
A Note on Proactive Password Checking 

Jianxin Jeff Yan 

Computer Laboratory. University of Cambridge 
Jeff.Yan @cl.cam.ac.uk 

A B S T R A C T  
Nowadays, proactive password checking algorithms are 
based on the philosophy of  the dictionary attack, and they 
often fail to prevent some weak passwords with low entropy. 
In this paper, a new approach is proposed to deal with this 
new class of  weak passwords by (roughly) measuring 
entropy. A simple example is given to exploit effective 
patterns to prevent low-entropy passwords as the first step o f  
entropy-based proactiv¢ password checking. 

Keywords 
Proactive password checking~ dictionary attack, entropy 

1. INTRODUCTION 
Password security is an old problem. Due to the limitation o f  
human memory, people are inclined to choose easily 
guessable passwords (e.g. phone numbers, birthdays, names 
of  family or friends, or words in human languages) that 
might lead to severe security problems. Though it was 
commonly believed that secure passwords were difficult to 
remember and easy-to-remember passwords were insecure, a 
recent experiment [14] showed with hard data that passwords 
based on mnemonic phrases could provide both good  
memorability and security, but non-compliance with 
password selection advices was a main threat to password 
security. 

Proactive password checking has been a common means to 
enforce password policies and prevent users from choos ing  
easily guessabl¢ passwords in the first place. When a user 
chooses a password, a proactive checker will determine 
whether his password choice is acceptable or not, and this  
proactive checking is done online and the user will be 
immediately responded the result. Among common 
approaches to improving password security by selecting 
good passwords, such as user education, program-control led 
password generation and reactive password checking (i.e., 
system administrators periodically run password cracking 
programs to search weak passwords), proactive password 
checking has been widely regarded as the best [2, 3, 6, 11]. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or dislributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redislribute to lists, requires prior 
specific permission and/or a fee. 
NSPW'OI. September 10-13 th, 2002, Cloudcmfl, New Mexico, USA. 
Copyright 2002 ACM 1-58 ! 13-457-6/01/0009...$5.00. 

In 1999, Wu [13] reported a password experiment done in a 
Kerbems setting where a proactive password checker was 
used. Wu recommended strong password authentication 
protocols such as EKE [1], SRP [12] as an alternative 
approach to improving password security, since the checker 
appeared not to help that much in his experiment but those 
password authentication protocols appeared to eliminate the 
threat of  offline dictionary attack on passwords. As far as we 
know, this is the most negative criticism of proactive 
password checking so far. Wu's  claim of  inefficacy o f  
proactive password checking, however, is unconvincing,  
since the poor experimental result shown in his paper might  
and does simply suggest that the proactive checker used in 
his experiment was not effective. 

On the other hand, although strong password authentication 
protocols utilize cryptographic technologies to generate 
strong session keys from passwords so that users may use 
weak passwords in some circumstances, they are not the 
"silver bullet" for password security. Firstly, these methods 
are expensive, and are not widely deployed in fielded 
systems. It also appears impossible to apply this technique 
in every place where the password mechanism is needed. 
Secondly, they are complex and error-prone. Security 
protocols are notoriously difficult to be correct, and subtle  
security flaws of  protocols have been published from time to 
time. There are already some attacks against password 
authentication protocols, e.g. [10], published in the 
literature. Moreover, nobody is sure whether those 
authentication protocols are secure as claimed or not before 
they are rigorously proved. Most importantly, the party that 
stores the password file can still do offline dictionary attack 
as usual. Although strong password authentication protocols  
do amplify the search space o f  a weak password to that of  a 
much stronger cryptographic key, this .amplification is 
meaningful only when an attacker does dictionary attack 
against the key. The threat o f  offlin¢ dictionary attack, 
launched directly on the password file, is still there. For 
example, there might be an internal attack. Moreover, 
password authentication protocols are vulnerable to either 
online dictionary attack or denial of  service attack. If  these 
protocols are designed to be resilient to the former attack, 
then they are unavoidably vulnerable to the latter attack, and 
vice versa. 

Password security is not a problem that can be solved on ly  
by technical means. Human factor is also very importanP. In 

x When implementing proactive password checking, it is also 
crucial to consider human factor, organizational or social  
issues. For example, users should be given good feedback 
on why passwords fail the test, and how they can choose a 
better one (now, they can be instructed to choose 

127 



case users become complacent  due to the (superf ic ia l )  
technical  advantage o f  strong pas: |word au then t i ca t ion  
protocols  - t h e  adver t i sement  in many papers is that a user  
can use "weak",  "memorable"  passwords - so that they choose  
their  names or user IDs, phone numbers or whatever is s imp le  
as their  passwords,  it is not  impossi 'ble for an attacker to  
easily guess them after a few tries in an online d i c t i ona ry  
attack. 

Therefore, in places where sUrong peclsword au then t i ca t ion  
does or does not fit, good password select ion p o l i c i e s  
enforced by proact ive checking is ,itill one o f  des i rab le  
methods to improve password secm~ty in practice. F rom 
W u ' s  cxpcriment,  we also see a great and urgent demand o f  
effective proact ive  password  checkir.tg tools  in real life. 
Nevertheless,  proact ivc password checking is not a perfect  
technique. In this paper,  we try to address a c o m m o n  
shortcoming o f  the state o f  the art o f  proact ive  checking and 
propose a remedy.  

2. PROACTIVE PASSWORD 
CHECKING: STATE OF THE ART 

Theoret ical ly,  it is easy for proact ive  password  checking to  
block all possible  weak passwords.  It might, for example,  be  
enough to enforce such a s imple l:,assword pol icy:  each 
password has no less than eight  cluwacters, among which  
there is at least  one lower case character, at least one  
uppercase character, at least one numerical  character and at 
least one punctua t ion  character, and there is no character  
occurring more than twice. Nevertheless ,  it is impract ical  to  
do that in real life, since passwords  comply ing  with such a 
pol icy  might  be too diff icul t  to be memorized.  There are 
always some trade-offs between securi  W and user  
convenience for password choice. As a basic a s sumpt ion ,  
proact ive  password checking algori thms typica l ly  do n o t  
enforce ext remely  strict pol ic ies  but al low users to c h o o s e  
"good enough" passwords,  though the cri teria of  " g o o d  
enough" might  vary in different  circmnstances.  

2.1 Dictionary Attack: the Basis of 
Curren t  Proactive Password Checking 

When a hacker cracks passwords,  he can use the fo l l owing  
two methods: 1) to do a dict ionary attack, which tries each o f  
a list o f  word and other possible  weak passwords,  and s imp le  
t ransformat ions  such as capi tal izing,  prefixing,  suffixing or  
reversing a word as a candidate until  the hashed value o f  the  
candidate matches a password hash; and 2) to launch a b ru te  
force attack to search the whole  key space, which i s  
commonly  huge. Hackers,  however,  always prefer to use  
dic t ionary attack, because it has proved to be very effect ive 
in his tory [6]. Fo l lowing  a s imilar  thinking,  current  
proact ive password checkers are besed on the d i c t i o n a r y  
attack. They check each user-chosen password cand ida te  
against  a d ic t ionary  of  weak passwords.  I f  a cand ida te  
matches a d ic t ionary  item, or anyone o f  its variants that are 

mnemonic  phrase based passwords  as sugges ted  by [14]). 
In case passwords  are rejected without  appropr ia t e  
explanat ion  and further instruction,  users may dis l ike  the  
system and try to undermine  it. The detai led d iscuss ion  o f  
this is, however,  beyond the scope o f  this paper. 

generated by  common transforrnations,  then the: candidate is  
an unacceptable password  and rejected. 

For  example,  crack [7] is one o f  the most  popular  password-  
cracking software. Al though  it also supports  the brute force 
attack, i t  has been far more used as a d i c t i o n a r y - b a s e d  
cracking tool. Ut i l iz ing a similar  d ic t ionary-based  a lgo r i thm 
used by crack, its des igner  also implemented  cracklib [8], a 
proact ive password-checking  l ibrary,  which has been  
integrated into some password systems.  Armed with a same 
dictionary,  a cracklib-supported system can prevent  all weak 
passwords that  can be guessed by crack. 

In order to cover  as many weak passwords as possible,  a huge  
dic t ionary is commonly  required for this d i c t i o n a r y - b a s e d  
proactive password check/ng. The dict ionary file may  o c c u p y  
tens o f  megabytes  or even more storage space, and it may  
take a very long t ime to search the huge d ic t ionary .  
Consequently,  an essential  research problem has been how to  
eff icient ly store and search the dict ionary.  The search speed  
is even a more important  concern than s torage space, bccanse  
proact ive password checking needs to be done online in real- 
t ime while a user waits for an immedia te  response from the  
sys tem.  

The cracklib v2.7 included a dict ionary o f  1.4 mi l l ion  words,  
which had a raw size o f  around 15MB, and the whole package  
o f  all files occupied  around 7MB, which was around 45% o f  
or iginal  size. It used a mod i f i ed -DAWG (Directed Acyc l ic  
Word  G r a p h ) c o m p r e s s i o n  algori thm, which p reprocessed  
sorted lists o f  words to remove redundancy and make 
compress ion  tools  l ike gz ip  more effective. A gz ipped -  
D A W G  dict ionary was typica l ly  about 50% o f  the size o f  the  
gz ipped non-DAWGed dic t ionary  [g]. In order to improve  
search speed, cracklfb used an index file to access d i c t i ona ry  
words, and kept  a table to assis t  binary searching. In  
summary,  the a lgor i thms used by  cracldib to op t imize  
d ic t ionary  s torage and checking speed were very in tu i t ive ,  
and they only worked eff iciently when the dict ionary file was 
o f  a modest  size. 

Researchers  h a v e - b e e n  looking  for good algori thms tha t  
could achieve both fast checking speed and effect ive 
d ic t ionary  compress ion  at the same time. For  example ,  
Spafford used Bloom fil ters [4] in his OPUS system [11]. 
Davies and Ganesan used tr igrams and a Markov model  in  
their  BApasswd [5]. The s ta te-of- the-ar t  o f  p roac t ive  
password checking is ProCheck [2, 3], which uses dec i s ion -  
tree techniques to achieve high d ic t ionary  compress ion  (up 
to 1000:1) as well  as a fast checking speed. In its current  
implementa t ion,  a dec is ion  tree classif ier  with the size o f  
only 24 KB is generated from a 28 MB dic t ionary  file o f  
3,215,846 words. The proact ive  checking algori thm o n l y  
searches the small  classif ier  to determine whether a p a s s w o r d  
is acceptable or not. As far as we know, ProCheek p r o v i d e s  
the fastest  checking speed and best  compress ion  o f  a huge  
d ic t ionary .  

When  a d ic t ionary  used by  a proact ive  password checker  
does not  match that  used by a cracker, it  is l ikely that the  
checker will  fail to prevent  some weak passwords,  which can 
be successful ly  guessed by the cracker afterwards however.  
Al though  this appears to be an inherent  d i f f i cu l t - t o - so lve  
defect  for password checking, the ProCheck technique makes  
it poss ib le  for securi ty defenders  to arm themselves  wi th  

128 



dictionaries as huge as they like, and thus s ignif icant ly  
minimize the chance window of  bad guys. 

2.2 A Common Shortcoming 
Even though a word in a live language is extremely diff icult  
to memorize, or seldom used and thus strange to the mind o f  
most people so that it appears to be secure, it is still a weak 
password i f  a proactive password checker includes that word 
in its dictionary file: On the contrast, some really weak 
passwords with low entropy could be considered to be 
"good" by proactive password checkers. This is a common 
shortcoming within current proactive password checking. 
Wu [13] also observed this. 

In our experiment, all existed password checkers inc luding 
ProCheck failed to catch weak passwords like a198b53, 
which are of  low entropy. Ironically, 12345abc  could be 
rejected as a weak password by some checkers, but 12a3b4c5 
would be accepted as a good one by all checkers. Similarly, 
some checkers could easily reject 12345ab, but failed to 
catch 12a3465 .  This kind of  failure comes from the rational:  
1) the common practice for password management is always 
based on dictionary attack to search weak passwords, and 
those passwords that cannot be cracked by dict ionary-based 
attacks are usually considered to be secure; and 
consequently, 2) current proactive checkers mainly ( if  not  
totally) rely on dictionary-based checking, and most low- 
entropy passwords are ignored. 

These low-entropy passwords constitute a new class o f  weak 
passwords, and need to bc properly addressed. 

3. ENTROPY BASED PROACTIVE 
PASSWORD CHECKING: AN 
EXAMPLE 

We propose to use entropy based proacfive password 
checking to detect the abovementioned new class of  weak 
passwords, and allow only high entropy passwords. 
Moreover, we propose to dig out effective patterns of  weak 
passwords with low entropy as the first step o f  performing 
entropy-based proactive checking. 

Until now, a few password patterns have been exploited to 
recognize weak passwords by current password checkers. For 
example, 

• Minimum password length; 

• All digits or all punctuation characters; 

• Calendar dates or phone numbers; 

• Adjacent keys, such as 12345ab, 12345abc,  
ehm12345, abcde fgb. 

Nonetheless, those used patterns are of  a very limited number 
and type, and they cannot tackle many other weak passwords 
with low entropy. On the other hand, the simple password 
policy described in the beginning of  Section 2 leads to a too  
strong pattern to be acceptable. In this section, we take 7- 
character alphanumeric password as an example of  seeking 
for weak patterns of  low entropy passwords. We del iberately 
choose 7-character case-insensitive alphanumeric password 
as our example, because they are widely used in real life, 
though many systems like Unix and Windows NT suppor t  

case sensitive passwords. Empirical data showed that users 
generally avoided using the shift key, and 86% passwords 
cracked in Wu's  experiment could be typed without it [13]. 
This might partially explain that. On the other hand, the 
password scheme of  Novell Netware is case insensitive, so 
there are more passwords that fall into this catcgory in a 
Netware environment. 

3.1 Different Distribution Areas for 7- 
Character Passwords 

We denote the permutation operation by P0- Consider a 7- 
character alphanumeric password. It may reside in one of the 
eight exclusive d is t r ibut ion  areas  defined as follows. 

1). P(7a): all 7 characters are alphabetic 

2), P(6a+ln): 6 alphabetic and 1 numeric 

3), P(5a+2n): 5 alphabetic and 2 numeric 

4). P(4a+3n): 4 alphabetic and 3 numeric 

5). P(3a+4n): 3 alphabetic and 4 numeric 

6). P(2a+5n): 2 alphabetic and 5 numeric 

7). P(la+6n): 1 alphabetic and 6 numeric 

8), P(7n): all 7 characters are numeric 

Table I shows the search space and cost of each of these eight  
areas. The search cost is benchmarked with an attacking 
speed of 4.7~ts per fry, which is measured for the Nov¢ll 
Netware password hash algorithm on a Pentium 333 
Windows NT machine. 

Among these eight areas, it takes the highest percentage of  
the full search (36A7) to cover the P($a+2n) area, which is an 
area with the highest entropy for a 7-character alphanumeric 
password, or the most secure area in terms of  brute force 
attacks. Similarly, P(6a+ln) is the second strongest area. 
However, either P(Tn), P(la+6n) or P(2a+Sn) is a relat ively 
weak Itrea where passwords are with low entropy. As shown 
in Table 1, there is a clear division between high and low 
enlzopy areas. We use a dashed line to mark the division. 

3.2 Different Pattern Distributions for 7- 
Character  Passwords 

In this section, wc look into the distribution of  different 
password patterns in the P(Ta), P(6a+ln), P(Sa+2n) and 
P(4a+3n) areas. Table 2 - 5 list each possible password 
pattern in each area, along with its search cost as a percentage 
of  this area and of  the whole search space of  36A7. In each o f  
these tables, there is a Clear division that separates strong 
and weak password patterns in that area. We also use a dashed 
line to show the division boundary in each table. 

129 



A r e a s  

Table 1. Different distribution areas for 7-character passwords 

Search space : Value Percentage Cracking Time 

Full 36A7 

P(Ta) 26"7 

P(6a+ln) ( ~  -10) ° 26~6 

P(5a+2n) (C27 "10~2)'26A 5 

P(4a+3n) ( 037 "10'~3)'26M 

P(3a+4,) (047 "10~4)'26A3 

P(2o+5n) ( ~ *10AS)'26A2 

minutes hours days 
78,364,164,096 100.00% 6,138.53 10231 426 

8,031,810,176 1025% 629.16 10.49 0A,I 

21,E24,104,320 27.5~',~ 1,693.89 2823 1.18 

24,950,889,600 31.84% 1,954.49 32.57 1.36 

15,gQ4,160,00(] 20.41% 1,252.68 20.88 0.87 

6,151,600,00C 7.85% 481.88 8.03 0.33 

1,41 9,600,00C 1.81 % 111 20 1.85 0.0e 

P(la+6n) (C~ "10A6)'26 

P(7n) 10A7 

Total: 

102,030,000 023% 14.26 024 0.01 

10,000,000 0.01% 0.78 0.01 0.00 

78,364,164,00E 100.00% 6,138.53 102.31 426 
Speed(s/try): 4.70E-.06 

130 



Patteme 

Table 2. Pattern Distributions in the P(7a) Area 

Percentage 
Search ,pace = Value 

(Value/P(7a)) 

Cost 

(Value/36^7) 

All for P(Ta) 28"7 8,031,810,178 105.00% 

1. No repeated chamdmr P:6 3,315,312,000 41 2.8% 

2. Only one mfleat~ character 

One o~Jm twim 

One occurs three 

One occurs four limes 

One occunt five Urnes 

One oacurs six times 

One occurs seven times 

C ~  * ~ 6  3,481,077,600 43.34% 

d *~26 2"/8~5,000 3.44% 

12 .,oo0 

C ~ ' 2 6  2E 0.00% 

3. Two repeated characters 

each ~=~ura twice 

one twice, onother ~ree times 

one twice, another four limes 

one twice, another five Umes 

each o(=um three limes 

one three, ano~er four limes 

CS2~ "10"(71 / (2.~2) 828,828,000 10.32% 

C~ .~'~ .~1D:6 75,348,000 0.94% 

C; ~ °F~ 1,838,000 0.02% 

C 2 6  "3"(71 / (31)^2) 1,0~,000 0.01% 

C ~  - ~ 6  22.75O 0.00% 

4. Three mpeatecl charactem 

each oocum twic8 

two occurs twice, another three times 

q 

C 2 6  °4"(711 (2!)^3) 37,674,000 0.47% 

~ 2 6  "3°(7! / (2r213!)) 1,635,000 0.02% 

10.25% 

4.23% 

4.44% 

0.35% 

0.02% 

0.00% 

0.00% 

0.00% 

1.06% 

0.10% 

0.00% 

0.00% 

0.00% 

0.05% 

0.05% 

0.00% 

TotaJ: 8,031,810,17a 100.00% 

131 



Pat tems 

Table 3. Pattern Distributions in the P(6a+ln) Area 

Search space : Value 
Percentage Cost 

(Value/P(ea+ln)) (Value/36A7) 

All for P(6a+ln) 

1. No repeated alphabetic 

2. Only one mpeab~ alphabetic 

one occum twice 

one occum three bmes 

one occurs four tJrnes 

one occurs five times (C17 

one occum six limes ( C ~  

3. Two repeated alphabe~c 

each ocmm twice ( ~ 7  

one twi,-,.,, another three times ( ~ 7  

one twi,':, another four tirrma ( 

Each occurs three Umes (~-~7 

4. Three repeated alphabetic 

Each occum Lwice 

(CJ7 "10) * 26A6 

,C; 
' - ( ~ 7  "10 )*{~"* -~2 : - :  . . . . . . . .  

"10)*(~f-~6 " ~ 2 6 )  

"10)'26 

"10) ' (~26 ' ~  "617(21"2!)) 

"10)* ( C ~  * ~ 2 6  ) 

2 

*10) ° (C26  * el / (31 * 3!)) 

( C ~  "10)* (C26  ° 611 (21 * 21" 21)) 

21,624,104,320 100.00% 27.89% 

11,603,592,0(X~ 53.66% 14.80% 

8~.88~80,00Q 38.33% 10.57% 

502~20,00Q 2.32% 

16~80,00(] 0.08% 

273,000 0.00% 

1~2C O.OO% 

0.64% 

0.02% 

0.00% 

0.00% 

1,130~20,00Q 523% 

65~520,00Q 0.3O% 

682,500 0.00% 

455,000 0.00% 

1.44°£ 

0.08% 

0.00% 

0.00% 

16~80,0(X: 0.06% 0.02% 

Total: 21,624,104,320 100.00% 
m 

27-~9% 

132 



Table 4. Pattern Distributions in the P(Sa+2n) Area 

Pat tems Search space = Value Percentage Cost 

(Value/P(Sa+2n)) (Value/36^7) 

All for P(.rm+2n) (C~ "10A2) .2~6  24,960,880,60(I 100.00% 31.84% 

1. No repeal~ alphabelic ,C: -,.,)-F,, 
2. Only one repeated alphabetic 

one occum twk:s 

one occurs three limes 

one occum four limes 

one occum five times 

(C~'  " 1 0 a 2 , ' { ~ : ~ : ;  . . . . . .  

16,b'76,560,00C) 05.44% 21.15% 

7,534,800,000 3020% 9.62% 

327,600,0(X] 1.31% 

6,825,030 0.03% 

54,6(X] 0.00% 

0.42% 

0.01% 

0.00% 

3. Two repeated alphabetic 

each occurs twice 

one twim, another thru times 

( C ~  "10A2)*(C26 "3"51/(21*21)) 

(C:- --" lm2) (L.~5 "/~26 ) 

491,400,000 1.9"P]4 

13,650,000 0.05% 

0.63% 

0.02% 

To.';-;: 24,g60,88g,63(] 100.00% 31Ji4% 

133 



Patterns 

T a b l e  5. P a t t e r n  D i s t r i bu t ions  in the  P(4a+3n)  A r e a  

Percentage Cost 
Search space =Value 

(Value/P(4a+3n)) (Value/36^7) 

All for P(4a+3n) (C37 ,10A3),26~lt 15,qm4,1EO,000 100% 20.41% 

1. No repeated alphabetic (C37 *10A3)*F26 12,558,030,000 78.52% 16.03% 

2. One repeated alphabetic 

one occurs twk=B 

one occurs three times 

one occurs four times 

2 
1o.3)-(C, ) 

(C37 -10-3)-2s 

3,276,000,000 20.48% 4.18% 

91,000,000 0.57% 0.12% 

910,000 0.01% 0.00% 

3. Two repeated alphabetic 

each occurs twice (C3+ 10A3) ((,-~'26 "4! I (2t * 2t)) S8~50,000 0.43% 0.09% 

Total: 15,1N,180,000 100.00% 20&1% 

3.3 A Simple Checking Algorithm 
The above  analysis  shows that  there are clear d iv i s ions  b o t h  
between strong and weak  password  eu.~as, and between s t r o n g  
and weak password  patterns.  I t  is obv ious  that  a p a s s w o r d  
that  falls  into the fo l lowing  two categor ies  must  be wi th  
re la t ively  low entropy:  

• Passwords  in the P(7n), P(:la+6n), or P(2a+Sn) area, 
i.e., passwords  that  have 5 or more numer ica l  
characters ;  

• Passwords that are in the P(Ta), P(6a+ln) ,  P(Sa+2n)  
or P(4a+3n) area and have two or more  repeated  
alphabetic ,  or  one alphat .et ic  occurr ing three or  
more  t imes. 

Tradi t ional ly ,  brute force at tack ignored these d iv i s ions  and  
a imless ly  searched each candidate  in. the full  password  space. 
That  is the reason that  i t  c o u l d n ' t  e f f ic ient ly  crack weak  
passwords  l ike c a 1 2 6 1 2 .  I f  the se-'rch order o f  a brute force  
at tack is weighted  by  entropy,  and low-en t ropy  parts are a 
Ftrst priori ty,  then low-en t ropy  passwords  are l ike ly  cracked 
by this smart  brute  force at tack at a cost  far less t han  
expec ted .  

To prevent  all low-en t ropy  passwords  def ined above, a 
s imple  but  eff ic ient  a lgor i thm can be defined as fol lows.  

PROCEDURE: Proactive_checking_for_7pwd 0 

INPUT: char • password  

Begin procedure 
Scan each character in p a s s w o r d ;  

IF (there are > 5 numedc characters) 
THEN reject; 
ELSE/ *  matching two legal patterns */ 

IF (there is _< I repeated alphabetic) ,AND 

(occurrence of the repeated alphabetic < 2) 
THEN accept; 
ELSE reject; 
ENDIF 

ENDIF 
End procedure 

This is not  an a l ternat ive  a lgor i thm,  but  a c o m p l e m e n t a r y  
one to improve  d i c t i ona ry -based  checking  for  7-charac ter  
a lphanumer ica l  passwords .  Some password  checkers l i ke  
Npassword [9] cou ld  reject  passwords  with three or more  
adjaccnt  rcpcatcd characters,  which,  however,  only c o n s t i t u t e  
a small  subset  o f  weak  passwords  covered  by  our  algorithm. 

I f  passwords  generated f rom all ident i f ied  weak p a t ~ m s  arc 
inc luded into a d ic t ionary ,  en t ropy  based  checking  can b e  
achieved by  the t r ad i t iona l  d i c t iona ry -based  approach.  
Nonetheless ,  pa t t e rn-based  en t ropy  checking  has the  
fo l lowing  obv ious  advantages :  I )  it can not  only  save the  

134 



storage, but also improve the checking speed by reducing the 
dictionary search space; and typically, 2) its algorithm is 
efficient due to its simplicity. 

4. S ~ Y  AND SUGGESTIONS FOR 
FURTHER WORK 

Although new password techniques have emerged, proactive 
password checking is still a desirable method to improve 
password security in real life. Unfortunately, current 
checking algorithms mainly (if not totally) depend on 
dictionary-based checking, end they often fail to filter some 
weak passwords with low entropy. We suggested the use of  
entropy-based proactiye password checking to address this 
new class of weak passwords. To dig out effective patterns of  
weak passwords with low entropy was proposed as the first 
step of performing entropy-based proactivc checking, and an 
example was given. 

Entropy-based checking is not an alternative method, but a 
complementary one to improve dictionary-based checking. 
Good proactive password checking = dictionary-based 
checking + entropy-based checking. What we have done here 
is only a first step towards a full search of weak password 
patterns for enUopy based checking. It is easy to extend our 
analysis and algorithm for, say, passwords with eight or more 
characters, or passwords that consist of only alphabetic and 
punctuation characters, and it is useful to develop entropy- 
based password checking algorithms for Unix and Windows 
NT passwords to improve their current dictionary-based 
algorithms. Moreover, our discussion of classes of  
passwords is ad hoc. It would he interesting to look for a 
generic means. 

5. ACKNOWLEDGMENTS 
The author thanks Alasdair Grant for providing 
benchmarking data for the Novell Netware password hash 
algorithm. The discussion with Wenbo Man helped the 
author to clsrify some points. The comments from 
anonymous reviewers and participants of NSPW'01 
improved this paper. Mpiti Lenkoe helped correct some 
grammar errors in a previous version of this paper. 

1 

[1] 
RElq~F.,NCES 

Steven M. Bellovin and Michael Merritt, Encrypted Key 
Exchange: Password-Based Protocols Secure Against 
Dictionary Attacks, II~.F~I~. Symposium on Research in 
Security and Privacy, May 1992. pp.72-84. 

[2] F Bergadeno et al. High dictionary compression for 
proactive password checking, ACM trans, on info and 
system security Vol.l, No.I, Nov. 1998 

[3] F Bergadano et al. Proactive password checking with 
decision trees, 1997 ACM conference on computer and 
communications security, 1997, Zurich 

[4] Burton Bloom. Space/time trade-offs in hash coding 
with allowable errors, CACM, 13(7): 422-426, July 1979 

[5] C. Davies end 1~ Ganesan. BApasswd: A new proactive 
password checker. In 16th National Computer Security 
Conference, pages 1--15, Baltimore, MD, Sept. 1993 

[6] DV Klein. Foiling the Cracker; A Survey of, and 
Improvements to Unix Password Security, Proceedings 
of the USENIX Security Workshop. Portland, Oregon: 
USENIX Association, Summer 1990; expanded as a 
technical report from SEI, 1992 

[7] Alec Muffett. Crack 4.0, 5.0, almost everywhere in the 
internet 

[8] Alec Muffett. CrackLib: a proactive password sanity 
ibrary, hlIp:/~w, v 4 ~ t  d~um~zdd-OylXn/dmmloed/m(kfib~7Jxt 

[9] Npassword source code (Latest version: npasswd- 
2.X.tar.gz). at 
http://www.utexas .edu/cc/unix/so ftware/npasswd/dist/n 
passwd-2.05.tar.gz, 2000 

[10] S. Patel, Number theoretic attacks on secure password 
schemes. ~ Symposium on Security and Privacy, 
1997 

[ l l ]E.  IL Spa_fiord. OPUS: Preventing Weak Password 
Choices, Computers and Security 11(3), pp. 273-278, 
1992 

[12]'1". Wu, The Secure Remote Password Protocol, in 
Proceedings of the 1998 Interact Society Symposium on 
Network and Distributed System Security, San Diego, 
CA, Mar 1998, pp. 97-111. 

[13] T. Wu, A Real-World Analysis of Kerberos Password 
Security, Proceedings of the 1999 Network and 
Distributed System Security Symposium, February 3-5, 
1999 

[14] Jianxin (Jeff) Yan, Alan BlackweU, Ross Anderson and 
Alasdair Grant. The Memorability and Security of 
Passwords - Some Empirical Results. Technical Report 
No. 500, Computer Laboratory, University of 
Cambridge,2000. l~p://w,w~dc~n~, ,k..flp/u~al4~F~Dp:lf 

135 


