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ABSTRACT

We describe an anomaly intrusion-detection system for plat-
forms that incorporate dynamic compilation and profiling.
We call this approach “dynamic sandboxing.” By gathering
information about applications’ behavior usually unavail-
able to other anomaly intrusion-detection systems, dynamic
sandboxing is able to detect anomalies at the application
layer. We show our implementation in a Java Virtual Ma-
chine is both effective and efficient at stopping a backdoor
and a virus, and has a low false positive rate.
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1. INTRODUCTION

Over the past several years, there has been a move towards
dynamic compilation, profiling, and optimization technolo-
gies. We call these platforms Dynamic Execution Environ-
ments (DEE). Some well-known examples include Sun’s Java
platform [22], Transmeta's Crusoe {15], HP’s Dynamo [32],
and even the Common Language Infrastructure (CLI) com-
ponent of Microsoft’s .NET project [10]. These technologies
will further decouple hardware and software, allowing legacy
code to benefit from advances in both hardware and software
design.

The popularity of Java and Microsoft’s support of C# sug-
gest that these technolggies will soon become ubiquitous.
Although they were adopted for performance reasons, the
potential exists to leverage their infrastructure for anomaly
intrusion detection with extremely low performance penal-
ties. Because each virtual machine (VM) incorporating these

technologies hosts only one application, the resulting intrusion-

detection system (IDS) is customized to a specific applica-
tion, an additional benefit.

Application intrusion-detection systems (ApplIDS) are not
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a completely new idea. Other researchers have pointed out
that IDSs customized to specific applications might use se-
mantic information not available at lower levels of execu-
tion to improve intrusion detection[27, 36, 3]. Several such
systems have been constructed, many with the idea of pro-
tecting common services, like HTTP [26]. However, incor-
porating application-level information into an IDS is a non-
trivial exercise, and in the earlier projects, the application
was modified and the IDS constructed by hand [3, 36]. Our
approach automates the construction of an AppIDS without
modifying the application. We do this by profiling informa-
tion already in place for dynamic optimization. We call this
“dynamic sandboxing.”

To demonstrate this approach, we describe an implemen-
tation of Dynamic Sandboxing in a Java Virtual Machine
(JVM). We chose Java because it is currently the most pop-
ular DEE. In the rest of this paper, we summarize the Java
security model and its vulnerabilities; we then present a de-
tailed description of dynamic sandboxing and give evidence
that normally executing Java programs exhibit highly reg-
ular behavior. Next, we describe our implementation of dy-
namic sandboxing and report experimental results on its
efficiency and its effectiveness at stopping attacks. Finally,
we discuss the implications of our results and outline some
areas for future research.

2. JAVA SECURITY

To see where Dynamic Sandboxing fits into Java, a review
of the current state of Java security may be helpful. Java
is noted both for the mobility of its code and its integrated
security mechanisms. Recent versions of Java have an ex-
tremely rich security model, allowing precise control of mul-
tiple sandboxes in a single JVM [24, 34]. This contrasts
greatly with the original “all-or-nothing” sandbox, in which
users chose between a overly restrictive applet sandbox and
the application sandbox that had no restrictions. This orig-
inal security model was then extended to give signed code
additional permissions permissions. Even more choices have
been added to recent releases, allowing users to specify cus-
tom sandboxes and developers to add new types of permis-
sions to the security model.

Java’s security model rests upon its bytecode instruction
set—a form of typed assembly language. Type checking al-
lows the verifier to prevent unsafe behavior, such as bad
casting or pointer manipulation, from occurring. Runtime



checks for dynamic features, such as array bounds check-
ing, complement static verification. The Security Manager
sits on top of this infrastructure. All potentially dangerous
actions, such as I/O calls to the network or filesystem, are
guarded by a call to the Security Manager, which interprets
the policy. A policy is a list permissions for each sand-
box in the JVM. Interaction between different sandboxes is
handled internally through stack introspection [34]. Java
security thus resembles the matrix security model described
in many texts, in which verification guarantees fidelity [25,
28]. One complication is the possibility of multiple inter-
acting sandboxes, each called a “protection domain.” A
complete description of Java security mechanisms and the
relevant APIs is available in Java Security [24].

Current research on Java security emphasizes verification
mechanisms, either extending them or leveraging them in
new ways. For example, code-signing, information-flow, and
proof-carrying code all rely on verifying features of the byte-
code. Code-signing has been available in the JDK for sev-
eral releases. Information flow mechanisms are being inves-
tigated by Andrew Myer’s group [23]. Proof-carrying code
has long been a research topic in the OS community with
language support an important component. Colby et al's
work on Java is an example [9]. In all of these approaches,
verification ties code permissions to identity. The JVM al-
lows executing code to inherit permissions from the entity
who signed the code. In short, the signing entity allows the
JVM to “trust” the code. For proof-carrying code, verifica-
tion ties proofs to properties of the code itself. Instead of
trusting the code, the JVM deduces properties of the code
with the help of the proof, namely that the code does not
exceed the permissions allotted to it.

The richness of Java's verification and other security mech-
anisms means that policy can be very complex. This raises
questions about how users will be able to maintain complex
policies correctly. And, even if the policy is correct, devel-
opers must add Security Manager hooks at the appropriate
places in their application and the JVM’s verifier must be
bug free in order for the application to be secure. Thus,
there are many opportunities for security violations in the
current Java security model, and there is some evidence that
the standard mechanisms, verification with runtime security
checks through the Security Manager, do not guarantee se-
cure environments. As an example of this latter point, we
describe briefly several applet exploits that have been re-
ported since April, 1997. Many of these exploits are against
the verification mechanism:

e September 2002: The verification mechanism used
to supervise DLL loading in Java Database Connectiv-
ity (JDBC) classes of the Microsoft VM can be spoofed
to allow the loading of any DLL. An unrelated bug in
the same package results in allowing arbitrary data to
be used as a pointer.

¢ October 1989: A bug in the verifier for Microsoft’s
VM allows casting of values to unrelated types. This
can be used to violate the sandbox and gain complete
access to the client 5 computer.

e April 1999: A bug in all popular JVMs allows down-
loaded code to execute without prior verification. Ma-
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licious bytecode can subvert the type safety mecha-
nisms to gain access to the client.

o July 1998: A Classloader bug allows an applet to
redefine vital classes and lead to uncaught violations
of the type system, potentially allowing breaches of the
sandbox in Netscape 4.0.x.

e April 1997: An Applet can change its own signee to
one that is trusted, allowing subversion of the sandbox
in JDK 1.0

Others exploit the Security Manager:

¢ September 2002: Microsoft's XML utility classes do
not have the proper Security Manager hooks, allowing
a remote attack to gain control.

¢ October 2000: URLConnection and URLInputStream
do not implement Security Manager hooks. Applets
can then access files using a string argument of the
form file://filename to gain access to any file on the
client, including directory listings on Netscape 4.5.x.
The demonstration exploit implemented an HT'TP server
named Brown Orifice which gives an attacker unlim-
ited access to a victim’s files.

e August 1999: A race condition in the Security Man-
ager library of Microsoft’s VM allows violation of the
security rules. Applets can gain total access to the
machine using this bug.

e July 1998: A bug in the Security Manager allows
applets to turn off the verifier in Netscape 4.0.x.

All of the above exploits, except for Brown Orifice and the
September 2002 Microsoft vulnerabilities, were reported by
the Princeton Secure Internet Programming team [4, 21].
Brown Orifice was discovered by Dan Brumleve [6]. The Mi-
crosoft vulnerabilities were disclosed by the company itself
[2]. CERT has issued three advisories pertaining to Java ex-
ploits. Other individuals post exploits to their web pages [1].
Some of these show denial-of-service exploits, which do not
breach the sandbox, and are annoying (removing them may
require shutting down the browser), rather than dangerous.
Although these numbers are nothing compared with intru-
sions at the network or operating system levels, we believe
they will increase as Java becomes more prevalent in pro-
duction systems and there are important applications worth
compromising.

Currently, almost all exploits are applet exploits. Applica-
tion exploits have not yet become a priority for attackers,
possibly because there are few commonly used Java appli-
cations. However there is one published application exploit,
a virus named Strange Brew [14]. We are not aware of any
existing attacks that exploit policy bugs, but this type of
security flaw is almost inevitable given the potential com-
plexity of policies and the complicated nature of “protec-
tion domain” interaction. These problems, both real and
projected, support our viéw that redundant mechanisms, in
this case an IDS, will improve security in the Java domain.



3. DYNAMIC SANDBOXING

Dynamic sandboxing for a given program consists of two ac-
tivities: sandbox generation and sandbox execution. In the
first, a sandbox profile is constructed by running the pro-
gram with an instrumented JVM. During this training ses-
sion, profiling information is recorded to the sandbox profile.
The sandbox is initially empty and grows during the train-
ing run by accumulating records for each unique behavior.
Because nothing is added that isn’t observed, each sandbox
is customized to a given program and context in which it is
executed. During sandbox execution, behavior that isn’t in
the profile is considered anomalous.

Dynamic sandboxing is meant to complement, not replace,
the standard sandbox. Java’s standard security model cre-
ates fixed boundaries within which a program must execute
while dynamic sandboxing detects anomalies. Although we
haven’t addressed the question of response in our current
implementation, a dynamic sandbox response is potentially
very flexible. It could range from logging the anomaly to
the application termination. In the standard Java security
model, there is only one response, which is to disallow the
attempted behavior.

Dynamic sandboxing’s efficacy is directly related to the sta-
bility of the instrumented program’s behavior. If the under-
lying program continually executes large amounts of novel
code, it will generate a high number of false positives. As
we discuss in the next section, however, our results suggest
that many programs have highly regular behavior.

3.1 Program Behavior

An example of regular program behavior is the familiar
90/10 rule, the rule of thumb that 90% of a program’s time
is spent in 10% of its code. Computer architectures have
long exploited program behavior regularities through caches
and branch prediction. Most compilers can use profiling in-
formation to guide optimized code generation, and we have
found that many programs executing with JVMs exhibit
regular behavior.

Because JVMs profile many aspects of an executing pro-
gram, there are many possibilities for anomaly detection.
Some of these possibilities are listed below, in order of in-
creasing complexity. For each feature, the utility, space re-
quirements, and performance impact are discussed.

e Methods: Methods are the fundamental units in
Java bytecode. JVMs are built around manipulating
this structure and allow easy instrumentation of their
dynamic behavior. Methods are our initial best guess
of a viable unit out of which to construct profiles.

¢ Memory behavior: Some applications have distinc-
tive heap allocation and garbage collection behavior.
Garbage collection is becoming more important and in-
tegral to performance sensitive applications, especially
in Java. Adaptive-garbage collection methods are be-
ing actively investigated, and most garbage collectors
have hooks for instrumentation as well. Instrumenting
memory management might reveal anomalies not seen
with other techniques.
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e Basic blocks: There are many more basic blocks than
methods. Thus, basic blocks would increase space
of possible anomalies enormously. In addition, basic
blocks can be extensively instrumented because they
are the base of many optimizations.

e Method arguments: Instrumenting method argu-
ments would allow finer distinctions between normal
and abnormal execution sequences, and might prove
useful in the future. It would, however, result in a large
method-argument space, and we have thus avoided it
for our initial implementation.

e Patterns of methods: Rather than looking at indi-
vidual methods, it might be useful to characterize the
patterns in which they occur, using any of several data
modeling methods. System-call sequences, for exam-
ple, have been used successfully to characterize specific
processes [35]. Method sequences might show similar
behavior. As the space of patterns defined over a data
set is always larger than the data itself, we decided to
start with the simplest possible representation (pres-
ence or absence of individual methods). This corre-
sponds to a sequence length of one.

e Whole program paths: Larus et al. showed that
programs spend 90% of their time in a small number
of “hot paths” [5, 17]. Paths reveal a large amount of
information about the global behavior of an applica-
tion, are beginning to be used for performance reasons
in VMs, and thus, they are a candidate for future use
[32].

For our initial implementation, we have focused on meth-
ods, which have very regular behavior. We are not look-
ing at sequences, as in earlier work on system calls [11, 13,
35]. Consequently, we do not need to consider threading in-
teractions, or other trace path complications. Several tens
of thousands methods could potentially be executed by the
typical application (compared with at most 200 potential
system calls in a typical Unix system), so starting with the
smallest possible sequence length of one was reasonable. In-
deed, we find that programs exhibit similar behavior at the
single method invocation level. We report results for two ex-
amples: the canonical “Hello World”, and a much larger and
more complicated peer-to-peer file sharing utility, LimeWire
[19]. If one looks at the number of methods invoked by the
two programs during runs, then plots the methods sorted by
frequency using log-log scales, one finds power-law behavior.
Figure 1 and Figure 2 plot this behavior. In Hello World,
one finds power-law behavior with small deviations. On the
larger LimeWire program, the simple power-law behavior
soon decays with time into more complicated, multiple do-
main power-law behavior. Even with this complexity, how-
ever, the plot shows what code optimizers have long known,
that a very few methods account for a very large proportion
of behavior.

3.2 Implementation

Our current prototype monitors only method invocations.
During the training session, each time a new method is in-
voked, its signature is written to a log. This log constitutes
the sandbox profile. The profile for the “Hello World” pro-
gram, for example, contains 268 methods. Every method,
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including those in libraries and natives, was included in the
profile. During execution, the log is checked for the method
signature before the method is compiled.

We modified Intel's Open Runtime Platform (ORP) to per-
form dynamic sandboxing [16]. From a user’s perspective,
we made two changes to the ORP interface. First, we added
two flags -profile <filename> and -sandbox<filename>,
which write a profile to a file and read in the profile to be
used as a sandbox, respectively. The two flags may be used
simultaneously.

The mechanisms of generating and using the sandbox profile
rely on ORP’s Just-in-time (JIT) compiler implementation.
When ORP loads a class it doesn't compile the Java byte
code to native code. Rather, it follows a lazy strategy, delay-
ing native compilation of each method until it is invoked. In
the place of the native code, ORP inserts small stubs called
trampolines, which operate as follows:

e Call the JIT compiler for the specified method.

e Patch the jump table to call the newly compiled native
code.

® Jump to the newly compiled code.

Dynamic sandboxing requires a slight modification of this
strategy. We modified ORP to append the class and sig-
nature to the end of the sandbox profile. This takes place
in the profiling phase and before the JIT compiler is called.
When in sandboxing mode, our modified ORP checks the
method against the sandbox profile. Only if the profile con-
tains the method does ORP continue with JIT compilation.
If the method does not appear in the profile, ORP informs
the user of a security violation and exits.

The lookup of methods in the sandbox profile is currently
implemented as a linear search through the file. The sand-
box profile file format is simply a list of class and method
signature pairs prefixed by their combined string length.

A summary of the algorithm is presented in pseudocode:

int result;
if ( jit_status == QON )

{
compile_method(method) ;
}
else
{
profile_method_load(sandbox, meéthod);
}

if ( profiling == ON )
add_method_to_profile(profile, method);

This code is executed only if the method has not been pre-
viously invoked. If the JIT is enabled, then we are in the
training stage. If the JIT is not enabled, then we call



profile method_load with the current sandbox. After that,
if we are in the profiling mode, we add the the JIT to the
profile. Note that there are two profiles active here, the pro-
file we are gathering, called profile, and the sandbox profile,
called sandboz. Currently, profile method _load checks to
see if the method signature is in the profile and then loads
and compiles the method.}

Dynamic sandboxing in ORP was designed to be efficient.
First, we are able to use a JIT compiler, so programs execute
efficiently. Second, instead of performing a check on every
method invocation, we only perform the check the first time
a method is invoked. There is one remaining implementa-
tion inefficiency—the linear search of the sandbox profile.
Although its worst case is linear in the number of unique
methods invoked (corresponding to a linear search through
the file), in practice it is much closer to constant because
the order of methods in the profile reflects the execution
path from a previous run. The execution paths of later runs
are usually similar, so that the profile file pointer is usually
pointing to the method description queried by ORP.

Dynamic sandboxing in ORP is only one of several imple-
mentations we have developed. An earlier implementation
relied on Kaffe's interpreter [31], which ran very slowly. Re-
cently we have also developed implementations by instru-
menting libraries and adding a wrapper around the Sun JIT
compiler interface. This allow us to run with the standard
Sun libraries. However, there is a large performance cost
to this last approach, because there is overhead on every
method invocation instead of only on the first.

3.3 Experimental Results

In order to be useful, the implementation should have the
following properties: It should be effective at stopping at-
tacks, be efficient, and experience few false positives. As we
discussed above, there is a paucity of documented attacks in
the wild on production Java programs, which makes it diffi-
cult to perform large-scale systematic testing. We did, how-
ever, run our sandboxing method against two exploits, one
taken from the literature and one that we devised ourselves.
To assess the performance impact, we used two benchmarks.

3.3.1 Effectiveness

We tested dynamic sandboxing against a Java virus and
a simple HTTP server with a backdoor. The Java virus,
named Strange Brew, is the first reported virus targeting
Java programs [14]. When invoked, the virus searches the
current directory for uninfected class files. For each unin-
fected class, it adds a copy of itself to the class and modifies
the constructor to call itself. It then pads the file to a mul-
tiple of 101 so it can determine a class’s infection status
without opering it.

The Strange Brew virus readily infects any application, in-
cluding the canonical simple program “Hello World.” In
Java, “Hello World” consists of a one-line main routine which
calls System.out.println(). When the infected program is

Ideally, profile_method_load would load the native code
directly from the profile. To accomplish this, however, we
would have had to write the equivalent of a linker. We are
currently investigating how this might be accomplished.
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run with a profile gathered against the uninfected class, no
security violations are found. That is because main() never
calls the infected constructor—no “Hello World” instance
is created. It isn’t until the anomalous code attempts to
execute that our sandbox can detect a problem. Depend-
ing on one’s point of view, this is either a “feature” or a
“bug.” In our view, the foreign code isn’t dangerous until it
executes, and in this way intrusion detection can devote its
resources to code that is about to cause damage. Thus, dy-
namic sandboxing focuses on behavior, not structure. With
this in mind, a second line was added to Hello World which
calls the constructor. The new class proved infectious. With
sandboxing enabled, however, the first call into the virus vi-
olated the profile, causing ORP to exit, and the attack was
prevented. This result would be seen for any program. not
just “Hello World”. Because it is the foreign virus code that
is identified, the dynamic sandbox is able to prevent the
virus from infecting any dynamically sandboxed program.

The second exploit we tested is a backdoor to a simple
HTTP server written by the first author. The backdoor
was implemented as a special command which allows a re-
mote client to execute arbitrary commands on the server.
A sandbox profile was constructed by running the HTTP
server and exercising it by downloading pages. We then ac-
tivated dynamic sandboxing using the custom profile. When
we attempted to exercise the backdoor, the sandbox trapped
the first call in the backdoor, a call to System.exec, with-
out disrupting other legal uses of the server. Again, dynamic
sandboxing is effective here because our sandbox is a reflec-
tion of behavior, not structure. The exploit does not insert
foreign code into the application, although we believe dy-
namic sandboxing would protect against that as well (based
on the virus example described earlier). In this case, the
malicious code is part of the application itself. Because the
backdoor is a form of “dead code,” the sandbox effectively
eliminates it.

3.3.2 Efficiency

Dynamic sandboxing should be efficient as well as effective,
if it is ever going to be useful. We predict that our imple-
mentation will perform efficiently for applications in which
methods are executed repeatedly. For many interesting pro-
grams, notably server applications, this is true. Indeed, this
is almost universally true, because the number of total invo-
cations is much larger than the number of methods available
in most applications.

To confirm that our implementation is efficient on realistic
programs, we tested dynamic sandboxing against a Java ver-
sion of the Olden benchmarks [8, 7). The Olden benchmarks
are a series of 10 programs that are representative of typical
applications. We ran the benchmarks 15 times each with no
flags, the -profile flag, and the-sandbox flag, for a total of
45 runs.?

The results appear in Table 1. Profiling and sandboxing
each incurred an overhead of less than 2%, confirming our

?We used the standard benchmark parameters with three
exceptions: 2048 instead of 4096 on Barnes-Hut, 512 instead
of 1024 on Minimum Spanning Tree, and 10 instead of 20
on the TreeAdd (tree traversal) benchmarks. The original
parameters exceeded the unconfigurable ORP heap size.



ORP Parameters

Mean user + system time in seconds (Std. Dev.)

Default {no sandboxing)
Logging the sandbox profile (-profile)
Dynamic sandboxing enabled (-sandbox)

304.59 (0.26)
308.93 (0.35)
308.03 (0.19)

Table 1: Efficiency of sandbox generation and protection on the Olden benchmark.

expectation that the implementation would be efficient.

The Olden benchmarks show that the average case is effi-
cient. How efficient is the worst case? We wrote a synthetic
benchmark to test the efficiency of our implementation un-
der conditions in which the overhead of lookup cannot be
amortized over multiple invocations. Because overhead is
isolated to the first invocation of each method, our bench-
mark consists of a class with 1000 empty static methods,
each invoked once. After gathering the sandbox profile, we
modified the benchmark to invoke the methods in the ex-
act reverse order of the profile — the pathological case. The
benchmark was run 100 times under no flags, -profile, and
twice under -sandbox. See Table 2 for the resulting data.

Sandbox generation and the synthetic benchmark had mod-
est performance decreases of 6%. The pathological case had
an enormous slowdown of 2216%. The slowdowns shown for
profiling and dynamic sandboxing exaggerate the true effect
they have on applications and are included to show worst
case behavior. First, overhead is only incurred on the first
invocation of a method. True overhead is small when amor-
tized even over a modest number of invocations, as seen
in the Olden benchmarks. Second, the numbers don’t re-
flect the cost of invoking a JIT for non-empty methods. In
real applications, any overhead in profiling or sandboxing
is quickly overwhelmed by the cost of JIT compilation. Fi-
nally, the pathological case shows that the lookup scheme
isn’t efficient in all cases. It is optimized for method in-
vocations to occur in the same order encountered during
profile generation—the pathological case is ordered exactly
opposite. This is unlikely in most programs, so moving to
a scheme like hashing would make the system slower in the
normal case. The typical case would be much more expen-
sive, although including hashing in addition to the current
scheme might improve performance at the expense of space.

3.4 False Positives

The exploits and efficiency tests give evidence that dynamic
sandboxing can be effective and efficient at stopping ex-
ploits. The last requirement for an IDS is a low false pos-
itive rate. For the experiments described above, we found
zero false positives. This is certainly encouraging, but not
conclusive given the limited nature of our tests. For real
applications, we would expect to see at least some false pos-
itives.

The false-positive rate is related to the problem of “perpet-
ual novelty” in interesting applications. A anomaly-detection
system can never be sure that it has observed the entire
range of normal behavior. One approach to this is that of
generalizing over the space of observed patterns, with the
hope that the generalization will include most new legiti-
mate behavior as in [18, 12, 20].

57

A second approach is to look at the distribution of novel pat-
terns in the data and use that to make predictions about the
distribution of novel patterns in the data. A rank/frequency
plot is often used to study such distributions, such as the fig-
ures shown in Figures 1 and 2 in Section 3.1. When plotted
on a log-log scale, the slope of the rank/frequency curve re-
veals the proportion of frequently seen behavior to potential
false positives.

For example, consider the LimeWire trace recorded for 32
minutes discussed in Section 3.1. We can see that the dis-
tribution falls off more quickly than a power-law. This tells
us that the frequency of rare events decreases faster than a
polynomial and slower that an exponential. Only 162 meth-
ods are required to obtain .01 false positive rate per method
invocation and 444, 35% of total number of methods ex-
ecuted during the trace, to push that rate to .0001.2 As
the program is run longer, the relative frequency of these
rare events will decrease (this can be seen by examining the
different trajectories plotted in Figure 2.

Finally, the size of the entire profile is small enough that
we can record the long tail of the power-law in our profile.
We emphasize again that we are not looking at paths or se-
quences, which blow up the space enormously. LimeWire,
a “real” application, invokes less than 1300 methods. In
fact, the entire possible space is only on the order of tens of
thousands of methods, depending on the specific Java dis-
tribution used. As Somayaji has noted, smaller spaces have
advantages in the areas of space requirements, generaliza-
tion, and profile generation time [29)].

4. DISCUSSION

Dynamic sandboxing, like other anomaly IDS, infers policy
from behavior. This is predicated on the idea that normal
execution can reveal and document complex policies more
reliably and efficiently than users or developers can. As we
know from familiar environments like UNIX, user devised
policies are often flawed. As with any empirically derived
model of normal behavior, dynamic sandboxing comes with
the risk of imperfect detection, that is, false positives and
false negatives. In practice, we expect the number of false
positives to be low, but to date we have only limited exper-
imental evidence to justify this prediction.

This differs from specification based approaches, like that
of Wagner and Dean [33], with no possibility of false pos-
itives. Although they looked at system call sequences, an

3We would have liked to have used LimeWire as a test, but
it currently does not run under ORP. We instrumented the
LimeWire bytecode in order to get the data, and as a result
the program was too sluggish tor human interaction. The
number of invocations would be much larger in uninstru-
mented code for the same time period.



ORP parameters Mean user + system time in seconds (Std. Dev.)
Default (no sandboxing) 0.26 (0.01)

Logging the sandbox profile (-profile) 0.28 (0.01)

Dynamic sandboxing enabled (-sandbox) 0.28 (0.01)

Dynamic sandboxing on pathological benchmark | 5.83 (.21)

Table 2: Efficiency of sandbox generation and protection on the synthetic benchmark.

analogous system could be devised for Java. Although they
prefer static linking, a realistic Java IDS would build the
specification from the bytecode class files at load time. The
IDS would then limit execution to a larger sandbox, the en-
tire possible call-graph of Java methods determined from the
bytecode. This provides little protection over the traditional
sandbox, and is simply a more complex verification mech-
anism. Once an attack has circumvented the traditional
security mechanisms, it can execute anything, since those
code paths would have been examined statically at class load
time. Considering our own experiments, both the virus and
trojan HTTP server exploit would run successfully. This is
because the code, which is the basis for the specification in
the hypothesized Wagner and Dean type IDS, carries the
exploit with it. Dynamic sandboxing prevents the security
fault because it focuses on behavior, not structure.

Specification based approaches often have significant perfor-
mance penalties. The Wagner and Dean system experienced
slowdowns on the order of seconds per transaction [33}. We
believe, however, that IDSs will not be used unless they im-
pose minimal performance penalties. Also, we believe IDSs
should prevent intrusions from gaining control. Our systems
must therefore be computationally efficient and online. Dy-
namic sandboxing meets these goals. The system is essen-
tially free, and can run as part of the just-in-time compiler
system.

Given that we have studied only two attack classes, it is
interesting to consider how dynamic sandboxing would fare
against a wider range of attack types. Because dynamic
sandboxing stops novel code from executing, the sandbox
would prevent it from using any methods outside the tra-
ditional Java sandbox. A successful exploit would need
both to disable the traditional security mechanisms and use
only previously invoked methods (perhaps with different ar-
guments). Against all three classes of exploits (verifica-
tion bugs, security manager bugs, and policy bugs) dynamic
sandboxing would likely perform well against naive attack-
ers. In each case, the initial intrusion might succeed, but
new code could not execute if used any methods not already
in the profile. One possibility is that the exploit could jump
to native code, which dynamic sandboxing could not stop,
because it acts only within the Java domain. An intelligent
adversary would need to embed the payload within meth-
ods already in the profile, in what is essentially a mimicry
attack.

The existence of false positives makes response tricky. Be-
cause we have not yet experienced false positives in this
setting, our current response is simplistic, exiting the JVM
when an anomaly occurs. If false positives are rare enough,
and we believe they will be, additional analysis could be per-
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formed when an anomaly is raised. The JVM could com-
pletely deconstruct the stack, giving the call path to the
novel method and its arguments, including types (informa-
tion unavailable at lower levels of execution). It might ex-
amine the novel method’s code, looking for suspicious calls.
Such analysis could give a priority or confidence level to the
alert. Beyond reporting, the system could use that informa-
tion to guide a range of responses, from ignoring it, adding it
to the profile, throwing an exception, or halting the thread.
It would be straightforward to modify the VM so that a
thrown exception could not be caught by the exploit itself.
This would be accomplished using the same stack introspec-
tion mechanisms used by the traditional sandbox.

Another approach would be to borrow the response strat-
egy from Somayaji’s pH system [30]. pH uses exponentially
increasing delays of subsequent system calls in the execut-
ing process. Small numbers of anomalies have small de-
lays, and go unnoticed. Large numbers of temporally clus-
tered anomalies, produced when programs execute novel
code paths, have such large delays that the program es-
sentially freezes. A small utility is available for users to
“unfreeze” programs.

The appropriate response strategy depends on the exploits
and the monitored programs. The dynamic sandbox de- -
scribed here seems best suited to server or middleware ap-
plications, where security is most needed and behavior usu-
ally limited. Interactive applications, which are closer to the
user, might have functionality that is invoked at infrequent
intervals, creating larger numbers of false positives. The
first response strategy, providing more information for spe-
cific anomalies, might work well in server applications while
the second is more appropriate for interactive applications.

5. FUTURE DIRECTIONS

In the future, we hope to concentrate on: optimizations to
the current implementation, using more more diverse sen-
sors, adding a response mechanism, and better characteriz-
ing the anomalies.

e Obvious optimizations to the current prototype are a
more efficient log structure and to possibly store the
native code as the profile itself.

Beyond method invocations, we are currently investi-
gating the behavior of the memory allocator and garbage
collector. Profiling useful for adaptive garbage collec-
tion may also be useful for anomaly detection. We are
able to predict many object lifetimes precisely and will.
see if this can be leveraged for our dynamic sandbox.

e A robust response mechanism, discussed in detail in
Section 4, needs to be investigated and implemented.



e We are also interested in characterizing the anomalies,
including the false positives. Do anomalies have any
commonalities? Do anomalies generated by exploits
look different from the false positives? Examining the
anomalies may tell us something fundamental about
program behavior.

Except for the performance optimizations, this future work
relies on collecting more data, both on exploits and from
real applications. Until more applications run on ORP, our
analysis will rely on instrumented applications rather than
full-fledged implementations of dynamic sandboxing.

6. CONCLUSIONS

We described a strategy, called dynamic sandboxing, which
is an anomaly intrusion-detection system for applications
running in Java-like environments. To show its efficacy, we
implemented a prototype system using a limited amount
of profiling information and tested it against two exploits.
We presented additional arguments that our system satisfies
three criteria of a successful IDS: high true-positive rate, low
false-positive rate (zero for the tests reported here), and low
performance penalties.
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