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ABSTRACT 
Existing approaches for mobile code security tend to take a conser- 
vative view that mobile code is inherently risky, and hence focus 
on confining it. Such confinement is usually achieved using access 
control policies that restrict mobile code from taking any action 
that can potentially be used to harm the host system. While such 
policies can be helpful in keeping "bad applets" in check, they pre- 
clude a large number of useful applets. We therefore take an alter- 
native view of mobile code security, one that is focused on empow- 
ering mobile code rather than disabling it. We propose an approach 
wherein highly expressive security policies provide the basis for 
such empowerment, while greatly mitigating the risks posed to the 
host system by such code. Our policies are represented as extended 
finite state automata, (a generalization of the finite-state automata 
to permit the use of variables) that can enforce these policies effi- 
ciently. We have built a prototype implementation of our approach 
for Java. Our implementation is based on rewriting Java byte code 
so that security-relevant events are intercepted and forwarded to the 
policy enforcement automata before they are executed. Early ex- 
perimental results indicate that such expressive, enabling policies 
can be supported with low overheads. 

General Terms 
Security 
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1. INTRODUCTION 
With the growth of distributed computer network systems and the 
Internet, there has been an increasing demand to support mobile 
code - -  code that is downloaded from remote, possibly untrusted 
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systems. The best known examples of this are Java applets, but 
there are also several other examples such as agent based systems, 
document/email attachments, and executable content such as Post- 
script files. Usually, code that is downloaded is executed with the 
privileges of the user who downloads it. This introduces a number 
of serious security and safety issues. 

Existing approaches for mobile code security tend to take a con- 
servative view that mobile code is inherently risky. Consequently, 
the primary goal of these approaches is to confine mobile code so 
as to ensure that it can do no harm. This goal is achieved by en- 
forcing stringent access control policies that prevent mobile code 
from executing any action that can potentially compromise the se- 
curity of the host system running the code. For instance, Java ap- 
plets are denied access to read or write any files resident on their 
host computer, since malicious applets may be able to use such ac- 
cess to corrupt user data or reveal it to unauthorized parties. While 
such access control policies are helpful in keeping "bad applets" in 
check, they have the unfortunate side effect of precluding a large 
number of useful applications of mobile code. 

We take an alternative view of mobile code security, one that is fo- 
cused on empowering mobile code rather than disabling it. In our 
approach, expressive security policies provide the basis for such 
empowerment, while greatly mitigating the risks posed to the host 
system by such code. For instance, we can allow some local file 
access to applets without incurring significant risks using a pol- 
icy such as "an applet can create new files in / trap directory, but 
cannot delete files except those created by the application itself." 
Such policies cannot be expressed or enforced using existing mo- 
bile code security frameworks. 

A policy in our language is specified using an extended finite state 
automata (EFSA), a generalization of the finite-state automata to 
permit the use of variables. An EFSA can enforce these policies 
efficiently via runtime monitoring of mobile code. The transitions 
of these automata are over an alphabet of events such as function 
calls, method invocations and exceptions. We have built a proto- 
type implementation of our approach for Java: Our implementation 
is based on rewriting Java byte code so that security-relevant events 
are intercepted and forwarded to the policy enforcement automata 
before they are performe d . Early experimental results indicate that 
such expressive, enabling policies can be supported with low over- 
heads. 

The rest of this paPer is organized as follows: We begin with sev- 
eral example scenarios in Section 2 that illustrate the weaknesses 
of existing frameworks for mobile code security and motivate the 
development of more expressive policy frameworks. In Section 3, 
we present an overview of our policy language and describe our 
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implementation approach for enforcing these policies. Preliminary 
performance measurements are presented in Section 4. We sum- 
marize the related work in Section 5. Finally, concluding remarks 
appear in Section 6. 

2. MOTIVATING EXAMPLES 
In general, a security policy needs to address the concerns of con- 
fidentiality, integrity and availability. Confidentiality is typically 
achieved by limiting the information that mobile code can access 
and/or limiting how the code may use this information. Thus, a se- 
curity policy needs to define acceptable ways of processing, storing 
and transmitting sensitive information. To ensure integrity, security 
policies need to control operations performed by mobile code that 
modify system state. To ensure availability, security policies need 
to address resource usage by mobile code. 

Previous work on mobile code security, such as Java security, has 
focused on simple access control policies. Subsequent work of 
Evans et al [6] extended these policies to address resource usage, 
whereas the work of Erlingsson et al [4] allowed policies on opera- 
tion sequences.. While these extensions address some of the weak- 
nesses of simple access control mechanisms, we illustrate in this 
section how they are still not able to express security policies that 
are adequate for a number of  applications of  mobile code. Our ap- 
proach for mobile code security policies and their enforcement is 
very much motivated by this discussion. 

2.1 Ability to manipulate temporary files. 
Consider a piece of  mobile code that needs to create or modify files 
on a local file system for its internal book-keeping operations. It 
is perfectly reasonable to allow even untrusted mobile code to do 
this, as long as the files created/manipulated are unrelated to other 
applications. This can be ensured using a policy that enforces the 
following properties: 

• Writes are allowed only to certain directories. The untrusted 
code should not be allowed to create files in arbitrary directo- 
ries. Directories where this code can write may include such 
directories as / Imp. 

• Overwriting ordeletion ofafile is notpermittedexceptforfiles 
created by the same mobile code. This ensures that untrusted 
mobile code does not remove files created by other applica- 
tions. 

While it is possible to use simple access control policies to enforce 
the first property, more expressive notations are needed for the sec- 
ond property. In particular, we need a policy language that can refer 
to the history of operations carried out in the past, as well as the ar- 
guments of these operations. Most existing work in mobile code 
security policies do not allow such history-sensitive properties. AI~ 
though the work of Erlingsson [4] allows for history-sensitive poli- 
cies, their language does not allow argument values for past opera- 
tions (such as file names) to be remembered for later use. 

We point out that the second property is particularly useful, as it 
allows us to include more directories in which writes are allowed. 
This way, even mobile applications that create files in arbitrary di- 
rectories (e.g., current working directory) can be permitted to run 
without harming the rest of the system. On the other hand, if we 
are restricted to using only simple access control policies, then the 
application would have to be further restricted in  order that it not 
destroy files pertaining to other applications. In particnlar, the un- 
trusted application must be limited to creating files in a special 
directory that is created explicitly for the purpose of running that 

code. Although it is possible to write the untrusted application in 
this manner, it requires advance planning on the part of the person 
implementing this code. The advantage offered by more expressive 
policies is that it provides sufficient flexibility to the code consumer 
so that mobile applications could be run safely, even when the code 
producer had not anticipated all the possible uses of  their code or 
their potential security implications. 

2.2 Access via trusted intermediaries. 
Often we encounter situations where a piece of untrusted code needs 
to access a certain resource. However, permitting direct access 
to the resource may be risky. One way to deal with this prob- 
lem is to constrain the mobile application to access the resource 
through certain operations that are provided by code from a trusted 
source. From the code consumer's point of view, this code serves 
as a trusted intermediary. Use of this approach can allow untrusted 
applications to access resources in many contexts such as: 

• Adding an entry to syslog. To prevent a malicious application 
from truncating the log or writing bogus entries, we may use a 
trusted intermediary that provides an operation to log messages 
to syslog, but ensures that (a) sufficient information to identify 
the source of the log entry is included, say, in the form of a 
header prepended to the log message and (b) limiting the num- 
ber of entries that can be written by an untrusted application 

• Access to local data. Consider a situation when we have to 
give a piece of  mobile cod e (e.g., code executing on a browser's 
space) access to some (chosen) file on the local disk. It would 
be risky to grant access to the directory in which the files that 
are needed are present, as this will allow accesses to all files 
under that directory. Instead, we can allow access through a 
trusted method that presents a file access dialog box to a user, 
and gets explicit user approval before granting controlled ac- 
cess. (Note that one cannot trust the file dialog if it is part of 
the mobile code). 

We briefly discuss how a policy such as this is difficult to express 
with the current Java framework. Note that the Java approach is 
based on the assumption that when multiple code sources are in- 
volved in a resource request, the access is allowed only if such ac- 
cess is permitted individually for each of the code sources. In this 
example, since we do not want to provide access to the resource for 
the untrusted code, it will be prevented' from accessing the resource. 
A way around this problem in Java is for the trusted library to sur- 
round the resource access operations within a d o P r i v S . l e g e d  
block, but this requires'advance planning by the code producer of 
the library to anticipate what resource accesses are potentially sen- 
sitive and to enclose each such access within a c l o P r S . v i l e g e d  

block. On the other hand, the language proposed in this paper a l- 
lows such decisions to be deferred until much later, and provides 
the flexibility to conceive and enforce such policies. 

2.3 Limiting information flow 
In many contexts, we are interested in limiting malicious applica- 
tions from leaking sensitive information. While a comprehensive 
treatment of information flow requires approaches such as [11], 
that need to reason about internal structure of a program (such as 
assignment statements in a program), we can still express many 
useful policies that limit information flow in terms of  operations 
made by a program. Examples of such policies include: 

• No access to nonlocal networks after reading sensitive files. 
Consider the case of a untrusted freeware web log analyzer. In 
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this case, we may not want to permit access to arbitrary net- 
work sites after a mobile application reads the web server log 
files (this is to prevent leaking of sensitive information). How- 
ever, we still permit access to local network sites (say, for the 
purpose of resolving domain names). Moreover, we may per- 
mit network access after reading files that are not considered 
particularly sensitive, e.g., icon files or fonts. 

• No access to create arbitrary files after reading confidential 
data. Consider a freeware security scanner program that is 
downloaded from an untrusted site. In order to perform its task, 
the scanner will need to examine the permission settings on all 
files and contents of various files such as password files, boot- 
time scripts and configuration files. We can grant this access 
to the application provided we can ensure that any confidential 
information read by the application cannot leave the applica- 
tion in any manner (including, for instance, core dumps). We 
still want it to produce an output, so we may permit it to output 
information on the console and/or a specific log file. 

This class of policies requires a language that can refer to sequences 
of operations and their arguments. Although Schneider's security 
automata based approach [4] allows operation sequencing, the ar- 
guments operations are not made available, so it becomes difficult 
to capture these policies. 

2.4 Context-dependent policies 
Finally, it may be necessary to include the application context while 
granting permissions to perform certain operations. 

• Allow access to certain operations only in the context of an- 
other operation. For instance, consider the example of a web 
browser. We may be interested in giving permissions to some 
scripts/applets based on the domain of the URL being visited. 
Such permissions may include reading system properties and 
displaying popup windows. For example, we may only want 
allow scripts only from www. r e d h a t ,  corn to read our oper- 
ating system version. 

Note that, while some of these operations could be done in cur- 
rent browsers through signed applets, we are still limited by fact 
that we could allow an applet to perform all these operations in all 
cases of webpages and operations, or not at all. Using the exist- 
ing models, we cannot parametrize the policy specific to some web 
pages/specific operations. 

2.5 Desirable Features of a Policy Framework 
Based on our discussion of policy examples, we state some desir- 
able features of a policy specification and enforcement framework. 

• Flexibility to state policies in terms of any externally observ- 
able operation and its arguments. 

• Ability to expresspolicies involving temporal sequencing ofop- 
erations. The examples in the earlier section illustrate the im- 
portanceof policies that specify temporal sequencing of opera- 
tions. The need for this is seen in history-sensitive policies. 

• Modular specifications with precise and simple semantics. The 
semantics must b~ .straightforward and intuitive, matching the,  
intention of the policy developer. There must be a way to mod'- 
ularize large policy specifications. 

• Efficient enforcement. The language design must facilitate gen- 
eration of efficient engines for enforcement of policies. 

Currently existing policy frameworks do not offer all of these fea- 
tures. 

3. OUR APPROACH 

3.1 Overview 
In our approach, security policies are represented using extended 
finite state automata (EFSA) are specified using a textual language 
based on regular expressions. Once a security policy is specified 
through this textual language, a policy compiler translates this poli- 
cies to a EFSA based policy engine. The code that delivers security 
relevant relevant events to this engine constitutes the runtime envi- 
ronment. It is introduced in appropriate security relevant points of 
the piece of untrusted code through a bytecode transformer. When 
the transformed application violates the security policy, the policy 
engine takes appropriate remedial action like throwing a security 
exception. 

Figure 1 illustrates our approach. The offline component consists 
of the policy compiler that generates policy engines from security 
policies. It also provides additional (runtime interception) informa- 
tion that is used to determine which of these operations (and which 
arguments to those operations) are relevant to the security policies. 
This additional information also specifies whether the security pol- 
icy requires auxiliary information such as code source and thread 
id. The load time component consists of a bytecode transformer. 
It takes as input the untrusted code source and additional runtime 
interception information (from th6 policy compiler). It transforms 
the untrusted application such that code for the runtime environ- 
ment is introduced at various points in the bytecode. Finally, the 
runtime component consists of the policy engine and the runtime 
environment. The runtime environment provides the mechanism 
for intercepting security relevant events and delivering them to the 
policy engine. The policy engine decides whether this event cor- 
responds to a security violation, and if so, throws an appropriate 
exception. 

3.2 Language for describing policies 
Our policy language is based on our previous work in developing 
languages for expressing security-relevant behaviors of systems, in 
our language, security-relevant behavior of a program is modeled 
in terms of sequences of externally observable actions performed 
by the program. In the context of Java, such actions, called events, 
include method entries and exits, as well as exceptions. A security 
policy specifies constraints on the sequence of  events that may be 
produced by a program. These constraints are captured by extended 
finite state automata (EFSAs). These automata, like conventional 
finite state automata, have states and transitions on pairs of states, 
and in addition, are augmented with variables along the transitions 
to store event arguments. In this section, we first illustrate the use 
of EFSAs in security policy descriptions of some of the examples 
that were introduced in Section 2. Following this, we provide a 
description of a text-based specification language for such policies. 

Ability tO create and manipulate temporary files. In this exam- 
ple, shown in Figure 2, FileCreateOps refers to operations that are  

used to create files, and FileDeleteops refers to file-deletion oper- 
ations. In this automaton, the state S0 records the files that have 
been created into the state variable FileList. Any operation that at- 
tempts to delete a file that is not present in FileList, involves the 
transition to state S1, where an appropriate exception is thrown. 

Limiting information flow. As illustrated in Figure 3, this EFSA 
describes a information flow policy. Once the application reads 
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Figure 2: Temporary file handle poficy 

sensitive files and/or (the symbol II stands for disjunction) stands 
for system properties, the transition to state $1 is taken. From state 
$1, if the application performs network operations, the transition 
to state $2 is taken, where an exception is thrown. 

Access to resources via trusted intermediaries. This policy is il- 
lustrated in Figure 4. (This policy illustrates the "trusted dialog 
boxes" example). Whenever the application accesses a local file, it 
is allowed to only do so through a trusted dialog box. After per- 
forming the initial action through the dialog-box, the transition to 
state $ 1  is taken. In $ 1 ,  operations to access local files are per- 
mitted. A transition back to state S0 is made when the call to the 
trusted dialog box function returns. At this point, any access to .lo- 
cal files will result in a transition to state $2, where an exception 

rea~'am:ieiv~sgg 1el  0 / /  
z ~ a c l S y s P z . o j ~ r e l  es  ( ) & c c e g l ~ l e ~ w o = k  ( ) 
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Figure 3: Policy on limiting information flow 

will be raised. 
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Figure 4: Trusted intermediary poficy 

Overview of Language. We use a textual language to specify 
policies, and these specifications are automatically transformed into 
EFSA based policies by a compiler. The constraints in our textual 
language are captured using a combination of constructs that re- 
semble regular-expression based patterns and finite state machines. 
The key components of specifying rules in our language are de- 
scribed below. A more detailed description of the language may be 
found in [15]. 

Events. Events may be further classified as follows: 

• Primitive events: In the context of Java, each method invoca- 
tion corresponds to two events: one that corresponds to the in- 
vocation of the method, and another to return from the method. 
The arguments of the entry event include all of the method's 
arguments at the point of call. The arguments to exit event in- 
clude all of the method arguments at the'point of return, plus 
the value of the return code from th,e method. In addition, there 
can be an event corresponding to each possible exception. 

• Abstract events: Abstract events can be used to denote classes 
of primitive events, e.g., we may define a f i l e M o d i f i c a t i o n -  
Ops  as an event that corresponds to a set of events that modify 
file attributes. More generally, abstract events may denote any 
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event pattern, and defined using the notation even t (a rgs )  = 
pat .  Event patterns are further described below. 

Patterns. The simplest form of patterns, called a primitive pat- 
terns, capture the occurrence of a single event. It is of the form 
e(x  1,..., x~) lcond,  where eond  is a boolean-valued expression on 
the event arguments z l ,  ..., Zn, and state variables (which are fur- 
ther described below). Complex patterns capture sequencing rela- 
tionships among events by using sequencing operators. Sequenc- 
ing operators are similar to those used in regular expressions, but 
operate on events with arguments. We refer to our pattern language 
as regular expressions over events (REE) to indicate this relation- 
ship. The meaning of event patterns and the sequencing operators 
is best explained by the following definition of what it means for 
an event history H (a sequence of events observed at runtime) to 
match a pattern: 

• event occurrence: e ( z l ,  ..., z ,Olcond is satisfied by the event 
history e(vl ,  ..., v,~) if ccond evaluates to t r u e  when variables 
xl ,  ..., xn are replaced by the values v l ,  ..., Vn. 

• sequencing: pa t ,  .pata is satisfied by an event history H of the 
form HiHa provided H1 satisfies pa t ,  and Ha satisfies pata. 

• repetition: pa t*  is satisfied by H 1 H a . . .  Hn iff Hi satisfies 
pat ,  \/ l < i < n. 

• alternation: pa t ,  Ilpata is satisfied by H if either pat1 or pata 
is satisfied by H. 

• conjunction: pa t ,  A pata is satisfied by H iff both pa t l  and 
pata are satisfied by H. 

When a variable occurs multiple times within a pattern, an event 
history satisfies the pattern only if the history instantiates all occur- 
rences of the variable with the same value. For instance, the pattern 
e l ( x ) ,  ca(x) is not satisfied by the event history el(a)ea(b),  but is 
satisfied by e, (a)ea(a). 

We use !elcond to denote the nonoccurrence of an event e, or the 
occurrence of e where the condition cond  is violated. 

Rules. Our policy language allows response actions to be asso- 
ciated with policies using rules of the form pa t  ~ act ion.  The 
ac t ion  component is executed whenever a suffix o f  the event his- 
tory matches pat.  In general, the reaction component consists of a 
sequence of statements, each of which is either an assignment to a 
state variable, or invocation of a support function provided by the 
runtime system. Such support functions may be used for a variety 
of purposes such as denying resource access, throwing security- 
related exceptions or terminating programs or threads. 

3.3 Implementation 
We describe the implementation of the three components of our 
framework in the following section. 

Compilation of Security Policies. Efficient matching of security 
policy rules is critical for the performance of our runtime engines. 
Our approach for solving this problem is based on compiling the 
patterns into an EFSA, in a mfinner analogous to compiling regular 
expressions into finite-state automata. EFSA are simply standard 
finite state automata (FSA) that are augmented with a fixed num- 
ber of state variables, each capable of storing values such as inte- 
gers, strings, etc. Every transition in the EFSA is associated with 
an event, an enabling'c'Ondition involving the event arguments and 
state variables, and a set of assignments to state variables. The fi- 
nal states of the EFSA may be annotated with actions, which, in our 
system, correspond to the reactions given in our rules. For a transi- 

void network_write(FileOutputSteream f){ 
byte[] b; 

monitor.deliver_event(write_entry, 
f.getClass(), f, b); 

f.write(b); 
monitor.deliver_event(write_exit, 

f.getClass(), f, b); 
} 

Figure 5: Caller modification 

tion to be taken, the associated event must occur and the enabling 
condition must hold. When the transition is taken, the assignments 
associated with the transition are performed. 

An EFSA is normally nondeterministic. The notion of acceptance 
by a nondeterministic EFSA (NEFA) is similar to that of an NFA. 
A deterministic EFSA (DEFA) is an EFSA in which at most one of 
the transitions is enabled in any state of the EFSA. 

We have shown that translating a NEFA to a DEFA can result in an 
unacceptable increase in the size of the automaton. Therefore we 
have developed a new approach that is based on translating NEFA 
into a quasi-deterministic extended finite state automata (QEFA). 
QEFA eliminates most of the sources of nondeterminism that are 
present in the NEFA, while still ensuring that their sizes are accept- 
able. A complete treatment of QEFA and the compilation algorithm 
can be found in [15]. 

Runtime Environment. The runtime environment is responsible 
for intercepting and forwarding events to the policy engine. There 
are two basic approaches for implementing the runtime system. 
One approach is to modify the JVM implementation so that rel- 
evant method calls are forwarded to the policy engine. This ap- 
proach has the benefit of low overhead for interception, but has the 
drawback that it is highly dependent on the internals of the JVM. 
This makes the approach hard to implement and potentially error- 
prone. Moreover, the internals may change across JVM versions, 
thus requiring the runtime environment to be reimplemented for 
each JVM release. 

An alternative approach is to integrate the code for method inter- 
ception right into the program to be monitored 1. Note that the 
class file format is standardized and does not change across JVM 
releases. This factor decouples the runtime implementation from 
JVM releases, and hence makes it portable across different JVM 
versions. The drawback is that the overhead for method intercep- 
tion will be somewhat higher than the JVM modification approach, 
due to the fact that the interception code itself would be imple- 
mented using several JVM instructions. In additions there is a addi- 
tional cost involved in byte code rewriting. Given that there are 
already significant startup costs associated with starting up Java 
programs, such class loading, byte-code verification and Just-In- 
Time compilation, we believe that the additional byte code rewrit- 
ing overhead will not substantially alter the overall loading time. 
Thus, portability is the more important concern for our project, and 
hence we have chosen byte-code rewriting approach. 

3.4 Byte-code Rewriting. 
In our approach, events are delivered to the policy engine using a 
deliver_event method. If monitor denotes the policy en- 

1Such an approach is difficult in a type unsafe language such as C 
due to the fact that a malicious piece of code has several ways to 
circumvent the checking code integrated within itself. This is not a 
problem in a type-safe language such as Java. 
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Class X{ 
void network_write[ BufferedOutputSteream f){ 

byte[] b; 

f.write(b); // No transformation here 
) 

} 
class BufferedOutputStream{ 

public void write(byte[] b){ 
monitor.dellver_event(write_entry, 

BufferedOutputStream, this, b); 
this.original_write(b); 
monitor.deliver_event(write_exit, 

BufferedOutputStream, this, b); 
} 

) 

Figure 6: Callee modification 

gine, the effect of introducing these calls at the source code level 
is shown in Figures 5 and 6. In these figures, a function named 
n e t w o r k _ w r i l :  e is being transformed. In Figure 5, the transfor- 
mation is done on the caller code, whereas in Figure 6, the trans- 
formation takes place in the callee code. 

In the caller transformation, some preliminary analysis of the byte- 
code is needed to ensure that security checks are indeed performed 
before every security-sensitive method call. This requires, for in- 
stance, that there be no control transfer statements that can skip the 
d e l i v e r _ e v e n t :  statement. On the other hand, no such analysis 
is required for callee transformation. Another difficulty with caller 
transformation is that exact type information is unavailable at the 
call site, and it hence requires us to use expensive runtime oper- 
ations such as g e t : C l a s s  to get this information. In the callee 
transformation case, we know the exact type information at rewrit- 
ing time. 

There are also some benefits to caller transformation. First, it is 
possible to incorporate information about calling context - -  for in- 
stance, if we wanted to use the codebase information (which identi- 
fies the principal that originated a piece of mobile code) in security 
checks, this information can be passed in as an additional argument 
to d e l i v e r _ e v e n t : .  In the callee transformation, we no longer 
have the codebase information about the caller, but only about the 
callee. However, the cailee codebase information is not very useful 
for making such access control decisions - -  for instance, the callee 
in the example corresponds to system codebase, which is usually 
given unlimited privileges. A second difficulty concerns modifica- 
tion of system classes. JVM implementation prohibits overriding 
of the class loader for system classes. Therefore, in practice, the 
system classes have to be rewritten through an offline process, and 
the results stored on the disk. Since we do not want to store many 
different versions of the system libraries, it becomes impractical 
to try to tailor the system classes with respect to different security 
policies. The net result would be a rewrite that results in every sys- 
tem method to be intercepted, thereby increasing overheads. For 
this reason, we have currently chosen to use caller transformation. 
It may turn out later that this cost is not any higher than the savings 
achieved by avoiding class lookup operations required in the caller 
transformation. In that case, our implementation choice will likely 
change. 

The following issues need to be addressed in byte-code rewriting: 

• Exceptions: As mentioned earlier, we would like to treat Java 
exceptions as events, in much the same way that we treat method 
invocations and exits. However, one has to be careful when ex: 
ceptions arise in the code. Note that when exceptions arise in 
a method, the method invocation is not completed. The policy 

engine has to be notified that such method entry events will not 
have corresponding method exit events. We do this by associat- 
ing an additional parameter to method invocations that capture 
the call-depth information. When an entry event at dept k is 
followed by an exception event at depth k' < k with no inter- 
vening entry or exit events, then the policy engine knows that 
all of  the recent entry events with depth _> k have been aborted 
due to the exception. The call depth information can be sent in 
as an additional piece of information to the d e l i v e r _ e v e n t  
function. 

Native methods: Java supports running of  native methods via 
the Java Native interface. While native methods are a conve- 
nient mechanism for running platform specific code, and for 
increasing overall system performance, they make security pol- 
icy enforcement very difficult. One can address security in the 
presence of native methods by interception of system calls as 
done in [14], but we do not address this problem in this paper. 

Threads: Our current (preliminary) implementation does not 
handle multi-threaded programs. To handle them, one needs to 
change deliver_event: so that the id of the current thread 
is passed along as an additional parameter. The thread id can 
be used in policies, which would enable us to express a range 
of policies that handle threads well. For instance, we can have 
policies that treat each thread uniformly, enforcing properties 
on each one independent of the actions taken by other threads. 
It is also possible to ignore a thread altogether, and treat all of 
the events as a single sequence. Finally, it is possible to capture 
properties that involve multiple threads simultaneously - -  this 
would enable us to express security policies that address aspects 
such as synchronization and race conditions. 

4. PERFORMANCE RESULTS 
In this section, we discuss our experimental results obtained from 
our prototype implementation. All the results presented in this sec- 
tion were obtained on a machine running on a 1.4GHz Pentium 4 
processor with 512 MB of RAM. The JVM used for these experi- 
ments was SUN Microsystem's Java Development Kit (JDK) ver- 
sion 1.3.1 running on Linux operating system with the 2.4 kernel. 
The main objective of our experiments was to measure the follow- 
ing costs: 

, Interception overhead: This is ehe cost associated with intro- 
duction of additional method calls that wrap the original method 
calls in the application. 

• Bytecode modification overhead: An overhead cost is incurred 
as part of parsing the classfile and rewriting it. 

• Monitoring code overhead: This is the cost associated with the 
execution of the code that is part of the monitoring automaton. 

We separate the costs into these categories for closer inspection of 
the costs incurred in these stages. We briefly discuss these costs 
and show the total overhead of  enforcing some example policies. 

4.1 Interception overhead 
The interception overhead is the additional time introduced in the 
application execution time through the additional bytecode method 
wrappers. For every method call M that is of interest to the security 
policy, the calling sequence makes two more calls. The first call 
is made before the execution of the method call of interest, and 
the other call is made after the method exit. These calls are iased 
to make transitions in the automaton corresponding to the policy 
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Application LimitWfite 

BigLoop 7% (56.5s) 
Jtar 5% (2.01s) 

DeleteOnlyOwned FileOpens TarSpecific 

17% (18.45s) 10% (11.5s) NA 
7% (2.01s) 5% (2.01) 10.5%(2.01s) 

Figure 7: Policy enforcement costs 

engine. 

To measure the interception overhead we constructed a program 
that performed a method call in a loop iterating 107 times. We 
compiled it along with a policy specifications that contained null 
action statements, and no state variables, thus leaving the monitor 
with just the interception capability. We obtained an overhead of 
less than 5% of the program running time. 

4.2 Bytecode modification overhead 
Currently, we use the Byte Code Engineering Library (BCEL) [2, 
1] to do the lxansforrnations. This tool is meant for offline transfor- 
mation of bytecodes. The toolkit offers convenience and flexibility 
in transforming bytecodes, but is particularly not efficient. For in- 
stance we incur an overhead of .650s for transforming a 4800 byte 
classfile. We are currently developing a hand-crafted program to 
do the bytecode rewriting. The bytecode transformation is straight- 
forward, and has to make a linear pass on the classfile to insert the 
event delivery instructions. We do not anticipate the overheads of 
this operation to be significant, especially in comparison to class- 
loading process and bytecode verification. 

4.3 Overhead on various policies 
The following policies were implemented and we measured the per- 
formance results for implementing these policies. 

• LimitWrite. This is a policy that enforces a constraint on 
filesystem usage. In this policy, we impose a 10MB limit on 
the amount of data that could be written by an application on 
the filesystem. 

• DeleteOnlyOwned. This policy states that an application can 
overwrite/delete only those files created by the application. 

• TarSpecitie. This is a policy on the jtar (description of this 
application is given below) application and enforces file access 
permissions and enforces a disk space usage limit on the files 
written by the application. 

• FileOpens. This is a conventional access check policy where 
the application is checked for access rights. 

We have implemented and have tested these policies on the follow- 
ing programs. 

• BigLoop, a toy application that repeats one of the following 
operations about 10 o times: (a) open a new file in the / rmap di- 
rectory and write 100 bytes to it, (b) open three files and delete 
files from previous iterations, or (c) write 100 bytes to a file. 

• Jtar, an application that We downloaded from www. i c e .  c o b  
that is a Java clone of the conventional Unix tar facility. We 
tested this application against all the policies mentioned above. 
The program used a filesystem that consisted of about 3800 
small files (of size less than 1000 bytes). 

Figure 7 illustrates the overheads we incur in enforcing the policies 
listed above on the BigLoop and Jtar applications. The results are 
shown as percentage overheads to the cost without enforcing these 
policies, which is given in parentheses (in seconds). 

Comparison with Java Security. We tested the performance of 
Java enabled with the Security Manager for the FileOpens policy. 
(This is the only policy that could be implemented in the security 
manager without any modification to Java.) The experiment re- 
snlted in an significant overhead of over 120%, as the stack inspec- 
tion operation is relatively an expensive operation. 

We note, however, that a direct comparison of our results with Java 
is not very meaningful - -  Java security policy is capable of dealing 
with multiple codebases, whereas our policy, as implemented, deals 
with only one codebase. The comparison is presented to establish 
two points. First, our policies incur acceptable overheads. Second, 
Java's approach of predefining all of the security-relevant opera- 
tions makes it difficult to perform optimizations based on security 
policies of interest. For instance, although we may be interested 
only in file open operations, we still incur interception overhead on 
many other operations such as network operations and other run- 
time operations. The predefinition also means that we cannot im- 
plement policies that require interception of other operations, e.g., 
the LimitWrite policy cannot be captured as it requires interception 
of write operations. 

Comparison with Naccio. Evans [6], in describing their experi- 
mental results, describes the LimitWrite experiment with an earlier 
version of the same Jtar program. They present a performance 
penalty of close to 25%. We have to be careful in direct compar- 
ison of results as the Java VM has passed through a few revisions 
since the publication of their results. The only thing we can in- 
fer from the results is that our performance is competitive to the 
performance of their approach. 

5. RELATED WORK 
Model carrying code (MCC) [13], presented in NSPW 2001, is our 
general framework for ensuring the security of mobile code. This 
approach enables a mobile-code consumer to understand and for- 
mally reason about what a piece of mobile code can do; check if the 
actions of the code are compatible with his/her security policies and 
if so, execute that code. This framework has several components in- 
chiding model generation, security policies, consistency resolution 
and runtime monitoring. Our research in expressive security poli- 
cies for ~ the MCC framework has yielded the results presented in 
this paper. 

In Java [7, 8], the permissions available for programs from a code 
source are specified through a security policy. The security pol- 
icy assigns permissions to various code sources. At runtime, pro- 
grams are checked for compliance with the security policy through 
runtime monitoring. The implementation of security checking is 
done by a technique known as stack inspection [16]. When a piece 
of code performs a security relevant operation, the effective set of 
permissions that corresPOnd to the code sources that are in the exe- 
cution sequence is computed by inspecting the runtime stack. The 
operation is allowed only if it is implied by this set of permissions. 

The security policy i sa  list of entries mapping code sources to per- 
missions. There are some disadvantages with having such a simple 
policy language and enforcement scheme. The policy language is 
not very expressive, and this precludes specification of some inter- 
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esting classes of policies, that have been described earlier in this 
paper. In addition, security checks are scattered all over the Java 
API implementation which is of the order of several thousand lines, 
rather than for only those classes which are of interest to the policy. 
Also, the set of attributes that could be inspected in the security 
checks are fixed by the policy specification language and the JDK 
implementation, and is rigid and does not offer flexibility. 

Naccio [6] is an interesting example of a system that allows con- 
venient specifications of security policies as abstract resource ma- 
nipulations. The system then generates new system libraries that 
includes code checking necessary to enforce the security policy. In 
this sense, our model is closer to the Naccio model than the Java 
model. The main difference between the approach presented in 
Naccio and our approach is in the policy language. Our language 
supports specification of policies that check not just invariant prop- 
erties, but several other interesting classes as well. 

Schneider [12] presents a formal treatment of runtime monitoring 
mechanisms that work by monitoring steps of a target and termi- 
nating execution that would violate the policy being enforced. This 
class of mechanisms is termed (Execution Monitoring) EM. [4] 
presents in-line reference monitors as part of the Security Automata 
based Software Isolation (SASI) approach. The main difference be- 
tween their approach and ours is that our approach has the ability to 
capture and remember argument values to events. This ability, as il- 
lustrated in the examples section, makes an important difference in 
the classes of policies that could be enforced. In [5] they implement 
Java stack inspection based approach based on bytecode rewriting 
and show performance measurements. Although our work adopts 
a similar bytecode modification approach for implementation, our 
focus is mainly on specifying expressive policies. 

Edjlali et al. [3] describe a history-based access control mechanism 
for Java and provide several motivating examples for the use of 
such policies. The main contribution of their work is in providing 
a framework for implementing such policies in Java. Their im- 
plementation is related to the set of events that are identified by 
system libraries. Our focus is on developing a high-level language 
to declaratively specify such policies on events such as arbitrary 
function calls. Interception of arbitrary function calls is crucial for 
enforcing some of the policies (such as the trusted intermediary 
policy) that were discussed in our examples section. 

One area that we have not discussed in detail in this paper concerns 
policies that control information flow. A policy which allows no 
network operations after local file reads is an example of an infor- 
mation flow policy. Other information flow policies discuss what 
a third party observer can deduce about the system by noticing its 
external behavior. Runtime monitoring approaches do not always 
capture all cases of information flow [12]. Myers [11] discusses 
a static analysis based approach to ensure safe information flow 
through labels. 

Complimentary to our approach, there has been a considerable 
amount of work on policy languages that have focused on ease 
of use in policy specifications. Hoagland [10] describes a simple 
graphical policy description language that adds ease of use to secu- 
rity policy specification. Hauswirth [9] describes a framework for 
specifying policies that is focused on ease of use of specifications 
through higher level abstractions and graphical tools. 

6. C O N C L U S I O N  
In this paper, we have presented our case for providing flexible 
policy specifications that address the need for emPowering mobile 
code, yet mitigating the security risks. We have presented a few ex- 

ample scenarios that motivate this discussion. We also presented an 
expressive policy language that supports fine grained policy speci- 
fication based on observable event sequences. In addition, we have 
presented an implementation in the context of Java and have dis- 
cussed issues related to the implementation. Finally, we have pre- 
sented preliminary results from our implementation. 
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