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ABSTRACT 

This paper presents results of an empirical analysis of NATE 
(Network Analysis of Anomalous Traffic Events), a 
lightweight, anomaly based intrusion detection tool. Previous 
work was based on the simulated Lincoln Labs data set. Here, 
we show that NATE can operate under the constraints of real 
data inconsistencies. In addition, new TCP sampling and 
distance methods are presented. Differences between real and 
simulated data are discussed in the course of the analysis. 
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1. INTRODUCTION 
The accelerating trend of computer security incidents appears 
unaffected by the increasing concern and attention to computer 
security from government, research and corporate groups. 
Reported computer security incidents have jumped from below 
5000 in 1998 to 35,000 in 2001 [4]. These statistics suggest 
that securing computer systems against threats from intruders 
is a difficult problem not solvable in the near future. One 
answer to the computer security dilemma is intrusion 
detection. Intrusion Detection Systems (IDS) provide detection 
capability for intruders that penetrate other system security 
defenses. All IDS's utilize some type of monitoring to assess 
the system's state and determine the occurrence of an intrusion. 
One of the primary distinctions between IDS's is their 
detection scope. Commonly, ID systems focus on one host 
machine or multiple machines connected to a network. 
Network IDS's typically monitor network traffic as their data 
source while host IDS's utilize system information such as 
system or application logs. 
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A 2000 CMU report [1] reviewed the state-of-the-art in ID and 
identified research needs for current and future ID 
development. An area in need of further research was the 
development of IDS's capable of monitoring high speed 
network connections. Today's network IDS's can't keep up 
with current traffic and as network speeds increase, the IDS 
performance gap will widen. Consequently, some IDS 
researchers have questioned the feasibility of future network 
monitoring. Another concern is the limited amount of 
administrator time available for monitoring networks. Smaller 
organizations typically lack dedicated computer security 
personnel and system administrators must assume the role of 
computer security officer. Consequently, an IDS should not 
require a large investment in time for configuration and 
management. Current network ID research emphasizes large, 
comprehensive solutions, but fails to account for the time 
required for IDS operation. 

In NSPW 2001, we presented NATE, a low cost approach to 
network ID that addressed both high speed traffic monitoring 
and administrator time constraints. As presented, NATE was a 
minimalist approach to network ID. The idea was to create a 
light-weight monitoring tool that purposely ignores attacks 
buried in the packet payload and recognizes only those attacks 
that are detectable from packet header information. From the 
header information, a small number of attributes are selected to 
further streamline the system and reduce processing speed. 
NATE utilizes an anomaly based detection method eliminating 
the need for constant update of rules or signatures. Results 
from our initial investigation showed that NATE could identify 
TCP attacks that are detectable from header information such 
as most probes, scans and Denial of Service (DOS) types of 
attacks. Further results with both TCP and UDP protocols are 
presented in [28]. 

The data used to develop and test NATE came from the MIT 
Lincoln Labs data set [16] created for IDS evaluation. Several 
problems with this data set were noted [18] and researchers 
have begun to question the validity of results based on this data 
set. Since NATE was developed and tested with this simulated 
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data set, there was some concern that our previous success was 
due to the data and that results would not be repeatable under 
more realistic conditions. In order to address these concerns, 
we tested NATE with a real data set from an operational 
network (outside an academic setting). This paper presents our 
analysis with actual network data. We also report results from 
additional statistical distance and sampling methods. 

We begin in Section 2 with a review of relevant research with 
an emphasis on recent developments in the area of statistical 
ID. In Section 3 NATE's features are discussed followed by a 
description of the data collection, analysis and attack 
identification methods in Section 4. The empirical analysis and 
discussion are presented in Section 5 and 6. The paper 
concludes with a summary and future research direction, 
Section 7. 

2. CURRENT RESEARCH 
Recent reviews of IDS's divide these systems into a much finer 
grained taxonomy than host verses network which is the more 
typical approach [3,7]. ID techniques span a wide range of 
methods including expert system, pattern matching, state 
transition analysis, neural network and statistics [7]. A broad 
classification of these detection techniques places them into 
either anomaly based or signature based methods. Anomaly 
based detection seeks to identify a normal system state and 
detects deviations from that state as signs of anomalous 
activity. Signature based detection identifies intrusions by 
comparing a current signature against known patterns, rules or 
states to recognize an intrusion. 

Previously, we reviewed network and network/host systems 
that were then compared to NATE [27]. Here, we want to 
highlight statistical intrusion detection in order to place 
NATE's detection method in the context of other statistical 
approaches. 

Traditionally, anomaly based detection was accomplished with 
statistics. Wisdom and Sense [29] and Haystack [31] used 
statistics to monitor changes in user behavior. NSM [10] used 
statistics along with rules to monitor LAN traffic. The Emerald 
IDS [20] statistical component was inherited from a previous 
SRI IDS, the Nides system [12]. The Nides statistical 
component set the standard for statistical based ID for a 
number of years. This method computes a historical 
distribution of continuous and categorical attributes which are 
updated over time. Deviations from historical norms are based 
on a chi-square like statistic. Ji-nao, a router based IDS also 
uses the Nides statistical component [31]. Most of the 
preceding methods update the measures continuously with new 
information. 

A classification tree approach was develoPed in  [5] to 
formulate a statistically derived rule set for classifying 
intrusive activity. The technique also uses network traffic 
header information but it is not clear how efficient the method 
would be under actual operation. Another recent technique 
utilizes conditional probability to determine the likelihood of 
anomalous behavior [8]. The method works by computing the 
likelihood of the nth call given n-1 previous calls. Yet, another 
recent statistical method analyzes system calls in privileged 
processes with discriminant analysis, a multivariate grouping 

technique [2]. This method appears to be quite efficient 
utilizing only 11 system calls to distinguish between normal 
and intrusive behavior. 

Cluster analysis has previously been applied to intrusion 
detection [17,23]. Portnoy used cluster analysis to group 
network traffic based on a large number of traffic 
characteristics. This approach was similar to NATE but differs 
in several important characteristics [23]. While NATE creates 
clusters of normal behavior for anomaly detection, Portnoy 
forms clusters of both anomaly and normal behavior in order 
to match anomalous sessions. Their method also bases 
decisions on the frequency of anomalous vs. normal traffic and 
makes the assumption that normal traffic is more frequent than 
abnormal traffic. This assumption is not always valid 
depending on network conditions (i.e. during a flood event). In 
[17], cluster analysis is used to group machines from a large 
network based on similar traffic characteristics. 

3. NATE'S FEATURES 
NATE embodies a unique set of characteristics not previously 
encountered in ID solutions. Anomaly based detection was 
deliberately implemented in an effort to streamline system 
maintenance. An anomaly based approach should translate to 
fewer updates of rules or signatures as new attacks are 
discovered. The idea is that new attacks should be detected 
automatically. Another benefit of anomaly detection is that 
detection is not limited to known attacks but extends to 
previously unknown intrusions [7]. In contrast to most 
statistical anomaly based methods, the system administrator 
will not need to know normal system parameters [25, 20, 31] 
to configure the system. Self-configuration is possible as a 
result of automating the data collection and construction of the 
cluster database. 

NATE seeks to minimize the amount of data needed for attack 
detection by measuring a small number of attributes. The 
attributes that appeared to best distinguish between normal and 
anomalous TCP sessions included the frequency of TCP P 
(Push) and Ack (Acknowledge) flags, the average and total 
number of bytes transferred, and the percentage of session 
control flags. In [27], we describe these attributes in more 
detail. This reduces the processing time which increases the 
efficiency for potential high-speed network monitoring. 
Another feature related to fast operation is a focused detection 
coverage for attacks that can he discovered from header 
information. Currently, this includes all probes, scans and 
many DOS types of attacks. Restricting the focus to just packet 
headers yields another benefit in that NATE can handle both 
regular and encrypted data. 

4. METHODS 
Previously, we discussed the statistical and sampling methods 
used in NATE's initial development. A brief summary of these 
methods is presented. New techniques including a different 
sampling strategy and an alternate distance metric are treated 
with more detail. 

4.1 Cluster Analysis 
The purpose of cluster analysis is to group data so that objects 
in a given cluster are similar to each other and dissimilar from 
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other clusters [13]. Our purpose in applying cluster analysis to 
network packet data is to form clusters of normal traffic in an 
effort to capture the normal network state. It is not known how 
many actual groups there are in TCP data since new TCP- 
based applications are constantly being introduced. 

4.2 Sampling Strategy 
Many studies involve populations that are too large to analyze. 
Sampling is the standard approach in statistical analysis for 
obtaining a subset that is representative of a larger population. 
Note that prior to sampling the population, extreme, high- 
valued TCP sessions will be eliminated as outliers. Outlier 
removal is standard with most statistical analysis and for 
cluster analysis is essential for obtaining a g0od cluster 
solution. 

In sampling network data for anomaly based detection, it is 
important to collect the full range of network behavior. 
Otherwise, normal behavior could be mistaken for abnormal 
resulting in many false positives. The next two sections discuss 
two types of sampling strategies for collecting network data. 

4.2.1 TCP Type Sampling 
Sampling by TCP type I requires that each major traffic type be 
represented in the sample. A major TCP type is defined here to 
mean relative high frequency compared to less common types. 
Originally, a standard sample size calculation was computed' 
for each major TCP type to insure that common types are 
adequately represented [27]. However, results from the 
standard sample size equation tended to yield samples that 
under-represented the less variable types and over represented 
the more variable types. Another sampling strategy is to 
include equal numbers of each TCP type to insure sufficient 
representation of all traffic found on the network. Thus, each 
major type will be randomly sampled at an equal rate. 

4.2.2 Attribute Distribution Sampling 
Our previously reported cluster analysis results suggest that 
TCP traffic doesn't cluster into distinct groups by type [27]. 
We thus adopted a sampling strategy that previously yielded 
good results with UDP data [28]. The entire population was 
first divided into groups based on 2 times 2 the standard 
deviation of the most variable attribute 3. For example, if the 
most variable attribute is Total Packets, and the standard 
deviation of Total Packets is 30, then groups will be formed by 
dividing the records based on Total Packets values from 1 to 
60, 61 to 120, 121 to 180 etc. Each group will be randomly 
sampled to include an equal number of records. The 
expectation, is that systematic inclusion of records based on 
distribution of the most variable attribute will provide a more 
complete sample of network traffic. 

4.3 Distance Measures 

I TCP type is defined as the application that generated the TCP 
traffic, i.e. ftp generates ftp control traffic, port 20 and ftp data 
traffic, port 21. 
2 2x the standard deviation was chosen since this is the error 
bound of the sample size equation. 
3 In taking multivariate samples, it is common to sample based 
on the most variable attribute. 

Distance measures quantify the dissimilarity between 
individual normal clusters and a potentially anomalous TCP 
session. The measures transform a vector of TCP session 
attributes into a single valued distance which can be assessed 
for significance. 

The Mahalanobis distance is a measure based on the 
covariance matrix of the attributes and incorporates the 
relationships between attributes. Mahalanobis distance values 
can be compared to a chi-square distribution so that 
significance of the results can be assessed. This was discussed 
in [27]. 

While the Mahalanobis distance produced good results, there 
were some problems with the method since mapping to a chi- 
square distribution requires multivariate normality which is not 
always achievable. Another way to determine distance is with 
Euclidean distance. While Euclidean distance does not map to 
a known statistical distribution, significance of the values can 
be determined empirically by computing a natural bound on 
the values. The equation for the Euclidean distance [13] is, 

dist(x,y)=( 2~..(xi-Yi)  2 ~/2 

where x and y are two attribute vectors representing TCP 
sessions and n is the number of attributes measured. For our 
use, x represents a new TCP session and y is the cluster mean 
from an individual cluster of TCP sessions. 

Determining the natural bound of Euclidean distance values 
involves the use of Chebyshev's inequality [24]. The equation 
for this limit is, 

P r { I x - ~ l  ~ ka} ~ 1 ~  

where x is a random variable with mean, ~, and standard 
deviation, ty. Here, x is a single Euclidean distance,/z is the 
mean Euclidean distance values for a normal cluster and k is a 
multiplier that determines the significance level. Chebyshev's 
inequality sets the natural bound on the variability of the points 
within a given cluster and is computed separately for each 
cluster. The value produced is a probability that the value, x, 
comes from a population with mean,/~, and standard deviation, 
a [24]. The Euclidean distance computed between a TCP 
session and a cluster can be compared to this bound to see if 
the distance is significant, i.e. outside the Chebyshev 
inequality bound. K can be set to approximate the typical 
significance of a known distribution. For exam,P21e, if we set k 
= 4.47, then the probability is set to .05, 1/4.47, which is the 
usual cut-off point for significance using an F test and the 
normal distribution [24]. 

5. EMPIRICAL ANALYSIS 
Initial results from NATE were promising based on the 
simulated Lincoln Labs data. In order to confirm these results 
and show that the system will work on an actual network, we 
conducted a second empirical analysis using data captured 
from an operational network. Results from this analysis are 
presented in this section. 
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5.1 Network Environment  
The data was collected from a small functional network where 
the hosts perform web and e-mail server functions (Figure 1). 
A network firewall was active, mostly performing NAT 4 for 
several servers. Additionally, each server host had its own 
firewall, ipfirewall, which comes with the FreeBSD operating 
system. Host firewalls were also configured to allow only a 
specific set of traffic. Allowed traffic consisted mostly of 
https-secure http, ssh- secure shell and smtp-simple mail 
transport. Some http, unsecured web traffic was also allowed. 
A more complete discussion of the traffic is given in Section 
5.3, Attack Screening. The operating system for all the hosts 
consisted ofFreeBSD, a unix variant. 
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Figure 1. Network configuration 

5.2 Data Collection 
Data was collected over a consecutive 10 day period by 
BlackHole [19], a custom network sniffler built on top of BPF 
and libpcap. Because the output was in pcap format, tools such 
as tepdump [11] could be used to read and filter the data. The 
sniffer collected all network data and stored it in 100 Mbyte 
files. A script was written to screen the files for TCP traffic 
which was aggregated into TCP sessions. A session is typically 
defined as all the packets between two unique source and 
destination port/IP addresses. 

5.3 Attack Screening 
One of the stated problems with anomaly based methods is the 
risk of incorporating anomalous behavior in with the normal 
data when establishing the normal state [7]. In utilizing 
simulated data, this was not a problem since embedded attacks 
were identified as part of the training data. However, real data 
potentially has anomalous data mixed in with normal data and 
must be screened prior to analysis of the normal data. Two 
types of anomalous sessions were of concern. The first type 
consists of the probes, scans and DOS types of data 
characterized by missing TCP session attributes and few 
packets. The second class of anomalous data are individual 
sessions that attempt to flood by sending large numbers of 
packets or bytes in order to overwhelm a given service. 

4 NAT stands for Network Address Translation and is 
done for internal IP addresses which get mapped to 
alternate addresses so internal machines are protected 
from outsiders. 

Searching the data set for probes and scans turned out to be 
fairly easy by creating a script based on missing TCP attributes 
such as bytes, Push and Ack flags. Attacks that flood by 
sending an overload of bytes or packets within a single session 
will be filtered out in the normal outlier removal process 5. This 
network had two active web servers configured to allow ssh, 
https, auth, and icmp traffic. Additionally, these machines 
could make DNS queries via UDP but not TCP. A separate 
machine served as the DNS/mail server and was allowed ssh, 
smtp, DNS via UDP, pop3 auth, and local network traffic. 
Network traffic outside this limited range was suspect for the 
web and mail servers. One machine functioned as a general 
purpose machine and had no well-defined security policy. 

The individual firewalls were configured to disallow ftp and 
telnet connectivity so these connection attempts only show the 
first few packets since the rest of the session is cut off. 

The results of traffic screening for this network were 
interesting yielding a large number of anomalous sessions. The 
frequency of these sessions is presented in Table 1. 

By far, http traffic dominates contributing about 85% of the 
anomalous traffic. The remaining anomalous types included 
https at 5%, domain traffic at 2% and the remaining types at 
1% or less. Examining the large valued sessions eliminated as 
outliers showed no obvious anomalous activity. 

Table 1. Fre( 
Traffic Type 

http 
https 

domain 
sunrpc 
telnet 
~p 

ueneies of anomalous network traffic 
Frequency% 

85 

<1 
<1 

Description 
Web traffic 

Secure web traffic 
Name server traffic 
Remote prec. call 

Remote connection 
File transfer 

Examination of the anomalous looking sessions showed that 
multiple types of scans were present in this data set. The most 
common type of scan was a Syn scan of all existing machines 
for a particular service. All existing machines were sent syn 
packets for http, https, dns, sunrpc, ftp and telnet among 
others. Variations of this scanning activity were seen including 
sending ack packets instead of syn packets and sending small 
amounts of data. The ack scan is an attempt to bypass firewall 
filtering and is a'feature of the common nmap [20] scanning 
tool. Sending small amounts of data appears to be similarly 
motivated since sessions with zero bytes are easily filtered. 
Port scans were less common where multiple ports on one 
machine were queried. Stealth scans were common with time 
delays of seconds to hours. 

Upon examination of this data, some of the anomalous 
appearing traffic was actually normal. A number of auth 
sessions turned out to be legitimate. These sessions originated 
from the internal mail server hut matched exactly auth traffic 

5 The assumption is that an unusually high count of either 
bytes or packets will exceed most normal sessions and be 
eliminated as an outlier. 
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from external machines. It seems that the other internal hosts 
on the network were rejecting the auth traffic from the mail 
server so the auth sessions were never established. Solutions 
for anomalous appearing legitimate traffic will be discussed in 
Section 6. 

5.4 Sampling Results 
Sampling was accomplished two ways as outlined in Section 
4.2. For this network, four TCP types dominated with 
frequencies presented in Table 2. As can be seen from the 
frequency distribution, https is overwhelmingly dominant 
followed by smtp, ssh and http. 

Table 2. Frequencies of normal network traffic 
Traffic Type Frequency % Description 
https 94 Secure web traffic 
smtp 4 Mail traffic 
ssh 2 Secure shell 
http < 1 Web traffic 

Each type was sampled at 60 data points for a total sample of 
240 points. This data set is referred to as TypeSample. 
Dividing the population into groups based on the distribution 
of Total Packets, resulted in five groups. Each of these groups 
was also sampled at 60 creating a data set with 300 points 
called GroupSample. 

5.5 Cluster Results 
Results from the cluster analysis for the two data sets were 
similar each containing cluster solutions of 5 clusters. Cluster 
composition was mixed with clusters consisting of multiple 
TCP types. Differences between clusters appeared to be based 
solely on magnitudes of the session attributes and not on TCP 
type differences. This was true for both data sets. A possible 
reason for the lack of clustering by TCP type is presented in 
Section 6. Cluster distribution for each data set is presented in 
Figures 2 and 3. 
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Figure 3. Cluster data distribution for GroupSample 

While the plots are similar, the GroupSample plot, Figure 3, 
shows more separation of the data points than the TypeSarnple 
data set. When the data already forms natural groups clustering 
the data is more straightforward. Thus, the GroupSample data 
set produced a more even distribution of data among the 
clusters compared to the TypeSample data set which had most 
of its points assigned to Cluster 1 with few points distributed 
among the remaining four clusters. 

5.6 Attack Recognition 
After creating the normal cluster database for each data set, 
attack sessions were selected to test against these databases. 
From the attacks identified in Section 5.2, several were chosen 
for testing including a Portscan, Ipscan, Ack Portscan and 
Data 6 Portscan. Since no obvious flood attempts were noticed 
during the collection period, two DOS attacks from the 
Lincoln Labs data set, Neptune and Mailbomb, were included 
in order to test against this type of activity. Neptune, is an 
attack that attempts to flood the machines capacity to accept 
new TCP connections via half-open connection attempts [6, 
14]. Mailbomb tries to flood the mail server by sending a lot 
of script-generated mail messages [ 14]. 

Both Euclidean and Mahalanobis distances were computed for 
each data set, GroupSample and TypeSample in order to 
compare results from both sampling methods and the distance 
measures. Tables 3 and 4 present results from the Mahalanobis 
distance tests for each data set. The tables include both attack 
sessions and normal data. 

Table 3. MahalanobisDistancesforGroupSampleData Set 
Type Clustl Clust2 Clust3 Clust4 Clust5 
Portscan 281 >27118 >160650 >66050 >587882 
lpsean 256 >26887 >159752 >65862 >587901 
Datascan 234 >26656 >158860 >65672 >587932 
Ackscan 68 642146 >390663 >16158 >138241 
Neptune 256 >26887 >159752 >65862 >587901 
Mailbmb 13.3" 66881 469193 >20766 162987 
https 2371 2370 114 4.6* 21602 
ssh 3.7* 927 15155 93888 5331 
smtp 4.9* 68431 497244 >22471 184608 
* Indicates distance is not significant 7 

6 A Data Portscan is defined as a Portscan where the attacker 
sends data in an effort to bypass potential filtering rules 
7 Distance translates to a Chi-squared distribution with 5 
degrees of freedom, .001 significance level, equals 20.5 
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Table 4. Mahalanobis Distances for Type 
Type Clustl Clust2 
Portsean 
Ipsean 
Datasean 
Ackscan 
Neptune 
Mailbmb 
h~s 
ssh 
smtp 

681 >112709 
631 >112406 
586 >112103 
138 2774.7 
631 >112406 

19.5" 36475 
2371 30115 
1.6" 53277 
4.9* 64285 

* Indicates distance is not significant 

ypeSample Data Set 
Clust3 Clust4 Clust5 

>139081 >473376 39 
>139003 >473385 39 
>138924 >473394 39 

326809 >113839 40 
>139003 >473385 39 

348528 >145099 36 
487 108509 79 

643863 >221000 23 
861963 >264696 36 

Examining the Mahalanobis distances, it appears that these 
results are similar to the results obtained from the Lincoln 
Labs data. The new attacks are significantly different from all 
clusters in both data sets. The two flood attacks also compare 
similarly to results from the Lincoln Labs data [27]. Neptune 
which resembles a Syn scan once the time element is removed, 
appears anomalous as can be seen from the s ignif icant  
Mahalanobis distances. However, Mailbomb appears to be 
normal when examined at the session level. Again, this 
particular attack floods by overloading the mail service with 
numerous mail sessions each of  which appears normal. 

Legitimate TCP sessions selected from the unsampled TCP 
data were also compared against the normal databases. There 
were some differences in the correct identification of  normal 
TCP sessions between the two data sets. With the 
GroupSample data set, all normal sessions were correctly 
identified as demonstrated by insignificant Mahalanobis 
distances for one or more clusters (Table 5). For the 
TypeSample  data set, one http normal session was 
misidentified since its distances are significantly different from 
all clusters (Table 6). Additional testing of  normal sessions 
resulted in more misidentification of  normal sessions. Normal 
sessions that appear anomalous are considered to be false 
positives and should be minimized to reduce the problem of  
sounding false alarms. The reason for the greater incidence of  
false positives with the TypeSample data set will be covered 
later in Section 6, Discussion. The normal sessions included in 
the tables, represented either extremely large or extremely 
small valued sessions in an effort to identify normal sessions 
that could cause false positives. 

Euclidean distance results are presented in Tables 5 and 6. 
Results from this measure are nearly identical with the 
Mahlanobis distance. 

Table 5. Euclidean Distances for the TypeSample Data Set 
Type Clustl Clust2 Clust3 Clust4 Clust5 
Portsean 214 948 320 782 571 
lpsean 214 947 319 779 570 
Datascan 214 913 319 781 572 
Acksean 83" 949 243 741 523 
Neptune 214 947 319 779 570 
Mailbomb 13" 883 199 700 483 
https 760 545 493 21" 349 
ssh 159" 723 107" 439 348 
smtp 45* 784 98* 618 406 

*Indicates distance is not significant, < Chebechev inequality limit 

One attack, the Ack Portscan is not anomalous for Cluster 1 in 
both data sets (Tables 5 and 6). However, the remaining scans 
and probes are all identified as anomalous with Euclidean 
distances outside of  the Chebyshev bound. The two DOS 
attacks produced identical results to the Mahalanobis distance. 
Neptune is correctly identified as anomalous while Mailbomb 
appears to be normal as seen from the non-significant 
Euclidean distances. Euclidean distances for normal sessions 
were all non-significant for both data sets. 

Table 6. Euclidean Distances for GroupSample Data Set 
Type Clustl Clust2 Clust3 Clust4 Clust5 
Portscan 194 357 533 922 689 
lpsean 194 357 532 921 688 
Datascan 193 357 531 920 687 
Ackscan 173" 264 477 886 645 
Neptune 193 357 532 921 688 
Mailbomb 15" 213 437 855 603 
https 722 657 347 533 58* 
ssh 117 * 164 252 694 34 
smtp 13' 112" 335 755 523 

* Indicates distance is not significant, < Chebechev inequality limit 

6. DISCUSSION 
So far, our lightweight ID approach has yielded reasonable 
results where it appears that we can reliably distinguish scans, 
probes and DOS types of  attacks from normal TCP traffic. 
This section discusses implications of  the results from the 
analysis of  real data. 

Previous studies have suggested that TCP network traffic is 
distinguishable by type [22]. Consequently, our first sampling 
attempt treated each type as a separate group from which 
samples were taken. Yet, our cluster results contradicted the 
generally accepted notion that TCP traffic types are 
distinguishable. We observed that most o f  the clusters 
contained mixtures of  traffic types as opposed to single type 
clusters. One explanation for the lack of  TCP type grouping is 
the choice of  attributes used to cluster the data. Attributes were 
selected that distinguished between normal and anomalous 
sessions. However, these attributes may not be suitable for 
discriminating between the various TCP traffic types. The 
selection of  attributes and further characterization of  TCP 
network traffic is a topic for further research. 

Our initial cluster results led us to try sampling based on a 
strategy of  ignoring TCP types and sampling the traffic as a 
single population. This appeared to provide a more even 
distribution of  data points among the clusters but did not affect 
the attack recognition results, which were nearly identical for 
the two data sets. However the sampling method does appear 
to affect formation of  the cluster database which relates to the 
accuracy of  normal traffic identification. Normal traffic can 
fall outside the bounds of  all the clusters and be mistaken for 
anomalous traffic. When the data shows little separation with 
most points lumped together as in TypeSample, cluster 
creation is more difficult with cluster boundaries created 
arbitrari ly.  One solution is to choose a more complex 
clustering methods such as the Twostage Density method from 
SAS. This method was tried along with increasing the number 
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of clusters which decreased the cluster variability. This 
eliminated the problem with misidentified normal sessions. 
Another solution is to sample by attribute distribution, which 
appears to create some natural groupings. Thus, a simpler 
cluster approach with fewer clusters produced no false 
positives from the GroupSample database. 

Sampling network traffic is an area in need of further study, 
but these initial results suggest that sampling according to 
attribute distribution is a good alternative to sampling by TCP 
type. Besides creating natural groups, another advantage that 
attribute distribution sampling has over TCP type sampling is a 
much simpler sampling process since the sample-doesn't have 
to include every TCP type. As noted with the Lincoln Labs 
data set, obtaining adequate samples of the least frequent types 
can be difficult [27]. 

Mahalanobis distance previously produced good results in 
identifying both TCP and UDP attacks [27,28]. However, 
mapping the distance to a chi-square distribution requires a 
normally distributed data set. Normal distribution is not always 
attainable which prompted the investigation of an alternate 
distance measure with fewer requirements. Euclidean distance 
appeared to be a good choice since an empirical distribution 
could be calculated via the Chebyshev inequality. Yet, results 
were less robust for attack session identification than with 
Mahalanobis distance. Since the basis for Euclidean distance is 
to calculate the distance of every point from its cluster mean, 
the measure appears to be sensitive to outlier points. The more 
widely dispersed clusters will produce a larger standard 
deviation and consequently a larger bound for normal 
behavior. This bound can exceed the distance of an anomalous 
vector. This occurred in Cluster 1 of both data sets. Comparing 
results from both distance measures showed that Mahalanobis 
distance was slightly better at distinguishing between normal 
and attack sessions. Mahalanobis distance incorporates the 
covariance structure of the attributes which adds information. 
For normal TCP sessions where few attributes are missing, 
medium to strong relationships exist between the attributes. 
Several attributes are correlated above .85. Scan and probe 
attack sessions are characterized by mostly missing attributes 
and a lack of attribute relationships. Thus, it is worthwhile to 
explore attribute transformation or some other method of 
approximating normality in order to satisfy the requirements 
for using the chi-square distribution. 

To date, we have used both simulated and real data in 
developing NATE. This experience provides us with several 
useful insights regarding IDS development. The advantage of a 
simulated data set is total control of the data. Attacks can be 
injected at known intervals and manipulated to suit individual 
research needs. Another benefit from using a public, widely~ 
distributed data set is it represents a standard against which 
IDS's can be compared. A number of studies based their 
research on this data set, which in theory allows them to 
compare results [5,8,9,15]. Yet, given that problems were 
identified in the Lincoln data [18], relying on it as a data 
source may not be desirable for ID development. The inherent 
danger in relying on a simulated data set for any type of 
research is it may not be representative of the real word. For 
us, the real data obtained from a small special purpose network 
was substantially more variable than the simulated data. 

Screening the data for attacks highlighted numerous instances 
of normal TCP sessions that appeared anomalous. The 
presence of legitimate traffic that appears anomalous can be 
resolved in several ways. Rules can be added during both 
screening and operation to filter out this traffic. Or, additional 
attributes can be measured to distinguish between similar 
normal and anomalous traffic. The important point is that if we 
had developed NATE based only on the simulated data we 
would have obtained a distorted view of the data regularity. 
Subsequent use of NATE in a real environment would have 
resulted in many false positives. Thus, for IDS development it 
is important to not only conduct empirical tests but ideally to 
test the IDS's under conditions or with data that will be 
encountered in the intended operating environment. 

7. CONCLUSION AND FUTURE WORK 
This paper presented our continuing work with NATE, a 
lightweight anomaly based ID tool. A summary of our 
conclusions from this research include the following 
observations: 

TCP type can be ignored s in obtaining a representative 
sample of network traffic. Of more importance are the 
ranges of the measured attributes. 
Using a distance measure that captures relationships 
between TCP session attributes adds information since the 
attributes are correlated to some extent. 
Validating an IDS with real data or under an actual 
operating environment should be an important step in IDS 
development. 
Encrypted traffic types such as ssh and https can still be 
analyzed since header information is not encrypted. 
Sampling appears to be important in creating a good 
cluster database which in turn affects NATE's power to 
discriminate between normal and anomalous sessions. 

At this point, we need to ask what does a tool such as NATE 
add to the security of a system and is it enough to continue 
investigating this particular approach? A number of security 
products already provide screening of anomalous traffic. Many 
firewalls and most popular routers allow users to set filtering 
rules. The key distinction that can be made between these 
products and NATE appears to be anomaly based detection. 
Firewalls and routers filter by rules, which translate to attacks 
that can bypass the device by targeting services not in the rule 
set. Anomaly based techniques will function in the event of 
new exploit attempts. NATE can contribute to attack detection 
by filtering those attacks that evade the rules of firewalls or 
routers. NATE can sit on either side of a firewall and provide 
additional filtering capabilities. Inside the firewall, NATE can 
detect internal machines that have been compromised and are 
now attacking other internal and external hosts. Outside the 
firewall, NATE can catch incoming traffic that would have 
bypassed the firewall. Currently, we feel that there is enough 
promise shown by NATE to continue pursuing this research. 
We envision NATE as just one of  many tools or probes that 
can be used by system administrators to enhance the security 
of their systems. 

8 Given our selection of  TCP header attributes. 
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Future research needs to address several unresolved areas. TCP 
traffic characterization is an area in need of further study. 
Basic research needs to be done to capture essential qualities 
of network traffic. Parameters relating to traffic variability in 
terms of traffic types are unknown for TCP and UDP traffic. 
Most traffic studies have been conducted for performance and 
not specifically aimed at understanding network traffic from a 
security perspective [22]. 

Clustering the raw data without performing the cleanup step 
may prove a viable alternative to our present approach. 
Anomalous appearing data should cluster together enabling 
future identification via a match with these anomalous traffic 
clusters. 

Currently, NATE monitors few attributes. This set should be 
expanded to see if additional attributes result in better attack 
detection. One obvious attribute to add is time since DOS 
attacks are typically noticed in relation to some time element. 
Time will allow the detection of individual sessions that appear 
normal such as Mailbomb but flood by sending multiple 
sessions. Other attributes extracted from packet headers needs 
to be researched for their detection potential. 

Nate's performance in terms of false negatives and false 
positives is an area of future research. More testing with a 
wider range of attack and normal data needs to be done. 

Another area to investigate is the examination of some packet 
payload features. While a full payload analysis would take too 
long for network traffic, examination of the payload would 
allow NATE to detect more serious attacks and may not 
significantly slow down the detection process. 

Finally, an actual prototype of NATE needs to be constructed 
and deployed on a high band width network to assess NATE's 
realtime performance under actual working conditions. 
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