
Property-based Attestation for Computing Platforms:
Caring about properties, not mechanisms∗

Ahmad-Reza Sadeghi
Ruhr-University Bochum, Germany

sadeghi@crypto.rub.de

Christian Stüble
Ruhr-University Bochum, Germany

stueble@acm.org

ABSTRACT
Over the past years, the computing industry has started var-
ious initiatives announced to increase computer security by
means of new hardware architectures. The most notable ef-
fort is the Trusted Computing Group (TCG) and the Next-
Generation Secure Computing Base (NGSCB). This tech-
nology offers useful new functionalities as the possibility to
verify the integrity of a platform (attestation) or binding
quantities on a specific platform (sealing).

In this paper, we point out the deficiencies of the attestation
and sealing functionalities proposed by the existing specifi-
cation of the TCG: we show that these mechanisms can be
misused to discriminate certain platforms, i.e., their operat-
ing systems and consequently the corresponding vendors. A
particular problem in this context is that of managing the
multitude of possible configurations. Moreover, we highlight
other shortcomings related to the attestation, namely sys-
tem updates and backup. Clearly, the consequences caused
by these problems lead to an unsatisfactory situation both
for the private and business branch, and to an unbalanced
market when such platforms are in wide use.

To overcome these problems generally, we propose a com-
pletely new approach: the attestation of a platform should
not depend on the specific software or/and hardware (config-
uration) as it is today’s practice but only on the “properties”
that the platform offers. Thus, a property-based attestation
should only verify whether these properties are sufficient to
fulfill certain (security) requirements of the party who asks
for attestation. We propose and discuss a variety of solutions
based on the existing Trusted Computing (TC) functional-
ity. We also demonstrate, how a property-based attestation
protocol can be realized based on the existing TC hardware
such as a Trusted Platform Module (TPM).

∗This research work has been done within the European
project ECRYPT.

1. INTRODUCTION
The rapid expansion of world-wide connectivity has changed
the requirements on IT systems. We require systems which
can guarantee authenticity, integrity, privacy, anonymity,
and availability. Cryptography and many other technical
security measures such as firewalls, Intrusion Detection Sys-
tems and so on are useful tools providing solutions to a vari-
ety of security related problems. However, they would work
properly only if the underlying computing platform, in par-
ticular the operating system, is secure. Existing computing
platforms, however, suffer under various security problems
due to their architectural weaknesses in hardware and soft-
ware as well as their complexity [30].

In this context the computing industry has come up with
Trusted Computing (TC), a new generation of computing
platforms based on new architectures both in hardware and
software. The results of their investigations are the two well-
known initiatives by the TCG (Trusted Computing Group)1,
an alliance of leading IT enterprises, and Microsoft’s NGSCB
(Next-Generation Secure Computing Base)2. Whereas there
is no technical specification for NGSCB available yet, TCG
has published the corresponding hardware specifications [34,
14].

The stated goal of these architectures is to improve the se-
curity and trustworthiness of computing platforms [20, 21,
30, 29]. Indeed, these platforms offer many useful functions
which can be used to increase a platform’s security. They
extend the conventional PC architecture by new mechanisms
to (i) protect cryptographic keys, (ii) generate random num-
bers in hardware, (iii) authenticate (the configuration of) a
platform (attestation), and (iv) cryptographically bind the
data to be encrypted to certain information, e.g., the system
configuration and the identifier of the invoking application
(sealing).

However, there is still an ongoing public debate about the
negative economical, social, and technical consequences of
these platforms [2, 4, 33]. People are concerned about the
potential dangers that can be caused by the capabilities of
such platforms: they may give vendors and content providers
too much control over personal systems and users’ private
information. Although most complains about trusted com-
puting are speculative3, it is highly important to observe

1www.trustedcomputinggroup.org
2www.microsoft.com/ngscb/
3As pointed out by [27] the TC functionalities are com-

NSPW 2004 Nova Scotia Canada
© 2005 ACM 1-59593-076-0/05/05…$5.00
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full cit ation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

67

its development carefully, and to improve this technology
by putting together the missing pieces for more secure plat-
forms in future.

In this paper we consider the deficiencies of TCG regarding
the two important functionalities attestation and sealing.
We show that the existing proposals for their realization
allow a remote instance to discriminate certain platforms
having certain configurations (of the hardware and software
running on the platform). Thus, a remote instance, attest-
ing a platform, is able to exclude certain configurations from
his/her business model, e.g., configurations related to alter-
native operating systems such as Linux. Hence, if in the
future attestation is used to enforce the software configu-
ration, powerful vendors may enforce their policies on their
products by preventing alternative software products from
running on their platforms.4 Further, the existing propos-
als enable an instance attesting a platform or observing the
attestation to obtain complete information about the hard-
ware and software configuration5 of a platform making at-
tacks on a platform easier.

Other problems related to attestation are updates and back-
up: the new functionalities allow to seal critical data (e.g.,
documents, content) to a certain platform configuration.
This, however, strongly limits the usage flexibility when sys-
tem updates (e.g., patches) change the system configuration.
As a consequence, the data is not accessible anymore. Sim-
ilar situations arise when a system backup is made. It is
not possible to access the data on another platform hav-
ing a different configuration (even if this platform satisfies
the same requirements as the previous one). Thus, also the
sealing function can be applied to limit or prevent the use
of certain products.

Clearly, the above mentioned problems lead to an unsatis-
factory situation which is not what we understand under
security for all involved parties (in the sense of multilateral
security) and under an open market.

Our proposal is therfore to pursue a completely different and
new approach which uses these functionalities only based on
the properties a platform offers and not based on the config-
uration of its software and hardware components. A prop-
erty of a platform describes an aspect of the behavior of that
platform regarding certain requirements, such as security-
related requirements (e.g., that a platform has built-in mea-
sures in accordance to the privacy laws). Hence, different

pletely under the control of the underlying operating sys-
tem, and as a consequence, users can benefit from the se-
curity features of TCG/NGSCB, as long as their operating
system is trustworthy.
4Note that similar approaches can be observed today, e.g.,
many banks provide banking software for only one operat-
ing system, a lot of websites support only one web-browser,
and a lot of hardware devices, like music players, expect a
specific operating system. However, in conjunction with TC
technology, the use of alternatives will become impossible.
5One may think that the subject of attestation is only to
determine a “known” configuration. However, if this would
be the case then only a binary confirmation would suffice in-
dicating that a known configuration has been changed. This
solution would be much more simpler than the attestation
procedure specified by the TCG.

platforms with different components may have different con-
figurations while they may all offer the same properties and
consequently fulfill the same requirements.

We propose and discuss several solutions to the mentioned
problems following the property-based attestation paradigm.
Our solutions differ in their trust models, efficiency and the
functionality offered by the trusted components. Our pro-
posals can be applied to all approaches that provide some
kind of secure booting or application authentication. We
also demonstrate, how the Trusted Software Stack (TSS),
the TPM-library proposed by the TCG, can be extended
by a property-based attestation protocol based on the exist-
ing TC hardware6 without a need to change the underlying
trust model.7

2. CONVENTIONS
In this section we introduce the basic terminology and defi-
nitions used throughout this paper.

• Roles: The instance who is interested in authenticat-
ing a platform (the output of the attestation) is called
challenger (e.g., a local user or a remote instance such
as a service or content provider). The platform, to be
authenticated, measures (determines) and attests its
configuration (see Section 3 for an example), and is
called attestor. The attestor is used by users (e.g., a
local user or platform owner such as a company). A
trusted third party is denoted by TTP. Note that by
“trust” we mean the assumption that TTP does not
violate a certain security requirement. The abbrevi-
ation TC stands for Trusted Computing as a general
term meaning the technology which provides trusted
components on a platform.

• Cryptographic primitives: We denote an asymmetric
encryption scheme with the tuple (GenKey(),Enc(), Dec())
for key generation, encryption and decryption algo-
rithms. (pkX , skX) denotes the public and secret key
of a party X. We sometimes denote the encryption
and decryption keys of an instance X with ekX and
dkX .

Further, a digital signature is denoted by a tuple (GenKey(),
Sign(), Verify()) for key generation, signing and verifi-
cation algorithms. With σ ← Sign(skX ; m) we mean
the signature on a message m signed by the signing key
skX . The return value of the verification algorithm
ind ← Verify(pkX ; m, σ) is a Boolean value ind ∈
{true, false}. A certificate on a quantity Q with re-
spect to a verification key pkX is denoted by cert(skX ; Q),
a signature generated by applying the corresponding
signing key.

6called Trusted Platform Module (TPM).
7It should be noted that our primary goal is to have a
non-discriminating attestation as a standard, which can
be certified by trusted entities, and on which the vendors
and developers of related products should rely. Clearly,
standards leave some space for corresponding implemen-
tations, and this may open the door for information flow
allowing, e.g., operating system footprinting (see, e.g.,
www.insecure.org/nmap). However, this is not the subject
of this paper.

68

• Trust model : Systems (entities or components) that
can violate the security requirements of both attestor
and challenger are denoted as fully trusted. An exam-
ple of a fully trusted component is the Trusted Plat-
form Module (TPM) explained in Section 3. Systems
that can only violate the security requirement of one
party are denoted as trusted by the attestor or trusted
by the challenger. The Trusted Software Stack (TSS)
[13] defined by the TCG is an example of a component
that only has to be trusted by the attestor. All other
systems are untrusted.

3. TC OVERVIEW
The Trusted Computing Group (TCG) has published a spec-
ification [34, 14] of hardware components that, if fully trus-
ted, provides security functions required by secure operat-
ing systems for trustworthy operations. Loosely speaking,
the basic idea is to embed a “trusted third party” into the
underlying hardware where this party is realized by tamper-
resistant hardware components. The intention is, however,
to keep the tamper-resistance assumption as weak as possi-
ble and reduce the cost by keeping the trusted component
as small as possible. Beside a secure random number gener-
ator and tamper-resistant storage, the specification defines
a mechanism, called attestation, that attests the platform
configuration (e.g., of the BIOS and the TCB) that was de-
termined by a cryptographically secure hash function SHA-1
[17].

For better understanding we take look at an example: on
platform startup a hardware component, called the Core
Root of Trust module (CRTM), hashes the current BIOS
and the master boot record (MBR) of the boot device and
writes the result into protected registers called Platform
Configuration Registers (PCR) which are located in an (tamper-
resistant) hardware module called Trusted Platform Module
(TPM). The software that is executed in the MBR (e.g., the
boot loader) can create a chain of trust by writing a hash
value of the software it loads (e.g., the operating system)
into another PCR register. We hence call the chain of hash
values stored in the PCR as the platform configuration.8

The TPM can cryptographically sign the current platform
configuration using a protected signature key, to attest it to
a remote challenger.

To ensure that data sent to a platform can only be accessed
under a specific platform and platform configuration, the
sealing mechanism is provided that binds data to a plat-
form configuration: a remote instance can encrypt critical
data including a demanded configuration under an encryp-
tion key whose decryption key is only known to the TPM.
The TPM can decrypt the cipher but releases the data only
if the current platform configuration matches the demanded
one. Note that sealing functionality can be used to ensure
that the critical data cannot be accessed by the user when
the configuration of the platform changes after the attesta-
tion took place.

Microsoft’s NGSCB [20, 21] is one concrete instantiation of

8Note that here we do not mean the hash value of the his-
tory but rather the hash of the TCB (trusted computing
base) state that remains unchanged during the run-time in
contrast to, e.g., history measurements done in [31].

the TCG specification based on additional hardware exten-
sions such as LaGrande9 Since the NGSCB/LaGrande ap-
proach is based on the functionality provided by the TCG
specification, we concentrate in the following on TCG, al-
though our solutions are applicable to NGSCB, or any other
approach that offers the same functionalities.

The public debates of the past highlighted several deficien-
cies and unsatisfying properties of the current TCG speci-
fication version 1.1b [34]. In October 2003, the TCG pub-
lished an updated TCG specification version 1.2 [14] which
solves some of these deficiencies. For instance, a crypto-
graphic protocol called Direct Anonymous Attestation (DAA)
[7] was specified that, roughly spoken, provides users with
an unlimited number of pseudonyms without requiring a
trusted Privacy Certification Authority (privacy-CA) that
was required (and criticized) in version 1.1b of the spec-
ification. Note that the anonymity provided by DAA or
privacy-CA’s is completely orthogonal to the stated goals of
this publication. Nevertheless, we will sketch in Section 5
how both approaches can be combined into an anonymous
property-based attestation function.

3.1 TCG Model
The abstract model for the basic functions provided by TCG-
compliant platforms is illustrated in Figure 1: it consists of
two state transition machines. The first one U represents
the untrusted platform, while the other, fully trusted TCG,
represents the TPM and the CRTM. The third machine C

represents a challenger.

init(S)0

tamper−resistant component

trusted comonent

insecure channel

secure channel

boot(S)

send(D)

receive(D)

data(D)

0

iseal(S ,D)

0attest(S)

TCG

U C

platform/attestor

Figure 1: Abstract Model of the TCG functionality

The machines are connected by insecure and secure (authen-
tic, integer and confidential) directed communication chan-
nels: C can communicate with U using an insecure input
channel send() and an insecure output channel receive()
which are used for normal communication. TCG provides
an insecure initialization channel boot() to the outside world
(e.g., to C). It accepts an initial state S0 of U which is
locally stored and then forwarded to U using the secure
channel init(). Compared to the boot example discussed
in Section 3, S0 represents the hashed chain of the basic
modules (i.e., BIOS, boot-loader, operating system) at the
time the operating system is bootstrapped.

A secure output channel attest() returns to C the state used
to initialize U . A secure input channel of TCG called seal()
receives data D and a demanded configuration Si. If S0 is

9see http://www.intel.com/technology/security/index.htm

69

equal to Si, TCG sends D to U using the secure output
channel data().

3.1.1 TCG Assumptions
This functionality mentioned above is provided under the
following conditions:

1. The platform configuration cannot be overwritten after
measurements, i.e., after the hash values are computed
and securely stored in TPM. Since TCG makes only
statements about the initial state of U , it is important
that U ’s state cannot be maliciously overwritten after
startup.

2. Given a valid set of hash values, the challenger can de-
termine whether the platform configuration S0 is trust-
worthy.

3. TCG realizes the secure channels using two different
measures: the channels between TCG and U are as-
sumed to be secure since both components are inte-
grated on one hardware. The other communication
channels are secured based on a public key infrastruc-
ture (PKI) [14].

The first condition is hard to achieve since currently avail-
able operating systems can easily be manipulated, e.g., by
exploiting security bugs or by changing memory which has
been swapped to a harddisk. The same holds for the sec-
ond condition since it is very difficult, if not impossible,
to define the trustworthiness of today’s complex platforms
including all applications. Hence, without the appropriate
secure operating systems these assumptions are too strong
to build secure systems upon. However, a secure operating
system can be efficiently provided by security kernels based
on micro-kernel architectures [25, 26, 28, 10]. We will con-
sider this in more detail in Section 5.2.2.

3.2 Deficiencies of TCG Attestation
While the attestation and the sealing mechanisms provided
by TCG allow many meaningful applications (see, e.g., [30,
11, 18, 32]), the use of the platform configuration as a ba-
sis for determining its trustworthiness has some important
drawbacks:

• If a challenger (e.g., providers of digital content) wants
to enforce its access control rules on a platform (e.g.,
consumer platform) it has, in theory, to analyze whether
every existing operating system and every patch-level
has the “desired” configuration. Since in practice it
is hard to verify the trustworthiness of every plat-
form configuration, a challenger is forced to focus on
a few predefined (mainstream) configurations. This,
however, has the potential danger that “alternative”
software products (e.g., OpenOffice10 or WINE11 and
operating systems such as Linux) get isolated, and it
would be more difficult (if not impossible) for them
to become established on the market. One can imag-
ine a situation where global players such as content

10www.openoffice.org
11www.winehq.org

providers and large operating systems vendors collab-
orate, and exclude specific operating systems and the
corresponding applications. This is an undesired situ-
ation providing the ground for building monopoly, and
is not promotive for the market.

• Further, the recipient of the attestation protocol or
an observer gets exact information about the hard-
and software configuration of a specific platform. This
makes attacks to such platforms much easier, since an
adversary does not need to perform more complicated
platform analysis.

• Since the sealing mechanism provided by the TCG-
hardware binds encrypted content to a specific sys-
tem configuration, system updates, e.g., patches, that
would lead to changes to the PCR values make the
encrypted content unaccessible.

• Sealing can also have negative consequences, since ap-
plication vendors can bind the application data to their
application, making it impossible for alternative soft-
ware products to be compatible. With TCG, e.g., a
vendor could prevent that OpenOffice can read Word
documents.

4. PROPERTY-BASED ATTESTATION
The attestation and sealing function provided by TCG-com-
pliant hardware attests the system configuration of the con-
sumer platform that was determined on system startup. For
(nearly) all practical applications, the challenger is not re-
ally interested in the specific system configuration. As we
have argued in Section 3.2, this has even some disadvan-
tages due to the multitude of possible configurations a chal-
lenger has to manage. In fact the challenger is interested in
whether the attested platform provides the desired “proper-
ties”. With platform property P we informally mean a quan-
tity that describes an aspect of the behavior of that platform
with respect to certain requirements, e.g., a security-related
requirement. In general, platform properties of different ab-
straction levels are imaginable: A platform property may,
e.g., state that a platform has built-in measures conform to
the privacy laws, or that it strictly separates processes from
each other, or that a platform has built-in functionalities to
provide Multi-Level Security (MLS) and so on. The question
of whether there is a correct or useful property set depends
heavily on the underlying application and its requirements
on the environment. For instance a useful property is what
is now accepted as secure operating system providing isola-
tion of processes or confinement etc.

It is out of the scope of this paper to discuss how plat-
form properties can be evaluated. Nevertheless, a similar
approach like in the context of Common Criteria Protec-
tion Profile evaluations is imaginable: Demanded platform
properties can, for instance, be summarized in an implemen-
tation independent Property Profile.12 Trusted third parties
can certify that a platform of a specific configuration pro-
vides this properties after a successful platform evaluation.
Note that using property-based attestation there will be no

12A possible property profile, e.g., published by content
providers, could summarize all requirements of a digital
rights management platform.

70

need to force users to deploy products of original manufac-
turer.13

Therefore, for privacy aspects and for practical reasons, an
attestation mechanism is desirable that attests the proper-
ties of platforms independent of the concrete hard- and soft-
ware configuration. We say that a configuration C provides
the property P . Further, we say that a property Pi is com-
patible to another property Pj if Pi has the same security-
related behavior as Pj .

4.1 Ideal TC Component
An ideal TC component is capable of determining the prop-
erties {P0 . . . Pn} provided by a system configuration and to
decide whether a given system configuration S0 provides a
specific property Pi. Therefore, it can perform a property-
based attestation and property-based sealing mechanisms as
shown in Figure 2.

init(S)0 boot(S)

data(D)

0

seal(P,D)

attest(P)

Ideal
TC

U C

send(D)

receive(D)

Figure 2: The ideal model of a property-based at-
testation function.

An ideal property-based attestation mechanism fulfills the
following requirements:

1. Security : The ideal TC only attests certified platform
configurations.

2. Accountability : Although the TTP has to be trusted
by all participants, it is desirable to be able to detect
TTP’s misbehavior.

3. Revokeability : The TTP should be able to selectively
revoke TCG versions and TCG realizations under cer-
tain circumstances, e.g., if TPM has been broken.

4. Non-Discrimination: Challengers should neither be
able to favor selected configurations nor should they
get information about the configuration of the user
platform.

5. Unlinkability : Challengers should not be able to link
two different attestation sessions.

6. Availability : When modifying a platform configuration
without changing the provided properties, access to
sealed data should be possible.

7. Privacy : Users should be able to control which prop-
erty their platforms attest.

13For instance in some countries the deployment of car com-
ponents from original manufacturers is even supported by
the law. This, however, disables smaller companies from
selling comparable products.

8. Reduced Complexity : Security enhancements to U should
not be costly. Thus, the complexity of potentially re-
quired TCG-extensions should be low.14

Unfortunately, in practice it is difficult, if not impossible, to
determine or compare properties enforced by a platform con-
figuration, as it is required to follow the property-based at-
testation paradigm. For the long term, proof-carrying code
[23, 22, 24, 3] may give the opportunity to build a TC com-
ponent that determines some specific properties provided by
a specific platform configuration. Today, not even content
providers are able to formally specify the demanded proper-
ties, as it would be necessary to use proof-carrying code or
formal analysis.

4.2 Real World TC Component
To overcome the problems that occur in the context of the
current attestation and sealing implementations, we will dis-
cuss in the following various real world solutions. We first
introduce the basic idea, where a trusted third party TTP is
involved that transforms platform configurations into prop-
erties and vice versa. In Section 5 we vary the basic model
with respect to several parameters such as the trust model,
complexity, costs and functionality resulting in various so-
lutions: Some solutions require the trusted components in
hardware to be extended under realistic assumptions. In
particular, we propose solutions which do not require any
extension to the trusted hardware component and the un-
derlying trust model.

The basic idea is to extend the ideal model with a TTP
who attests that a given platform configuration S0 fulfills
a demanded property P . Thus, we replace the automatic
property derivation based on configurations, required for the
solution with ideal TC, by an off-line certificate issued by a
TTP (see Figure 3). The certificate of TTP attesting that
a configuration S0 provides a property P is called property
certificate and denoted by certTTP := cert(skTTP , S0, P).
Note that TTP confirms the correctness of the correspon-
dence between the platform configuration and certain prop-
erties according to defined criteria. However, as it is com-
mon practice such organizations are only liable for inten-
tional misbehaviour and not for undetected weaknesses (com-
pare with safety and security tests or common criteria). As
mentioned before the TTP is fully trusted (i.e., by the at-
testor and the challenger), since both have to assume that
the TTP certifies only configurations that really enforce the
attested property. The extended TC component, denoted by
(TC+), internally translates configurations Si into proper-
ties Pj (and vice versa) to perform the attesting and sealing
functions.

To prevent a flood of desired properties, the involved parties
can, e.g., together define earmarked property profiles. For
instance, end-users could define a privacy-protecting Com-
mon Criteria [9] protection profile, while content providers
define a content-protecting profile. The TTP then certifies
whether given configurations are compatible to that protec-
tion profiles. If the TTP is a governmental authority it can
also analyze whether a given platform configuration protects

14One objective of TCG was to keep the these enhancement
as cheap as possible

71

init(S)0 boot(S)

send(D)

receive(D)

data(D)

0

seal(P,D)

attest(P)

TC+

TTP

U C

ocert(sk ,S ,P)TTP

Figure 3: Real world model of property-based at-
testation: A trusted third party (TTP) translates
demanded properties into concrete platform config-
urations and issues property certificates.

the consumer’s privacy, e.g., by certifying that it is compat-
ible to privacy laws.

Our solutions are all based on the current TCG specifica-
tion, because it is today the mostly known and available
extension of conventional computer systems that provides
the measurement and attestation of integrity metrics. In
general, our property-based attestation paradigm can be ap-
plied to all mechanisms that provide some kind of integrity
protection (e.g., see [35, 5, 15]).

5. REALIZATION
In this section we discuss various solutions for the property-
based attestation (and sealing). Some solutions require an
extension of the existing TC hardware (Section 5.1) while
others propose to implement the required functionalities by
a fully trusted software where we analyze to what extend
and under which assumptions such a software service can
provide these features (Section 5.2.1). We also outline a so-
lution that can reuse the existing TPM implementation but
keeps the same trust model as the current TCG specification
(Section 5.3).

5.1 Extending TCG Hardware
Extending the TPM by property-based functionality has two
major advantages compared to other solutions:

• The trust model related to the trusted computing plat-
form does not change, since the TPM has to be fully
trusted anyway. Thus, the requirements 1 (security),
2 (accountability) and 4 (non-discrimination) can be
fulfilled.

• Since the realization of property-based attestation within
a TPM does not depend on external components, changes
to the platform configuration cannot lead to unavail-
ability of sealed data (see requirement 6).

The disadvantage of this approach is the additional com-
plexity of the TPM which makes the TPM more expensive.
Nevertheless, the required complexity should be acceptable
compared to the complexity of the DAA protocol [7].

5.1.1 Property-based Attestation Using Certificates
An intuitive solution is to extend the TPM hardware in such
a way that it checks whether a valid property certificate ex-
ists that was created by a party that is trusted by the chal-
lenger. The realization of the property-based attestation is
quite simple: the TPM receives the demanded property P , a
public key of a TTP that is trusted by the challenger pkTTP ,
a property certificate cert(skTTP ; P ′, S′) and nonce r for
freshness. The TPM verifies the property certificate and
whether P ′ = P respectively whether S′ = S0. If positive,
it generates and returns a property-based attestation certifi-
cate certTPM := cert (skTPM ; P, r) where the corresponding
verification key pkTPM can be seen as a pseudonym of TPM.

Fulfilling requirement 5 (unlinkability) should not be prob-
lematic, since CA-based pseudonyms, or the DAA protocol,
can be used to blind the signature key skTPM .

The use of certificates that guarantee platform properties
has the commonly known problems of public key infras-
tructures, especially in the context of certificate revocations
(e.g., if a new bug is becoming public that undermines a cer-
tified property). Allowing the TTP to revoke a property cer-
tificate (requirement 3) thus requires additional TPM sup-
port ensuring that challengers can recognize if a revoked
property certificate was used. A simple but unsatisfying
solution is the use of (short) validity periods of property
certificates.

5.1.2 Group Signatures
A group signature scheme allows a group member to sign
messages anonymously on behalf of the group. In the case
of a dispute, the identity of a signature’s originator can be
revealed (only) by a designated entity [8]. In our model,
the public group signature key represents a property P ,
while the appropriate private group signature keys gener-
ated by the TTP represent different configurations provid-
ing the same property P . Since the verifier of a group sig-
nature cannot decide which secret key has been used to gen-
erate the signature, it does not get information about the
configuration of the attestor, fulfilling requirements 4 (non-
discrimination) and 5 (unlinkability).

To ensure that users cannot misuse the signature key (re-
quirement 1, e.g., to attest a wrong configuration, the TTP
binds the group signature key to the certified configuration.
Some group signature schemes [6] allow a designated entity
to exclude group members, thus selected (e.g., insecure) con-
figurations can be revoked (requirement 3). They also allow
the designated entity to add new group members and thus to
add new compatible configurations (requirement 6). Users
can decide which group signature key they load onto their
platform, therefore also the privacy requirement is fulfilled.
Appendix B outlines how the initialization, attestation, and
sealing protocols can be realized.

5.2 Extending TCG Software
5.2.1 Using Trusted Attestation Service (TAS)
If it is demanded not to modify the TPM, the extensions
discussed in Section 5.1 can be realized as separated trusted
third party that translates attestation requests into config-
urations online. Since online services are often performance

72

critical, we analyze in the following sections to what extend
TCG functionality allows us to implement a trusted attes-
tation service (TAS) as distributed (fully) trusted software
service that extends the functions provided by a TPM, and
that is executed on top of the operating system of the at-
testor (platform) (see Figure 4).

iseal(P ,D)

init(S)0

0attest(P)

send(D)

receive(D)

data(D)

i

0attest(S)

seal(S ,D)

TAS

boot(S)0

U C

TTP

TPM

0cert(sk ,S ,P)TTP

Figure 4: Property-based functions can be provided
by a fully trusted software service (TAS) that is ex-
ecuted on the user’s platform.

Both, TAS and operating system have to be fully trusted:
this opens new demands on the underlying software archi-
tecture. How these requirements can be fulfilled is discussed
in the following section.

5.2.2 The Basic Architecture
The maximum level of trustworthiness of a TCG platform
is limited by the trustworthiness of the TCB components.
Today’s operating systems are definitely inappropriate to be
used as a trusted software basis that cannot be manipulated
after it was booted15: they have conceptual security flaws
(e.g., an administrator who can bypass every security en-
forcement mechanism16) and error prone implementations
resulting from high complexity17.

Therefore, we assume in the following that the platform con-
tains a very small TCB based on a minimal security kernel
which is capable of protecting the TCB from other (un-
trusted) software. Example instantiations of such an archi-
tecture are Microsoft’s Next-Generation Secure Computing
Base (NGSCB) [10], which has a kernel that is called nexus,
or the PERSEUS security architecture [25, 26, 28] that uses
a microkernel of the L4-family [19] as its basis (see Figure
5).

In practice, it is very difficult for a challenger to decide
whether a concrete system configuration provides a desired
property. Even if the enforcement mechanisms of the trusted
computing base would be highly trustworthy (e.g., because it
was evaluated at EAL718), the property obviously depends
on the locally enforced security policy, too. To make the
analysis of the platform’s trustworthiness more realistic, it

15Note that the operating system has no access to the crypto-
graphic keys stored in TPM, but to all decrypted contents.

16The administrator can, for instance, at any time change
the state of the operating system.

17By exploiting a bug, e.g., based on a buffer overflow, an
attacker can control the operating system kernel, and thus,
change its state.

18Evaluation Assurance Level, see [9]

ApplicationsConventional Operating System
(e.g., L4−Linux)

Application

Operating System Environment

Operating System Kernel

Application Application

Conventional Operating System
(e.g., L4−Linux)

Application Application Application

Operating System Kernel

Operating System Environment

Conventional Hardware

ring 1−3

ring −1

ring 0

LaGrande

TPMConventional Hardware

T
A

S

T
A

S

T
S

S

T
S

S

PERSEUS NGSCBfully trusted

untrusted

trusted only by attestor

Nexus

Applications

New
New

L4 µ−kernel

PERSEUS Security Platform

Figure 5: Possible realizations of the basic trustwor-
thy architecture that provides trusted services and
applications.

is in our opinion meaningful to provide a policy-neutral oper-
ating system base that delegates the enforcement of policies
to the application level software (see [28]). Since the under-
lying TCB is now much more simpler, it has only to fulfill
simpler security requirements.

• Secure Path: The TCB has to provide a secure path
between provider and application, e.g., it has to en-
sure that only the provider’s application can access
the unsealed content. This requirement ensures that
the challenger and the TAS can communicate securely.

• Protected Domain: The TCB has to prevent that an
attacker (e.g., the local user or a concurrent applica-
tion) can access or manipulate the code or the data
of the application (which is similar to overwriting S0).
This requirement ensures that the code and the data
of the TAS are protected against attacks of concurrent
processes.

Both security architectures, PERSEUS and NGSCB, fulfill
these requirements [25, 26, 10].

Due to the fact that the module which realizes the property-
based functions is not a tamper-resistant module, some func-
tional limitations and changes to the trust model arise:

• Note that as mentioned in Section 3.1.1 the level of
the trust that can be attested is limited by the trust-
worthiness of the underlying security kernel.19 The
maximum trustworthiness of the TAS/OS pair has to
be considered by the TTP that certifies the properties
that are provided by a configuration.

• Since the policy enforced by the TAS obviously de-
pends on the security kernel and its own implemen-
tation, requirement 6 (availability) can only be ful-
filled in a limited way, since changes to one of the two
components leads to inaccessibility to the sealed data.
Therefore, the TAS has to provide a secure update

19For instance, if the TAS is implemented based on Linux
or Windows, it does not make sense to attest configurations
that are more trustworthy as these operating systems, since
an attacker can control the TAS by hacking the operating
system.

73

function that seals protected keys under the new con-
figuration before changing to that configuration (see
Section 5.4).

• The integrity of the TAS has to be ensured by binding
security-critical data to a platform configuration that
includes a correct TAS.

• While the TCG specification requires some kind of
tamper-resistance of the hardware modules, software
extensions can easier be manipulated, e.g., by eaves-
dropping the memory bus.

5.3 Solutions Without a Trusted Service
The trust model or the limited functionality of the software-
based realization of the property-based attestation may not
be satisfying. In the following we sketch a protocol that can
securely prove to the challenger that the platform configu-
ration provides a required property.

Since the challenger can verify the proof it does not need
to trust the implementation of the software service module
anymore. Only the user of the platform has to trust that the
software performing the protocol does not leak information
about the platform configuration. Software under this trust
model is summarized by the TCG as the Trusted Software
Stack (TSS) [13]. Thus, the implementation of the following
protocol can be seen as an extension to the TSS.

5.3.1 Proving Possession of Valid Property Certifi-
cate

The suggested property-based protocol is based on the ex-
istence of valid property certificates as described in Section
5.1.1.

The basic idea is that the platform proves that there is a
valid link between conventional attestation signature sigTPM :=
Sign(skTPM ; S0, r

′) created by the TPM and the certificate
sigTTP := Sign(skTTP ; S′

0, P
′) attesting that configuration

S0 provides P . Here r′ denotes a nonce.

Given the (common) inputs the verification key of the TPM
pkTPM , the verification key pkTTP of a TTP that is accepted
by the challenger, the desired property P and a nonce r.
The protocol should output TRUE to the challenger C, if
the following holds:

• TPM’s attestation signature is valid, i.e.,

true
?
= Verify(pkTPM ; sigTPM),

• the property certificate is valid, i.e.,

true
?
= Verify(pkTTP ; sigTTP),

• the desired and the certified properties are the same,
i.e., P ′ = P ,

• the certified and the attested configurations are the
same, i.e., S′

0 = S0, and

• the nonce r entered by the challenger C and the nonce
signed by the TPM are equal, i.e., r′ = r.

The above statements can be proven by general zero-knowledge
proofs since they are NP statements [12]. More concretely,
one can prove that he/she has a signature/certificate with-
out disclosing how the signature/certificate looks like. Note
that the signatures sigTPM and sigTTP are the secret inputs
to the protocol since the challenger should not learn infor-
mation about the platform configuration S0. For efficient
construction of such protocols one may use cryptographic
techniques similar to those used in the context of DAA.20

The unlinkability requirement (requirement 5) can be re-
alized by using skTPM as an anonymous session signature
key that was verified by the challenger using a CA-based or
DAA-based pseudonyms.

5.3.2 Proof of membership
A configuration blinding mechanism which was suggested
in [16] is to encrypt S0 values and sign a contract between
provider and consumer that defines the property that the
provider and the consumer agree on. To prevent that the
consumer from cheating, only S0 values encrypted under the
public key of a trusted third party can be transmitted. This
approach makes it impossible for providers to discriminate
an operating system or to force users to use a specific plat-
form configuration. Since the TPM also signs the encrypted
values, providers can be sure that the attested configura-
tion is valid. In case of a conflict, e.g., if a user accuses
the bank, the TPM vendor (or the court) can decrypt these
values to verify whether the user used the correct banking
software or another one. The problem of this approach is
that providers cannot verify the property enforced by the
user platform online. In this section we discuss an improved
method that allows online verification.

Instead of using a court to decrypt the configuration offline,
the TPM can also cryptographically prove that the blinded
configuration is contained in a set of certified configurations.
To use a proof of membership protocol for property-based
attestation, the TTP publishes a list of all platform con-
figurations S1 . . . Sn that provide a specific property P . To
attest properties, a local software service performs a conven-
tional attestation protocol with the TPM where it hides the
signed configuration. Then, a cryptographic protocol proves
that

• the blinded configuration value is contained in the list
of configurations published by the TTP, and that

• the TPM attestation signature is valid.

Here one can apply cryptographic techniques such as com-
mitments and zero-knowledge proofs to prove the statement.

To fulfill the revokeability and the availability requirements,
the underlying proof of membership protocol should offer
the possibility to dynamically remove configurations from
the list respectively to add new configuration into the list.

20A slightly extended protocol can be used for property-
based sealing: the attestor has to prove that it knows a
valid certificate Sign(skTPM ; ek, S0) on the encryption key
ek created by the TPM, and a valid property certificate
Sign(skTTP ; S′

0, P
′).

74

To fulfill the non-discrimination requirement completely, the
underlying protocol should allow the TTP to keep the list of
configurations secret. Otherwise, a remote challenger could
discriminate single configurations by accepting only those
properties which do not contain them.

5.4 TCB Updates
If the realization of property-based attestation depends on
the integrity of software components (as the solutions that
we pointed out in this section and in Section 5.3), the avail-
ability requirement cannot be provided. The reason for this
is that the current TCG specification (see Section 3) al-
lows only to certify non-migrateable sealing keys that are
bound to a fixed platform configuration. If the configura-
tion changes, the TPM denies the use of these keys.

One solution to that problem is the extension of the TCB by
update functionality: if, e.g., users can seal the private keys
of the TAS under another configuration by using a certificate
that states that the new configuration provides the same
property as the old one, updates of the TCB become possible
without violating security policies of all involved parties.

Update Example: Consider an operating system configura-
tion S0 that provides P certified by certTTP := cert (skTTP ,

S0, P). Further, the TAS uses a secret key SK that is bound
to the configuration S0. The update function allows the user
of the attestor to bind SK to another configuration Si iff the
user can provide a certificate that states that Si provides the
same properties as S0.

Another solution is to implement the complete sealing pro-
tocol including attestation of the encryption keys into the
software. The trust model will not change, since the chal-
lenger has to trust the configuration which has access to the
sealed data anyway. Note that the operating system can-
not access the cryptographic key used for sealing directly,
but it has access to the symmetric key used to encrypt the
sealed content [14]. Thus, challengers can also trust that the
property-based sealing protocol is trustworthy under this
configuration.

6. REFERENCES
[1] ACM. Proceedings of the 19th ACM Symposium on

Operating Systems Principles (SOSP’03), Bolton
Landing, NY, USA, Oct. 2003.

[2] R. J. Anderson. Security in open versus closed systems
— the dance of Boltzmann, Coase and Moore.
Technical report, Cambridge University, England,
2002.

[3] A. W. Appel and E. W. Felten. Models for security
policies in proof-carrying code. Technical Report
TR-636-01, Princeton University, Computer Science,
Mar. 2001.

[4] W. A. Arbaugh. Improving the TCPA specification.
IEEE Computer, pages 77–79, Aug. 2002.

[5] W. A. Arbaugh, A. D. Keromytis, D. J. Farber, and
J. M. Smith. Automated recovery in a secure
bootstrap process. In Proceedings of the Symposium
on Network and Distributed Systems Security (NDSS

’98), pages 155–167, San Diego, California, Mar. 1998.
Internet Society.

[6] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A
practical and provably secure coalition-resistant group
signature scheme. In M. Bellare, editor, Advances in
Cryptology – CRYPTO ’2000, volume 1880 of Lecture
Notes in Computer Science, pages 255–270.
International Association for Cryptologic Research,
Springer-Verlag, Berlin Germany, 2000.

[7] J. Camenisch and E. V. Herreweghen. Design and
implementation of the idemix anonymous credential
system. In Proceedings of the 9th ACM Conference on
Computer and Communications Security, pages 21–30,
Washington, DC, USA, Nov. 2002. ACM Press.

[8] D. Chaum, , and E. van Heijst. Group signatures. In
D. Davies, editor, Advances in Cryptology –
EUROCRYPT ’91, volume 547 of Lecture Notes in
Computer Science, pages 257–265. International
Association for Cryptologic Research, Springer-Verlag,
Berlin Germany, 1991.

[9] Common Criteria Project Sponsoring Organisations.
Common Criteria for Information Technology Security
Evaluation, Aug. 1999. Version 2.1, adopted by
ISO/IEC as ISO/IEC International Standard (IS)
15408 1-3. Available from
http://csrc.ncsl.nist.gov/cc/ccv20/ccv2list.htm .

[10] P. England, B. Lampson, J. Manferdelli, M. Peinado,
and B. Willman. A trusted open platform. IEEE
Computer, 36(7):55–63, 2003.

[11] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: a virtual machine-based platform for
trusted computing. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles
(SOSP’03) [1], pages 193–206.

[12] O. Goldreich, S. Micali, and A. Wigderson. Proofs
that yield nothing but their validity or all languages in
NP have zero-knowledge proof systems. Journal of the
ACM, 38(3):690–728, July 1991.

[13] T. C. Group. TCG software stack specification.
http://trustedcomputinggroup.org , Aug. 2003.
Version 1.1.

[14] T. C. Group. TPM main specification.
http://www.trustedcomputinggroup.org , Nov. 2003.
Version 1.2.

[15] N. Itoi, W. A. Arbaugh, S. J. Pollack, and D. M.
Reeves. Personal secure booting. In V. Varadharajan
and Y. Mu, editors, Information Security and Privacy
— 6th Australasian Conference, ACISP 2001, volume
2119 of Lecture Notes in Computer Science, pages
130–144, Sydney, Australia, July 2001.
Springer-Verlag, Berlin Germany.

[16] K. Kursawe and C. Stüble. Improving end-user
security and trustworthiness of TCG platforms.
Presented and basis for the panel discussion about
TCG at the 33. GI-Fachtagung, Frankfurt,
http://www.prosec.rub.de/Publications/KurStu2003.pdf .

75

http://csrc.ncsl.nist.gov/cc/ccv20/ccv2list.htm
http://trustedcomputinggroup.org
http://www.trustedcomputinggroup.org
http://www.prosec.rub.de/Publications/KurStu2003.pdf

[17] N. S. Laboratory. Secure hash standard. Federal
Information Processing Standards Publication (FIPS
PUB) 180-1, Apr. 1995.

[18] D. Lie, C. A. Thekkath, and M. Horowitz.
Implementing an untrusted operating system on
trusted hardware. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles
(SOSP’03) [1], pages 178–192.

[19] J. Liedke. Improving IPC by kernel design. In
Proceedings of the Fourteenth ACM Symposium on
Operating Systems Principles, pages 175–187, Dec.
1993.

[20] Microsoft Corporation. Building a secure platform for
trustworthy computing. White paper, Microsoft
Corporation, Dec. 2002.

[21] C. Mundie, P. de Vries, P. Haynes, and M. Corwine.
Microsoft whitepaper on trustworthy computing.
Technical report, Microsoft Corporation, Oct. 2002.

[22] G. Necula. Proof-carrying code. In 24th Symposium on
Principles of Programming Languages (POPL), pages
106–119, Paris, France, Jan. 1997. ACM Press.

[23] G. C. Necula and P. Lee. Safe kernel extensions
without run-time checking. In Proceedings of the
Second Symposium on Operating Systems Design and
Implementation, pages 229–243, Seattle, Washington,
Oct. 1996. USENIX Association.

[24] G. C. Necula and P. Lee. The design and
implementation of a certifying compiler. In
Proceedings of the 1998 ACM SIGPLAN Conference
on Prgramming Language Design and Implementation
(PLDI), pages 333–344, 1998.

[25] B. Pfitzmann, J. Riordan, C. Stüble, M. Waidner, and
A. Weber. The PERSEUS system architecture. In
D. Fox, M. Köhntopp, and A. Pfitzmann, editors, VIS
2001, Sicherheit in komplexen IT-Infrastrukturen,
DuD Fachbeiträge, pages 1–18. Vieweg Verlag, 2001.

[26] B. Pfitzmann, J. Riordan, C. Stüble, M. Waidner, and
A. Weber. The PERSEUS system architecture.
Technical Report RZ 3335 (#93381), IBM Research
Division, Zurich Laboratory, Apr. 2001.

[27] A.-R. Sadeghi and C. Stüble. Bridging the gap
between TCPA/Palladium and personal security.
Technical report, Saarland University, Germany, 2003.

[28] A.-R. Sadeghi and C. Stüble. Taming “trusted
computing” by operating system design. In
Information Security Applications, volume 2908 of
Lecture Notes in Computer Science, pages 286–302.
Springer-Verlag, Berlin Germany, 2003.

[29] D. Safford. Clarifying misinformation on TCPA.
White paper, IBM Research, Oct. 2002.

[30] D. Safford. The need for TCPA. White paper, IBM
Research, Oct. 2002.

[31] R. Sailer, X. Zhang, T. Jaeger, and L. V. Doorn.
Design and implementation of a TCG-based integrity
measurement architecture. In Proceedings of the 11th
USENIX Security Symposium. USENIX, Aug. 2004.

[32] R. Sailer, X. Zhang, T. Jaeger, and L. V. Doorn.
Design and implementation of a TCG-based integrity
measurement architecture. Research Report RC23064,
IBM Research, Jan. 2004.

[33] B. Schneier. Palladium and the TCPA.
http://www.counterpane.com/crypto-gram-0208.html#1 .

[34] Trusted Computing Platform Alliance (TCPA). Main
specification, Feb. 2002. Version 1.1b.

[35] J. Tygar and B. Yee. Dyad: a system using physically
secure coprocessors. In Technological Strategies for
Protecting Intellectual Property in the Networked
Multimedia Environment, The Journal of the
Interactive Multimedia Association Intellectual
Property Project, Coalition for Networked
Information, pages 121–152, MIT, Program on Digital
Open High-Resolution Systems, Jan. 1994. Interactive
Multimedia Association, John F. Kennedy School of
Government.

APPENDIX
A. EXAMPLE TAS REALIZATION
The main task of the TAS is to verify and attest that the
current platform configuration is compatible to a demanded
property. The comparison is done based on certificates pro-
vided by a trusted third party (see Section 4.2), while the
attestation is performed by a signature key that can only be
accessed by the fully trusted TAS.

A.1 Initialization
The main task of the initialization phase is to allow users to
convince external parties that the used TAS is trustworthy.
For this purpose, a signature key that was generated by a
TAS is certified by a TTP.

If the platform is started, it loads the security kernel and the
TAS while the TPM measures the platform configuration
and writes it to PCR0 to PCRn, while PCRn−1 stands for
the configuration of the security kernel and PCRn stands
for the measured configuration of the TAS. Then, the other
components of the TCB are loaded, followed by uncritical
services and applications.

To be able to prove the trustworthiness of its TAS using a
certified attestation key, the attestor performs a certification
protocol with the TTP:

1. TAS and TTP perform a conventional attestation pro-
tocol proving the trustworthiness of the attestor’s con-
figuration S0.

2. TAS creates an attestation key pair (skTAS , pkTAS)
and sends the public part, the TPM’s endorsement key
ekTPM and the vendors TPM certificate to the TTP.

3. The TTP checks whether the certificate is valid and
whether S0 is trustworthy. Then it creates a certificate
cert(skTTP , pkTAS) and seals the certificate under the
endorsement key ek and the configuration S0.

76

http://www.counterpane.com/crypto-gram-0208.html#1

4. The TAS unseals the certificate and checks, whether
the certified attestation key matches the locally created
key. If successful, the TAS hands out the certificate to
the user. Now, the TAS is able to convince challengers
that the TAS is trustworthy using skTAS .

A.2 Attestation
The goal of property-based attestation is to convince the
challenger that the consumer platform enforces a given prop-
erty without leaking information about the current platform
configuration.

1. The provider sends an attestation challenge including
the demanded property, a list of accepted TTPs and
fresh nonce to the TAS.

2. The TAS checks whether it owns a certificate stat-
ing that the current system configuration is compatible
with the demanded property and that it is signed by
an accepted TTP. If it has one, it signs the nonce and
sends the signature and the certificate of the TTP to
the challenger.

A.3 Sealing
Using the TAS, challengers do not have to analyze the trust-
worthiness of every platform configuration anymore. In-
stead, they only have to specify the desired property of the
attestating platform:

1. The attestor and the challenger have to agree on a se-
curity policy.

2. TAS creates a new asymmetric encryption key pair
(ekTAS, dkTAS) and signs the public key with its at-
testation key.

3. The challenger encrypts the content under the encryp-
tion key ekTAS , and sends the result together with a
list of accepted TTPs and the desired property P to
the TAS.

4. TAS checks whether it owns a certificate that states
that the current configuration is compatible to the de-
sired property and whether the certifying TTP is ac-
cepted by the provider. If the tests were successful,
TAS decrypts the content and hand it out to the ap-
plication.

B. GROUP SIGNATURE REALIZATION
B.1 Initialization
The user has to ask the TTP for a group signature key
SK

S0

Pi
with respect to a configuration S0 that is compatible

to policy Pi. The TTP creates the requested group signature
key, seals it under configuration S0, and sends it back to the
user platform.

B.2 Attestation
To attest that a platform enforces a property Pi, the chal-
lenger sends a fresh challenge to the user platform which
signs the nonce using the group signature key SK

S0

Pi
. If the

challenger receives the signed nonce, it can verify the sig-
nature using the corresponding public key PKPi

. Since the

attestor can access SK
S0

Pi
only if the platform is in configu-

ration S0, and if the challenger trusts the TTP, it can trust
that the user platform really enforces Pi.

77

	Introduction
	Conventions
	TC Overview
	TCG Model
	TCG Assumptions

	Deficiencies of TCG Attestation

	Property-based Attestation
	Ideal TC Component
	Real World TC Component

	Realization
	Extending TCG Hardware
	Property-based Attestation Using Certificates
	Group Signatures

	Extending TCG Software
	Using Trusted Attestation Service (TAS)
	The Basic Architecture

	Solutions Without a Trusted Service
	Proving Possession of Valid Property Certificate
	Proof of membership

	TCB Updates

	REFERENCES
	Example TAS Realization
	Initialization
	Attestation
	Sealing

	Group Signature Realization
	Initialization
	Attestation

