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ABSTRACT
This paper presents a new paradigm for information theory
which is a synthesis of Barwise-Seligman’s qualitative the-
ory and Shannon’s quantitative theory. The new paradigm
is best viewed as a meta-theory for Shannon information
theories and allows different probability theories, and sub-
sequently, new Shannon information theories, to work within
a common framework. The resulting Shannon theories con-
form to a qualitative structure and decorate it with measures
of information. This approach is useful for analyzing assur-
ance problems where there the analysis must contend with
incomplete and even contradictory information. In particu-
lar, the mathematical constructs of the theory allow one to
use just about any logic which admits a companion measure
theory.

Keywords
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1. INTRODUCTION
Information is widely viewed as something in need of con-

trol. However, information viewed as “data” or “what moves
on a wire” is much too crude a notion to be useful in serious
information assurance matters. Barwise and Seligman in [5]
and Dretske [6] propose that information is not reducible to
something as self-explanatory as data or the substance of
communication. The situation is best viewed with an ex-
ample. Suppose there is some sensitive information hidden
on some computer. What does it mean to say that the in-
formation has leaked? If the answer is merely that some
attack was successful in transferring the bits representing
the information to an outside agency, then presumably the
bits contain all there is to the information. This cannot be
the case as Ruth Nelson observed in [11].

The obvious first reply is, the information is encoded,
hence whomever has the data does not necessarily have the
information. Suppose the key to the encoding is also leaked.
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Does the recipient now have the information? Let the in-
formation be a (now un-encoded) single bit representing the
answer to a yes or no question. Receiving the value of the
bit does not entail one knows the information. What is miss-
ing is the context. Including the context in the information
along with the bit only begs the question of what context
is needed in order to understand the context and an infinite
regress ensues.

The answer to “What is information?” greatly influences
what methods one employs in either protecting or diagnos-
ing an attack on information. Barwise-Seligman’s definition
of information is anything of the form “x is an A” where
x can be thought of as a piece of data and A is something
that can be said about that piece of data. That said, the
deeper more important question is (from [5]) “How do re-
mote objects, situations, and events carry information about
one another without any substance moving between them?”
They propose a mathematical framework for answering this
question. Their book’s subtitle, “The Logic of Distributed
Systems” hints at the features for which their framework
is built: (1) information comes in the form of distributed
systems within which remote parts carry information about
other parts, and (2) it is logic that ties the distributed sys-
tem together. Upon this framework, communication, assur-
ance, and a host of other properties can be modeled.

The new paradigm presented in this paper can also be
seen as direct response to Ruth Nelson’s quest for better
models. As she also observed, confidential information is not
something admitting a generic abstract definition. However,
one can use the new theory presented here as an architecture
for modeling situations in which confidential information is
present, how it is to be protected, and how to diagnose that
it is indeed protected.

Shannon in [14], “Communication Theory of Secrecy Sys-
tems” makes note of (1) concealment systems, (2) privacy
systems, and (3) cryptographic systems. He dismisses the
first two kinds as psychological and technological respec-
tively. And we, respectfully, and vehemently disagree. It
is because of this kind of mindset from communication spe-
cialists that “secrecy” as a non-functional property capable
of formal presentation has only recently been taken seri-
ously. Recourse to defining a secret as something to which
only zero-capacity channels are connected will not work, one
can send an arbitrary amount of information through a zero-
capacity channel, see [9].

In [9], a new paradigm is presented for steganography.
They raise the issue that merely measuring the content of
a hidden image is not sufficient if nothing is known about
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the typing scheme used in the encoding. Barwise-Seligman
theory answers this directly in their definition of information
since no piece of data becomes information without a typing
scheme. Forgetting steganography and considering the mere
sending of a map through a channel, when do enough of
the map’s relationships make it through the channel so that
information can be claimed to be received? It is related to
the noise in the channel, but not directly. If two buildings
are fuzzy in the received map but can still be discerned as
being across from each other, that might be enough to claim
the information has been received. The point is that there is
a qualitative nature to information that cannot be ignored.

Barwise-Seligman’s qualitative framework is quite gen-
eral. However, it suffers from no provisions for the mea-
surement of information. Consequently, it is sometimes dif-
ficult to say when a particular information flow is probable.
It is vital to assign measurements so that resources can be
directed to where the biggest payoffs lie.

Claude Shannon [15] proposed a communication theory
that Dretske and many before him have attempted to coerce
into a theory of information. Their efforts generally fail
because while one can put measures on data flow, data flow
is not necessarily information flow. Dretske’s work is easily
the most sophisticated of these efforts and he does come
close to treating information in its more subtle senses, but
it does not include a wide enough mathematical framework
that includes what is the most paradigm use of information,
that we reason with it. Channel theory is such a framework.

Our new paradigm combines Shannon’s and subsequently,
Dretske’s, quantitative theory with Barwise and Seligman’s
qualitative theory. We believe it provides a good theoretical
foundation in which to view information assurance prob-
lems. In particular, our new paradigm allows:

• The use of specialized logics where they make sense.

• The use of measures spawned by specialized logics so
that information flow, either as communication or as
mere flow of reasoning, can be measured.

• A rigorous, composable mathematical structure that
includes provisions for combining fine grained analyses
into larger grained analyses, i.e., it scales well.

Due to paper length, the logic-plus-measure theory used
here will be classical propositional logic and classical prob-
ability theory. The method used to develop the theory here
is similar for any logic-plus-measure theory as our current
research shows [2] [3].

2. SAMPLE PROBLEMS
These problems will be revisited at the end of the paper to

show what a solution would look like in our new paradigm.

Capacity Issues Is it possible to take a simple Shannon-
type problem and derive the Shannon-type solutions
using logically derived methods? Can the solution be
put in a form that uses the same theory as the other
examples of this section?

BLP A low priority clearance should not allow reading of
high priority information. And high priority informa-
tion should not be written down to low priority infor-
mation. Can this be modeled with logical rules and
then measures placed on the information flows within
the system?

Quasi-Coordinated Attack Let C refer to a computer
system which is attacked from several different direc-
tions represented by A, . . . , An, some of them coordi-
nated. Let B be a system resource which is attacked.
The problem is to define possible scenarios, or better
theories, which show how the Ai’s are connected to
each other and to B. Measures must be placed on the
theories showing which are most probable. It must be
possible to reason forward from the Ai’s through C to
B and backward from B to the Ai’s through C (this
latter is called “reasoning by abduction”).

3. CHANNEL THEORY
The generic term used to describe Barwise-Seligman’s in-

formation theory is channel theory and is called by them
“the logic of distributed systems” for a very good reason.
It shows how local logics in the distributed parts of a sys-
tem are connected via logics in informational connections or
channels. The channels are not necessarily communication
channels (but they can be if the type of problem you wish
to solve requires that they be), they are much more general
than that. Our research expands channel theory by provid-
ing probability theories associated to these logics and hence
make the result amenable to suitable Shannon-type infor-
mation theories. The expanded theory will also be called
channel theory and it is this expanded theory that is used
in the sequel.

It is also of worth to note that Shannon has a little rec-
ognized and fairly abstruse paper [13] where he tiptoes up
the notion of a channel (of channel theory) but never really
takes the plunge.

3.1 Basic Structures
The basic structures of channel theory are deceptively

simple. The things that are distributed in a distributive sys-
tem are contexts called classifications. The classifications
are connected by infomorphisms. The relevant definitions
follow:

Definition 3.1.1 (Barwise–Seligman) A classification,
X, is a pair of sets and a relation. The sets are called, re-
spectively, the tokens, Tok(X), and types, Typ(X). The
binary relation, usually symbolized by |=X , is between the
two sets, i.e., |=X ⊆ Tok(X)× Typ(X). The term x |=X A
means 〈x, A〉 ∈ |=X with x ∈ Tok(X) and A ∈ Typ(X).

A good mental picture to remember the definition is the
following:

Typ(X)

Tok(X)

������� ��
��
��
�

•
x

|=XClassification X

•A The diagram only
indicates that
x ∈ Tok(X) and
x ∈ Typ(X), not
that x |=X A.

It is convenient to talk about all of the tokens satisfying a
single type or all of the types satisfying a particular token.
The following definition relativizes Typ(−) and Tok(−) to
a particular classification.
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Definition 3.1.2 Let X = (Tok(X), Typ(X), |=X) be a
classification, then for any A ∈ Typ(X), Tok(A) = {y | y |=X

A} and, for any x ∈ Tok(X), Typ(x) = {B | x |=X B}.

It is frequently helpful to define the following preorder on
types of a classification:

Definition 3.1.3 Given a classification X, the token in-
duced preorder on Typ(X) is defined with

A ≺ B iff Tok(A) ⊆ Tok(B).

The reason ≺ is a preorder instead of a partial order is be-
cause the collection of types do not necessarily have an ex-
tensional character, i.e., they need not be sets. If your types
are formulas and tokens are interpretations, two formulas A
and B can have the same interpretations which make them
simultaneously true and false, hence their tokens sets are
equal. But as sentences, A and B can be very different. An
analogous preorder on tokens exists. The infomorphisms
defined next preserve these preorders.

Definition 3.1.4 (Barwise–Seligman) Assume that X =
(Tok(X), Typ(X), |=X) and Y = (Tok(Y ), Typ(Y ), |=Y )
are classifications. An infomorphism h : X −→ Y is a pair

of contravariant maps,
−→
h and

←−
h such that

−→
h : Typ(X) −→

Typ(Y ) and
←−
h : Tok(Y ) −→ Tok(X), and for all x and A,

the following condition is satisfied:

xh |=X A iff x |=Y Ah,

where for ease of presentation,
←−
h (x) is displayed as xh and

−→
h (A) as Ah. This can be pictured with:

X

������ ��
��
�� ������ ��

��
��•

x

//
−→
h

oo
←−
h

|=X |=B

•A

xh |=X A iff x |=Y Ah
Y

3.2 Classical Propositional Logic: Example
The following two definitions single out Countable Clas-

sical Propositional Logic (CCPL). CCPL is classical propo-
sition logic outfitted with countable conjunction and dis-
junctions such that the algebraic models for the logic are
σ-algebras. It turns out the topological spaces dual the al-
gebras have the same points as the Stone space duals to the
underlying Boolean algebras (of the σ-algebras).

Definition 3.2.1 A Stone interpretation for CCPL is any
interpretation x which satisfies the following conditions on
a relation |= for A either a formula or event and Γ either a
set of formulas in the language of CCPL or a set of events
in a σ-algebra:

I1: x |= ¬A iff x 6|= A;

I2: x |=
V

Γ iff x |= A for all A ∈ Γ;

I3: x |=
W

Γ iff x |= A for some A ∈ Γ.

Definition 3.2.2 The category of CCPL is a subcategory
of all classifications and infomorphisms such that:

• Typ(M)
def
= formulas of CCPL or events of a σ-algebra;

• Tok(M) is a collection of objects satisfying conditions
I1-I3 of being a Stone interpretation and Tok(S) 6= ∅;

• |=M any relation that properly relates Stone interpre-
tations to CCPL formulae according to I1-I3.

In the classifications for CCPL, ≺ becomes the logic’s en-
tailment order. If the types were elements of a σ-algebra,
≺ becomes the σ-algebra’s lattice order. The following the-
orem allows the use of token sets, which are sets of occur-
rences, to be used.

Theorem 3.2.3 There is a free object, S, in the category
of CCPL classifications.

The freeness of the situation is as follows where Typ(S)
is either formulas of CCPL or a σ-algebra of events. The
tokens of S are the canonical Stone interpretations. The
tokens of any other object M are occurrences which act just
like Stone interpretations except that repeated elements are
allowed. It is these repeated elements that cause types in
S to achieve a weight measured by a probability function.
The infomorphism k is the identity function on types and
maps tokens into the “states” of the canonical collection of

interpretations.
←−
k appears as a co-free morphism if only the

token sets are considered. By convention, the infomorphism

k goes in the opposition direction as the token map,
←−
k .

Typ(S) = Typ(M)

Tok(S)

|=S
llllllllllll

Tok(M)

|=M

SSSSSSSSSSSS

←−
k

oo

A probability function, P, is intimately connected with the
classification M . The unique morphism k is able to map
some tokens into the same Stone interpretation. If the num-
ber of interpretations were finite, i.e., the language of CCPL
or set of events were finite, one could assign a weight to each
A based on the characteristics of k. These weights would
then be combined to yield P. However, when the number
of interpretations is infinite, then P is related to k but can-
not be derived from k by summation. Instead, a frequency
analysis must be used. The point remains that k and P are
intimately related. P should really have a subscript, i.e., Pk.

4. SEQUENTS AND LOGICS
A sequent represents a constraint that may or may not

hold of a classification. It is a logical statement in that it
represents a relation between premises and conclusions. The
premises and conclusion are sets of types. It is sequents
that enable the flow of information. The information flow
they enable is an information flow of reasoning. That said,
sequents may also be used to model communication flows
when the sequents are modeling communication. A com-
munication sequent or gate can be thought of as allowing
a token to flow under it just when the token satisfying the
premises also entails that the token satisfy the conclusion.

25



4.1 Sequents

Definition 4.1.1 (Barwise–Seligman) Let A be a clas-
sification. A theory for A is a collection of sequents of the
form:

Γ A ∆

where Γ and ∆ are collections of types and the A is the
turnstile of logical consequence.

This is the usual notion of sequent. The types in Γ are
thought of as conjoined together and the types in ∆ are
thought of as disjoined. The requirement for a token, x, to
satisfy the above sequent is:

(for all P ∈ Γ, x |=A P ) implies

(there exists one Q ∈ ∆, x |=A Q).

When Γ or ∆ are singleton sets, say, {A}, then A A ∆
or Γ A A will be used. It is important to notice there is
no logical structure imposed on the types as a restriction
imposed by channel theory. They are merely types. Any
logical structure could be imposed as a result of attempt-
ing to model some domain of discourse, but channel theory
simpliciter does not impose one itself. Any extra structure
would come about because some peculiar feature of a uni-
verse of discourse needed to be modeled.

4.2 Logics

Definition 4.2.1 (Barwise-Seligman) A local logic L =
〈A, L, NL〉 consists of a classification A, a set L of se-
quents involving the types of A, and a subset NL ⊆ Tok(A)
called the normal tokens of L, which satisfy all the con-
straints L. A local logic L is sound if every token is nor-
mal; it is complete if every sequent that holds of all normal
tokens is in the consequence relation L.

Typically, the sequents are required to follow certain struc-
tural rules but these will not concern us in this paper. The
following two (non-structural) rules allow for the movement
of logics between classifications connected via the infomor-
phism f : A −→ B:

Γ−f A ∆−f

f -Intro
Γ B ∆

Γ A ∆
f -Intro

Γf B ∆f

Γf B ∆f

f -Elim
Γ A ∆

Γ B ∆
f -Elim

Γ−f A ∆−f

where Γ−f is a nicer way of writing
−→
f −1(Γ), i.e., the inverse

image of Γ under f and ∆f is the direct image of ∆ under
f . Each rule has two forms. f -Intro preserves validity, to
wit: assume the premise and let x be a counter-example to
the conclusion. If xf |=A P for all P ∈ Γ−f (vacuously if
Γ−f = ∅), then xf must satisfy at least one Q ∈ ∆−f . Since
xf |=A Q, then x |=B Q which is a contradition to x being
a counter-example. f -Elim fails to observe validity since it
is possible for a counter-example in the conclusion to have

no preimage under
←−
f . Of course, if

←−
f (Tok(B)) = Tok(A),

then the rule will preserve validity. Preservation of non-
validity is exactly the opposite for the two rules.

The two different forms of the rules are quite different
because they are working on sets. Consider the two cases of
f -Elim. In the first, the types in Γ and ∆ are types of A
that have been mapped to B under f . In the second, the
types in Γ and ∆ are types of B that are pulled back along
f to types in A.

When all the tokens in Tok(A) satisfy the A relation,
then A is a subset of `A, this latter being the logical con-
sequence, relation.

5. INFORMATION CHANNELS
An information channel is a classification used to con-

nect other classifications where the connections are infomor-
phisms. It is information channels that support information
flow by means of sequents. An information channel in the
binary case (where two classifications are being connected)
is a two-way channel. An information channel supports the
form of distributed reasoning where one can think of the
reasoning as moving along the channel. This is an entirely
abstract concept which, given some restrictions, has com-
munication channels as concrete instances.

5.1 Basic Definitions

Definition 5.1.1 (Barwise–Seligman) An information
channel consists of an indexed family C = {fi : Ai −→ C}
of infomorphisms with a common codomain C called the
core of the channel. Diagrammatically,

C

A

f1

55kkkkkkkkkkkkkkkk
A

f2

;;wwwwwwww
· · · An

fn

kkVVVVVVVVVVVVVVVVVVVVVV

Frequently in the sequel, the term channel will be (mis)used
to refer to the core of the channel. This is for mere expedi-
ency and the reader is asked to be forgiving. There is never
any question as to which morphisms are involved.

Example 5.1.2 Let C model a single user Alice, A, send-
ing messages to Eve, E. C is to be a channel between A
and E. Here, a communication channel is being modeled
by an information channel. The tokens in the channels are
pairs in a relation. Each pair, say 〈m1, m2〉, is projected
by ←−a to Alice’s sent message, m1, and by ←−e to Eve’s re-
ceived message, m2, and it might be that m1 6= m2. The
types in each classification below are facts about those mail
messages. The channel diagram is

A
a // C E

eoo

Alice can reason about what Eve knows by reading the mail
messages and noticing that the same messages were sent to
Eve. Eve can do likewise, hence this is a bi-directional infor-
mation channel even though the communication channel is
from Alice to Eve. In channel theoretic terms, Alice reasons
by seeing if a token satisfies sequents of the form Γ A ∆.
and similarly for Eve. However, each uses their local logic
in which to do it. To judge the validity of each’s reasoning,
the local logics can be moved along the infomorphisms via
the rules in the previous section.

The above analysis points out that the channels of chan-
nel theory are (in general) bidirectional. The reason is they
present us with ways of stating properties of the information
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of the channel, and those properties are entirely determined
by the outside environment, either by ourselves by fiat (con-
vention) or by physical attributes. These properties are then
formalized as the types of the channel. The example of cur-
rent in a wire is a good example. It is only by stipulation
that current goes in one direction when in fact it can be
looked at as bidirectional for positive and negative charge.

It is helpful to think of a sequent in an information channel
as representing a gate and to view the classification struc-
ture as a mathematical description of the (intuitive view) of
a communication channel. The tuples are the information
that is produced at A, travel through C, and arriving at
E. Each route through C is mediated by a gate (sequent).
However, information channels are more general than com-
munication channels. Incidently, the collection of sequents
in a channel can model Markov chains, although sequent
structure is much more general than Markov structure.

It is A’s intention that a fact, say ma |=A B, be communi-
cated to E. Assuming no loss of information for the signal,
this requires that A and E agree on the types used for com-
munication purposes. The sense of the communication is
then

ma |=A B iff m |=C Ba infomorphism condition
implies m |=C Be ?
iff me |=E B infomorphism condition

where ? indicates a missing reason, namely a sequent of the
form Ba C Be. Suppose there are no channel sequents. It
is possible for xe |=E B. One could hardly say that com-
munication has taken place because xe |=E B would have
no connection with xa |=E B. In this case, relationship
xe |=E B is spurious or accidental and E can get no infor-
mation about A from it. The reason probabilities crop up
is that Ba C Be may only be partially satisfied, i.e., only
some of Alice’s messages that satisfy Ba also satisfy Be.

Definition 5.1.3 (Barwise-Seligman) A distributed
system A consists of an indexed family cla(A) = {Ai}i∈I of
classifications together with a set inf(A) of infomorphisms
all having both domain and codomain in cla(A).

A distributed system is simply a collection of classifica-
tions and some infomorphisms between some of the clas-
sifications. From Barr in [4] reporting on the work of his
graduate student Chu, it is clear that categories of classifi-
cations have colimits. A colimit of a distributed system is
a minimal channel amongst all the channels, each channel
connecting the entire distributed system. To be a channel
for a distributed system is to cover the system. An anal-
ogous concept in partial orders is that of an upper bound
(think of classifications as points and infomorphisms as el-
ements of the partial order relation), a colimit would be a
least upper bound.

Definition 5.1.4 (Barwise-Seligman) The channel C =
{hi : Ai −→ C}i∈I covers a distributed system A if for
each i, j ∈ I, and each infomorphism f : Ai −→ Aj in
inf(A), the following diagram commutes:

C

Ai

hi

;;wwwwwwww

f
// Aj

hj

ccGGGGGGGG

C is a minimal cover of a distributed system A if it covers
A and, for every other channel D (with core D) covering A,
there is a unique infomorphism from C to D.

Theorem 5.1.5 (Chu [4]) Every distributed system has a
minimal cover, and it is unique up to isomorphism.

6. PROBABILITY
The probability theory, due to space limitations, will only

be worked out for case of CCPL. It provides a template for
how the probability theory works out using other logics that
have associated measure theories.

There are two ways to view probabilities, either logically
inspired as in [12] or set-theoretical as in Kolmogorov [7].
However, our new way to view the situation is to treat the
logically inspired axioms as syntax which is then interpreted
by the set-theoretical probability functions.

6.1 Basic Probabilities
Probability axioms for CCPL generally do not follow the

usual axiomizations of CCPL. Instead, the probability ax-
ioms are tuned to picking out intuitive collections of prob-
ability functions and the embedding of the axioms within
a theory of real numbers allows their extension to all the
formulas of CCPL paying mind to the theorems of CCPL.
In particular, the following condition is to be proven as a
theorem:

AK4: A and B logically equivalent implies P(A) = P(B).

The following axioms [12] do allow one to prove AK4 as a
theorem. Consequently, from the soundness and complete-
ness of CPL, all of the theorems of CPL will evaluate under
P to 1.

AP1 0 ≤ P(A)

AP2 P(¬(A ∧ ¬A)) = 1

AP3 P(A) = P(A ∧B) + P(A ∧ ¬B)

AP4 P(A ∧B) ≤ P(B ∧A)

AP5 P(A) ≤ P(A ∧A)

One insight of the current paper the recognition that the
above axioms (embedded in a real number theory) can be
seen as a syntactic system that supports an interpretation
by Kolmogorov set functions.

Definition 6.1.1 (Kolmogorov [7]) Let E be a collection
of elements ξ, η, ζ, . . . which are called elementary events,
and F a set of subsets of E; the elements of the set F will
be called random events.

K1. F is a field of sets.

K2. F contains the set E.

K3. To each set A in F is assigned a non-negative real
number K(A). This number K(A) is called the prob-
ability of the event A.

K4. K(E) equals 1.

K5. If A and B have no element in common, then

K(A ∪B) = K(A) + K(B).
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The interpretation first needs a definition (in terms of
classifications) for when two types are disjoint:

Definition 6.1.2 Given a classification A, a set Γ ⊆ Typ(A)
is called disjoint just when for any two types A, B ∈ Γ,
Tok(A) ∩ Tok(B) = ∅.

Definition 6.1.3 (Kolmogorov Interpretation) Given
any simple Boolean logic classification, M , a Kolomogorov
interpretation K is such that

KI1 K(0) = 0;

KI2 K(1) = 1;

KI3 K(P) = Kr for Kr : Typ(M) −→ R (where R is
the real numbers) such that there is a function K
satisfying K1 - K5 and Kr(A) = K(Tok(A));

KI4 K takes = into =⊆ R ×R;

KI5 K takes ≤ into ≤⊆ R ×R.

The following theorem holds:

Theorem 6.1.4 (Soundness) Given any simple Boolean
logic classification, M , let K be a Kolmogorov Interpreta-
tion function, then K(P) satisfies the AP axioms. The real
number theory needed to state and prove theorems using AP
axioms is interpreted by the real numbers between 0 and 1.

The only missing element so far is infinite summation.
The required logical axiom for this is from [12]:

AP6 P(
V
A ∧B) = infZ⊆A{P(B ∧

V
Z) | Z is finite}

where A is a countable set,
V
A is the conjunction of all the

elements of A and similarly for Z. The B is necessary so
that the conjunction is never empty.

The associated Kolmogorov axiom is

K6 For a decreasing sequence of events A1 ⊇ A2 ⊇ · · · ⊇
An ⊇ · · · of (the field) F,

∞\
i=1

Ai = ∅ implies lim
i→∞

K(Ai) = 0.

Soundness is preserved with these additional axioms.

6.2 Conditional Probabilities
Restriction maps are instances of certain quotient mor-

phisms where the relation on types is the identity relation.
The tokens of the quotient are not any collection of tokens
but rather Tok(Γ) for some conjunctive set of types Γ.

Definition 6.2.1 A restriction map is an infomorphism
h : A −→ (A | Γ) such that

(i): Typ(A | Γ) = Typ(A);

(ii): Tok(A | Γ) = Tok(Γ);

(iii):
←−
h is the injection induced by Tok(Γ) ⊆ Tok(A);

(iv):
−→
h =

−→
1 A.

The situation can be pictured by:

Typ(A)

Tok(A)
������ ��

��
��

•ph•q

•
•

������ ��
��
��

•p Tok(A | Γ)

φh
θh

//
−→
h

oo
←−
h

•φ•θ

Typ(A | Γ)

MM��������������

LL��������������

??�������

XX22222222
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The (dual) quotient classification A | Γ will support a prob-
ability function that is now viewed as the conditional prob-
ability with respect to the types in Γ. There is a condition
Mateus, et. al. [8] which must be met for probabilities
to be preserved by an infomorphism which promotes the
infomorphism to a probability presentation morphism Let
h : A −→ (A | Γ) be a restriction map and let Kr′ be the
probability function of A and Kr be the conditional proba-
bility of (A | Γ). The condition that must be satisfied is:

Kr′(
^

Γ)× Kr(
_

∆ |
^

Γ) = Kr′(
^

Γ ∧
_

∆).

The restriction that no classical logic classification have an
empty set of tokens ensures that Kr(

W
∆ |

V
Γ) is never

evaluated when Tok(
V

Γ) = ∅.

6.3 Probabilities and Sequents
Probabilities can be assigned to sequents. Consider the

simple sequent in A and its satisfying condition:

P A Q ∀x (x |=A P implies x |=A Q).

To attach a probability to this sequent means to weaken
it so that it only only holds for some of the tokens and
fails to hold the rest. Hence, to weaken the sequent is to
remove the universal quantifier and then attach a probability
to x |=A Q given that x |=A P for arbitrary x. What is the
probability that x satisfies Q given that it satisfies P? This
is a statement of conditional probability, so we make the
following definition

P P
A Q

def
= P(Q | P ).

To actually use P A Q in an argument, one must first have
x |=A P. The probability of this obtaining in A is P(P ). The
use of the rule has the computed probability,

P(P ) · (P P
A Q).

The use of conditional probability to interpret  is similar
to the use of conditional probability in [1] to interpret ⇒.
In that book, the use of⇒ is derived from conditional prob-
ability. Here, the  is a pre-existing concept which, given a
probabilistic clothing, is a definition of conditional probabil-
ity. This points out that  is not the same as the material
conditional of classical logic and in fact, has no proof the-
oretic character in channel theory unless provided with a
supporting cast which includes a formal system.

Channel theory has sequents of the form Γ A ∆ for a
classification A. To use a sequent of this form, P will need
to be extended to cover the case of sequents for the following
calculation:

P(Γ) · (Γ P
A ∆).

For a token to satisfy Γ, it must satisfy every element of Γ
and hence Γ is thought of conjunctively.
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Example 6.3.1 (Capacity Issues) We now study an ex-
ample from [10], where a standard Shannon-type analysis
was done of a covert channel. We show how our new frame-
work extends the classical analysis. There are two users,
Alice and Clueless, inside of a private enclave. Alice and
Clueless have no knowledge of what the other is doing. The
users may transmit no message or one message per unit
time to a second enclave. The transmissions between en-
claves are encrypted and all messages appear the same to
an eavesdropper Eve. The only thing that Eve can do is
count the number of messages (per unit time) going from
the first enclave (that of Alice and Clueless) to the second
enclave. Therefore Eve sees zero, one, or two messages per
unit time. Alice uses this scenario to covertly communicate
with Eve. Alice will attempt to send a bit to Eve per unit
time interval. This is the most that Alice can send because
Alice only has two actions. The actions of Clueless act as
noise in the covert channel.

Alice will send a 0 by not sending a message. If Alice
sends a 0 and Clueless does not transmit, then Eve receives
a 0. Alice will send a 1 by sending a message. If Alice sends
a 1 and Clueless does not transmit, then Eve receives a 1. If
Alice sends a 1 and Clueless does transmit, then Eve receives
a 2. Therefore, Eve is only certain of Alice’s transmission
if Eve receives a 0 or a 2. The received symbol 1 is a noisy
symbol. In the following matrix, x1 represents the actions
of Alice, x2 the actions of Clueless, and x3 the symbols that
Eve receives. The time is in discrete, integral ticks.

Consider the following classification diagram (on the left)
of the communication channel

ACE

A

a

==zzzzzzz
C

c

OO

E

e

aaDDDDDDD

0BB@
x1 x2 x3

0 0 0
1 0 1
0 1 1
1 1 2

1CCA
Tokens in the channel are of the form 〈x1, x2, x3〉 which
the allowable values of the combinations of xi. For x =
〈x1, x2, x3〉, ←−a (x) = 〈x1〉, ←−c (x) = 〈x2〉, and ←−e (x) = 〈x3〉.
Types for component classifications A and C are {0, 1} and
the types for E are {0, 1, 2}. These types are injected into
the channel (where the superscript indicates which infomor-
phism did the injection). The channel gates, labeled with
gi, and their respective conditional probabilities are the fol-
lowing:

g1: 0a, 0c ACE 0e g2: 0a, 1c ACE 1e P(g1) = P(g2) = 1

g3: 1a, 0c ACE 1e g4: 1a, 1c ACE 2e P(g3) = P(g4) = 1

Each gate transfers information with probability 1. That is,
for every token in the channel, if the left hand side of the
gate is satisfied, the right hand side is satisfied. The channel
connecting A, C, and E is taken from a global perspective.
To model the system from the more local perspective of
only Alice and Eve, the types injected by Clueless must be
ignored. Consider an infomorphism k from a new channel
to ACE:

ACE AC′E
koo

A

a

;;vvvvvv
C

c

OO

E

e

ccHHHHHH
A

a
::vvvvvv
C′

c′

OO

E

e
ddHHHHHH

where C′ is has lost the types 0 and 1 and unable to inject
them into the channel AC′E. The morphism k is stipu-
lated to be the identity on Tok(ACE) and an injection on
Typ(AC′E).

Consider the following use of the second form of k-Elim

0a, 0c ACE 0e

k-Elim
0a AC′E 0e

The conclusion of the rule does not hold because a token
of the form 〈0, 1, 1〉 is a counter-example to the conclusion
whereas the premise is a valid gate in ACE. The normal
token 〈0, 0, 0〉 of ACE will hold of the conclusion, however
this cannot be considered a normal token of AC′E since
it is a counter-example to the conclusion of another use of
k-Elim (see g′2 below). It is but a short step to assign a
probability to the conclusions of the four uses of this rule,
namely the gates on left below and summarized compactly
in a channel matrix (identical to that shown in [10]) on the
right:

g′1: 0a p
AC′E 0e g′2: 0a q

AC′E 1e

g′3: 1a α
AC′E 1e g′4: 1a β

AC′E 2e

„ 0e 1e 2e

0a p q 0
1a 0 α β

«
by using the proportion of tokens which are normal (for each
gate alone) to the total number of normal and non-normal
tokens (for each gate alone). Incidently, in [10], it is shown
that p = α and q = β for this example due to the way
Clueless acts.

7. CONFIDENTIALITY
This example is modified from [5] and shows how one

would go about providing a confidentiality analysis. This
example too is much too brief to show all of the new the-
ory’s capabilities.

7.1 BLP
Consider Alice and Eve. The following diagram of the

channel is used again, but the pieces now contain much dif-
ferent information. In particular, one wishes to reason about
properties of messages.

A
a // C E

eoo

Let Alice send messages m1, m2, m3 and Eve receive mes-
sages m4, m5, m6. And let there be types α, β, γ, δ in Typ(A)
and Typ(E) where α and β refer to some arbitrary input-
output properties, and δ refers to some arbitrary property.
γ refers to a confidentiality property which, if set on a source
message must not be true of the received message, i.e., the
channel must massage the message to remove this property.
The classification tables are

|=AorE α β γ
m1 0 1 1
m2 1 1 1
m3 1 0 0

|=AorE α β γ
m4 1 1 1
m5 1 0 0
m6 0 1 1

|=C αa αe βa βe γa γe δ
c1 1 1 1 1 1 1 1
c2 1 1 0 0 1 0 0
c3 0 1 1 0 0 1 1
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transaction c file copied (= ca) resulting file (= ce)
c1 m1 m4

c2 m2 m5

c3 m3 m6

The sequents that must be satisfied in the channel are

fidelity sequents confidentiality sequents
αa C αe γa C ¬γe

βa C βe

Notice that c3 violates the sequent involving β. So this
sequent has a non-unity probability associated with it. The
transactions satisfying the confidentiality sequent are c2 and
c3. c1 violates the sequent, since c1 |=C γa but c1 6|=C

¬γe. c3 appears odd because it satisfies the confidentiality
requirement, but it does so spuriously.

The channel C is not simply a wire over which data is
flowing. It requires some internal design to implement the
confidentiality policy. In this example, it does not do a
particularly fine job. Suppose there is another implementa-
tion of that channel, say C′. With the probability theory,
one can run tests, i.e., greatly expand the number of mes-
sages and transactions, and judge the results by putting real
probabilities (or better, measures) on the information and
comparing how C′ does with respect to C. One could add
a gate (as a sequent) γa C γe and measure the amount of
information leaking under this gate.

Suppose C is an already existing but faulty channel that
cannot be removed except at great expense. Another chan-
nel, D, could be developed that simply had a better im-
plementation of the confidentiality sequent and interposed
between Eve and C. The resulting classification structure
is

A
a // C

a // D E
eoo

The formalism encourages this sort of composition. The
logics in the respective classifications can be moved using
the sequent rules. The sequents in the moved logics may
acquire new probabilities as a result since not all of those
rules preserve validity. This is exactly as it should be be-
cause that is what happens in the real world. The theory
simply formalizes this so that it cannot be ignored.

7.2 Quasi-Coordinated Attack
Suppose an attack has been made on a system resource B

of computer system C possibly involving entities A, . . . , An.
The system has the following initial classification structure:

C

A

a1

66nnnnnnnnnnnn
· · · An

an

hhPPPPPPPPPPPP
B

b

jjUUUUUUUUUUUUUUUUUUUUU

The classification may contain most but not necessarily all
of the known information about the system C, the (possi-
bly) attacking entities A, . . . , An, and the system resource
B. However, there is no provision here for reconstructing
how the attack might have happened. In order to do that,
new theories must be developed and compared. One might
model this (formally) by constructing a theory for how the
attackers conspired. In effect, one needs a theory, i.e., a col-
lection of sequents, which specify how the conspiracy takes

place and then map that onto the system to see if it makes
sense. One needs the following diagram:

K
k // C B

boo

A

a1

66nnnnnnnnnnnn · · · An

an

hhQQQQQQQQQQQQQ

The theory of the conspiracy is now contained in the se-
quents of K. This logical theory (or logic) can be moved
using the sequent rules through C to B and now proba-
bilities assigned to see how good a match makes with the
observed features of the attack. Those features or observ-
ables, in the form of raw data, are the tokens of B. The
properties the tokens have are the types of B. The good-
ness of the fit will be a measure of how the types (properties
of the conspiracy) of K translate through C into types of
B. The actual artifacts of the conspiracy, i.e., the raw data
known about A, . . . , An, will also get translated with a cer-
tain amount of fidelity through C to D. All of this can be
measured and probabilities assigned so that another conspir-
acy theory, say K′, can also be tried and compared against
K. Given enough conspiracy theories, the most likely ones
(if not all due to limited resources) as measured by the prob-
abilities can be defended against. Not only that, conspiracy
theories K, . . . , Kn can be collected together and a meta-
theory for this collection produced as a channel connecting
them. Collections of meta-theories can be made according
to common properties and their features compared using
another channel (a meta-meta-theory).

The channel C is probably not something simply explained
within one classification. Most likely, it is a whole network of
classifications and infomorphisms. This compositionality is
handled naturally by the compositionality of this formalism.

8. CONCLUSION
It is clear that our new paradigm has much potential due

to its rich qualitative structure and its support of quanti-
tative measures. The qualitative structure does not restrict
one to CCPL. There are many special purpose logics that
were developed for very particular kinds of problems. Most
logics fall into one or another class. Each class indicates a
measure theory. The measure theories can then be used to
construct Shannon-type information theories. This yields a
tight connection between a logic as a qualitative information
theory, its associated measure theory, and subsequently, its
quantitative information theory.

It is not necessary to use the same logical theory through-
out one’s analysis. Our paradigm encourages the use of a
logic wherever it is appropriate, and the use of several log-
ics (within classifications) connected via infomorphisms pro-
vides the glue necessary to get a complete problem analysis.

Our paradigm also supports both top-down and bottom
up analyses. The compositionality is neutral in this re-
spect. The compositionality also allows a problem to broken
down and assigned to different groups for analyses. And it
supports combining different analyses of the same problem
by the construction of an information channel supporting a
comparison theory of the different analyses.
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