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ABSTRACT 
We present a mathematical analysis of a new approach to fight 
against computer viruses through the use of their predators. Preda- 
tors are good will mobile co, des which, like viruses, travel over 
computer networks, and replicate and multipy themselves. The 
only difference is that predators are specifically designed to elimi- 
nate the viruses. We model the interaction between predators and 
viruses by the Lotka-Volterra equations, which are widely used in 
mathematical biology. Using this model, we derive a method to 
constrain the number of predators to be as few as possible, while 
maintaining their power to eliminate viruses. 

Keywords 
computer virus, worms, mathematical biology, Lotka-Volterra equa- 
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1. INTRODUCTION 
Malicious mobile codes, known as computer viruses or worms, 
have become a siginificant social problem recently[17, 4]. To pro- 
tect against computer viruses, there are many commercial anti-virus 
applications that we can install on our machines. When the anti- 
virus application detects a virus on the machine, it eliminates the 
virus. However, we need the latest update file, which lists all known 
virus patterns, to protect against the new viruses [1, 16]. Unfortu- 
nately, not all machines are equipped with the anti-virus application 
and the latest update file. Furthermore, !t may take some time for 
users to install the latest update file. As shown in the outbreak 
of Code-red [2, 11] and Nimda [3], viruses with strong infection 
power will dominate the network within 24 hours. Actually, on 
July 19, 2001, within 14 hours of the debut of its first copy, Code- 
red virus infected more than 359,000 machines, at a rate of 2,000 
machines per minute at its peak [12]. 

Since many of the anti-virus applications are of server-client type, 
the server providing the latest updates can become a bottleneck if 
many users try to get the latest files simultaneously, which may 
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happen especially when there is an intensive epidemic of a new 
and unknown virus on the network. Moreover, the server itself can 
be the target of a Denial of Service (DOS) attack. In any event, it is 
doubtful that all users install anti-virns software, and this problem 
will be further compounded when all machines in the home have 
constant access to the Interact. To avoid having install anti-virus 
applications on all machines, we may install an anti-virus applica- 
tion on only network elements such as gateways or mailservers. 
This will avoid the installation problem, but once a virus pene- 
trates into the local network, the advantage will disappear. Re- 
cently, some researchers have suggested the possibility of send- 
ing a vaccine to each machines via the same penetration method 
of a particular virus [8, 4]. We will extend their idea to the con- 
cept of predators, which remove viruses and replicate themselves. 
Since it is important to control the number of predators on the net- 
work without reducing their ability to eliminate viruses, we con- 
struct a mathematical model of the interaction between predators 
and viruses. There has been many such proposed mathematical 
models of computer viruses. For examples, in [17], viruses are dis- 
cussed in the setting of  computer science, whereas in [7], viruses 
are treated as biological objects in the natural world. In [9], the au- 
thors study the real epidemic of computer viruses. Even the spread 
of Code-red virus is discussed using mathematical models in [13, 
15]. In this paper, following the discussion in [6], we formulate 
a mathematical model based on the Lotka-Volterra equations. The 
Lotka-Volterra equations are known to be a simple yet quite strong 
tool for analyzing the charcterislics of predator-prey relationships 
in the natural world. Motivated by an analysis of the orbit of the 
dynamical system of the Lotka-Volterra equations, we propose a 
method to select important parameters of predators, such as the op- 
timal rates of multiplication and predation. 

2. VECTOR METHOD 
A good will mobile code may deliver a vaccine to machines through 
the same mechanism as viruses. This method is known as the vec- 
tor method [8, 4]. The vaccine for a virus can spread throughout 
the network, by penetrating machines both infected or not yet in= 
fected. However, if the good will mobile code has the strong infec- 
tiousness, the network will be flooded with such vaccines, which 
eventually consume precious network resources. This degradation 
of the network is not tolerable, especially when the network has 
no infected machines. Also, even though this mobile code is not 
intended to do any harm, 

it may still cause damage to some machines. Thus, the spread of 
good will mobile codes should be carefully controlled. 
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3. PREDATOR METHOD 
We introduce predators to overcome the disadvantages of vectors 
described in the previous section. A predator is also a good will mo- 
bile code, which has the ability to search for and eliminate viruses, 
as well as replicate itself, as follows: 

1. Searching Viruses. By looking for the traces of the virus or 
the particular packets emitted when the virus tries to mulit- 
ply, a predator searches places where a virus is likely to hide. 

2. Eliminating viruses. When the predator finds a virus on a 
machine, the predator will enter the machine in the same way 
as the virus. After successfully penetrating the machine, the 
predator eliminates (or eats!) the virus. The predator may 
even take an appropriate security measure, such as installing 
a patch for the security hole used by the virusor even the halls 
that may potentially be used by viruses in the future. -- 

3. Multiplication. 

(a) The predator who ate the virus then enters a multiplica- 
tion phase. During this period, a predator replicates it- 
self a number of times determined by the random num- 
ber B, and sends the copies to other randomly selected 
machines via the same method as the viruses. 

(b) When the multiplication phase is completed, the preda- 
tor resumes searching for food. 

Using these features, predators can be constrained to replicate them- 
selves only in the environment where viruses can breed, but to cease 
multiplying when there are no viruses present. Thus, we will be 
able to eliminate viruses while minimizing the effect of the preda- 
tors on the environment. 

Remark 1. The idea ofpredator is not quite new. Some researchers 
coded a predator for  Code-Red, and security professionals debated 
the pragmatic and ethical issues involved in releasing a predators. 
See the references in [10]. In this paper, we show how we can build 
predators effectively in the following. Ethical and leagal issues 
would be addressed also, but we will not approach them in this 
paper. 

4. MATHEMATICAL MODEL FOR COM- 
PUTER VIRUS 

The main difference between our predators and the ones found in 
the natural world is that ours can be controlled by specifying the 
multiplication rate. In the following, we will investigate the mathe- 
matical biological model of virus multiplication to find the optimal 
parameters for predators to efiminate viruses with maximum effi- 
ciency. First, we will show how existing biological models (see, 
e.g., [6, 5, 14]) are used to describe the multiplication process of 
malicious computer viruses. 

4.1 MultipficationProcess of Computer Viruses 
First, we consider the case when there are only viruses on the net- 
work. Let x(t) be the number of machines infected by a virus at 
time t. Then, x(t) will satisfy the following logistic differential 
equation: 

dX=rx(1-~) 
Z 

x(O)=x o, (1) 

0 I I a 4 g Q 7 g 0 I0  I I  I t  la  14 I I  I I  

Figure 1: Number of Code.red detection per unit hour as a 
function of time, as compared to the logarithmic function with 
parameters K = 510 ,000  and r = 1.8/hour. Graph from Stani- 
ford [15]. 

where x 0 is the initial number of machines infected, r is the ( i n . n -  
sic) natural multiplication rate, and K is environmental capacity. 
The factor r(1 - x / K )  represents the infection rate, that is, the num- 
ber of secondary infections per virus per unit time. The number of 
infected machines x(t) increases when x(t) is smaller than the en- 
vironmental capacity K, but the rate of the infection decreases as 
x(t) approaches K. It is wellknown that the solution to the logistic 
equation (1) is the logistic curve, 

K 
X ( t )  (2) 

1 + (K /x  0 - 1)exp(-r t )"  

Indeed, it has been reported that the actual multiplication process 
of Code Red virus satisfied a logistic curve [13, 15] (see Figure 1). 

Also, when x(t) is sufficiently small, equation (I) can be approxi- 
mated by an exponential growth model, 

dx 
- -  -~- r x  
dt  
x(O)=xo, (3) 

where r represents the viral infection rate. The solution of (3) is 
x(t) = Xo err, that is, initially, there is an exponential outbreak of the 
vires. 

4.2 Interaction between Viruses and Preda- 
tors 

The interaction of viruses and predators can be modeled by the 
Lotka-Volterra system, which is widely used in mathematical bi- 
ology (see [6], p.35). Let x(t) be the number of  machines infected 
by a virus at time t and y(t) be the number of predators at time t. 
We assume the vector (x(t),y(t)) satisfies the following system of 
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differential equations: 

dx 
d--t = rx - axy 

dY = bxy 
dt 

(x(0),y(o)) = (xo,y0), (4) 

where r is the viral multipfication rate. The virus not only multipfi- 
cates, but also is eliminated by predators. The rate of elimination 
is proportional to the population of both viruses and predators, and 
is given by axy, where a is the predatory rate. On the other hand, 
the multipficafion of predators will be affected by the virus and 
predator population, and is given by bxy, where b is the predator 
mulfipfication rate. Also, we set (xo,Yo) to be the initial state of the 
system. 

Remark  2. According to the discussion in Section 3, the multipli- 
cation rate b is given by 

b : aE[B], (5) 

where B is a random variable that represents the number of  multi- 
plications permitted for  the predator who eliminates a virus. 

In case of the Lotka-Volterra equations (4), we cannot obtain their 
expficit solution. However, we can use a conserved quantity to 
analyze the orbits of the system in xy plane. 

Lemma 1 (Conservation). Let V(x,y) = b x -  r logy+ay.  Then 
there exists a constant independent of  x and y satisfying 

V(x,y) = c .  (6) 

PROOF. Differentiating V(x,y) with respect to t and applying 
(4), we have 

d dx r ~ t t + a ~  t zV(x ,y )  = b ~  - Y 

= b ( r x -  axy) + bxy(a - r/y) 

~ 0 .  

Before discussing in detail the orbits in xy plane, we need to re- 
call the definition of the product logarithm functions. Consider the 
following impficit equation for w, 

z = we w (7) 

(see Figure 2). For - e -  ! _< z < 0, (7) has two real solutions w _  1, w0, 
with W_l _< w0, called the product logarithm functions and denoted 
by 

w_ l = p log_  l (z) 

w o = plog0(z ). 

Note that if we extend the product logarithm functions to imaginary 
numbers, they correspond to branches of the standard logarithm 
function: the value w 0 is the primary branch and w_ 1 is the ( -1) -s t  
branch. Also, it is not difficult to derive the following properties 
for the product logarithm functions. 

Lemma 2 (Product  Logar i thm Functions). For - e  -1 < z < 0, 
(1) the product logarithm functions are real, (2) plog_l (z) _< - 1 _< 
plogo(z), and (3) plog_l (z) /s  decreasing with respect to z. 

z 

° l 0.. ' i 
w 

Figure 2: Curve z = we w. 

Through the use of the product logarithm functions, the virus-predator 
orbit can be estimated. 

Theorem 1 (Orbi t  of the Preda tor  Model). Let Yr be the earliest 
time by which all viruses have been eliminated. Then we have 

YT = - - ~  p l°g- I  \(--aYoe-ayo/r-bx°/r~'r / (8) 

Also, in the xy-plane, the orbit o f  the system (4) is 

1 (x(y),y)=(~{rlog(ylYo)-a(y-yo)}+xo,Y), (9) 

for  y E Lv0,yT]. 

PROOF. First we prove (9). From Lemma 1, there exits a con- 
stant C independent o fx  and y such that 

V(x,y) = bx - rlogy +ay = C. 

Evaluating this function for the initial condition (x0,Y0) gives C = 
- r l o g y  0 + ay o + bx o, and thus 

b x -  r logy + ay = - r l o g y  0 + ay o + bx o. (10) 

Solving (10) with respect to x, we obtain the function x(y) given in 
(9). Next we prove (8) by showing that YT is well defined, YT -> Y0, 
and x(YT) = O. Set z = - ~rYe -ayo/r-bxo/r. By Lemma 2, YT is real 
i f --e  -1 _< z < 0. In general, since e -1 _> se -s for s _> 0, substituting 
s = aYo/r yields 

- e  -1 <-aYOe-ayo/r 
r 

- aYO e-ay°/r-bxo/r 
r 

= z < 0 .  ( I I )  

Thus, YT is real and well definedl Now we will show YT --) Y0" Since 
the product logarithm function is decreasing (Lemma 2), we have 

YT = --~pl°g-l(--~Yoe-ay°/r-bx°/r) 

>_ -~plog_l(-~YOe-OYo/r ). 

By the definition of the product logarithm functions, if -aYo/r  > 
- I ,  

r a a 
- ~plog _ l ( - ~ y 0  e -  Yo/r ) _ > __rap 1o go( _ a  r y0 e_aYo/r ) 

= Y0" 
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Figure 3: A n  orb i t  in virus-predator space. (xo,Yo) = 
(IO0, l),r= 2,a = I/IO0,b = I/lO0. 

On the other hand, if -aYo/r <_ -1,  

r a -ay Ir 
_~plog_ l (_~Y0e  o, )=Yo" 

In either case, we have YT --> Y0" Finally, we will show x(YT) = 0, 
that is at YT all viruses have been eliminated. From (8), 

- ~YT = pl°g- I  (-- Yoe-ay°/r-bx°/r)" 

By the definition of  the product logarithm functions, we have 

Yoe-ayo/r-bxo/r = YTe-aYT/r. 

Taking logarithm of both sides yields 

logy 0 - aYo/r-  bxo/r = logy T - aYr/r , 

and thus, 

1 
X(YT ) = ~ (rlog(Yr /Yo) -- a(Yr -- YO) ) + Xo = O. 

Remark  3. Let Ymax = r/a. l f  ~ 0 < Ymax, the population of the 
virus x(y) increases for y 6 [Yo,Ymax], reaches its maximum at ymax, 
and then decreases for y > Ymaz. l f  Y 0 >_ Ymax, x(y) is monotone 
decreasing. 

4.3 Examples of the Orbit 
Figure 3 illustrates an example of changing virus and predator pop- 
ulations. We assume that the predatory rate and multiplication rate 
of predator are significantly smaller than the viral multiplication 
rate, since as compared to the multiplication of viruses, it is not so 
easy for predators to find viruses on the network. 

Initially there are not that many predators on the network, so the 
virus population increases along with the number of predators, as 
pointed out in Remark 3. However, once the predator population 
exceeds Ymax, the viruses are captured by the predators at a faster 
rate than the viruses can multiply, and thus the virus population 
begins to decrease until finally it has been extinguished at time Yr" 
Also, the difference between Figures 1 and 3 reveals the impact o f  
predators. 

The Lotka-Volterra equations for viruses and predators involves 
several parameters: (I) the initial condition (x0,Yo), (2)the virus 
multiplication rate r, (3) the predatory rate a, and (4) the predator 
multiplication rate b. In the following subsections, we will see how 
varying these parameters affects the orbits of the Lotka-Volterra 
equations. 
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Figure 4: Orbits  for various initial virus populations (upper 
figure) and virus muitipfication rates 0ower figure), with other  
parameters  fixed as Y0 = 1, r = 2,a = 1/100,b = 1/100. 

4.3.1 Initial Condition and Virus Multiplication Rate 
Figure 4 demonstrates the impact on'the orbit when we vary the 
initial virus population, and also when we vary the virus multipli- 
cation rate. The shape of orbit is quite similar to Figure 3. However, 
we can see that if the initial virus population is large, more preda- 
tors are required to extinguish the viruses. Hence, it is important to 
act as soon as possible after a virus is detected. 

Moreover, when the virus multiplication rate is large, the virus pop- 
ulation increases more rapidly than it does for the case of  a large 
initial virus population. Thus, those viruses with strong multiplica- 
tion ability will be still more terrible. 

4.3.2 Predatory Rate and Predator Multiplication 

Rate 
Figure 5 shows the effect of  varying the predatory rate and the 
predator multiplication rate. A large predatory rate can reslrain 
virus population growth, as well as predator population growth; 
thus, predators should be manufactured so as to have the largest 
possible predatory rate. 

When the predator multiplication rate is large, the virus can in- 
crease only during the initial stage. However, a serious outbreak of  
predators will result if their multiplication rate is too large. Thus, 
we need to control the predator multiplication rate carefully. In the 
following section, we discuss this matter in more detail. 

5. DESIGNING PREDATORS 
Unlike in the natural world, we can design predators that are per- 
fect for fighting computer viruses. When designing the predator, 
particular care must be taken in choosing the predatory rate a and 
the multiphcation rate b. For example, i fb  is very large, viruses can 
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Figure S: Orbits for various predatory rates (upper figure) and 
predator  multiplication rates (lower figures) with other param- 
eters fixed as (xo,Yo) = (100,1),r = 2. 

be eliminated rapidly, but at the same time there will be an outbreak 
of predators, degrading the network. On the other hand, a smaller 
b will allow viruses to dominate the network. 

5 . 1  P r e d a t o r y  R a t e  
By Theorem 1, the number of viruses can be expressed as 

1 
x(y) = ~ { r l o g ( y / y o ) - a ( y -  yo) } + x O. 

Since y > Yo, x(y) is decreasing with respect to a for all y. Thus, 
as seen in Section 4.3.2, the predatory rate should be as large as 
possible. 

5.2 M u l t i p l i c a t i o n  R a t e  o f  P r e d a t o r  
Assume the predatory rate a is fixed to be as large as possible. We 
seek to determine an optimal predator multiplication rate b. If we 
suppose that the side effect of predators on the network is the same 
as that of viruses, then our objective will be to minimize the max- 
imum of the combined total population of viruses and predators. 
Define the L'[0,**) norm for the total population of viruses and 
predators by 

IIx++yll-= sup (x(t)+y(t)),  (12) 
t~[0,®) 

and let b* be the optimal multiplication rate that minimizes Ilx+ 
YII-. We will seperately deri~,e the optimal solution for different 
values of the initial predator population Yo" 

5.2.1 Large  Yo 
First, assume Y0 > r/a. Since x(t) is decreasing with respect to t 
for any b, the optimal multiplication rate is b* = 0. In other words, 
it is not necessary for the predator to have the ability to multiply. 

4000 

3000 

2000 

1000 

I 
s 

s 

0 .602 0 .60 '4 '0 .606  0.60'8 0.'01 b 

Figure 6: Yr(b) and g(b) have a unique intersection on [0,a). 
(x0,Y0) = (100,1),r = 2,a = 1/100. 

Theorem 2 (Optimal multiplication rate 1). I f  Yo > r/a, then 
b* = O, that is, no multiplicative ability for predators is required. 

5.2.2 Smal l  Yo 
Assume Yo -< r/a. If we let f (y)  = x(y) + y, then f ( y r )  = Yr and 

Ilx + yll- = sup f (y) .  (13) 
yeLvo~,r] 

Since f is continuous, the supremum of  (13) is attained in [Y0,YT]" 
Now, we will investigate this maximum in considerable detail. From 
Theorem 1, 

1 
f(Y) = ~ {rlog(y/yo) - a ( y -yo )  } + x  0 +y. (14) 

It is easy to see that f (y) = 0 at y = r/(a- b), and that f is concave. 
Thus, we need to determine whether YT or y = r/(a - b) is larger. 

Consider YT as a function of b, denoted by YT(b), and let g(b) = 
r/(a - b). We will compare the two functions YT(b) and g(b) (see 
Figure 6). 

Lennna 3. The two functions yr(b)  and g(b) have a unique in- 
tersection on [0,a), that is, there exists a unique b 1 E [0,a) such 
that 

Yr (bl) = g(bl ). (15) 

PROOF. Differentiating Yr (b) twice, we have 

y~(b) = --x~plog-I (--ar~Ye-aY°/r-bx°/r) < 0 .  

ar{1 + plog_l (--~rY e-aYo/r-bxo/r)} 3 

Thus YT(b) is concave. Also, since yT(0) > r/a = g(O) and g(b) 
,o as b -+ a, YT(b) and g(b) have a unique intersection on [0,a). 

Lemma 4. l f  y 0 <_ r/a, 

IIx+yll- - ~'f(r/(a-b)) b ~ [0,b~] 
- (Yr b ~ [b~,~o). (16) 

PROOF. Note that f (y)  is concave. If b < b 1, g(b) = r/(a - 
b) < Yr(b). By assumption, Yo -< r/a _< r / ( a -  b), Hence, r / ( a -  
b) E [y0,YT(b)], and the maximum o f f ( y )  is f ( r / ( a - b ) ) .  I fb  > 
b I , r / ( a - b )  > yT(b). Thus, f (y)  is increasing in [Y0,YT], and its 
maximum is f(YT ) = YT" 
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Theorem 3 (Optimal Multiplication Rate 2). I f  we can pump 
predators into the network only as much as Yo -< r/a, then the op- 
timal predator multtplication rate b*, that minimizes Ilx-t-yl[. is 
obtained by 

b ' =  atl  +p log_ ,  ~-~ te -ayo / r ) ]  (17) 

plog_ 1 (--~rYe-ayo/r) 

PROOF. Since YT(b) is increasing, Yr(b) > Yr(bl) for b > b]. 
Furthermore from (15), f ( r / ( a - b l )  ) = f (Yr(b]))  = yr  (bl), and 
thus, for b > b 1, f ( r / ( a - b l )  ) < yr(b).  By Lemma 4, we know 
that b* should be at most b I. Now we find b E [0, bl] that minimizes 
f ( r / ( a -  b) ). If h(b) = f ( r / ( a -  b)), then we have 

i f (b)  = a(r - (a - b)Yo) - r ( a -  b) log(r/((a - b)Yo) ) (lS) 
b 2 (a - b) 

Thus, solving h' ( b ) = 0 yields 

a a_ b r - ay o = r log(r/ (a  - b)) - r log(yo). 

Rearrange this equation to obtain 

ay 0 e_ayo/r = _ a e_a/(a_b)" 
a b r 

Now recalling (11) and using the definition of plog_], we have 

a - b  = - p l ° g - I  - e-ay°/r " 

Thus, b* defined by (17) satisfies h'(b) = O. Also, by using similar 
arguments, it can be shown that hi(b) < 0 for b > b* and i f (b)  > 0 
for b < b*, hence b* minimizes h(b). Finally, it remains to check 
that b* < b I . From Lemrna 3, we have 

a = 
a _ b l  --plOg-l (--a~YrO e-ay°/r-blx°/r ) 

_> (- 
a 

>0. 
= a - b *  - 

Thus, b] >_ b*. 

Remark  4. Generally, the number o f  machines infected by a virus 
is unknow~ However, since b* in (17) is independent o f  the initial 
virus population, we can design predators by analyzing the behav- 
ior o f  an individual virus. 

Now, we will investigate the optimal predator multiplication rate 
given in Theorem 3. In Figure 7, we compare the orbit for the 
optimal b* with other orbits for nonoptimal b. We note a viral out- 
break for the smaller predator multiplication rate, whereas for the 
predator multiplication rate that is larger than b*, the population 
of the predator continues to grow even while the virus population 
decreases. 

Figure 8 shows how varying the virus multiplication and predatory 
rates affects b*. Even for higher virus multiplication rates, b* is rel- 
atively stable. The predator multiplication rate should be b = 0.01 
up to r = 10. Also, it can be said that the predator multiplication 
rate should be chosen based on the predatory rate a. 
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Figure 7: Orbits  for optimal predator  multiplication rate b* = 
0.0086 compared with those for b = 5b*,b*/5 with (x0,Y0) = 
(100,1),r = 2,a = 1/100. The upper  figure is the graph of 
f ( y )  = x(y) + y and the lower is the zy orbit.  
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Figure 8: Upper figure: virus multipfication rate r versus the 
optlmu! predator multipfication rate b* with Y0 = 1, a = 1/100. 
Lower figure: predatory rate a versus the optimal predator 
multipficatinn rate b* with Y0 = 1, r = 2. 

6. EXAMPLE OF PREDATOR FOR CODE- 
RED 

Suppose we were able to build a predator for Code-red on July 19, 
2001. Since the Code-red virus has the multiplication rote r = 2 
(new infections/hour) as shown in Figure 1, the optimal multipli- 
cation rate for its predators would be b = 1/100, given that the 
predatory rate a = 1/100. In this case, the total number of viruses 
and predators could have been limited to as few as 2, 000 in the 
whole world, as shown in Figure 8, instead of 359,000 machines. 

7. REFERENCES 
[1] Network Associates. McAfe¢. http://www.nai.com/japanL 

[2] CAIDA. CAIDA analysis of code-red. 
http:llwww.caida.orglanalysislsecuritylcode-redL 

[3] CERT/CC. CERTR advisory CA-2001-26 nimda worm, 
September 2001. 

[4] R. A. Grimes. Malicious Mobile Code. O'Reilly and 
Associates, 2001. 

[5] Stanley I. Grossman and William R. Derrick. Introduction to 
Differential Equations With Boundary Value Problem. 
Longman, January 1999. 

[6] You Iwasa. Mathematical Biology. Kyouritsu, 1999. 

[7] S. Jones and C. White. The ipm model of computer virus 
management. Computers and Security, 9(5):411-418, 1990. 

[8] Atsuhi Kara. On the use of intrusion technologies to 
distribute non-malicions programs to vulnerable computers. 
Technical report, University of Aizu, 2001. 

[9] Jeffrey O. Kephart, Steve R. White, and David M. Chess. 
Computers and epidemiology. IEEE Spectrum, pages 20-26, 
MAY 1993. 

[lO] Brian McWilliams. New worms seek and destroy code red. 
http:/Iwww.commoncriteria.orglnewslnewsarchivelSeptOllseptO2.htnl, 
Sep 2001. 

Carolyn Meinel. Code red for the web. Scienufic American, 
pages 36-.-43, October 2001. 

David Moore. The spread of the code-red worm (CRy2), July 
2001. 

[11] 

[121 

[13] Security.NL. Code red worm stats. 
http://www.security.nl/misc/codered-stats/, 2001. 

[14] Karl Sigmund and Josef Hofbauer. The Theory of Evolution 
and Dynamical Systems. Cambridge University Press, 1988. 

[15] Stuart Staniford. Analysis of spread of july infestation of the 
code red worm. http://www.silicondefense.com/cr/. 

[16] Symantec. http://www.symantec.co.jp/. 

[17] Harold Thimbleby, Stuart Anderson, and Paul Cairns. A 
framework for modelling Trojans and computer virus 
infection. The Computer Journal, 41(7):445--458, 1998. 

17 


