session in the proper format exists, as shown
in Figure 4.

We illustrated this new paradigm with a very simple
example, then extended the example slightly to show the
power that can be attained with only a little additional
information. We do not believe that the two illustrations
exhaust the utility of information available to a dynamic
protocol analysis mechanism. In the illustrations given here,
we do not consider any information passed as the payload of
the message, and note that it is on payload information that
traditional protocol verification base their entire analysis.
While getting at that information in a dynamic environment
will be more than a trivial challenge, its potential is evident.

Old New
Message Session State State

A -> M 1 Start S I

A - > B 2 $1 Sz

A - > C 3 S 2 Spawn

B -> A 2 $2 S3

M - > A 1 $3 $4

A - > M 1 $4 Ss

A -> B 2 S 6 Beacon

Figure
4

7. Future Work

This effort is in its early stages. While experimental data is
not available to support this thesis, the theoretical
foundations are rock solid. The ability to analyze execution
traces in real time was shown for operating system and
network intrusion detection systems [4, 18, 35, 7]. The
ability to describe existing attack is shown in Syverson's
taxonomy [32], and the ability to detect previously unknown
attacks using profiling techniques described by Denning [5]
has been proven [18].

Many challenges lay ahead. We will first tackle the problem
that we illustrate with the example in Section 6 of detecting

84

known attacks using a signatme-based approach. In order to
fully implement this paradigm, we must accomplish reliable
remote protocol execution tracing capability. Many are
addressing how to gather distributed information through
agent-based mechanisms [27] and mobile code [10]. Others
are focused on protecting remote agents [31]. We will first
consider an integrated environment where principals
cooperate so the necessary information may be easily
gathered. We give a detailed description of this environment
in [40]. We also intend to consider broadcast-only
transmission environments that will become more prominent
for secure enclaves as wireless technology advances.
Finally, there is a clear application for intelligent, mobile
agents to gather information that would complement other
information sources.

We have addressed many issues in this research direction in
this paper in detail, and have addressed several others in
general terms. We recognize that there are many open
questions (theoretical and practical) that we have not
addressed that must be resolved before dynamic analysis of
security protocols becomes reality. Among them:

How will we protect the detection system itself?
How will we prevent tool misuse?

- How will we systematically formulate appropriate
responses for the numerous different behavior
categories?

- Will this IDS work within performance and storage
constraints?

We have already begun to establish the laboratory tools
necessary to test and implement this mechanism. We are
producing a compiler that will translate protocols specified in
a language created for protocol verification into executable
modules that we can implement on closed network security
laboratory.

We are further encouraged in this initiative by the allowable
imprecision of the result. Our goal will not be 100%
detection of assaults on security protocols with zero false
positives. Rather, we will endeavor to produce a mechanism
that meets or exceeds the qualitative standard set in recent
intrusion detection system evaluations [18].

Finally, we believe that dynamic, on-line analysis of security
protocols will provide a foundation for providing complete
network situational awareness and active response to attacks
and suspicions activity. As we mention in Section 6, this
technique can recognize when a complete attack sequence
has occurred, or when a partial attack sequence has occurred.
We believe that this characteristic will allow appropriate
responses to be systematically constructed for each global
state. Responses will be generated based on factors such as
the complexity, likelihood, scope, potential damage, etc. of
the attack as well as other aspects of situational awareness
(e.g. the current network threat posture).

8. Conclusion

We present a method to provide active defense for
distributed security services. We have shown how proven
intrusion detection technology combined with knowledge

gained by formal analysis of security protocols can be
applied to this problem. Our method involves addressing
behavior relative to protocol activation and use rather than
considering activities against objects, s is conducted in
classic intrusion detection. We categorized protocol-based
attacks and showed how this method can be used to increase
situational awareness and threat picture by considering
classes and characteristics of attacks and of suspicious
behavior.

Until recently, the requirement for trusted services essentially
resided with the federal government and a few large
corporations, where key exchange was most often carried out
by courier, with the key material stored on paper tape or
diskette. Present technology demands extension of the
protection provided by cryptography. This necessitates
extension of key distribution and, thus, authentication
services. These centralized services are attractive targets for
sophisticated intruders. The method we prescribe offers to
protect this vital link to our security infrastructure.

9. Acknowledgements.

Many thanks to Paul Syverson and Chenxi Wang for their
insights on an early version of this paper, and to the
anonymous referees and workshop participants, whose
comments were very helpful.

10. Bibliography

[1] Martin Abadi and Mark R. Turtle, "A Semantics
for a Logic of Authentication", Tenth Annual ACM
Syrup on Princ of Dist Computing, Montreal,
Canada, August, 1991

[2] Burrows, M., Abadi, M., and Needham, R. M. "A
Practical Study in Belief and Action", In
Proceedings of the 2nd Conference on Theoretical
Aspects of Reasoning about Knowledge (Asilomar,
Ca., Feb. 1988) M. Vardi, Ed. Morgan
Kaufmann, Los Altos, Calif., 1988, pp. 325-342

[3] S. Brackin, "Automatically Detecting Most
Vulnerabilities in Cryptographic Protocols", in The
DARPA Information Survivability Conference and
Exposition, January 2000, Vol. 1, pp 222-36

[4] Crosbie, M.; Dole, B.; Ellis, T.; Krsul, I.; Spafford,
E, "IDIOT - Users Guide", Technical Report TR-
96-050, Purdue University, COAST Laboratory,
Sept. 1996

[5] Dorothy E. Denning, "An Intrusion-Detection
Model", From 1986 IEEE Computer Society
Symposium on Research in Security and Privacy,
pp 118-31

[6] D. E. Denning and G. M, Sacco, "l'imestamps in
key distribution protocols," Communications of the
ACM, vol. 24, no. 8, Aug 1981, pp. 533-536

85

[7] Daniels and Spafford, "Identification of Host Audit
Data to Detect Attacks on Low-level IP", Journal
of Computer Security, Volume 7, Issue 1, 1999

[8] Dolev, D., and Yao, A.C. "On the security of
public key protocols". IEEE Trans, Inf. Theory
IT-29, 2(Mar. 1983), pp. 198-208. Also Stan-CS-
81-854, May 1981, Stanford U.

[9] A. Fiat and A. Shamir, "How to prove yourself:
Practical solutions to identification and signature
problems", Advances in Cryptology, Proc. of
Crypto~'86 (Lecture Notes in Computer Science
263), Editor A. Odlyzko, Springer-Verlag, pp.
186--194, Santa Barbara, California, U. S. A.,
August 11-15, 1987

[10] Gregory, 13; Shi, Q.; Merabti, M., 'An Intrusion
Detection System Based upon Autonomous Mobile
Agents", pp. 586-591, 14 th International
conference on Information security, 1998 Aug :
Vienna

[11] Y. Jou, F. Gong, C. Sargor, X. Wu, S. Wu, H.
Chang, and F. Wang, "Design and Implementation
of a Scalable Intrusion Detection System for the
Protection of Network Infrastructure", DARPA
Information Survivability Conference and
Exposition 2000, Jan 25-27, 2000, Vol. 2, pp 69-83

[12] R. A. Kemmerer, "Using Formal Methods to
Analyze Encryption Protocols," IEEE Journal on
Selected Areas in Communications, vol. 7, mo. 4,
pp. 448-457, May 1989

[13] Rajeshekar Kailar and Virgil D. Gligor, "On
Belief Evolution in Authentication Protocols", In
Proceedings of the Computer Security Foundations
Workshop IV, PP 103-16, IEEE Computer Society
Press, Los Alamitos, CA, 1991

[14] Sandeep Kumar and Eugene Spaffurd, "A
Taxonomy of Common Computer Security
Vulnerabilities Based on their Method of
Detection", Technical Report, Purdue University,
1995

[15] J. Kelsey, B. Schneier, and D. Wagner, "Protocol
Interactions and the Chosen Protocol Attack",
Security Protocols, 5th, International Workshop
April 1997, Proceedings, Springer-Verlag, 1998,
pp.91-104

[16] R. Kemmerer, C. Meadows, and J. Millen,
""Three Systems for Cryptographie Protocol
Analysis", The Journal of Cryptology, Vol. 7, no.
2, 1993

[17] Ulf Lindqvist and Phillip A. Porras, "Detecting
Computer and Network Misuse Through the

Production-Based Expert System Toolset (P-
BEST)", 1999 IEEE Computer Society Symposium
on Security and Privacy, pp 146-61

[18] R.P. Lippman, D.J. Fried, I.Graf, J.W. Haines,
K.R. Kendall, D. McCllung, D. Weber, S.E.
Webster, D. Wyschogrod, R.K. Cunningham, M.A.
Zissman, "Evaluating Intrusion Detection Systems:
The 1998 DARPA Off-line Intrusion Detection
Evaluation", DARPA Information Survivability
Conference and Exposition 2000, Jan 25-27, 2000,
Vol. 2, pp 12-26

[19] Gavin Lowe, "An Attack on the Needham-
Schroeder Public Key Authentication Protocol",
Information Processing Letters, 56:131-133, 1995

[20] Gavin Lowe, "Breaking and Fixing the Needham-
Sehroeder Public Key Protocol Using FDR", In
Proceedings of TACAS, Vol. 1055 of Lecture Notes
in Computer Science, pp 147-166, Springer-Verlag,
1996.

[21] Gavin Lowe, "Casper: A Compiler for the
Analysis of Security Protocols", Proceedings of
l Oth IEEE Computer Security Foundations
Workshop, 1997. Also in Journal of Computer
Security, Volume 6, pages 53-84, 1998.

[22] MiUen, J.K., Clark, S. C., and Freedman, S. B.
"The interrogator: Protocol security analysis".
IEEE Trans. Sofw. eng. SE-13, 2(Feb. 1987), pp.
274-288

[23] Catherine Meadows, "Formal Verification of
Cryptographic Protocols: A Survey," Advances in
Cryptology - Asiacrypt '94, LNSC 917, Springer-
Verlag, 1995, pp. 133-150

[24] Catherine Meadows, "Analysis of the Internet Key
Exchange Protocol using the NRL Protocol
Analyzer", 1999 IEEE Computer Society
Symposium on Security and Privacy, pp 216-34

[25] Catherine Meadows, "A Formal Framework and
Evaluation Method for Network Denial of Service",
12th IEEE Computer Security Foundations
Workshop, Jun 28-30, 1999, Mordano, Italy

[26] Roger M. Needham, Michael D. Schroeder,
"Using Encryption for Authentication in Large
Networks of Computers", Communications of the
ACM, December 1978 vol. 21 #12, pp. 993-999

[27] R. Oppliger. Security issues related to mobile
code and agent-based systems, pp. 1165-1170.
Computer Communications, Vol. 22, No. 12 (July
1999):

86

[28] Lawrence C. Paulson, "Proving Security Protocols
Correct"', in IEEE Symposium on Logic in
Computer Science, Trento, Italy (1999), pp 370-81

[29] A. W. Roscoe, "The Theory and Practice of
Concurrency", Prentice Hall, 1997

[30] Dawn Xiaodong Song, "Athena: A New Efficient
Automatic Checker for Security Protocol
Analysis", 12th IEEE Computer Security
Foundations Workshop, Jun 28-30, 99, Mordano,
Italy

[31] T. Sander, C. Tschudin, "Protecting Mobile
Agents against Malicious Hosts", Lecture Notes in
Computer Science, Special Issue on Mobile Agents,
Edited by G. Vigna, 1998

[32] Paul Syverson, "'A Taxonomy of Replay
Attacks," Proceedings of the Computer Security
Foundations Workshop VII, Franconia NH, 1994
IEEE CS Press (Los Alamitos, 1994)

[33] F. Thayer, J.C. Herzog, and J.D. Guttman, "Strand
Spaces: Why is a Security Protocol Correct?" In
Proceedings of 1998 IEEE Symposium on Security
and Privacy, 1998

[34] Brett Tjaden, "A Method for Examining
Cryptographic Protocols" University of Virginia
Doctoral Dissertation, January 1997

[35] Vigna and Kemmerer, "NetSTAT: A Network-
based Intrusion Detection System", Journal of
Computer Security, Volume 7, Issue 1, 1999

[36] "Attacks on Encryption Code Raise Questions
About Computer Vulnerability", Wayner, Peter,
New York Times (01/05/00) P. C2

[37] Alec Yasinsac, "Evaluating Cryptographic
Protocols:, Ph.D. Dissertation, University of
Virginia, Jan 1996

[38] Yasinsac, Alec; Wulf, William A, "Evaluating
Cryptographic Protocols", University of Virginia
Technical Report, CS-93-66, December 22, 1993

[39] Alec Yasinsac and Wm. A. Wulf, "A Framework
for A Cryptographic Protocol Evaluation
Workbench", Proceedings of the Fourth IEEE
International High Assurance Systems Engineering
Symposium (HASE99), Washington D.C., Nov.
1999

[40] Alec Yasinsac, "Detecting Intrusions in Security
Protocols", accepted to the Third ACM Workshop
on Intrusion Detection Systems, Athens, Greece,
Nov 1-4, 2000

[41] Susan Pancho, "Protocols", Proceedings of the
New Security Paradigms Workshop", Sept. 1999

[42] Mihir Bellare and Phillip Rogaway, "Random
Oracles are Practical: A Paradigm for Designing
Efficient Protocols", Proceedings of the First ACM
Conference on Communications and Computer
Security, ACM, November, 1995

[43] Paul E. Proctor, The Practical Intrusion Detectiorl
Handbook. Prentice Hall, Inc. 2001, ISBN 013-
025960-8, pp 46-47

87

