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ABSTRACT 
Secure Multi-party Computat ion (SMC) problems deal with 
the following situation: Two (or many) parties want to 
jointly perform a computation. Each party needs to con- 
tribute its private input to this computation, but  no party 
should disclose its private inputs to the other parties, or 
to any third party. With  the proliferation of the Internet, 
SMC problems becomes more and more important.  So far no 
practical solution has emerged, largely because SMC studies 
have been focusing on zero information disclosure, an ideal 
security model that  is expensive to achieve. 

Aiming at developing practical solutions to SMC problems, 
we propose a new paradigm, in which we use an acceptable 
security model that  allows partial information disclosure. 
Our conjecture is that  by lowering the restriction on the 
security, we can achieve a much better performance. The 
paradigm is motivated by the observation that  in practice 
people do accept a less secure but  much more efficient solu- 
tion because sometimes disclosing information about their 
private data  to certain degree is a risk that  many people 
would rather take if the performance gain is so significant. 
Moreover, in our paradigm, the security is adjustable, such 
that  users can adjust the level of security based on their 
definition of the acceptable security. We have developed 
a number of techniques under this new paradigm, and are 
currently conducting extensive studies based on this new 
paradigm. 
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The proliferation of the Internet has triggered tremendous 
opportunities for cooperative computation, where people are 
cooperating with each other to conduct computation tasks 
based on the inputs they each supply. These computa- 
tions could occur between trusted partners, between par- 
tially trusted partners, or even between competitors. For ex- 
ample, two competing financial organizations might jointly 
invest in a project that  must satisfy both organizations' pri- 
vate and valuable constraints, two countries might want to 
plan a joint military action but each country has some se- 
cret information that  cannot be shared. Usually, to conduct 
these computations, one must know inputs from all the par- 
ticipants, but if nobody can be trusted enough to know all 
the inputs, privacy becomes a critical issue. 

A more general form of the problem is described in the fol- 
lowing: two or more parties want to conduct a computation 
based on their private inputs, but  neither party is willing 
to disclose its own input to anybody else. The problem is 
how to conduct such a computat ion while preserving the 
privacy of the inputs. This problem is referred to as Se- 
cure Multi-party Computat ion problem (SMC) in the liter- 
ature [25]. Generally speaking, A secure multi-party compu- 
tation (SMC) problem deals with computing any function on 
any input, in a distributed network where each participant 
holds one of the inputs, ensuring that  no more information 
is revealed to a participant in the computat ion than can be 
computed from that  participant 's input and output  [20]. 

The greatest challenge that  all the solutions need to face is 
how to satisfy the security requirement. To formally define 
security [18], traditional SMC studies introduce the concepts 
of the ideal model and the real model. In the ideal model, 
the real parties are joined by a (third) trusted party, and the 
computation is performed via this trusted party. In the real 
model, the real SMC protocol is executed (and there exist 
no trusted third parties). A protocol in the real model is 
said to be secure with respect to certain adversarial behavior 
if the possible real executions with such an adversary can be 
"simulated" in the ideal model. Loosely speaking, whatever 
information disclosure that  can occur in the real model could 
also occur in the ideal model. The security model based 
on the above definition of security will be called the ideal 
security model throughout this pap'er (to avoid the confusion 
of the ideal security model with the ideal model, we reiterate 
that  the computation based on the ideal security model does 
not use a trusted party). 
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Most of the  studies of SMC problems are based on the  ideal 
security model. It is observed tha t  achieving this kind of 
security is not difficult, bu t  achieving it efficiently is. Ac- 
cording to the theoretical SMC studies, all of the  SMC prob- 
lems can be solved in theory using the  circuit evaluation 
protocol [18]. But  using this general solution for special 
cases of mult i-party computat ion can be impractical; spe- 
cial solutions should be developed for special cases for effi- 
ciency reasons. Motivated by this observation, researchers 
s tar ted to look for special solutions for each specific SMC 
problem. A number  of researchers have proposed various 
solutions to the  Private Information Retrieval (PIR) prob- 
lem [9, 8, 21, 10, 22, 6, 16]; Du and Atallah have proposed 
the  solutions to the  privacy-preserving statistical analysis, 
scientific computat ion,  and computat ional  geometry prob- 
lems [11, 15, 13, 2, 14]; Lindell and Pinkas have proposed 
the privacy-preserving da ta  mining problem [23]. However, 
those solutions, a l though very elegant, are still not efficient 
enough for practical uses. Practical solutions need to be de- 
veloped. However, whether  practical solutions based on the  
ideal security model exist or not is still unknown. 

Instead of following the  tradit ional  pa th  to find practical so- 
lutions, we ask these questions: Why do we have to achieve 
this kind of ideal security? Is ideal security really necessary 
in practice? In the real world, ideal security is of course pre- 
ferred, bu t  if the  ideal security is too expensive to achieve, 
people might prefer low-cost solutions tha t  can achieve se- 
curity at an "acceptable" level. In another  words, sacrificing 
some security or disclosing some limited information about  
the private da ta  for a be t te r  performance is often accept- 
able in practice. For example, if the  private information is 
an array of numbers,  disclosing some statistical information 
about  these numbers  might be acceptable as long as the  
actual raw da ta  are not disclosed. 

Therefore, we propose a new security paradigm: to s tudy 
the  secure mult i -party computat ion problems based on an 
acceptable security model. The new paradigm is il lustrated 
in Figure 1. We refer the  new problem as the  Practical 
Secure Multi-party Computa t ion  (PSMC) problem. PSMC 
problem deals with  comput ing any function on any input,  
in a distr ibuted network where each part icipant  holds one 
of the  inputs, ensuring t ha t  only a limited amount  of infor- 
mation is revealed to a part icipant  in the  computation.  

As the first step towards defining acceptable security, we use 
the  following informal definition in this  paper; a more formal 
definition is still under  development. 

A protocol achieves acceptable security, i f  an ad- 
versary can only narrow down all the possible 
values of the secret data to a domain with the 
following properties: 

1. The number of values in this domain is infi- 
nite, or the number of values in this domain 
is so large that a brute-force attack is com- 
putationally infeasible. 

2. The range of the domain is acaeptable for  
the application. The definition of the accept- 
able range depends on specific applications. 

We let the definition of the  acceptable range be application 
dependent because a range acceptable to one application 
might be unacceptable to others. For example, knowing 
tha t  a number  is within the  domain of [0, 5] might not dis- 
close impor tan t  information for one application, but  might 
disclose enough information for another  application. Thus, 
this  definition intrinsically implies tha t  a solution satisfy- 
ing this security definition should be adjustable in the sense 
the range of the domain disclosed to an adversary should be 
adjustable. Therefore users can adjust a protocol to satisfy 
their  security needs with the  minimum cost. 

Based on this new definition, we studied a number  of known 
SMC problems. Our results have shown tha t  the perfor- 
mance of our new solutions improves significantly. To demon- 
s t ra te  how the  new paradigm can lead to practical solutions, 
we describe the  solutions to the  basic computat ions t ha t  
serves as the  building blocks to many SMC problems. We 
will compare the new solutions with the  existing results to 
unders tand  the  performance improvement  achieved by our 
new solutions. In particular,  We will demonst ra te  how the  
new paradigm can lead to practical solutions in two lev- 
els: the computat ion model level and the  techniques levels. 
In the  computat ion model level, we will describe the ex- 
isting computat ion models tha t  can serve our purpose. ]n 
the techniques level, we will demonst ra te  various techniques 
tha t  have successfully achieved the  acceptable security with 
a much be t te r  performance. 

The paper  is organized in the  following way: Section 2 dis- 
cusses the  related work. Section 3 defines the  scalar product  
problem tha t  will be used throughout  the  paper. Then  Sec- 
t ion 4 and Section 5 demonst ra te  the  approaches we have 
developed in achieving adjustable  and acceptable security, 
with Section 4 focusing on the  approach at the  computat ion 
model level, and Section 5 focusing on more concrete tech- 
niques level. Finally Section 6 concludes the  paper  and lays 
out future work. 

2. RELATED WORK 
Secure Mult i -party  Computat ion .  The history of the  
mult i-party computat ion problem is extensive since it was 
introduced by Yao [25] and extended by Goldreich, Micali, 
and Wigderson [19], and by many others: Goldwasser [20] 
predicts tha t  "the field of mult i -par ty  computat ions is today 
where public-key cryptography was ten years ago, namely an 
extremely powerful tool and rich theory whose real-life usage 
is at this  t ime only beginning but  will become in the  future 
an integral par t  of our comput ing reality". 

Goldreich states in [18] t ha t  the  general secure mult i-party 
comPutat ion problem is solvable in theory. However, he also 
points out t ha t  using the  solutions derived by these general 
results for special cases of mult i -par ty  computat ion,  can be 
impractical; special solutions should b e  developed for special 
cases for efficiency reasons. 

Private Information Retrieval  
Among various mult i -party computa t ion problems, the Pri-  
vate Information Retrieval (PIR) p ro b l em has been widely 
studied. PIR solutions provide a user with information from 
a database  in a private manner,  namely, the user 's query in- 
formation is not disclosed to the  database.  In this  model, 
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the  database is viewed as an n-bi t  string x, and the user re- 
trieves the  i- th bit  x~ out of x, while giving the  database no 
information about  the  query i. The notion of PIR was in- 
t roduced in [9], and was extensively studied in the  l i terature 
[9, S, 21, 10, 22, 6, 16]. 

PIR is not concerned with the privacy of the  database. The 
problem of Symmetrical ly  Private Information Retrieval (SPIR)  
is an extension of PIR where the  database 's  privacy is also 
addressed. SPIR problem adds an extra  requirement tha t  
the  user, on the  other hand,  cannot  obtain any information 
about  the  database  in a single query except for the  result. 
SPIR was first introduced in [17], could be solved using PIR 
protocols with a small complexity overhead [17, 24]. 

Privacy-Preserving Data Mining. 
The privacy-preserving data  mining problem is another  spe- 
cific secure mult i-party computat ion problem tha t  has been 
discussed in the  literature. Recently, two different privacy- 
preserving data  mining problems were proposed. In Lin- 
dell and Pinkas'  paper  [23], the  problem is defined as this: 
Two parties, each having a private database, want to jointly 
conduct a da ta  mining operation on the  union of their  two 
databases. How could these two parties accomplish this 
without  disclosing their  database to the  other party, or any 
thi rd  party. A solution based on oblivious transfer protocol 
is presented in the  paper. In Agrawal and Srikant 's paper [1], 
the  privacy-preserving da ta  mining problem is defined as 
this: Alice is allowed to conduct da ta  mining operation on 
a private database owned by Bob, how could Bob prevent 
Alice from accessing precise information in individual da ta  
records, while Alice is still able to conduct the da ta  mining 
operations? This problem, al though very interesting, does 
not fit into the  secure mult i-party computat ion framework. 
A da ta  per turbat ion  method is used in this work. 

Selective Private Function Evaluation. 
Selective Private Function Evaluation (SPFE)  was intro- 
duced in [7]. In this  problem, a client interacts with one 
or more servers holding copies of 'a database x = x l , . . .  , xn 
in order to compute f ( x i l  . . . .  , x im) ,  for some function f 
and indices i = i l , . . .  ,ira chosen by the  client. Ideally, 
the  client must  learn nothing more about  the  database than  
f ( x i l , . . .  , xi,~), and the servers should learn nothing. Var- 
ious approaches for construct ing sublinear-communication 
SPFE protocols were presented in [7], bo th  for the gen- 
eral problem and for special cases of interest, such as the 
statistical functions. 

Other Specific SMC problems. 
Secure Multi-party Computat ion problems also exist in many 
other computat ion domains. New problems can emerge if we 

combine the  privacy requirements with a specific computa- 
tion domain. Du and Atal lah have studied a number  of new 
SMC problems [11, 15], including the privacy-preserving sci- 
entific computat ion problem [13], the  privacy-preserving sta- 
tistical analysis problem [14], the privacy-preserving compu- 
tat ional  geometry problem [2], and the  privacy-preserving 
database query problem [12]. Like the other SMC studies, 
all these works aim at achieving the  ideal security. 

3. SCALAR PRODUCT PROBLEM 
To demonstrate  our new paradigm, we will describe various 
techniques tha t  support  our new paradigm, as well as dis- 
cuss how those techniques work. To make it easy to compare 
these techniques, we will use a single problem throughout  
this  paper. However, as we will mention later, our tech- 
niques can solve a class of problems, not just  this specific 
problem. The problem is called Scalar Product Problem, it 
is defined in the  following: 

PROBLEM 1. (Scalar Product Problem) Alice has a vector 
X = (x l  . . . . .  xn)  and Bob has a vector Y = (yl  . . . . .  yn). 
Alice (but not Bob) is to get the result o f  u = X .  Y + v where 
v is a random scalar known to Bob only. 

The purpose of Bob's  random v is as follows: If X • Y is a 
partial  result t ha t  Alice is not supposed to know, then giving 
her X .  Y + v prevents Alice from knowing the  partial  result 
(even though the  scalar product  has in fact been performed); 
later, at the  end of a multiple-step protocol, the effect of v 
can be effectively "subtracted out" by Bob without  revealing 
v to Alice. 

4. COMPUTATION MODELS 
In the s tudy of the  Secure Two-party problems, A Two- 
party model is usually used because it is an ideal model in 
terms of the security it provides. The  Two-party model con- 
sists of just  two parties (Figure 2.a), namely, Alice and Bob 
will conduct the  computat ion total ly  by themselves with- 
out the  help from any thi rd  party. If the  two-party model 
can provide a practical solution, we do not need another  
model. However, according to our past experience, efficient 
solutions for this model are usually difficult to find. 

Since the  goal of our research is to achieve practical secu- 
rity, we will not limit ourselves to the  Two-party model 
only; we would like to investigate other computat ion mod- 
els, and s tudy whether  practical solutions can be achieved 
for those models. We unders tand  tha t  some computat ion 
models might achieve a weaker security than  the Two-party 
model, but  if the performance gain outweighs the security 
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loss, if the security loss is acceptable in certain specific situ- 
ations, the  solutions based on those models are more likely 
to be adopted in practice. 

One of the interesting models we have studied is the  Commodity- 
Server Model depicted in Figure 2.b. The model introduces 
an extra  server, the  commodity server, belonging to a th i rd  
party. The only requirement posed on the th i rd  server is 
t ha t  it cannot  collude with either participants.  This  server 
has a few appealing features: First, this  party does not par- 
ticipate in the  computat ion between participants,  but  it does 
provide da ta  for them to hide their  private data. Second, 
the  da ta  provided by the commodity server does not de- 
pend on the  par t ic ipants '  private data,  so the  commodity 
server dpes not need to know those private data. This fea- 
ture gets the commodity server out of the  picture of any 
future liability issues in case some par t ic ipant ' s  private data  
is disclosed somehow. Furthermore,  this  feature makes it 
easy to find such a server because not much t rus t  is needed 
for a commodity server. Wi th  these features, the  commod- 
ity server can generate independent  da ta  off-line, and sell 
them as commodities to the  part icipants  (whence the  name 
"commodity server"). It should be pointed out tha t  the 
commodity server should not collude with any parties, oth- 
erwise, the  model simply becomes the  Two-Party model. In 
reality, finding such a commodity server is very feasible. 

The commodity server model was first proposed by Beaver [4, 
5], and has been used for solving Private Information Re- 
trieval problems in the  l i terature [4, 5, 10]. In the  follow- 
ing, we will describe a solution to the scalar product  prob- 
lem based on this  model. It should be pointed out tha t  
the  performance of this  protocol is much more efficient than  
the  other  protocols t ha t  are based on the Two-party model. 
Some of the  protocols will be described later in the  paper. 

PROTOCOL 1. (Scalar Product Protocol-Commodity  Server 
Approach) 

I n p u t s :  Alice has a vector X = ( x l , . . .  , Xn), and Bob has 
a vector Y ---- ( y l , . . .  ,y~) .  

O u t p u t s :  Alice (but not Bob) gets X .  Y + v, and Bob gets 
V .  

2. Alice sends X '  = X + Ra to Bob, and Bob sends Y'  = 
Y + Rb to Alice. 

3. Bob generates a random number  v' ,  and computes X ' .  
Y + v',  then  sends the  result to Alice. Bob also lets 
v ---- V I - -  r b .  

4. Alice computes ( X '  . Y + v') - ( Ra . Y ' )  + ra = X . Y + 
(v' - R~, . Rb ÷ r~) = X . Y + (v' - rb) = X . Y + v. 

THEOREM 1. Assuming  that all o f  the random numbers 
are generated f rom the real domain, Protocol I is secure such 
that Bob does not learn X[i] f o r  any i, and Alice does not 
learn Y[i] for  any i, where X[i] and Y[i] represent the vec- 
tor's i th element, respectively. 

PROOF. Claim I: Protocol 1 does not allow Bob to learn 
x[i] 

Since X '  -- X + Ra is all what  Bob gets, because of the  
randomness, and the  secrecy of Ra, Bob cannot  find out  
X[i] for any i. 

C l a i m  2: Suppose t ha t  protocol 1 does allow Alice to learn 
Y, namely Alice can find a vector X ~, such tha t  by sending 
X ~ to Bob who follows the  protocol, Alice can find out Y[i] 
for some i. Formaly speaking, if the  protocol is not secure, 
then  there exists a determinist ic algori thm such that ,  given 
X ' ,  for any Y, if the  inputs  of the  algori thm are X ~, Y '  = 
Y + Rb and Z = X ' Y  + v',  the  algori thm outputs  Y[i] for 
some i. 

Next, we construct  an arbi t rary  ~" with Y[i] ¢ Y'.[i]. Let 
Rb = Y ' - F  and v'  = X ' ( Y - Y ' ) + v ' .  Because Y+./~b still 
equals to Y',  and X~Y -t- v~ still equals to Z, the algorithm 
should still ou tput  Y[i]. According to the  deterministic algo- 
ri thm, the  ou tpu t  should be ~'[i] = Y[i]. Since ]z[i] ¢ Y[i], 
we have a contradition, in other  words, such deterministic 
algorithm does not exist. 

From claim 1 and claim 2, we conclude t ha t  protocol 1 does 
not allow Bob to learn X, and it does not allow Alice to 
learn Y either. []  

1. The  Commodity Server generates a pair of random 
vectors R~ and Rb, and let r~ -f rb ---- R~ • Rb, where r~ 
and rb are randomly generated. Then  the  server sends 
R~ and r~ to Alice, sends Rb and rb to Bob. 

4.1 Security and Complexity Analysis. 
If the random numbers are not generated from the real do- 
main~ Alice might get some information about Y. For ex- 
ample, if the elements of Y are in the domain of [0, 100], 

1 3 0  



and we also know the random numbers are generated from 
[0,200] domain, then if an element of vector Y + Rb is 250, 
we know the original element in vector Y is bigger than 50. 

It should also be noted that  our protocol does not deal with 
the situation where one party lies about its iflput. For ex- 
ample, instead sending Y + Rb, Bob sends Y + Rb, where 
Y is an arbitrary vector. In that  case, neither of them can 
get correct results, but as we have shown, neither of them 
can gain information about the other party's private input 
either. 

In the third step, the purpose of the extra random v ~ is for 
Bob to protect the actual value of X ' .  Y.  If Alice is allowed 
to know the actual result of X '  • Y, Alice could learn par- 
tial information about Y or probably the whole information 
about Y if the same Y is used to compute several scalar 
products. 

The above protocol is based on the assumption that  the 
commodity server should not collude with either of Alice 
and Bob. However, we can improve security of the protocol. 
One way to improve it is that,  instead of using only one 
commodity server, we can use multiple commodity severs. 
For example, if we use m number of commodity servers, we 
can cut the vectors X and Y to m pairs of smaller vectors, by 
using the above protocol, each commodity server can help 
to compute the scalar product of one of the pairs among m 
smaller vectors, the sum of the scalar products of these m 
pairs is the final scalar product of X and Y. 

The communication cost of this approach is just 4n. With 
this cost, the solution is efficient enough to become practical. 

5. DATA DISGUISING TECHNIQUES 
In this section, we discuss a number of specific techniques 
that  are useful for data  disguising. Some of the techniques 
do allow information disclosure to some extent; therefore, 
for each technique, we discuss what information is disclosed, 
and what kind of privacy is achieved. More importantly, we 
will discuss the properties of each technique, and the com- 
putation each technique can support. If the data disguise 
does not support any computation, then it is basically use- 
less because our final goal is to conduct some computation. 
Therefore, most of the encryption schemes, except the ho- 
momorphic encryption scheme, are not of much use because 
they do not support computation on the encrypted data. 

5.1 Linear Transformation Disguise 
We define X1 as a vector consisting of the first n/2  elements 
of the vector X; we define X2 as a vector consisting of the 
second n/2 elements of X. Similarly we define Y1 and Y2 
for vector Y. Note that  X Y  = X1Y1 + X2Y2. To compute 
u = X • Y + v, Alice can send Xi'  to Bob while Bob sends 
Y2 to Alice; Alice can then compute u = X1Y1 and Bob 
can comp, ute v = -X2Y2.  This does not require each side 
to disclose all data  to the other side, but this scheme is 
unacceptable because each party has disclosed half of their 
private raw data. 

To solve this problem, we can transform X (resp. Y) to 
another vector X '  (resp. Y') ,  such that  disclosing partial 
information about X ~ does not allow anybody to derive the 

raw data of X. A linear transformation would achieve this 
goal, namely if we let X ~ = X M ,  where M is an invertible 
n x n matrix, disclosing half of the data of X ~ does not 
allow any one to derive the original raw data of X. Based 
on this observation, we derive our protocol (for the purpose 
of simplicity, we assume n is even; this can be achieved by 
padding the vectors with a 0 when n is odd): 

PROTOCOL 2. (Two-Party Scalar Product) 

1. Alice and Bob jointly generate a random invertible n x 
n matrix M.  

2. Alice lets X ~ = X M ,  and divides X ~ equally to two 
vectors X~ and X~. Alice sends X~ to Bob. 

3. Bob lets Y '  = M - 1 Y ,  and divides Y '  equally to two 
vectors Y~ and Y2 ~. Bob sends Y~ to Alice. 

4. Alice computes u = X~Y~. 
! ! 

5. Bob computes v = -X2Y~ .  

It is easy to see that  the above protocol achieves u =  X~Y~+ 
v = X Y + v .  

Securi ty  and  Complexi ty  Analysis .  
To analyze how secure this protocol is, we need to find out 
how much Alice and Bob know about each other 's informa- 
tion. According to this protocol, Bob knows n/2  data items 
in vector X M .  Let us consider X = ( x l , . . .  ,xn) as n un- 
known variable, and X M  as a linear system Of equations on 
these n unknown variables. If Bob knows all of the n equa- 
tions, Bob dan easily solve this linear system, and recover 
the values in X. However, in this protocol, Bob only knows 
n/2 of the equations. Theoretically, if xi ' s  are in real num- 
ber domain, based on these n/2  equations, there are infinite 
number of solutions to the n unknown variables. Therefore, 
although Bob learns n/2  linear combination of the data, it 
is impossible for Bob to learn actual values of the data in 
vector X. 

The above protocol is secure if the values of the data items 
in vector X and Y are real numbers. However, in situations 
where these values are integers or just 0 or 1, sometimes n/2 
equations might be enough for Bob to find the actual values 
of xfls if n is not very big. Therefore, the above protocol is 
only secure in the real number domain. 

We should be careful if we want to reuse X or Y for an- 
other scalar product; otherwise the security might be com- 
promised. For example, in order to compute another scalar 
product X Z ,  Alice needs to disclose another n/2 equation 
to Bob. If these n/2 equations are linear independent to the 
first n/2  equations disclosed to Bob during the computation 
of X Y ,  Bob now has n equations, and therefore can solve 
these n equations to find out the actual values of X. To 
avoid this type of security compromise, we should use the 
same matrix M when X (or Y) is reused. 

The communication cost of this protocol is n, which is as 
good as the scalar product computation in the non-secure 
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situation, namely one party sends its vector in plain text to 
the other party. The computation cost is O(n 3) due to the 
computation of M -1. However, there is a way to improve 
the computation cost: instead of using a matrix of size n × n, 
we can use n / m  matrices, each of which has size m × m, 
namely we cut the vector X and Y to n / m  pairs of small 
vectors, the sum of the scalar products of these n / m  pairs is 
the final scalar product of X and Y. For the scalar product 
of each pair, we can use the above protocol with a random 
matrix of size m × m. Therefore, the computation cost is 
O ( n / m  * (m) 3) = O(nm2).  If we choose a smaller m, the 
computation cost is improved, but more information will be 
disclosed. Thus, the security level can be adjusted by the 
users who will decide the tradeoff between performance and 
security. 

5.2 (z + v)-Disguise 
If a secret data  item Z needs to be stored at Alice's place 
without being disclosed to Alice, a simple solution is to give 
Alice Z + V, where V is a data  item consisting of random 
numbers, and Alice does not know V. In a finite domain, 
Z + V can perfectly hide Z; however, in an infinite domain, 
Z + V can reveal some information about Z, although it is 
still impossible to recover the value of Z. The bigger the 
V is, the more secure the disguise will be. Therefore by 
adjusting the size of the V, we can adjust the degree of the 
disguise. 

Regardless of how a data item is disguised, the data should 
be able to be used in the computation we want to achieve; 
otherwise, if the disguise is the sole purpose, we will just use 
the encryption schemes, which are the best ways to disguise 
data. In the next few subsections, we will discuss how the 
basic computations can be conducted based on this Z + V 
data disguise scheme. 

We will start from the situation where Alice has a data 
item X, and Bob has a data item Y; they want to achieve 
f ( X ,  Y), where f represents a basic computation. Since 
some times knowing the result of f ( X ,  Y )  and one of the 
inputs allows one to derive the value of the other inputs, 
we will not disclose the result of f ( X ,  Y )  to anyone. There- 
fore, in addition to using the (Z + V)-Disguise technique to 
conduct the computation, we will use the same technique 
to hide the result as well, namely, we will let Alice learn 
f ( X ,  Y )  + V and let Bob learn V. 

The basic computations in our discussion include the addi- 
tion, multiplication, and inverse. Most of the more compli- 
cated computations can be based on these basic computa- 
tions. 

PROBLEM 2. Two secrets, Z1 and Z2, are shared by Alice 
and Bob in such a way that Alice only knows Z1 + V1 and 
Z2 + V2, and Bob knows V1 and V2; however neither knows 
either Z1 or Z2. Alice and Bob want to conduct the following 
computations (In this problem Zi and Vi could both be, i f  
applicable, numbers, arrays of numbers, or Matrices): 

• Z1 + Z2: Alice gets (Z1 + Z2) + V,  and Bob gets V .  

• Z1 • Z2: Alice gets Z1 • Z2 + V,  and Bob gets V .  

• U .  Z i :  Alice gets U .  Z1 + V ,  and Bob gets U and V.  
Because Alice does not know U, the computation can 
still disguise the secret Z1 even i f  V is zero. In fact, 
when we use the computation, sometimes, we will let 
V be zero, and let V be non-zero at other times. 

• Z~-I: Alice gets Z~ -1 q- V ,  and Bob gets V.  

• (Z1 + Z2) - l :  Alice gets (Z1 + Z2) -1 + V,  and Bob 
gets V .  This computation can be obtained from the 
solutions to the Z~ -1 computation because Alice knows 
( Zi  + Z2)+(Vi  + V2), and Bob knows (Vi+V2), thus we 
can achieve (Z1 -q- Z2) -1 computation using the same 
method. 

log Z1 : Alice gets log Z1 + V ,  and Bob gets V .  

log(Z1 + Z2): Alice gets log(Z1 + Zz) + V,  and Bob 
gets V .  Similar to the computation of (Z1 + Zz) -1, 
the computation of log(Z1 + Z2) is the same as the 
computation of log Z1. 

Next, we will describe the outline of each protocol. The most 
important protocol is the ( U .  Z)-protocol, because most 
of the other protocols can be derived from this protocol. 
Therefore, we will only describe this protocol in details, and 
give a brief outline of the other protocols. 

PROTOCOL 3. (Z1 + Z2)-protocol: This protocol is trivial. 
Alice jus t  needs to compute (Z1 + V1) + (Z2 + V2), and gets 
(Zx + Z2) + (V1 + V2); Bob needs to compute V = V1 + V2. 
Therefore Alice has (Z1 + Z2) + V and Bob has V.  

PROTOCOL 4. (U .  Z)-protocol: Because this protocol is 
used as a building block by many other protocols described 
later, its performance is very important. We have developed 
several solutions for  this protocol. Here, we first describe 
one solution based on the oblivious transfer protocol. Later 
in this section, we will describe another solution that is more 
efficient but less secure. 

1. Alice and Bob agree on two numbers p and m,  such 
that pm is large enough. 

2. Alice randomly generates R1, .  .. , Rm, such that ~ = 1  R j  = 
Zi + V1. 

3. 

. 

m Bob randomly generates r l , .  . . , rm such that ~ j = l  rj  = 
V -  UV1. 

For each j = 1~... ,m ,  Alice and Bob conduct the fol- 
lowing sub-steps: 

(a) Alice generates a secret random number k, 1 _< 
k < p .  

(b) Alice sends (H1, . . .  , Hp) to Bob, where H~ = Rj ,  
and the rest of  Hi ' s  are random. Because k is a 
secret number known only to Alice, Bob does not 
know the position of  R j .  

(c) Bob computes T~,~ = U.  H~ + rj  for  i = 1 , . . .  ,p. 
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(d) Using the 1-out-of-p Oblivious Transfer protocol, 
Alice gets T j=  Tj,~= U. R j  + rj ,  while Bob learns 
nothing about k. 

m T 5. Alice computes u =  ~ = ~  ~ = U . (Zx + V 1 ) + ( V -  
UVi) = u . Z~ + V.  

Security and Complexity Analysis. 
In the  above protocol,  Alice divides Z1 + V1 into m random 
pieces R 1 , . . .  , R ~ ,  and then  gets  back U • Rj  + r j  for j = 
1 , . . .  , n. Because of t he  r andomness  of Ri and its posi t ion 
among  other  bogus  data ,  Bob could not  find out which one 
is R.i. Certainly,  there  is 1 out  of p possibili ty t ha t  Bob 
can guess t he  correct  Ri,  bu t  since Z1 + V1 is the  sum of m 
such random pieces, t he  chance tha t  Bob guesses t he  correct  
Z1 + V~ is 1 out  pro, which could be very small if we chose 
p ~  to be large enough.  

The  communica t ion  cost  of  th is  protocol  is O(mpn).  If we 
let p = 2 and m = 128 (so the  brute-force a t tack has to  
conduct  212s s teps) ,  the  cost  would be about  256n. This  so- 
lut ion is not  a practical  solution, a l though it is very secure 
except  for the  informat ion  disclosed because of the  (Z  + V)-  
Disguise. In t he  last section, we have descr ibed a solution 
based on the  Commodi ty -Server  model;  the  cost  of t ha t  so- 
lut ion is only 4n, very close to  t he  op t imum cost of n. In 
t he  next  section, we are going to  descr ibe ano ther  solut ion 
based on the  Two-Pa r ty  Model.  T h a t  new solution only has 
t he  communica t ion  cost of 2n, bu t  t he  computa t ion  cost on 
the  o ther  h a n d  increases significantly. 

PROTOCOL 5. (Z1 • Z2)-protocol: This protocol is essen- 
tially an application of the (U .Z)-protocol .  

1. Bob randomly generates V ,  V3, and V4, such that V = 
- va y2 - ( v a  + v4). 

2. Alice computes W~ = (Zl + V~) • (Z2 + V2) = Z1Z2 + 
Za V2 q- Z2V1 + V1V2. 

3. Using the (U. Z)-protocol on Z1 + Va and V2, Alice can 
get W2 = V2Z1 + V1V2 + V3. 

4. Using the (U. Z)-protoeol on Z2 + V2 and V1, Alice can 
get Wa = V1Z2 + V1V2 + V4. 

5. Alice computes W1 - W2 - Wa = Z1Z2 + (-V1V2 - 
(y3 + y,)) = z l z 2  + v 

PROTOCOL 6. (Z-1)-protocol: Thisprbtocol assumes that 
Z1 is a non-zero number or a non-singular matrix. By using 
the (U.Z)-protocol, Alice can get U,.Z1, and Bob gets U. Al- 
ice can then compute (U.Z1) -1.  They use the (U.Z)-protocol 
again, and this time Alice gets (U. Z1)-1 .  U)-b V = Z~-l-k V 
and Bob gets V .  

PROTOCOL 7. log Z~-protocol: This protocol assumes that 
Z1 is a positive number. First, Bob generates a random 
number U and let V = logU. Then by using the (U.  Z)-  
protocol, Alice can get U .  Z1. Then Alice computes l og (U .  
Za ) = log Z1 + log U = log Za + V. 

5.3 Polynomial Function Disguise 
Anothe r  way to  hide  a secret  Z = ( z l , . . .  ,zn)  is to  use 
t he  polynomial  funct ion of degree k. Each  z~ is h idden in 
f ( x )  = akx k + . . .  + a l x  + a0, wi th  t h e  pa rame te r s  a 0 , . . .  , ak 
being unknown to  t he  person  who holds f ( z i ) .  To find out  
the  value of zi, one needs to  find out  t he  k + 1 parameters .  

A good proper ty  of th is  kind of disguise is t ha t  it can pre- 
serve the  order  among  z l , . . .  , zn, if we know the  domain  of 
the  zi 's.  Therefore  by compar ing  f ( z i )  for i = 1 , . . .  , n, we 
can find the  min imum,  max imum,  and  the  tota l  order  among 
these  n secret  numbers .  We will descr ibe a FindMin proto-  
col to  i l lustrate the  use of t he  polynomial  funct ion disguise. 
Compar ing  to  t he  solut ion proposed  in [3], this  protocol  is 
significantly more  efficient. 

PROBLEM 3. (FindMin Problem) Alice has an array of 
numbers X = (zl + v l , . . .  , zn + vn), and Bob has an array 
of numbers V = ( v l , . . .  ,vn) .  They want to f ind out the m,  
such that Zm = min{z i l i  = 1 , . . .  ,n} .  Nobody should know 
the value of z~ 's. 

To solve th is  problem,  Alice and  Bob divide their  d a t a  to 
n / m  groups, wi th  each group conta ining m numbers .  The  
idea is to  first find the  m i n i m u m  number  wi thin  each group, 
and thus  get  n / m  numbers .  T h e n  we recursively divide 
these n / m  numbers  to  groups,  and  find the  min imum num- 
ber  wi thin  each group, unti l  the re  is only one number  left. 
This  number  is t he  smallest  among  all these  n numbers .  

So how to find the  m i n i m u m  number  among  m numbers?  
Wi t hou t  the. loss of generality, we suppose  these  m numbers  
to be z l , . . .  , zm. We will let Bob genera te  a k-degree func- 
t ion f ( x ) ,  and Alice can use our  scalar p roduc t  protocol  to 
get the  value of  f ( z i )  (see footnote  1), for i = 1 . . . .  , m. f ( x )  
is genera ted  in a way such tha t  f ( z i )  < f ( z j )  if and only 
if zi < zj .  This  can be achieved if we know the  possible 
domain  of those  zi 's.  For instance,  if we know tha t  all z~'s 
are positive, we can find such a f ( x ) .  Because of this  order- 
preserving proper ty ,  Alice can find the  smallest  zi by herself 
wi thout  knowing the  value of zi 's .  

Securi ty  a n d  Complex i ty  Analys is .  
The  communica t ion  cost  and  the  computa t ion  cost  of the  
above solution are decided by the  number  of the  invoca- 
t ion of t he  scalar p roduc t  protocol,  and  the  degree k of the  
funct ion f ( x ) .  The  number  of t he  invocat ion equals to  t he  
number  of the  recursive i terat ions,  which equals to  log~ n. 
By increasing the  value of m,  we can reduce the  actual  cost  
of t he  solution; however,  when  the  value of m becomes big- 
ger, the  securi ty becomes weaker if k keeps to  be the  same. 
This  is because when  a k-degree polynomial  funct ion is used 
to disguise m numbers ,  t he  securi ty is decided by the  differ- 
ence of k and m.  Intui t ively speaking,  in our solution, we 
are using k r andom numbers  to  hide  m numbers .  Therefore,  
the  bigger the  value o f  k, t he  more  secure our solution is. 
Let us th ink  about  an ex t r eme  case when  k = 1. It means  

1Since zi = (zi +v~) - vi, if we expand  the  funct ion f ( z i ) ,  we 
will find out  t ha t  the  evaluat ion of f ( z l ) i s  actually a scalar 
product ,  wi th  Alice knowing z~ + v~ and  Bob knowing vi. 
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all these m numbers are actually hidden by a single num- 
ber. Once this number is known, all these numbers will be 
compromised. On the other hand, the bigger the value of k, 
the more expensive the computation and computation cost 
will be. Therefore, we can adjust the security and the cost 
of our solution by adjusting the value of k. 

Comparing to the FindMin protocol we developed before [3], 
this protocol is much more efficient, but it is less secure 
because several information about zi 's are disclosed. For 
example, Since Alice is conducting the comparison, apart 
from knowing the final result, the minimum elements, she 
also knows which zi is bigger. 

5.4 Other Disguise Techniques 
There are many other disguise methods, and their appli- 
cations are problem-dependent. We have successfully used 
them to solve a number of specific secure two-party com- 
putation problems. We briefly summarize these methods in 
the following: 

• Permutation: If the data is a list of numbers, some- 
times, permute the order of these numbers might be a 
useful technique to disguise the data. The technique 
is used in [14] to hide the contents of a vector. 

• Adding bogus data: If the data is a database, some- 
times, adding significant amount of bogus records into 
the database can make it not much useful if one does 
not know which records are bogus records. Therefore, 
by adding bogus data into a database, we can achieve 
the data disguise to some degree. We are currently 
exploiting this technique to achieve data disguise pur- 
pose in another research project. 

6. CONCLUSION AND FUTURE WORK 
We propose a new security paradigm for the secure multi- 
party computation studies. Instead of achieving the ideal 
security like most of the studies of SMC problems, we pro- 
pose a different goal, to achieve acceptable (and adjustable) 
security. We have shown that  various data  disguise tech- 
niques and the commodity-server computation model can 
help improve the performance of the solutions with certain 
degree of security sacrifice. We have also shown that  our 
techniques are adjustable towards either more efficient or 
more secure, namely users can decide the degree of tradeoff 
between the performance and the security. If the security 
is very important to the users, and no information should 
be disclosed, they can adjust the corresponding parameters 
in our solutions to increase the security level. If the users 
decide that  disclosing partial information is still acceptable, 
they can choose a parameter that  can efficiently achieve their 
requirements. We believe this new model, which takes into 
the consideration the requirements from the practice, can 
lead to the promising application of the secure multi-party 
computation problems. 

The work based on this new security paradigm is far from 
complete, we need to develop more efficient data  disguise 
.techniques and more computation models that  can be used 
to solve various specific .secure multi-party (or two-party) 
problems. In addition, in our future work, we also need to 

find a way to quantify the security achieved in each proto- 
col, so we can compare protocols regarding to the level of 
security they can achieve. 
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