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ABSTRACT 
Faults are examined by both the  security and fault toler- 
ance communities. These communities have strikingly dif- 
ferent views of the types of faults tha t  exist, the way they 
are modeled, and how they are addressed. One community 
can pronounce a system survivable but  the other community 
would not find this to be so. This leaves us with two ap- 
proaches that  both fail to be comprehensive, depending on 
which community is looking at the  system. While intrusion- 
tolerance and security researchers look at faults in terms of 
statistically dependent events caused by the hard intruder, 
the fault tolerance l i terature assumes that  faults are statisti- 
cally independent and can be described as random variables 
with probabili ty distributions. When considering the sur- 
vivability of a system, we cannot assume that  the system is 
susceptible to only one type of fault or the other, but  this is 
common practice in both communities. A new paradigm is 
needed. 

1. INTRODUCTION 
When thinking of survivable systems, we expect them to 
perform in the face of faults (or at least fall in the expected 
manner). Therefore, understanding, modeling, and correct- 
ing these faults are very important steps in the survivability 
arena. While system faults are examined by both the secu- 
rity and fault tolerance communities [7], those communities 
have strikingly different views of the types of faults that ex- 
ist, the way they are modeled, and how they are addressed. 
The different communities can look at the same system and 
identify different sets of faults, thus also devising different 
survivability approaches. One community can pronounce a 
system survivable but the other community would not find 
this to be so. This leaves us with two approaches that both 
fail to be comprehensive, depending on which community is 
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looking at the system. 

Security researchers and fault-tolerance researchers look at 
survivability from opposing viewpoints. Security people view 
it in terms of t rus t  relationships while the fault tolerance lit- 
erature focuses on redundancy and reconfiguration In sum- 
mary, one community models faults as worst-case behavior 
of hypothetical  intruders while the other considers faults to 
be stochastic. This results in solutions from both paradigms 
tha t  cannot handle faults from the other paradigm. 

In this paper, we introduce some definitions and concepts 
that are important in understanding the conceptual differ- 
ences between the two opposing literatures, describe the dif- 
ferent types of fault classes and intruders that the two lit- 
eratures focus on, and propose that a new paradigm shift is 
required in this area if a system is to be truly survivable. 

1.1 Definitions 
Powell, Stroud, et al.[13] provide an insightful interpretat ion 
of general dependabi l i ty  concepts [1, 9] for security. We 
follow their definition: 

a t t a c k  - a malicious interaction fault aiming to inten- 
t ionally violate one or more security properties; an in- 
trusion a t t empt  via a vulnerability. 

v u l n e r a b i l i t y  - a n  accidental fault, or a malicious or 
non-malicious intentional fault, in the requirements, 
specification, design, implementation,  or configuration 
of the system or its use, tha t  could be exploited to 
create an intrusion. 

intrusion - a malicious, externally-induced fault result- 
ing from a successful attack. 

Following conventional security practice, we qualify attack, 
vulnerability, or intrusion with a general security property 
tha t  may be violated: e.g. confidentiality, integrity, or avail- 
ability. For example, we may have a confidentiality a t tack or 
an availability intrusion. This distinction is important  be- 
cause, for example, an approach tha t  tolerates availability 
intrusions may not tolerate confidentiality intrusions. For 
example, redundant  copies of a da t a  i tem x allow a system 
to tolerate availability intrusions tha t  damage some but  not 
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all of copies of x. However, a confidentiality intrusion that  
results in an unauthorized read of data  item x cannot be 
tolerated by redundant copies, since the service (confiden- 
tiaiity of x) cannot continue, be restored, or be compensated 
for using the redundancy. 

1.2 Hard Intruders and Gremlins 
Security not only brings the notion of attack, vulnerability, 
and intrusion faults to dependability, it also brings with it 
the notion of an intruder. The significant characteristics of 
intruders are the rate at which they occur, their objectives, 
their capabilities, and their willingness to take risks. Of 
these characteristics, only the intruder's rate of occurrence 
is probabilistic and even then it is not ergodic. 

In this paper we consider two kinds of intruders. In the spec- 
trum of intruder characteristics these two represent extremes 
that make our point clear. Consideration of intruders, such 
as script kiddies, who fall between these extremes, obscures 
the point we are trying to make. One kind, hard intruders, 
have relatively high-value objectives, low risk aversion, high 
skills, and high resource levels. The other has no objective 
at all, low skills, low risk aversion, and the capability to at- 
tack any component at any point in its life cycle. We call 
the latter gremlins. 

A hard intruder may be a team defending a world view (i.e. 
a very high value objective), some of the team members may 
have a very low risk aversion for this goal, the team may have 
many person-months to develop attack tools, and some team 
members may have high security experience. Our thesis and 
our experience is tha t  hard intruders have a significant rate 
of occurrence for high-consequence systems. Since hard in- 
truders have statistically dependent impacts on containment 
regions and components, Byzantine faults [12] do not model 
them accurately. We use the notion of hard intruders in a 
way that  is analogous to Nieison and Nielson's hardest at- 
tacker [11]: we look at what are arguably the most difficult 
faults to address via fault-tolerance approaches. 

In contrast to hard intruders we use the notion of spon- 
taneous intruders or gremlins because they are arguably 
the most difficult to address via trusted approaches used 
to counter hard intruders. The term gremlin originated 
in the RAF during the first half of the twentieth century 
and referred to an imaginary gnome-like creature responsi- 
ble for inexplicable failures in aircraft. Personify stochas- 
tic faults as gremlins to show how trusted, unbypassable, 
tamper-resistant components have difficulty in coping with 
stochastic faults. The most significant fact about gremlins 
is that  they can attack any component at any point in its 
life cycle. Unlike hard intruders who are real persons, grem- 
lins are imaginary beings that  cannot be stopped by trusted 
design,development, and deployment. On the other hand, 
gremlins do not perpetrate  very sophisticated attacks and 
have no specific objective. The damage or impact on one 
component is usually statistically independent of any im- 
pact on other components. Therefore, Byzantine faults can 
accurately model the behavior of gremlins. 

2. PROBLEMATIC FAULTS 
As aforementioned, the types of faults that  are examined 
in the two opposing literatures can be categorized into two 

host A host B 

/ / ~ _ J  application 1 

j i / ~  , system 

F i g u r e  1: A r c h i t e c t u r e  A t t a c k  

different classes. In a nutshell, the fault tolerance literature 
focuses on stochastic faults, and the security literature fo- 
cuses on designed faults. Before we can address the different 
types of faults together, we need to examine each class of 
fault in more detail. 

2.1 Designed Faults 
Hard intruders cause designed faults 1. According to our def- 
inition of an attack or intrusion as a fault, designed faults 
are attacks or intrusions that  are matched to the design as- 
sumptious and assertions 2 about the system under attack. 
A designed fault invalidates one or more of the assertions 
or assumptions that  intrusion-tolerance or security depends 
upon. Designed faults may include common mode faults as 
replicated attacks on redundant components, with the in- 
tention of defeating the redundancy. Designed faults may 
include architecture faults, as attacks or intrusions that  are 
directed at a part of a system that  does not directly enforce 
the policy being challenged. Architecture attacks or intru- 
sions bypass protection mechanisms. For example, an in- 
tegrity attack may be conducted via host operating systems 
when the applicable integrity policy is enforced by middle- 
ware, thus bypassing the defense. 

Designed faults (attacks or intrusions) are overlooked by 
the fault tolerance community because they do not affect 
tolerance.structures in statistically independent ways. Ap- 
proaches based on redundancy only work if we assume that  
the attacks or intrusions are not replicated in a correspond- 
ing way. Approaches based on reconfignration only work if 
we assume that  the attack or intrusion does not reconfig- 
ure to match the new security posture. Designed attacks 
or intrusions can, by definition, be expected to employ the 
precisely corresponding techniques. 

The limitation of fault-tolerance techniques is that  they as- 
sume that  random variables with tractable distributions ac- 
curately describe all faults. On the basis of these random 
variables, fault-tolerance approaches assume that  some eom- 

1We mean "designed" and not "design." 
2 Assumptions are conditions on the environment of a system 
and assertions are conditions that  the system satisfies. 
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ponents or configurations will not be affected by a fault. On 
the other hand, because the approaches assume a completely 
random behavior, they can deal with faults that  occur in 
unpredictable locations with unpredictable behavior. The 
behavior of a designed fault is, from a fault-tolerance point 
of view, so unusual as to be practically impossible. Thus, no 
provision is made for dealing with designed faults. In fact, 
it would be awkward at best and intractable in most eases 
to try to model designed faults as random variables. 

2.2 Stochastic Faults 
Gremlins perpetrate stochastic faults. That  is, there are 
no human sponsors behind the faulty behavior. Stochastic 
faults can be due to software flaws, hardware failures, unin- 
tentional misuse, or external damage such as fire or weather. 
Whatever the cause, the effect is the same as if imaginary 
but relatively ignorant persons were given unrestricted ac- 
cess to randomly chosen components. 

Fault-tolerance approaches use redundant fault containment 
regions [3] to deal with stochastic faults. There is no at tempt 
to reason about specific traces of behavior. Instead, some 
very general behavior such as fail-stop or Byzantine commu- 
nication is assumed for the region as a whole, and the rest of 
the system is designed to operate with these kinds of faults 
in several of its regions. Because they make no assumptions 
about specific fault behavior, fault tolerance approaches are 
very powerful in the presence of stochastic failures. Trusted 
component-based approaches used by the security commu- 
nity on the other hand, find stochastic faults to be most 
problematic to deal with. Security approaches are intended 
to resist designed attacks and are based on models of hard 
intruders. A hard intruder is posed for each class of fault 
(e.g. confidentiality) and a careful design, development, and 
deployment process is followed. The goal of the process is 
a system comprising a (relatively) small number of trusted 
components with the rest being untrusted. The meaning 
of trusted is that  1) the hard intruder has no access to the 
trusted components and 2) hard intruder manipulation of 
any combination of untrusted components will not succeed, 
because of the way the trusted components interact. This 
trust is established by reasoning about sets of specific system 
traces and no random variables are used. 

Trusted component approaches assume some components 
can be ruled inaccessible to intruders during some or all 
phases of their life cycle. Since gremlins can appear in any 
component, it is not possible to have a component that is 
trusted with respect to stochastic faults. Furthermore, since 
gremlins can exhibit a wide range of (stochastic) behav- 
ior, reasoning about a particular gremlin in terms of sets 
of traces is essentially intractable. The problem with these 
security approaches is that  they assume that  sets of traces 
describing the behavior of (possibly hard) intruders accu- 
rately models all faults. 

From a trusted components point of view, gremlins (the in- 
truders behind stochastic faults) are imaginary and thus not 
considered at all. Thus, no provision is made for dealing 
with them. No amount of logical verification can keep them 
out, because they are stochastic. 

3From a certain point of view. 

2.3 An Example 
Govindavajhala and Appel show how soft memory errors can 
cause security flaws [4]. The immediate basis for the attack 
is a single upset event that  flips a bit somewhere in memory. 
A carefully designed program can exploit this flipped bit, 
to bypass a type system used for language-based security 4. 
The single event upset appears to be a stochastic fault, and 
by itself, it is. However, the attack described in this work 
is highly designed, that  is, it is not easily modeled by a 
stochastic variable. The paper describes the designed nature 
of the attack quite well and includes an explicit discussion 
of the assumptions and assertions violated by the attack 5 
It might be easier to see that  this is a designed fault if one 
recalls that  controlled energy of some appropriate form is 
applied to the hardware, to exceed the level assumed for the 
physical environment of the hardware. 

3. A PARADIGM SHIFT 
The following table summarizes the major differences be- 
tween the ways the two communities approach survivability 
in terms of faults. 

These two problematic kinds of faults have limited the prac- 
tical survivability of current and proposed survivable sys- 
tems. Any survivable or intrusion-tolerant system that  is 
based upon redundancy or reconfiguration and that  does not 
consider hard intruders, is probably ineffective against de- 
signed attacks. Any survivable or intrusion-tolerant system 
that  is based upon trusted, unbypassable, tamper-resistant 
components and that  does not consider stochastic faults, is 
probably ineffective in the presence of gremlins. Current re- 
search in survivability and intrusion tolerance is proceeding 
in just this fashion. A paradigm shift is needed to build 
truly survivable systems. 

There are at least three ways to shift toward the new paradigm: 
1) from fault-tolerance approaches toward designed faults, 
2) from trusted-component approaches toward stochastic 
faults, and 3) increasing the expressiveness of models such 
as stochastic process algebra [5] to encompass practical sys- 
tems. 

The first approach should be adopted when coming from 
the field of fault tolerance. Results should show the re- 
quired trust relationships among redundant components of 
an intrusion-tolerant architecture and show how the redun- 
dant components can achieve the required level of trust. 
They should also seek to define significant hard intruders 
and show how the trust relationships frustrate these intrud- 
ers. 

The second approach should be the first step when com- 
ing from the security community. Results should be based 
on trusted component approaches but make provisions for 
dealing with stochastic faults through redundancy and re- 
configuration. For example, multilevel secure database ap- 
proaches could be adapted to make them Byzantine fault 
tolerant. 

4It seems likely that  many other security mechanisms could 
be bypassed by exploiting similar flaws. 
5 "All proofs of soundness are premised on the axiom that  the 
computer faithfully executes its specified instruction set." 
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Security Community  Fault Tolerance C o m m u n i t y  
Nature of Faults Designed Stochastic 
Attacker Hard Intruder Gremlin 

Trusted Components Approaches 
Weakness Stochastic Faults Designed Faults 

T a b l e  1: C h a r a c t e r i s t i c s  o f  Problematic Faults from the T w o  P a r a d i g m s  

Both approaches 1 and 2 can be applied with incremental 
extensions of known results from the appropriate commu- 
nity. However, both approaches 1 and 2 have the poten- 
tial to merely shift the focus from one to the other without 
completely addressing the problems in each. Therefore, ex- 
panded models that  encompass both types of faults (and 
intruders) are the ideal approach for dealing with the issues 
of stochastic faults and designed faults. Stochastic process 
algebra s is a good example of an expanded approach because 
it can model not only the functional behavior of concurrent 
systems, but  probabilistic aspects as well, which are required 
when considering stochastic faults. For example, the mission 
of an organization (and the system that  supports this mis- 
sion) may be to deliver the correct computational results 
(functional) for a certain fraction of the time, given a cer- 
tain rate of fault occurrence (probabilistic). Unfortunately, 
stochastic process algebras per se do not appear to be suiB- 
ciently well-developed for direct application to survivability. 
Further work is required by researchers in foundation issues, 
toward new expanded modeling approaches (e.g. improve- 
ments in stochastic process algebra). 

3.1 An Example Paradigm 
A simple application of stochastic process algebra will make 
the preceding discussion more concrete. We want to show 
two things with this example: 1) what a successful new 
paradigm might look like, and 2) the kinds of limitations 
that  we find in current candidates for this paradigm. 

We will use P E P A  [6] as the stochastic process algebra, with 
some changes in notation that  make security modeling eas- 
ier. In PEPA the instantaneous action a of a conventional 
process algebra is replaced by the activity (a, r) where a is 
the action type and r is the rate of the activity. An activity 
(a, r) has a duration which is an exponentially distributed 
random variable. The rate r is the parameter for the distri- 
bution of the duration. 

Our first extension is the use of compound action types for 
the activities of a process P .  In basic PEPA, the action 
type of an activity is denoted either by a Greek letter such 
as a or an identifier such as send. For our purposes, we 
use compound action types where the components are com- 
posed by the ordered tuple notation, thus (send, a, nonces) 
represents the action type for sending a message containing 
Alice's identifier and a nonce. In PEPA a process X that  
engages in activity a of action type a with activity rate r 

eStochastic Petri  Nets (SPN) [10] are another possibility, 
but  they do not model abstraction and composition as well 
as process algebras. It is difficult to compose a model of good 
components with an intruder model, using SPN. Another 
possible approach is the Box Calculus [2], an extension of 
Petri nets. 

and then acts like process P is denoted 

X = (c~, r ) .P 

or, with a compound action type 

X = ((send, a, noncea), r ) .P  

In addition to the change in notation we will also use re- 
naming functions to establish associations between activi- 
ties in different processes. For example, suppose we have 
two processes P1 and P2 defined as Pz =(send ,  rl).Pz and 
P2 = (receive, r2).P2. We wish to connect these two pro- 
cesses by arranging for their first activities to have a common 
activity type. This accomplished by a renaming function 
defined as follows 

f ((send,  r)) = (receive, r) 
/ ( ( a , r ) )  = ( a , r ) ,  ~ # send 

When this function is applied to a process the result is a 
new process with the action types renamed according to the 
function. Using the function f defined above f(P1)  becomes 

f (Pz)  = (receive, r l ) . f (P1)  

We can now combine the two processes to communicate by 
means of the PEPA cooperation operator 

/(P1) ~ F~ 
{receive} 

The meaning of this construct is similar to the meaning of 
parallel operators in conventional process algebras. Activ- 
ities in Pz or P2 with action types other than receive will 
proceed independently. Activities of type receive must com- 
plete in both Pz and P2, at the rate of the slower instance 
of receive. 

The PEPA algebra was initially defined for performance 
modeling but we can apply it to model survivability in the 
presence of both designed and stochastic faults. PEPA mod- 
els can be used as ordinary process algebra models, to show 
the effects of designed faults. To show the effects of stochas- 
tic faults we use a basic construction that  starts by defining 
a constant process F A I L  

F A I L  ~ ( v , T ) . F A / L  (1) 

Process F A I L  only performs internal events with the un- 
known action type r and don't  care rate T. We use process 
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Figure 2: Protocol Sequence Diagram 

dexed choice used to model the fact that  Bob is prepared to 
a t tempt  a protocol run with any legal key and nonce. 

Bob = + ( ((receive, a, na ), r).((send, rib, {ha }k~b ), r). kEKey 
n~Noncc 
((receive, {nb } k.b), r ) .Session( a, b, kab, ha, rib) ) 

(4) 

By using our previously defined renaming function f ,  we can 
combine processes Alice and Bob into a complete protocol 
run. This gives us a model of the protocol that  is suitable 
for analysis wrt designed attacks. 

F A I L  and the PEPA choice operator + to give every process 
the alternative of failing. For example, suppose we need to 
include a process (a, r ) .P  in a model. To make this process 
fallible, we replace it with the process 

( . ,  e +  ( . ,  FAIL (2) 

This new process will perform an action of type a with rate 
r but  then, with probability 1/k,  it may fail. (Our con- 
struction for fallible processes is reminiscent of transition- 
assigned-output state machines. Like the Mealy machine 
that  must perform a transition to have an output,  all fal- 
lible processes must complete at least one activity before 
fa~Img.) 

For our example, we will model a simple mutual authentica- 
tion protocol taken from Kaufman, Perlman, and Speciner 
[8]. Alice wishes to establish a protected communications 
session with Bob. Alice starts the protocol run by sending 
her userid and a nonce to Bob. Bob responds with a nonce 
of his own and Alice's nonce encrypted with their shared 
key kab. Alice then confirms the session by responding to 
Bob with Bob's nonce encrypted with their shared key kab. 
The protocol steps are depicted in the sequence diagram of 
Figure 2. 

We model infallible Alice r as the process shown in Equation 
3. To simplify the exposition, we have shown each activity 
with the same rate r. 

A l i c e =  ((send, a, na),r) .  + ( ((receive, nb,{na}~.b) ,r  ). kEtf ey 
n E N on ce 

((send,  {nb}kab ), r ) .Sess ion(a ,  b, kab, ha, rib) ) 
(3) 

The sub-process of receiving Bob's response, confirming Al- 
ice's identity, and running a session is modeled as a choice 
(+) indexed over all legal keys and nonces that  Alice might 
encounter. The term Session(a, b, k~b, na, rib) denotes a pro- 
cess that  carries out a communication session using key kab, 
etc. We model infallible Bob in a similar fashion, with in- 

rThat  is, we don' t  include failure probabilities using the 
method of Equation 2. 

f (Al ice)  ~ f (Bob)  
{ r e c e i v e }  

(5) 

We can adapt the model of Equation 5 to look at stochastic 
faults by making Alice and Bob fallible processes, using the 
approach of Equation 2. To simplify our exposition, we will 
assume that  all activities occur at the same rate r and that  
all failures have the same probability 1/k. A fallible Alice 
is 

Alice = 

+ 

+ 

+ 

((send, a.na), (k - 1)rlk) .  
+ ( ( (receive,  rib, {na}kab), (k -- 1)r/k).  kEKeF 

nENonce 
((send,  {nb } kab ) , ( k - 1)r / k ) .Session( a, b, kab, na , rib) 

((send, {rib }~*b }, r / k ) . F A I L  

((receive, ha, {ha }k,,b ), r / k  ) . F A I L )  

((send, a, ha), r / k ) . F A I L  
(o) 

We also show a fallible Bob process as 

Bob : 

+ 

4- 

+ 

) 

+ ( 
kEKey 

nENonce 
((receive, a, na), (k - 1)rlk).  
((send, rib, {n,}*.b),  (k -- 1)r/k) .  
((receive,  {rib} k.b), (k -- 1 ) r / k ) . S e s s i o n ( a ,  b, kab, ha, rib) 

((receive, {nb}k,b), r ) . F A I L  

((send, nb, {na}kob), r ) . F A I L  

((receive, a, na ) , r ) .F A I  L 

(7) 

It should be clear at this point that  stochastic process al- 
gebra can model both designed faults and stochastic faults. 
We can add an infallible intruder process Y v e s  to our sys- 
tem and demonstrate, via the process algebra itself, that  
](Alice){~eo~ive}f(Bob ) is susceptible to a designed attack s. 

SExercise for the reader: find the attack. 
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We can also derive an underlying Markov model from the 
same PEPA model. We will not present this derivation be- 
cause it would detract from our example. It is sufficient to 
say that any finite PEPA model has a corresponding finite- 
state Markov process. The problem (and one of the foun- 
dational research issues) is that the Markov processes cor- 
responding to PEPA models with failure have some states 
that are not positive recurrent 9. The states corresponding 
to the process FAIL constitute absorbing boundaries of the 
Markov process. Because of this, the process may not have a 
stationary probability distribution and if it does, the distri- 
bution may be difficult to find. Without a stationary prob- 
ability distribution, it is hard to make concise statements 
about survivability wrt stochastic failures. So basic PEPA, 
while promising, is difficult to use as survivability paradigm. 

4. CONCLUSIONS 
Survivable systems need to not only correctly and accurately 
detect the presence of attack or intrusion faults, but also 
function properly (i.e. complete the mission) in face of these 
faults, especially in mission-critical systems. At the same 
time, these mission critical systems should also be able to 
survive faults that are random and unpredictable in nature. 

Both intrusions and random faults are faults to the system, 
and should not be thought of separately when considering 
survivability of mission-criticai systems. However, in reality, 
these two types of faults lack a common research plateau on 
which to define, model, examine, and counter faults. That is 
because, while both the intrusion-tolerance and fault toler- 
ance communities examine system faults, these communities 
have strikingly different views of the types of faults that ex- 
ist, the way they are modeled, and how they are addressed. 

While intrusion-tolerance and security researchers look at 
faults in terms of statistically dependent events caused by 
the hard intruder, the fault tolerance literature assumes that 
faults are caused by gremlins and thus can be described as 
random variables with probability distributions. However, 
when considering the survivability of a system, we cannot 
assume that the system is susceptible to only one type of 
fault or the other. 

For a system to be truly survivable, we must consider the 
failure behaviors of both classes of faults. In order to achieve 
this, we need to consider development of models based on a 
combination of stochastic behavior and the ability to reason 
about traces l°. This kind of model can encompass both 
types of faults and methods of dealing with them. For this 
purpose we suggest a paradigm shift that enables research 
to merge these types of faults together. 

This new paradigm would be much more useful since it can 
be used for all stages of assessing survivable systems in- 
cluding fault prediction, fault tolerance, fault recovery (re- 
moval), and validation. With these new research tools, we 
can design systems and support mechanisms that are toler- 
ant against not only stochastic faults, but designed faults as 
well, creating a practical survivable system. 

9A state X in a Markov process is positive recurrent if the 
expected number of transitions until the process returns to 
state X is finite. 

1°That is, specific detailed system behavior. 

The position stated in this paper may appear obvious to 
the reader. Unfortunately, it is apparently not obvious to 
many of the researchers in the security and survivability 
communities. Both research communities have spent much 
time on complex algorithms or large prototypes that fail to 
address issues from the other discipline. Our approaches 
need to change. 

The notion of "faults that are not easily modeled by stochas- 
tic approaches" raises an interesting possibility that there 
may be other significant classes of faults that are not stochas- 
tic faults but are also not designed faults. Designed faults 
invalidate the design assumptions or assertions of one or 
more survivability mechanisms. It could be possible that 
there are significant faults that do not violate design as- 
sumptions or assertions but are nevertheless not stochastic 
faults. 
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