
Software Diversity

A Position statement for the panel
Use of Diversity as a Defense Mechanism

John MCHugh
Faculty of Computer Science

Dalhousie University
Halifax, NS, Canada

mchugh at cs.dal.ca

For over twenty years, software diversity has been touted in
some circles as an effective and cost effective way to improve
system reliability. Based on well established practice in the
replicated hardware arena, the notion is that, if replica fail-
ures are independent, exponential gains in reliability can
be obtained for linear increments in cost. Unfortunately in
the software case, the "if ' is, in general, not true and the
gains that can be realized are far from exponential. The
kinds of hardware failures against which replication works
are distributed independently randomly in the time domain.
Software failures are time invariant and distributed in the
data domain (with uncertain distributions) so that identical
replicas will all fail on the same inputs. Thus, the holy grail
of software fault tolerance has been to introduce diversity
in such a way that failures are distributed independently in
the data domain. These have been largely unsuccessful.
Early researchers assumed that software written by differ-
ent developers would manifest independent failures. The
early experiments by John Knight (later joined by Nancy
Leveson) showed that the situation was much more than
complex and that "prayer for diversity" (footnote - I coined
this term in the early 1980s to cover the case in which the
developers were not allowed to communicate and the cus-
tomer prayed that the results would be sufficiently diverse
to provide the necessary gain.) did not work. The Knight
and Leveson work demonstrated something more insidious,
though it should have been obvious, that errors tended to
cluster in "hard" parts of the problem space. This means
that correlated failures can occur when multiple program-
mers make different errors dealing with the same hard case.
Shortly thereafter Eckhardt and Lee showed analytically
that the reliability gains to be expected from even slightly
correlated failures were minimal and this should have been
the end of the discussion. In the reliability area, there have
been a number of attempts to force diversity, including sev-
eral that deserve the term "voodoo software engineering." A
particularly egregious example was reported at FTCS some

NSPW 2005 Lake Arrowhead CA USA
© 2006 ACM 1-59593-317-4/06/02....$5.00
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

years ago and was apparently used in the A320. It involved
partitioning the instruction set of the processor used into
two subsets, either of which was sufficient for writing the
software needed. Since the programmers were writing in
two different instruction sets, it was claimed that common
mode failures were impossible; QED. The problem of achiev-
ing software failure independence through diversity can be
paraphrased as follows: Each replica should be correct for
most input cases, but when it is not, it must be wrong for
cases where the other replicas are correct. This is, arguably,
a difficult requirement to fulfill.
More recently, the idea of diversity has resurfaced in se-
curity where it has been claimed that the Microsoft/Intel
mono culture is a major factor in enabling worm and virus
attacks. Appeals are made to the biological arena where
diversity (or the lack thereof) are said to be factors in de-
termining whether a particular biological system is robust
against disease, insects, and even fire.
The prevalence of vulnerable machines is clearly a major fac-
tor in the rapid spread of many worms and viruses, but it is
not clear that simply introducing some sort of arbitrary di-
versity solves the problem. Unlike the reliability case where
the consequences of a replica failure are bounded by a voting
mechanism, the consequences of a replica failure in a secu-
rity attack may be unbounded. For example, suppose that
we are seeking high level diversity in a web server by using
IIS under Windows on an Alpha, Apache under Linux on In-
tel, and WebSTAR under OS X on a PPC G5. Queries are
submitted to all three and the results are voted under some
reasonable similarity measure.(footnote - Never mind how
improbable it is that the results will be suitably similar or
tha t the data can be kept in sync.) Surely, this configuration
should be immune to common mode attacks.
Consider the following scenario. Mallet, the canonical bad
guy, using the resources of a national laboratory, develops
independent exploits for each server / platform combination.
These exploits have the common capability that they attack
one platform / server each where they plant a back door for
future use and then return the expected result. On the non
vulnerable platforms, the attack does not function, but the
query simply returns the expected result. Any high .level
voting mechanism succeeds. The back door is designed to
be triggered by the same query on all replicas. After using
all the variants of the attack, Mallet has a reasonable level
of confidence that all the replicas are compromised and that
the common back door is open.

19

Although an extreme example, the point to be considered is
that diversity comes in a wide variety of flavors and an at-
tacker can often find or force a common vulnerabil i ty where
none might be expected.
The above example should be taken as i l lustrat ing why the
appeals to statistics commonly made by the reliabili ty and
dependabil i ty communities may not be appropr ia te in the
area of security. While it is tempt ing to view vulnerabilit ies
tha t can be used for security exploits as just another fault
waiting to be discovered and subject to being reached in
the fullness of t ime under normal usage or even test condi-
tions, this is probably not appropriate. In many cases these
vulnerabilities lie outside the specified (but not checked or
enforced) interface for the program. In most cases, to be
effective, the program inputs tha t reach the vulnerable code
are not only well outside the space of "normal" inputs for the
program, but must lie within a very specific region of the ab-
normal space and exhibit a narrowly defined structure. For
all practical purposes, the probabil i ty of a spontaneous ex-
ploitation by a user who is unaware of the vulnerabil i ty is
zero. Similarly, the probabili ty tha t the vulnerabil i ty man-
ifests itself as a bug in response to normal usage is equally
small. Knowledge of the vulnerabili ty by a small commu-
nity does not change this. The vulnerabi l i ty can only be
exploited if someone who knows about it constructs and
uses an appropriate input. If the knowledge is closely held
by malicious interests, the likelihood t h a t exploitat ion will
eventually occur is probably one, but the t iming depends on
the motivations and objectives of the holders. I f the vulnera-
bil i ty becomes widely known, the probabi l i ty of exploitation
in the immediate future becomes one as soon as an exploit is
developed. Neither the zero or one cases provide any lever-
age from an analysis viewpoint.
I suspect that most large, complex programs developed us-
ing commonly practiced software development techniques
using unsafe languages such as "C" have exploitable vul-
nerabilities and that these are d is t r ibuted in the potential
input space in such a way that they are not removed by the
normal test and modify cycle tha t contr ibutes to reliabil-
i ty growth. From a modeling s tandpoint , the best tha t we
can do is ascribe a (constant over t i m e) probabil i ty of 1 to
the existence of exploitable vulnerabil i t ies in such programs.
The probability that an exploitable vulnerabi l i ty will be dis-
covered in a given program over an a rb i t r a ry time interval
is externalized, depending on the motives of the attackers,
their level of skill, where in the code the vulnerabil i ty lies,
how the program is used, what advantages might accrue to
the exploiters, etc. This is unknowable, in general, and ap-
peals to statistics are generally not helpful.

20

