A Note on Proactive Password Checking

Jianxin Jeff Yan

Computer Laboratory, University of Cambridge
Jeff.Yan @cl.cam.ac.uk

ABSTRACT

Nowadays, proactive password checking algorithms are
based on the philosophy of the dictionary attack, and they
often fail to prevent some weak passwords with low entropy.
In this paper, a new approach is proposed to deal with this
new class of weak passwords by (roughly) measuring
entropy. A simple example is given to exploit effective
patterns to prevent low-entropy passwords as the first step of
entropy-based proactive password checking.

Keywords
Proactive password checking, dictionary attack, entropy

1. INTRODUCTION

Password security is an old problem. Due to the limitation of
human memory, people are inclined to choose easily
guessable passwords (e.g. phone numbers, birthdays, names
of family or friends, or words in human languages) that
might lead to severe security problems, Though it was
commonly believed that secure passwords were difficult to
remember and easy-to-remember passwords were insecure, a
recent experiment [14] showed with hard data that passwords
based on mnemonic phrases could provide both good
memorability and security, but non-compliance with
password selection advices was a main threat to password
security.

Proactive password checking has been a common means to
enforce password policies and prevent users from choosing
casily guessable passwords in the first place. When a user
chooses a password, a proactive checker will determine
whether his password choice is acceptable or not, and this
proactive checking is done online and the user will be
immediately responded the result. Among common
approaches to improving password security by selecting
good passwords, such as user education, program-controlled
password generation and reactive password checking (ie.,
system administrators periodically run password cracking
programs to search weak passwords), proactive password
checking has been widely regarded as the best [2, 3, 6, 11].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redisiribute to lists, requires prior
specific permission and/or a fee.

NSPW'01, September 10-13", 2002, Cloudcroft, New Mexico, USA.
Copyright 2002 ACM 1-58113-457-6/01/0009...$5.00.

127

In 1999, Wu [13] reported a password experiment done in a
Kerberos setting where a proactive password checker was
used. Wu recommended strong password authentication
protocols such as EKE [1], SRP [12] as an alternative
approach to improving password security, since the checker
appeared not to help that much in his experiment but those
password authentication protocols appeared to eliminate the
threat of offline dictionary attack on passwords. As far as we
know, this is the most negative criticism of proactive
password checking so far. Wu’s claim of inefficacy of
proactive password checking, however, is unconvincing,
since the poor experimental result shown in his paper might
and does simply suggest that the proactive checker used in
his experiment was not effective.

On the other hand, although strong password authentication
protocols utilize cryptographic technologies to generate
strong session keys from passwords so that users may use
weak passwords in some circumstances, they are not the
“silver bullet” for password security. Firstly, these methods
are expensive, and are not widely deployed in fielded
systems. It also appears impossible to apply this technique
in every place where the password mechanism is needed.
Secondly, they are complex and error-prone. Security
protocols are notoriously difficult to be correct, and subtle
security flaws of protocols have been published from time to
time. There are already some attacks against password
authentication protocols, e.g. [10], published in the
literature. Moreover, nobody is sure whether those
authentication protocols are secure as claimed or not before
they are rigorously proved. Most importantly, the party that
stores the password file can still do offline dictionary attack
as usual. Although strong password authentication protocols
do amplify the search space of a weak password to that of a
much stronger cryptographic key, this amplification is
meaningful only when an attacker does dictionary attack
against the key. The threat of offline dictionary attack,
launched directly on the password file, is still there. For
example, there might be an internal attack. Moreover,
password authentication protocols are vulnerable to either
online dictionary attack or denial of service attack. If these
protocols are designed to be resilient to the former attack,
then they are unavoidably vulnerable to the latter attack, and
vice versa.

Password security is not a problem that can be solved only
by technical means. Human factor is also very important'. In

! When implementing proactive password checking, it is also
crucial to consider human factor, organizational or social
issues. For example, users should be given good feedback
on why passwords fail the test, and how they can choose a
better one (now, they can be instructed to choose

case users become complacent due to the (superficial)
technical advantage of strong password authentication
protocols - the advertisement in many papers is that a user
can use “weal”, “memorable” passwords - so that they choose
their names or user IDs, phone numbers or whatever is simple
as their passwords, it is not impossible for an attacker to
easily guess them after a few tries in an online dictionary
attack.

Therefore, in places where strong password authentication
does or does not fit, good password selection policies
enforced by proactive checking is still one of desirable
methods to improve password security in practice. From
Wu’s experiment, we also sce a great and urgent demand of
effective proactive password checking tools in real life.
Nevertheless, proactive password checking is not a perfect
technique. In this paper, we try to address a common
shortcoming of the state of the art of proactive checking and
propose a remedy.

2. PROACTIVE PASSWORD
CHECKING: STATE OF THE ART

Theoretically, it is easy for proactive password checking to
block all possible weak passwords. It might, for example, be
enough to enforce such a simple password policy: each
password has no less than eight characters, among which
there is at least one lower case character, at least one
uppercase character, at least one numerical character and at
least one punctuation character, and there is no character
occurring more than twice. Nevertheless, it is impractical to
do that in real life, since passwords complying with such a
policy might be too difficult to be memorized. There are
always some frade-offs between security and user
convenience for password choice. As a basic assumption,
proactive password checking algorithms typically do not
enforce extremely strict policies but allow users to choose
“good enough” passwords, though the criteria of “good
enough” might vary in different circumnstances.

2.1 Dictionary Attack: the Basis of

Current Proactive Password Checking
When a hacker cracks passwords, he can use the following
two methods: 1) to do a dictionary attack, which tries each of
a list of word and other possible weak passwords, and simple
transformations such as capitalizing, prefixing, suffixing or
reversing a word as a candidate until the hashed value of the
candidate matches a password hash; and 2) to launch a brute
force attack to search the whole key space, which is
commonly huge. Hackers, however, always prefer to use
dictionary attack, because it has proved to be very effective
in history [6]. Following a similar thinking, current
proactive password checkers are based on the dictionary
attack. They check each user-chosen password candidate
against a dictionary of weak passwords. If a candidate
matches a dictionary item, or anyone of its variants that are

mnemonic phrase based passwords as suggested by [14]).
In case passwords are rejected without appropriate
explanation and further instruction, users may dislike the
system and try to undermine it. The detailed discussion of
this is, however, beyond the scope of this paper.

128

generated by common transformations, then the candidate is
an unacceptable password and rejected.

For example, crack [7] is one of the most popular password-
cracking software. Although it also supports the brute force
attack, it has been far more used as a dictionary-based
cracking tool. Utilizing a similar dictionary-based algorithm
used by crack, its designer also implemented cracklib [8], a
proactive password-checking library, which has been
integrated into some password systems. Armed with a same
dictionary, a cracklib-supported system can prevent all weak
passwords that can be guessed by crack.

In order to cover as many weak passwords as possible, a huge
dictionary is commonly required for this dictionary-based
proactive password checking. The dictionary file may occupy
tens of megabytes or even more storage space, and it may
take a very long time to search the huge dictionary.
Consequently, an essential research problem has been how to
efficiently store and search the dictionary. The search speed
is even a more important concern than storage space, because
proactive password checking needs to be done online in real-
time while a user waits for an immediate response from the
system.

The cracklib v2.7 included a dictionary of 1.4 million words,
which had a raw size of around 15MB, and the whole package
of all files occupied around 7MB, which was around 45% of
original size. It used a modified-DAWG (Directed Acyclic
Word Graph) compression algorithm, which preprocessed
sorted lists of words to remove redundancy and make
compression tools like gzip more effective. A gzipped-
DAWG dictionary was typically about 50% of the size of the
gzipped non-DAWGed dictionary [8]. In order to improve
search speed, cracklib used an index file to access dictionary
words, and kept a table to assist binary searching. In
summary, the algorithms used by cracklib to optimize
dictionary storage and checking speed were very intuitive,
and they only worked efficiently when the dictionary file was
of a modest size.

Researchers have ‘been looking for good algorithms that
could achieve both fast checking speed and effective
dictionary compression at the same time. For example,
Spafford used Bloom filters [4] in his OPUS system [11].
Davies and Ganesan used trigrams and a Markov model in
their BApasswd ([5). The state-of-the-art of proactive
password checking is ProCheck [2, 3], which uses decision-
tree techniques to achieve high dictionary compression (up
to 1000:1) as well as a fast checking speed. In its current
implementation, a decision tree classifier with the size of
only 24 KB is generated from a 28 MB dictionary file of
3,215,846 words. The proactive checking algorithm only
searches the small classifier to determine whether a password
is acceptable or not. As far as we know, ProCheck provides
the fastest checking speed and best compression of a huge
dictionary.

When a dictionary used by a proactive password checker
does not match that used by a cracker, it is likely that the
checker will fail to prevent some weak passwords, which can
be successfully guessed by the cracker afterwards however.
Although this appears to be an inherent difficult-to-solve
defect for password checking, the ProCheck technique makes
it possible for security defenders to arm themselves with

dictionaries as huge as they like, and thus significantly
minimize the chance window of bad guys.

2.2 A Common Shortcoming

Even though a word in a live language is extremely difficult
to memorize, or seldom used and thus strange to the mind of
most people so that it appears to be secure, it is still a weak
password if a proactive password checker includes that word
in its dictionary file. On the contrast, some really weak
passwords with low entropy could be considered to be
“good” by proactive password checkers. This is a common
shortcoming within current proactive password checking.
Wu [13] also observed this.

In our experiment, all existed password checkers including
ProCheck failed to catch weak passwords like a198b53,
which are of low entropy. Ironically, 12345abc could be
rejected as a weak password by some checkers, but 12a3b4c5
would be accepted as a good one by all checkers. Similarly,
some checkers could easily reject 12345ab, but failed to
catch 12a34Db5. This kind of failure comes from the rational:
1) the common practice for password management is always
based on dictionary attack to search weak passwords, and
those passwords that cannot be cracked by dictionary-based
attacks are usually considered to be secure; and
consequently, 2) current proactive checkers mainly (if not
totally) rely on dictionary-based checking, and most low-
entropy passwords are ignored.

These low-entropy passwords constitute a new class of weak
passwords, and need to be properly addressed.

3. ENTROPY BASED PROACTIVE
PASSWORD CHECKING: AN
EXAMPLE

We propose to use entropy based proactive password
checking to detect the abovementioned new class of weak
passwords, and allow only high entropy passwords.
Moreover, we propose to dig out effective patterns of weak
passwords with low entropy as the first step of performing
entropy-based proactive checking.

Until now, a few password patterns have been exploited to
recognize weak passwords by current password checkers. For
example,

e Minimum password length;
e All digits or all punctuation characters;
e (Calendar dates or phone numbers;

® Adjacent keys, such as 12345ab, 12345abc,
ehm12345, abcdefgh

Nonetheless, those used patterns are of a very limited number
and type, and they cannot tackle many other weak passwords
with low entropy. On the other hand, the simple password
policy described in the beginning of Section 2 leads to a too
strong pattern to be acceptable. In this section, we take 7-
character alphanumeric password as an example of seeking
for weak patterns of low entropy passwords. We deliberately
choose 7-character case-insensitive alphanumeric password
as our example, because they are widely used in real life,
though many systems like Unix and Windows NT support

129

case sensitive passwords. Empirical data showed that users
generally avoided using the shift key, and 86% passwords
cracked in Wu’s experiment could be typed without it [13].
This might partially explain that. On the other hand, the
password scheme of Novell Netware is case insensitive, so
there are more passwords that fall into this category in a
Netware environment.

3.1 Different Distribution Areas for 7-

Character Passwords
We denote the permutation operation by P(). Consider a 7-
character alphanumeric password. It may reside in one of the
eight exclusive distribution areas defined as follows.

1). P(7a): all 7 characters are alphabetic
2). P(6a+1n): 6 alphabetic and 1 numeric
3). P(5a+2n): 5 alphabetic and 2 numeric
4). P(4a+3n): 4 alphabetic and 3 numeric
5). P(3a+4n): 3 alphabetic and 4 numeric
6). P(2a+5n): 2 alphabetic and 5 numeric
7). P(1a+6n): 1 alphabetic and 6 numeric
8). P(7n): all 7 characters are numeric

Table 1 shows the search space and cost of each of these eight
areas. The search cost is benchmarked with an attacking

speed of 4.7us per try, which is measured for the Novell
Netware password hash algorithm on a Pentium 333
Windows NT machine.

Among these cight areas, it takes the highest percentage of
the full search (36"7) to cover the P(5a+2n) area, which is an
area with the highest entropy for a 7-character alphanumeric
password, or the most secure area in terms of brute force
attacks. Similarly, P(6a+1n) is the second strongest area.
However, either P(7n), P(1a+6n) or P(2a+5n) is a relatively
weak area where passwords are with low entropy. As shown
in Table 1, there is a clear division between high and low
entropy areas. We use a dashed line to mark the division.

3.2 Different Pattern Distributions for 7-

Character Passwords

In this section, we look into the distribution of different
password patterns in the P(7a), P(6a+In), P(5a+2n) and
P(4a+3n) areas. Table 2 ~ 5 list each possible password
pattern in each area, along with its search cost as a percentage
of this area and of the whole search space of 36"7. In each of
these tables, there is a clear division that separates strong
and weak password patterns in that area. We also use a dashed
line to show the division boundary in each table.

Table 1. Different distribution areas for 7-character passwords

Areas Search space = Value I-’ercentage Cracking Time
minutes hours days
Full 36°7 78,364,164,096 100.00% 6,138.53 102.31 426
P(7a) 26°7 8,031,810,176 1025% 629.16 1049 044
P(6a+1n) (C_', *10) * 266 21,624,104,320 27.59% 169389 223 118
2
P(5a+2n) (C, “1002)28rs 24,950,889,600 31.84% 1,954.49 257 136
P(4a+3n) (C: *10A3)°2674 15,994,160,000 2041% 1,252.88 20.88 0.87
4
P(3a+4n) (C, “1oray26r3 6,151,600,00C 7.85% 481.88 83 033
P(2a+5n) (Cs, *10%5)"26"2 1,419,600,00C 181% 11120 185 0.08
6
Paa+sn) (), “10'e)28 182,000,000 0.23% 1426 024 001
P(7n) 1077 10,000,000 0.01% 078 0.01 0.00
Total: 78,364,164,096 100.00% 6,138.53 102.31 426
Speed(shry): 4.70E-06

130

Table 2. Pattern Distributions in the P(7a) Area

Patterns Search space = Value (\F;::'::I':;Igaj) (Vau?:);tsm
All for P(7a) 267 6,031,810,176 100.00% 10.25%
1. No repeated character P ;5 3,315,312,000 4128% 423%
2. Only one repeated character
One occurs twice C,- P 3481077600 43.34% 4.44%
One occurs three times C37 - P:G 276,276,000 3.44% 0.35%
One occurs four times C, P 12558000 0.16% 0.02%
One occurs five times d - P:G 327,600 0.00% 0.00%
One occurs six times C : * P:G 4,550 0.00% 0.00%
One occurs seven limes C ; *2g X 0.00% 0.00%
3. Two repeated characters
each occours twice C,526 *10%(71/ (21/*2) 828,828,000 10.32% 1.06%
one Iwics, another three times C.C. -P., 75348000 094% 0.10%
one wice, ancther four times C.C, -P., 1638000 002% 0.00%
one twice, another five times C, -P., 13650 000% 0.00%
each occurs three times C'; 3971/ (3)°2) 1,092,000 0.01% 0.00%
one three, another four times C; . st 22,750 0.00% 0.00%
4. Three repeated characters
each occurs twice C;ﬁ 4*(71/ (2))*3) 37,674,000 047% 0.05%
two occurs twice, another three times C;g =3%(71/ (212131) 1,638,000 0.02% 0.00%
Total: 8.031,810,17¢ 100.00% 1025%

131

Table 3. Pattern Distributions in the P(6a+1n) Area

Eercentae Cost
Patte Search = Val
atterns earch space alu® (value/P(8a+1n)) (Value/36~7)
All for P(§a+1n) (C_', =10) * 2676 21,624,104,320 100.00% 275%%
1. No repeated alphabetic (C ~10r P, 11603592000 5366% 14.80%

2. Only one repeated alphabetic

one occurs twice (G, 10:C P) 8283280000 38.33% 1057%
one occurs three times (C; = 0)'(d - P:G) 502,320,000 2.32% 0.64%
one occurs four times (C'.l, -10)-(C: P) 16,380,000 0.08% 0.02%
one occurs five times (C.ll »q 0)'(6'1 - f’:6) 273,000 0.00% 000%
ane occurs six times (C.l, *10)*26 1820 0.00% 0.00%

3. Two repeated alphabetic

each oczurs twice (C 10Cos *Ci e1@ir2y 1130220000 523% 144%
one twics, another three tmes (10 (Ca *C Pl) 65,520,000 0.30% 0.08%
one twice, another four times (C.l, *10)* (C i - P‘;) 682,500 0.00% 0.00%
Each occurs three times (d 100 (C ; *81/(31*31) 455,000 0.00% 0.00%

4. Three repeated alphabetic

Each occurs twice (C-l, =10)* (_ 26 =61/ (21 21* 2D) 16,380,000 0.08% 0.02%
Total: 21,624,104,320 100.00% 2759%

132

Table 4. Pattern Distributions in the P(5a+2n) Area

Percentage Cost
Patterns Search space Value (Value/P(5a+2n)) (Value/3647)
All for P(5a+2n) (C: *1042)*26~5 24,950,889,600 100.00% 31.84%
2 N
1. No repeated alphabetic (C, 1027 P, 16576560000 66.44% 21.15%

2. Only one repeated alphabetic

one occurs twice (C: "1 0“2)'((:'52 'P ;6) 7,534,800,000 30.20% 9.62%
2

one occurs three times (C . '10A2)"(Ci - P: 6) 327,600,000 1.31% 0.42%
2 4

one occurs four times (C 7" D"Z)'(Cs . P:s) 6,825,000 0.03% 0.01%
2

one occurs five times (C 7 *10°2)"26 54,600 0.00% 0.00%

3. Two repeated alphabetic

2
each occurs twice (C 7 *10°2)*(_ 26 *3*51/(21*2N) 491,400,000 197% 0.63%
2 2
one twice, another three times (C 7™ onz)-(C s * st) 13,650,000 0.05% 0.02%
Total: 24,950,889,600 100.00% 31.84%

133

Table 5. Pattern Distributions in the P(4a+3n) Area

I-'-'ercentage Cost
Patterns Search space =Value
pa (Value/P(4a+3n)) (Value/367)
All for P(4a+3n) (d *10A3)*2674 15,994,160,000 100% 20.41%
1. No repeated alphabetic (d *10A3)* P: 6 12,558,000,000 78.52% 16.03%
2. One repeated alphabetic
2
one occurs twice (C =109 Cy P) 3276000000 2048% 4.18%
one occurs three tmes (C, 109C P) 91,000,000 057% 0.12%
one occurs four times (d ~10°3)26 10,000 001% 0.00%
3. Two repeated alphabetic
2
each occurs twice (C':; * 0A3)'(C 26 "4/ (21* 2Y) 68,250,000 0.43% 0.09%
Total: 15,984,160,000 100.00% 2041%

3.3 A Simple Checking Algorithm

The above analysis shows that there are clear divisions both
between strong and weak password areas, and between strong
and weak password patterns. It is obvious that a password
that falls into the following two categories must be with
relatively low entropy:

e Passwords in the P(7n), P(l1a+6n), or P(2a+5n) area,
ie, passwords that have 5 or more numerical
characters;

o Passwords that are in the F(7a), P(6a+1n), P(5a+2n)
or P(4a+3n) area and have two or more repeated
alphabetic, or one alphabetic occurring three or
more times.

Traditionally, brute force attack ignored these divisions and
aimlessly searched each candidate in the full password space.
That is the reason that it couldn’t efficiently crack weak
passwords like cal2612. If the search order of a brute force
attack is weighted by entropy, and low-entropy parts are a
first priority, then low-entropy passwords are likely cracked
by this smart brute force attack at a cost far less than
expected.

To prevent all low-entropy passwords defined above, a
simple but efficient algorithm can be defined as follows.

PROCEDURE: Proactive_checking_for_7pwd ()
INPUT: char * pasaword

134

Begin procedure
Scan each character in password;

IF (there are = 5 numeric characters)
THEN reject;
ELSE /* matching two legal pattens */

IF (there is < 1 repeated alphabetic) AND

(occurrence of the repeated alphabetic < 2)
THEN accept;
ELSE reject;
ENDIF
ENDIF
End procedure

This is not an alternative algorithm, but a complementary
one to improve dictionary-based checking for 7-character
alphanumerical passwords. Some password checkers like
Npassword [9] could reject passwords with three or more
adjacent repeated characters, which, however, only constitute
a small subset of weak passwords covered by our algorithm.

If passwords generated from all identified weak patterns are
included into a dictionary, entropy based checking can be
achieved by the traditional dictionary-based approach.
Nonetheless, pattern-based entropy checking has the
following obvious advantages: 1) it can not only save the

storage, but also improve the checking speed by reducing the
dictionary search space; and typically, 2) its algorithm is
efficient due to its simplicity.

4. SUMMARY AND SUGGESTIONS FOR
FURTHER WORK

Although new password techniques have emerged, proactive
password checking is still a desirable method to improve
password security in real life. Unfortunately, current
checking algorithms mainly (if not totally) depend on
dictionary-based checking, and they often fail to filter some
weak passwords with low entropy. We suggested the use of
entropy-based proactive password checking to address this
new class of weak passwords. To dig out effective patterns of
weak passwords with low entropy was proposed as the first
step of performing entropy-based proactive checking, and an
example was given.

Entropy-based checking is not an alternative method, but a
complementary one to improve dictionary-based checking.
Good proactive password checking = dictionary-based
checking + entropy-based checking. What we have done here
is only a first step towards a full search of weak password
patterns for entropy based checking. It is easy to extend our
analysis and algorithm for, say, passwords with eight or more
characters, or passwords that consist of only alphabetic and
punctuation characters, and it is useful to develop entropy-
based password checking algorithms for Unix and Windows
NT passwords to improve their current dictionary-based
algorithms. Moreover, our discussion of classes of
passwords is ad hoc. It would be interesting to look for a
generic means.

5. ACKNOWLEDGMENTS

The author thanks Alasdair Grant for providing
benchmarking data for the Novell Netware password hash
algorithm. The discussion with Wenbo Mao helped the
author to clarify some points. The comments from
anonymous reviewers and participants of NSPW’01
improved this paper. Mpiti Lenkoe helped correct some
grammar errors in a previous version of this paper.

6. REFERENCES

[1] Steven M. Bellavin and Michael Mefritt, Encrypted Key
Exchange: Password-Based Protocols Secure Against
Dictionary Attacks, IEEE Symposium on Research in
Security and Privacy, May 1992. pp.72-84.

135

[2] F Bergadano et al. High dictionary compression for
proactive password checking, ACM trans. on info and
system security Vol.1, No.1, Nov. 1998

[3] F Bergadano et al. Proactive password checking with
decision trees, 1997 ACM conference on computer and
communications security, 1997, Zurich

[4] Burton Bloom. Space/time trade-offs in hash coding
with allowable errors, CACM, 13(7): 422-426, July 1979

[5] C. Davies and R. Ganesan. BApasswd: A new proactive
password checker. In 16th National Computer Security
Conference, pages 1--15, Baltimore, MD, Sept. 1993

[6] DV Klein. Foiling the Cracker; A Survey of, and
Improvements to Unix Password Security, Proceedings
of the USENIX Security Workshop. Portland, Oregon:
USENIX Association, Summer 1990; expanded as a
technical report from SEI, 1992

[7] Alec Muffett. Crack 4.0, 5.0, almost everywhere in the
internet

[8] Alec Muffett. CrackLib: a proactive password sanity
ibrary. httpz//wwwusersdirconouk/~aypto/download/caddib2.7 txt

[9] Npassword source code (Latest version: npasswd-
2.X .tar.gz). at
http://www.utexas.edu/cc/unix/software/npasswd/dist/n
passwd-2.05.tar.gz, 2000

[10]S. Patel, Number theoretic attacks on secure password
schemes. IEEE Symposium on Security and Privacy,
1997

[11]E. H Spafford. OPUS: Preventing Weak Password
Choices, Computers and Security 11(3), pp. 273-278,
1992

[12]T. Wu, The Secure Remote Password Protocol, in
Proceedings of the 1998 Intenet Society Symposium on
Network and Distributed System Security, San Diego,
CA, Mar 1998, pp. 97-111.

[13]T. Wu, A Real-World Analysis of Kerberos Password
Security, Proceedings of the 1999 Network and
Distributed System Security Symposium, February 3-5,
1999

[14] Jianxin (Jeff) Yan, Alan Blackwell, Ross Anderson and
Alasdair Grant The Memorability and Security of
Passwords -~ Some Empirical Results. Technical Report
No. 500, Computer Laboratory, University of

Cambridge,2000. htip//wwwipdeamaculfip/isersijal 4050 pdf

