
Empirical Privileg e Profiling 

ABSTRACT 
T h e  well-known Principle of Least Privilege states that a 
program should run with the minimal authority that it requires to 
get the job done, and no more. However, application of the 
principle has been left to software developers, developers of  
installation procedures, and system administrators with few tools 
to assist them. How much privilege does a given program need? 
How do you know if you write a program that uses too much 
privilege or install a program with too little? Empirical privilege 
profiling provides a partial answer to this question by tracking a 
program's actual use of resources, which can be used as a guide 
during program development and installation, as well as for 
detecting intrusions and providing assurance for mobile code. In 
this paper, we introduce the concept of dealing with privilege as 
a measurable quantity, rather than in terms of  a "rule of thumb." 

1 INTRODUCTION 
The Principle of Least Privilege [1] states that a program should 
run with the minimal authority that it requires to get the job 
done, and no more. Programs, sites, and organizations that 
observe this principle help to minimize the amount of damage 
that can be caused by errors in a program or attacks that subvert 
it. For thirty years, this principle has served as a guide to 
program and system developers. However, it is difficult to 
translate this principle into practice. In general, a program will 
always have more privilege than it needs: if it has less, it will 
fail, people will be ale~ed, and the program privilege will be 
increased (perhaps more than necessary). By contrast, it 
typically goes unnoticed when a program has too much 
privilege. Worse, developers often take shortcuts in order to 
ease implementation, debugging, and testing, sometimes 
resulting in poor default installation parameters and hidden 
backdoors in programs. These can be exploited by either insider 
or extemal attackers. 
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Many years ago, one of the authors worked on the Multics 
project at MIT. As code was developed, team members 
specified access requirements for modules of the operating 
system, reasoning carefully about what access was needed by 
whom. When the system was finally tested, it failed repeatedly, 
because few modules had sufficient privilege to do their work. 
In order to get the system running, the programmers changed all 
access control lists to give sweeping access rights to f i les--  
including even "execute" permission on data files! Although 
this occurred before the formulation of the principle of least 
privilege--and may have contributed to i t -- i t  illustrates the 
difficulty of setting privilege appropriately without tools. 

We have begun an effort to create a system that can empirically 
approximate the least privilege required by a program. We 
assume that the program is a black box in the sense that we 
cannot examine and instrument the source code. (Some recent 
papers [2, 3] distinguish between white-box, gray-box, and 
black-box based on whether the analysis delves into program 
source or binary, examines artifacts such as the program stack, 
or can look only at kernel calls. By "black-box," we simply 
mean that source code is not available and that analysis focuses 
on execution, not on program artifacts.) The general approach is 
to run many instances of the program, typically with multiple 
Users, multiple hosts, and multiple sites, and to record the 
privileges actually exercised by all these instances of the 
program. This information is then collected to create an abstract 
composite privilege profile for the program. Any single 
program instance may well use less privilege than the composite 
profile; however, the composite profile specifies a reasonable 
minimum, and quite possibly less privilege than that granted to 
the program by the default installation. 

Empirical privilege profiling is potentially of use in several 
areas. First, groups of users can profile the privileges that a 
given application actually exercises when they use it; the profile 
for a group that uses the application for a limited purpose or in a 
restricted way could be quite different from the profile of a 
group of, say, undergraduate students. System administrators 
could use that information to set up the program's access to 
resources. Second, program developers could profile the 
program's use of resources and look for anomalies that indicate 
poor or excessive use of resources. We have noticed such 
anomalies in programs that we analyzed. Tracking resources 
used by a program could provide a rich new data stream for 
intrusion detection. 

A na'fve approach to profiling program privilege would be to list 
the raw privileges exercised by the program, such as "read file 
c :  \ f o o \ b a r \ b a z " .  However, raw privileges used in specific 
instances of a program are a poor indicator of future use. It is 
necessary to generalize over a wide range of individual 
computers, file systems, and sites; raw file names (and other 
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site-specific privilege information) are not acceptable. To 
collect abstract program privileges it is necessary to correlate 
privileges exercised by the same program on different computers 
at different sites and create an abstraction of each privilege. 

Further, a naYve approach to profiling program privilege would 
collect a set of privileges exercised by the program. However, a 
simple set does not provide enough information for correlating 
privileges across distinct program instances. A program may 
write to file A and file B, for example, where file A is a file 
specified by a user, while file B is a file private to the program, 
whose integrity is crucial to correct operation. Or file A might 
be a file that is only read by the program, while file B is one that 
it writes. In correlating privilege exercised by two programs, it 
is important to correlate the "same" privileges: A~ with A2 
(instances of  A written by programs Pi and P2, respectively) and 
Bi with B2 (similar instances of B). 

Our approach to privilege correlation is to associate each 
exercise of privilege with a point in the program. A point in the 
program that reads a preferences file, for example, will read a 
preferences file in every instantiation of the program at every 
site. Therefore, we construct a model of the program's 
behavior; we then associate each exercise of privilege with a 
program point in the model. The intuition is that the set of 
program points that access a given resource captures the 
semantics of the resource/?ore the point o f  view of  the program. 

To investigate the feasibility of program privilege profiling, we 
have instrumented Windows programs to collect data about their 
use of resources, implemented our approach in a simple test bed, 
and conducted an experiment to create an abstract profile based 
on several instances of Microsoft Notepad. In this paper, we 
report on the results of this 'preliminary investigation of 
empirical privilege profiling. 

In the next section of this paper, we present a model of program 
privilege, with particular application to Microsoft Windows. 
Section 3 describes an experiment we performed to validate our 
concept of privilege abstraction. In Section 4, we describe how 
the privacy of collaborators can be protected and how the system 
can protect itself from malicious inputs. We close with a 
discussion of the results obtained to date. 

2 A MODEL OF PROGRAM 
P R I V I L E G E  

A privilege profile for a program consists of a set of privileges 
that the program must have in order to function properly. 
Intuitively, a privilege is a resource together with a set of  access 
rights on that resource. 

An individual exercise of privilege is a pair <resource, {access 
right}>. For example, the right to read file Foo in Windows XP 
may be represented as <Foo, {FILE_READ_ACCESS}>. The 
bean of the privilege profile is a set of privileges. 

2.1 Abstract privileges 
We distinguish between abstract and concrete privileges; more 
precisely, the distinction is between abstract and concrete 
resources. A concrete resource is a file, registry key, or other 
resource that the program accesses by a specific name such as a 
pathname. An abstract privilege is the use of an abstract 

resource--that is, an abstraction of  concrete resources. 
Intuitively, an example of an abstract resource might be "the log 
file for the application" or "a new document that the application 
creates at the request of the user." 

In order to create abstractions for concrete privileges used in 
many instances of an application, we must correlate instances of 
the "same" concrete privileges. The central hypothesis of this 
effort is that such correlation is possible using the program 
points--that is, places in the c o d e l a t  which privilege is 
exercised. Specifically, we reason as follows: 

A concrete resource that is an instance of a given abstract 
resource will be accessed at the same program points as 
other instances of that abstract resource 

Therefore, by comparing the program points at which concrete 
resources are used, we can abstract from those instances to 
an abstract resource 

Figure 1 shows an abstract resource, identified by the program 
points that access it. 

O-, 

Prc~ram O-- 

& 

Figure 1. An abstract resource, identified only by the way it 
is used in the program 

Because program points are central to this line of reasoning, a 
privilege profile also includes the program points at which each 
(abstract) privilege is exercised. 

In the following sections, we further explore the concepts of 
program points, resources, and the privilege profile. A precise 
definition of privilege depends on the operating system, which 
defines the resources of a computing system as well as the 
applicable set of  access rights. In Section 2.5, we describe how 
these concepts ~e  implemented in Windows. 

2.2 Program points 
It remains to make precise our intuitive notion of "program 
point," which should be tied both to the application program to 
be profiled and to observations of program behavior at run-time 
(enabling us to peek inside the "black box"). We capture these 
by defining a program point to be a pair <pc, op> consisting of 
the application program counter (adjusted for the program's 
location in memory) and the kernel operation that requires 
privilege. Intuitively, the application program counter captures 
what the program thinks it is doing with the resource. The 
kernel operation captures its use of the resource and the 
privileges required for that use. By monitoring a process's 
kernel calls and associating them with the program counter, we 
can capture program points. 

Note that because modem programs in general make extensive 
use of dynamically loaded libraries (DLLs, also called shared 
objects in UNIXrM), a single application program counter 
typically causes many kernel operations to be invoked. We have 
observed dozens of different kernel operations associated with a 
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single application program counter. Thus, the program counter 
alone does not adequately characterize a program poinL 

2.3 Constant and variable resources 
Programs access some resources for their own use and others on 
the user's behalf. A constant or program-specified resource is 
one that the program "knows" about, such as a configuration 
file, a home directory, or a DLL that the program needs to 
execute. The exact pathname of a configuration file may vary 
between sites, for example based on the value of an environment 
variable. Nevertheless, the program typically expects and 
knows how to find this resource. At one or more points in the 
program, for example, the program will read, execute, or write a 
"constant" file resource; when the program accesses the file, it is 
always from these points. A (resource type-specific) invariant 
property is associated with a constant resource; for example, 
every instance of a constant file resource will have the same 
filename (last component of  the pathname). By using additional 
information, such as environment variables or strings embedded 
in the executable, we can specify invariant properties more 
accurately and completely. 

I am the configuration file, a J 
oonstant. "l'he program always 
checks me first. My name is I 

[ co~ifig.inl. _ • J 

Iama parameter to 
the program. It edits 

I me on the user's 
J behalf. 

Figure 2. Constant and variable file resources, accessed at 
various points in the program 

By contrast, a variable or parametric resource is one that the 
program has no a priori notion of. For example, the user may 
ask the program to append its output to a given file. In this case, 
the pathname and content of  the file have no meaning to the 

• program; any file supplied by the user will do. We call this a 
variable resource because it typically takes on different values 
for different executions of  the program. It can even take on 
multiple values within a single execution. This situation is 
shown in Figure 2, which depicts the program's use of a 
configuration file at two program points and of two variable 
resources, both used in the same way. Other variable resources 
may be determined by environment variables or the system 
configuration. For example, a file dialog box may always access 
the user's home directory. 

Distinguishing between constant and variable resources is 
important in order to accurately portray the program's use of 
resources. Variable resources are like parameters to a function: 
a variable can take on many distinct values (concrete resources), 
even within the same instantiation of  the program. IfNotepad is 
used to edit three files, each file corresponds to the same abstract 
variable resource. Advice to a system administrator about the 
access required for these resources must be couched in general 
terms: "Any file edited in Notepad requires .... " By contrast, 
each constant resource can be named more or less accurately: 

"The initialization file, which is in the application's home 
directory and is named ' f o o .  i n i '  requires .... " 

The distinction between constant and variable resources can also 
be exploited for correlating privileges between different 
executions of  a program. A program's initialization file, for 
example, always has the same filename (local name in the 
directory) and is always in the "same" place in the file system 
(where "same" is typically relative to a home directory or other 
parameter); correlation can exploit these invariant properties, 
which can typically be found in standard formats in the program 
executable. By contrast, variable data files have no a priori 
similarity, other than the way in which the program accesses 
them. 

2.4 The privilege profile 
An individual exercise of privilege is a pair <resource, {access 
right}>. For example, the right to read file Foo is represented as 
<FOO, {FILE_READ_ACCESS}>. The heart of  the privilege 
profile is a set of privileges. 

In order to facilitate correlation of concrete resources, a 
privilege profile records privileges together with the program 
points at which they are exercised. For each resource, the 
profile lists the program points that access the resource; there 
may be one or more of these. For each program point, the 
profile documents the access fights required for the access. 

More precisely, let us denote a map (partial function) from range 
R to domain D by {R => D}. Then the heart of  the program 
privilege profile is a map: 

I Resource => {ProgramPoint => 
AceessRight } } } 

In particular, note the difference between this and two maps 

{Resource => ProgramPoint} 
{ProgramPoint => {AccessRight } }. 

A single map distinguishes, between access rights required on 
two different resources, even wher~ they are accessed at the same 
program point. Using two maps does not. 

We can construct a profile by first running the program several 
times on test data to obtain a preliminary profile. The 
preliminary profile will contain some constants, some variables, 
and some concrete resources that have not occurred often 
enough to be categorized. As more data is collected, the EPP 
profiler incrementally learns more about these resources--and 
new ones that occur during the collection--and will be able to 
abstract them as either constant or variable abstract resources. 
We believe that we can in fact do better than that by using 
environment variables and strings embedded in the binary 
executable to differentiate between constant and variable 
resources. 

2.5 Privilege in Windows 
Although the general concept of  privilege profile is applicable to 
any platform, the specifics depend on the operating system, 
which defines the resources for which privilege is required and 
the access rights that apply to them. In this research, we have 
been concerned with the Windows XP operating system. In this 
section, we briefly describe the Windows security model, which 
we used in this effort. We believe that a model that is adequate 
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to capture privilege in Windows will suffice for more 
perspicuous systems, such as Linux. 

The Windows security model is more complicated than that of  
UNIX. Windows distinguishes between access rights, which 
apply to securable objects and are documented in access control 
lists, and "privileges," such as SeDebugPrivilege (the 
ability to modify the memory of  another process) or 
S e B a c k u p P r i v i l e g e  (the ability to copy files for backup), 
which control access to system resources and system-related 
tasks and are therefore needed to perform privileged operations. 
System privileges are assigned by administrators to user and 
group accounts. In our work, we create a uniform model of  
privilege by treating such Windows privileges as access rights 
on a generic SYSTEM resource. In this paper, we will not be 
further concerned with such special privileges, but in general 
they must be considered when creating privilege profiles for 
programs. 

Windows defines access rights for many kinds of  resources. 
Persistent resources include files, directories, registry keys, and 
system services (such as a service that provides access to the 
Internet). Ephemeral resources include pipes, threads, inter- 
process synchronization objects, access tokens (which capture 
salient information about the process's owner), and many others. 
We are concerned only with privileges on persistent objects. 

Each type of resource is associated with a set of  type-specific 
access rights; for example, FILER.EAD_ACCESS is an access right 
on files and directories. Type-specific rights are meaningful to 
objects of a specific class; for example, KEYQUERY_VALUE 
applies 'to registry keys and FEE APeEND_DATA to files and 
directories. Windows also defines generic access rights 
(GENERICP, EAD, GENERIC_WRITE, and GENERICEXECUTE), 
which apply to all classes of objects and are mapped by the 
kernel into type-specific access rights for each class of securable 
object. Users can also define new resource types and new types 
of  access rights on them. The work described in this paper 
focuses on file and directory resources. However, it applies 
equally to registry keys and we believe can be extended to all 
persistent resources. 

Each kernel operation requires a certain set of  rights to succeed. 
We instrument calls to the kernel at the interface to 
n t d l l . d l l  [sic], which is the relatively stable and 
documented interface to the Windows kernel. In some cases, the 
required set of rights depends on arguments to the operation. 
For example, the operation to open a file specifies requested 
rights on the file; if the owner of  the process does not enjoy 
those rights, the operation fails) 

In Windows, we define a privilege as a set o f  access rights 
associated with a securable object. For example, the right to 
read file Foo can be represented as 
<FoO,{FILE__READ ACCESS}>. 2 Access rights for a given 

Many n t d l l . d l l  calls to open an object also accept 
MAXIMUlv~ALLOWED as a desired access; in such cases, the 
rights actually required depend on the operations (e.g., 
NtWriteFile) performed on that object 's  handle. 

2 In general, the second element of  the pair is a set of  access 
rights. Reading a file in Windows typically exercises five 
distinct access rights. 

securable object are defined by the object 's owner in a 
Discretionary Access Control List (DACL) associated with the 
object. 

3 AN EXPERIMENT IN PRIVILEGE 
ABSTRACTION 

We performed an experiment to test our ideas of privilege 
abstraction. Three different users each exercised Microsoft 
Notepad, performing various functions for a short time, for a 
total of eight "runs." 

Some parameters of  the experiment are shown in Table 1. 
Notepad's use of  resources was captured and a log of  exercises 
of privilege was prepared for each run. The logs were fed into a 
correlation engine that attempted to correlate the runs' use of 
resources by comparing program points. We required three 
different concrete instances of  an abstract resource to categorize 
the resource as a variable or constant. In addition to program 
points we used limited additional information for correlation; 
specifically, we identified DLL files to the correlation procedure 
as constant resources. In a practical system, invariant properties 
of all constant resources could be extracted from the binary code 
of the program, the DLLs it invokes, and possibly from other 
sources, such as environment variables of  the platform. The 
invariant properties would be used to ensure that (a) no variable 
resource was incorrectly categorized as a constant, and (b) no 
constant (from that run) was interpreted as a variable. 

Table 1. Use of file resources in eight invocations of Notepad 

User 

Rob 
i 

~gob 

Test 

Test 

Test 

Carla 

Test 

Log size # uses of # res. 
(KB) 3 privilege used 

Actions 

Create new file on 
3588 951 281 desktop 

4042 1049 64 Create 2 files on desktop 

Open (for reading) one 
1966 518 56 file from command line 

and one from GUI 

Open file for reading, 
1523 406 51 save as new file (create 

file) 
2148 578 54 Open 2 files for reading 

and create 2 new files 

Create new file and print 
2476 715 65 it 

Create and write file 
51 20 5 from command line 

Carla 3539 963 57 Read, edit, and save file 

3 Log sizes are large because logs are written in XML and 
expand the often-complex data structures used as arguments to 
kemel calls. 
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In total, 633 concrete resources were accessed at thirteen 
program counter values of Notepad. 4 Correlation identified 53 
constant abstract resources (most of them DLLs) and 6 variable 
abstract resources. After all eight instantiations had been 
analyzed, 44 concrete resources remained unassigned. 

The constant resources used by Notepad in our experiment 
include DLLs and system services. (Some files, directories, and 
non-DLL executables were identified as constants by our early 
software, which does not make use of environment variables or 
the program binary to help identify program constants. Our 
preliminary analysis identified three constant executables 
accessed--for reading--by one user's execution of Notepad: 
explorer, tweakui, and xemacs. The last two are certainly not 
Notepad program constants.) 

System services, such as access to files stored on a server, are 
handled by special services in Windows; services are treated as 
resources, access to which is mediated by the kernel. Notepad 
uses three system services: "day rpc service," wkssvc, and 
srvsvc. To access the services, the process exercises 
FILE:APPEND_DATA, FILE_READ_ACCESS, and 

FILE_WRITE_ACCESS privileges on named pipes in order to 
communicate with each system service. 

The DLLs used by Notepad are shown in Table 2. DLLs were 
called from many different points in the program. A single 
program point can also trigger loading of a large number of 
DLLs; one program point started 20 DLLs. 

Table 2. DLLs called by Notepad in eight invocations 

xpsp2res.dll mydocs.dll 

ole32.dll rpcrt4.dll 

uxtheme.dll audiodev.dll 

wintrust.dli drprov.dll 

setupapi.dll ntlanman.dll 

riched20.dll oleaut32.dll 

shel132.dli browseui.dll 

comct132.dll mslbui.dll 

ntshrui.dll davclnt.dll 

mpr.dll shdocvw.dll 

msctf.dll apphelp.dll 

netapi32 advapi32.dll 

wininet.dll kerne132.dli 

userenv.dll clbcatq.dll 

cscui.dli nview.dll 

The variable resources--all files and directories--used by 
Notepad are summarized in Table 3. Six abstract resources are 
identified by the values in the first two columns of Table 3. 

The "PC values" in Table 3 are the last four digits of  the hex 
representation of the program counter at the point of return from 
the call. The table records the number of concrete files that 
contribute to the abstract resource. For example, four directories 
from four different invocations of Notepad contributed to the 
fourth resource of Table 3: 

C: \documents and settings\rob\desktop 
C:\documents and settings\rob\desktop 
C:\some_dir\new files here 
C: \documents and settings\carla\My documents 

In Table 3, we estimated how Notepad used each resource, 
based on what users were doing in the experiment. 

Table 3. Variable resource use by Notepad 

PC # How resource is 
values Access rights files ~ used by Notepad 

DELETE 
FILEAPPEN[~DATA 

2CC6 FILE READ ATTR 

4A61 FILE_WRITEACCESS 8 Files created using 
4EDE FILE ..WRITE_ATTR Notepad 
4C30 FILE WPJTE EA 

READ CONTROL 
SYNCHRONIZE 

FILE_READACCESS 

2683 FILE_REAI~ATTR Files opened and 
2659 FILE READ EA 5 read using Notepad 
2DB0 READ_CONTROL (but not saved) 

SYNCHRONIZE 

FILEREAI~ACCESS Files in same 
2CC6 SYNCHRONIZE 4 directory as file 
2D89 traversed by 

Notepad 
FILEREADACCESS 

2CC6 FILE READ ATTR 
- - Directory in which 2AC3 FILE READ EA 
- - Notepad opened and 

2D89 FILE WRITE ACCESS 
- - saved files 4EDE READ CONTROL 

SYNCHRONIZE 

FILE_REAI~ACCESS 

FILE READ ATTR Directory in which 2CC6 - - 
2D89 FILE READ_EA 8 Notepad opened file 

READCONTROL (but did not save) 
SYNCHRONIZE 

_ _ Directory traversed 2D89 FILE READ ACCESS 3 
SYNCHRONIZE in file chooser (?) 

4 This underestimates the number of resources actually accessed. 
The Notepad execution included one or more additional threads 
whose execution began in a DLL. At least one thread managed 
the GUI; it required many more DLLs and other privileged 
operations. In the interest of focusing on the most important 
aspects of our problem, we omitted those threads from our 
analysis. 

Correct assignments. Of the 53 constants identified by 
correlation, 49 were correctly identified. All six variable 
resources were correctly identified, representing from three to 
eight distinct files or directories each. 

Variables identified as constants. Four resources that clearly 
are instances of variables were identified as constants by our 
algorithm. Two or three others (.exe files) are probably 
variables, yet they happened to occur in many of our runs, due to 
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the small number of test sites. Mis-assignments occurred, for 
example, when common directories (e.g., " e :  \ D o c u m e n t s  
a n d  S e t t i n g s \ A l l  U s e r s " )  occurred in almost every 
run. 5 These mis-assignments could be avoided by identifying 
the invariant properties of constants in advance; static analysis 
of the program together with environment variables should be 
sufficient to identify almost all constants and effectively 
eliminate this type of mis-assignment. 

Constants identified as variables. None. 

Resources that the algorithm was unable to classify. The 
algorithm was unable to identify 44 concrete resources of the 
633 that it encountered, due to insufficient evidence. For 
example, only one run used the printing function, which invokes 
DLLs not otherwise used; the algorithm therefore lacked enough 
evidence to classify them. In practice, we would expect that at 
the beginning of privilege profiling, there would be many 
unclassified resources, but that after a while very few would 
remain. 

4 PROTECTING COLLABORATOR 
PRIVACY AND DETECTING 
INCORRECT INPUTS 

We now consider how to protect the privacy of collaborators 
that provide input to the profile and to protect the profile from 
malicious inputs. 

4.1 Protecting collaborator privacy 
The privilege profile contains a list of  resources, with the 
privileges that are required for each resource. The potential 
threat to privacy is that the names of resources could reveal 
information about the collaborator's site that is not intended to 
be public. For example, the path name of a file exposes 
information about the structure of  the local file system. To a 
lesser extent, the full path name of a registry key can provide the 
same information. We would argue that other resources are 
much tess likely to betray sensitive information. Of the various 
Windows resource classes, only file names and registry key 
names contain potentially sensitive information. 

We argue that first, little or no information need be collected for 
constant resources, since the resource can be located using 
invariant properties that can already be present in the profile. 
Second, little information is needed for variable resources, since 
particulars about a resource (such as pathname) are not relevant 
to the program and can be ignored. Third, it will often be 
possible to express invariant properties in terms of environment 
variables or the values of registry keys. 

However, in some cases it may be desirable to collect 
information about some resources, for example to establish a 
relation between resources (such as several files located in the 
"home" directory of an application). We argue that this can be 
done without jeopardizing collaborator privacy, since our only 

5 It can be argued that c : \ D o c u m e n t s  a n d  
S e t t i n g s \ A l l  U s e r s  should be considered a constant 
resource, as it is the value of the environment variable 
%ALLUSERSPROFILE%. 

concern during correlation is to check for the appearance of  the 
same strings in path names. The key idea is to hash each 
element in a path name. The hashes can easily be compared for 
equality, while the original path names cannot be re-computed 
from the hashes. 

Consider the following approach. 

In the profile, each constant element is represented by a hash 
value. The profile might contain partial path names for constant 
file and registry key resources, as described above (see Section 
2.3). This information is distributed to each collaborator site. 
The partial path names identify the constant elements of  the 
pathnames and elide the variable elements. At collaborator 
sites, local file path names are hashed element-wise and 
compared with the (hashed) names in the profile. If  a match is 
found, the file corresponds to a constant resource in the profile; 
there is no need to send any path name to the EPP central site. 

Information about variable resources is also sent to collaborator 
sites. This information does not include path names, since such 
names are not meaningful. Instead it includes, for each variable 
resource, the set of  program points (which implies a set of  
access rights) at which the variable is accessed. If  a program 
resource is accessed at the same set of  program points, it is 
considered an instance of the variable resource. Again, there is 
no need to send information about the resource to the EPP 
central site. 

If the file access pattern does not match any constant or variable 
resource in the profile, the path name can be sent to the EPP 
central site, hashed element-wise, together with information 
about the program points at which the file was accessed. The 
element-wise hashing protects the path name from possible  
attempts to extract information about the local system. 

4.2 Malicious and incorrect inputs 
There is a danger that malicious collaborators will provide 
incorrect information, either to vandalize the system or to trick it 
into attributing excessive privilege to a target program. 

Any defense against malicious collaborators must rely on the 
assumption that there are very few of them compared with the 
total number of collaborators. By requiring corroboration for 
new privilege requirements from alternative sites and users, we 
can avoid premature acceptance of spurious inputs. 

What kind of  incorrect inputs can occur'? The malicious user 
can attempt to introduce new program points and new constant 
resources. He can also introduce new access rights on constant 
or variable resources. We treat each of these threats in turn. 

First, the user can attempt to introduce a new program point that 
is not in the program. Introduction of new program counter 
values can be checked against the program binary. Introduction 
of new ntdll operations for a given program counter value is 
discussed below. 

Second, the malicious user can introduce a new constant 
resource (for example, access to a protected system file or a 
confidential personnel file belonging to a user). If we exploit 
the fact that constants must appear in the program binary, then 
this threat is extremely limited. 
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Third, the user can attempt to introduce new access rights on a 
constant or variable resource. Because we identify resources by 
the set of program points that access them and required access 
rights are determined by the ntdll operation (part of the program 
point), this requires introduction of a new program point for the 
resource. To defend against this threat, we can require that each 
program point in the profile be corroborated by N collaborators, 
where N can be a small absolute number or a percentage of the 
number of collaborators. The former is probably preferable, 
since unusual exceptions may result in rare program points 
being reached. 

In the limit, it may prove difficult to distinguish in the privilege 
profile between extremely rare---but correct and benign--uses 
of privilege and the effect of  concerted attacks on the profile. It 
remains to be seen what type of challenges arise in practice. 

5 RELATED WORK 
Program behavior profiles have been an important topic in 
anomaly-based intrusion detection, since they can be used to 
detect buffer overflows and other exploits that cause a program 
to behave in novel and usually undesirable ways. An accurate 
and parsimonious representation of program behavior is based 
on traces of its calls to the operating system kernel [4-6]. Our 
program profiles are coarser, in the sense that we are concerned 
only with their use of resources; many changes to the program 
code, including changing the order of calls, will be reflected in 
kernel call traces but be invisible to our method. Our profiles 
also require instrumentation of the program itself (to obtain 
program points), not just the interface to the kernel. On the 
other hand, profiles that focus on resource usage have the 
potential to be exceptionally parsimonious while still capturing 
the essence of the program's security implications. 

Koved et al. [7] have collected information about a Java 
program's exercise of privilege. [7] is based on static analysis, 
but they are also working on empirical analysis, which is 
applicable to a wider range of languages. Inoue ([8], Ch. 4) uses 
an empirical approach in support of dynamic sandboxing for 
Java programs. Both [7] and [8] express privileges in terms of 
Java's convenient Permission class; our concept of privilege is 
useful when dealing with privileges defined by other platforms. 

Anita Jones's thesis [9] provides a model for the distinction 
between constant and variable resources (or "program" vs. 
"user resources); Jones identified program-related resources in 
calls to the operating system. More recently, Ford [10] has used 
resource "ownership" as a criterion in intrusion detection. 

6 DISCUSSION 
We have shown that it is possible to collect information about a 
program's exercise of privilege from a variety of users and to 
produce an abstract profile of the program's use of resources. 
Such a profile could be used for program testing (avoiding 
unintended use of resources), program installation (establishing 
correct privileges for privileged programs), and intrusion 
detection (detecting anomalous use of resources). 

Using empirical privilege profiling for intrusion detection is 
subject to the usual caveats that apply to any anomaly detection 
technique: detecting anomalies requires training, training takes 

time, and during training the system is unguarded. By using a 
large number of sites for training--which abstract resources 
supportmthis time can be minimized. Further, administrators 
can observe that the program exercises excessive privilege and 
investigate further. Another frequent objection to empirical 
approaches is that empirical profiles are typically incomplete, 
since rare but harmless behaviors are excluded even after 
extensive training. On the other hand, such profiles also exclude 
rare but possibly harmful behavior, such as the exercise of back 
doors. We believe that rare false positives against a mature 
profile do not pose a serious problem. 

Distinguishing between constant and variable resources makes it 
possible to monitor the resources that the program accesses on 
the user's behalf and detect insider attacks. If the set of those 
resources can be characterized for any one user, it might be 
possible to detect the anomalous--and possibly unauthorized-- 
use of  privilege. In this context, one might wish to use 
optimistic access control [11], in which questionable attempts to 
access resources (in this case, novel accesses) are permitted but 
logged for later analysis. 

Y'et another possibility is for a software provider to provide 
clients with a privilege profile for the software, with the 
guarantee that it includes all privileges required by the program. 
At run-time, the client can perform privilege enforcement in a 
manner analogous to model carrying code [12, 13], that is, 
prohibit any access to the resources that exceeds the profile. 

In performing this work, we encountered instances of surprising 
exercise of privilege by Windows programs. For example, the 
commonplace Microsoft Calculator writes to the protected file 
C:\WINDOWS\win.ini (to record use of Scientific mode) 
only/f the user is an Administrator (the write silently fails for 
users not in the Administrator group). The standard Windows 
file chooser, used by Notepad as well as many other 
applications, opens files with wild abandon for reasons of user 
convenience--for example, to obtain a custom icon to display 
next to the file name. While such practices thwart traditional 
attempts at reducing program privileges, the use of tools such as 
we are working on would enable system designers and 
programmers to find ways to avoid them. 

The basic premise of this work is that by observing a program's 
actual use of  resources, we can find the least privilege that it 
needs. The profligate use of resources that the program does not 
in some sense really need threatens that premise. We hope to be 
able in the future to learn ways to distinguish vital from trivial 
use of resources--for example, by observing program behavior 
in restricted environments. At the very least, we can identify 
and expose the problems and contribute to their solution. 
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