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ABSTRACT 
We predict t ha t  we will soon witness a t tacks  on all kinds of 
systems t h a t  will be based on the  at tacked systems'  worst- 
case behavior. For example, the  worst-case performance of 
Java Bytecode Verification rises quadrat ical ly  with  program 
length. By sending a legal, bu t  difficult-to-verify program 
to a server vir tual  machine, we can keep t ha t  server occu- 
pied for an inordinate  amount  of time, effectively making 
it unavailable for useful work. The  problem, however, is 
not  restricted to mobile-code verification: for example, an 
attacker could exploit knowledge about  a jus t - in- t ime com- 
piler's register al locator by sending it a part icularly difficult 
to solve graph-coloring puzzle. The  same vulnerabil i ty  can 
be exploited if the  at tacker  has in t imate  knowledge of the 
da ta  structures used in the  at tacked system. Similar prob- 
lems occur in hardware,  e.g. wi th  respect to  power variabil- 
ity or the heat  dissipation of processors. Malicious programs 
can exploit which par ts  of computer  chips dissipate power, 
thereby overheating regions of the  chip t h a t  are known to 
contain no t empera tu re  sensors. This  a t tack could be used 
to affect ba t te ry  life or cause early chip aging. Unfortu- 
nately, worst case-based at tacks are ha rd  to counter  wi thout  
also limiting the  system's  behavior  in the  average case. 

1. INTRODUCTION 
Recently, first a t tacks  based on the  worst-case behavior  of 
systems have been r epo r t ed - - in  areas as different as mobile 
code [12], general applications [8], and  heat  dissipation of 
processors [9]. The  main  character is t ic  shared by these at- 
tacks is t h a t  they  target  systems t h a t  have been optimized 
for the average case and  do not  include sufficient margin of 
safety for the worst case. 

In this paper, we contend t h a t  correct behavior  in the  av- 
erage case is not  sufficient to defend systems against  worst- 
case behavior based attacks.  Instead,  there  needs to be a 
dual focus on the  (worst-case-)performance. Otherwise, as 
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we will show, systems become vulnerable.  Often this  means 
t h a t  systems need to be re-designed to prevent such at tacks 
in the  first place. 

For example, the  JVM bytecode verification algori thm ex- 
hibi ts  quadrat ic  worst-case execution complexity. We have 
been able to construct  relatively small mobile programs t h a t  
require hours of verification on high-end workstations. The  
programs in quest ion are perfectly legal JVM code, perform 
no malicious action on the  host,  and will eventually be veri- 
fied as being safe. However, the  process of verification itself 
is so costly as to  effectively cons t i tu te  a denial-of-service at- 
tack. Current  mobile code systems t reat  verification and 
just- in-t ime code generat ion as atomic operations. As far 
as we know, there  is not  a single existing Java  Vir tual  Ma- 
chine in which verification or just- in-t ime code generation 
can be in terrupted by the  user---other than  by killing the  
whole Vir tual  Machine. And for the  increasingly impor tan t  
server-side virtual machines, human  intervention is not  even 
an option. 

The  problem with  these kind of at tacks is t h a t  the  scenar- 
ios where the a t t ack  occurs do not  const i tute  "illegal" uses 
of the  system being attacked. In fact, there might be com- 
pletely reasonable valid and useful programs or inputs,  t h a t  
jus t  by incident---or by malicious in tent - -cause  the system 
to exhibi t  some kind of worst-case behavior. There often 
exist simple precaut ions against  these attacks. In the  case 
of bytecode verification, e.g., one could deploy a t radi t ional  
moni tor  t ha t  would abor t  verification when a certain t ime 
limit is exceeded. It  is noteworthy, however, t h a t  these coun- 
termeasures always come with the  risk of rejecting certain 
useful programs. 

Hence, the  problem is similar to  t ha t  of defending against  
low-intensity viruses or worms t h a t  cause damage while "fly- 
ing under  the  radar"  wi thout  ever t ipping off an intrusion- 
detect ion system. Unlike such a low-intensity virus or worm, 
however, the  a t tack  in our case consumes all of the  cycles of 
the  host  and prevents useful calculations. 

Unfor tunate ly , ' a t tacks  based on worst-case behavior can af- 
fect a/l parts  of systems. In the  compilation pipeline of Mo- 
bile Code Execution Frameworks, e.g., an adversary tha t  
knows the  target  v i r tual  machine 's  register allocation algo- 
r i thm might  be  able to maliciously craft a valid mobile-code 
program containing a part icularly difficult to solve graph- 
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coloring puzzle. Or, to attack the heat sensors present on 
modem processors, an adversary could send a program that  
specifically over-uses parts of the chip that  are not  close 
to sensors. This kind of attack results in an overheating 
of parts of the chip, thereby causing, e.g., increased power 
consumption or accelerated chip aging [9]. 

An interesting point to note is that  "security by obscurity" 
seems to be a perfectly valid approach to secure systems 
against this kind of attacks. However, in the end it only 
increases the effort needed to obtain the necessary informa- 
tion to run an attack. In the case of systems whose source 
code is avMlable this effort is basically not existent, for bi- 
naries and hardware it consists of re-engineering the system 
behavior and exploring its construction, and for systems for 
which only the input /output  behavior can be observed the 
effort consists in analyzing exactly behavior. 

In the realm of hardware, "security by obscurity" is applied 
by default. Since, e.g, the on-chip temperature sensors are 
hidden in the chip packaging, there is no easy way to find out 
whether the chip only has sensors as described in the spec- 
ification. As we will discuss briefly in Section 2.2.2, chips 
might very well contain more heat  sensors than documented, 
to limit the chip's vulnerability. 

The remainder of this paper is structured as follows: The 
next section gives several examples for systems that  have 
not been designed 'with the worst case in mind. The exam- 
pies chosen come from two areas, namely the vulnerability 
and attackability of data  operations and hardware systems. 
These examples support our contention that  a paradigm 
shift is necessary towards making systems aware of worst- 
case behavior based attacks and hardening them against 
those attacks. In Section 3, we argue that  the solution may 
very well lie in designing systems based on their worst-case, 
rather than average-case behavior. Currently, systems like 
virtual machines, J IT  compilers, and many processors are 
fine tuned for either high performance or low cost in the 
average case, with the hope that  the worst case will rarely 
occur--we assert that this approach is simply too dangerous. 
A summary concludes our paper (Section 5). 

2. WORST CASE BEHAVIOR-BASED AT- 
TACKS 

Systems that  accept user programs or inputs must use spe- 
cial care to avoid that  the input causes one or several system 
components to exhibit worst-case behavior. This section 
presents some examples for such systems that  must be opti- 
mized for the worst and not for the average case. We start 
by looking at attacks based on some form of algorithmic 
complexity (Section 2.1), and later on present an example 
from the realm of hardware (Section 2.2). A commonality 
of the attacks described is that  in order to succeed, the at- 
tacker needs intimate knowledge about  the implementation 
or the system layout. 

Beside the examples presented, there are many more docu- 
mented in literature. Garfinkel [15] describes nested HTML 
tables as an attack on some browser. Due to bad imple- 
mentation of the layout algorithms in Some browsers, they 
would perform super-linear work to determine the on-screen 
layout of the table. Stubblefield and Dean [10] describe an 

1: todo ~-- true 
2: w h i l e  todo = t rue  d o  
3: todo ~ false 
4: for  all  i in all instructions of a method do  
5: i f  i was changed t h e n  
6: todo ~ true 
7: check whether stack and local variable types 

match definition of i 
8: calculate new state  after i 
9: for  al l  s in all successor instructions of i do  

10: i f  current s tate for s ~ new state derived from 
i t h e n  

11: assume state after i as new entry state for s 
12: mark s as changed 
13: e n d  i f  
14: e n d  for 
15: e n d  i f  
16: e n d  for 
17: e n d  w h i l e  

F i g u r e  1: T h e  s t a n d a r d  v e r i f i c a t i o n  a l g o r i t h m  found  
in  S u n  M i e r o s y s t e m ' s  J V M  i m p l e m e n t a t i o n s .  

attack against SSL servers. In this attack a malicious client 
coerces a web server into performing expensive RSA decryp- 
tion. Again this attack is based on the intimate knowledge 
of the implementation of the web server. 

2.1 Algorithmic Complexity Attacks 
In this section we look at three examples from different 
areas, that  are closely related. We start  with a denial-0f- 
service attack on the Java  Bytecode Verifier, based on the 
knowledge how a large class of Virtual Machines perform 
verification. The  next attack applies the same ideas to the 
compilation pipeline in mobile-code execution frameworks. 
Finally, we describe the general case that  the first two ex- 
amples axe specializations of, namely the attackability based 
on the worst-case behavior of operations on data  structures. 

2.1.1 Java Bytecode Verification 
Static mobile code verification was introduced as an alter- 
native to the dynamic checking of type safety properties at 
runtime through dynamic execution monitors [7] by Gosling 
and Yellin [28, 21]. Using dynamic runtime checks can cause 
a significant runtime overhead at execution time. The ba- 
sic ingredient of every JVM bytecode verifier is an abstract 
interpreter for Java Virtual Machine Language instructions. 
The stacks and virtual registers of this abstract interpreter 
store types, rather  than values. Similarly, the instructions 
of the abstract interpreter operate at the type-level only 
and do not perform any actual calculations. For an exten- 
sive discussion of conditions for bytecode to be accepted by 
the verifier see [20]. Figure 1 shows a simplified version of 
the algorithm that  is used, with slight modifications, in all 
Java Virtual Machine implementations that  we are aware 
of, including Sun's own CVM [27] and HotSpot virtual ma- 
chines [26]. 

Regarding the complexity of verification, the analysis of 
straight-line code is inexpensive, since the abstract inter- 
preter only propagates type information through the instruc- 
tions and computes the abstract stack state after each in- 
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I . iconst O; ifeq LI 
r - - " l  

3 ( / i c o n s t  O; istore I 

5 ~ goto L2 
6 ~LI: ~fconst 2;fstore 1 It 
8 "L2: return 

F i g u r e  2: Ver i f i ca t ion  o f  J a v a  b y t e - c o d e  t h r o u g h  i t-  
e r a t i v e  da ta - f low analys is .  T h e  ve r i f i e r  t r a v e r s e s  t h e  
m e t h o d  f r o m  t h e  f i rs t  i n s t r u c t i o n  t o  t h e  las t .  W h i l e  
c o n d i t i o n a l  b r a n c h  i n s t r u c t i o n s  s u c h  as ifeq are ei- 
t h e r  t a k e n  or  n o t - t a k e n  by t h e  v i r t u a l  m a c h i n e ,  t h e  
a b s t r a c t  i n t e r p r e t e r  cons ide r s  b o t h  cases  a t  t h e  s a m e  
t ime .  I n  th i s  e x a m p l e ,  t h e  loca l  v a r i a b l e  is se t  t o  a 
f l o a t  i n  o n e  of  t h e  b ranches ,  a n d  t o  a n  i n t e g e r  in 
t h e  o t h e r .  A t  t h e  m e r g e  p o i n t  ( i n s t r u c t i o n  8), t h e  
t y p e  o f  t h e  va r i ab l e  b e c o m e s  T,  b e c a u s e  t h e  t y p e  o f  
t h e  loca l  va r i ab le  d e p e n d s  o n  w h e t h e r  t h e  b r a n c h  
was t a k e n  or  not .  A n y  a t t e m p t s  by  t h e  p r o g r a m  to  
r e a d  loca l  va r i ab les  o f  t y p e  T w o u l d  b e  r e j e c t e d  by  
t h e  ver i f ier .  T h e  e x a m p l e  c o d e  s h o w n  h e r e  c o n t a i n s  
no  b a c k w a r d  b r a n c h e s ,  and  h e n c e  t h e  ana lys i s  c a n  
be  c o m p l e t e d  in a s ing le  i t e r a t i o n .  I f  t h e  t a k e n  a n d  
n o t - t a k e n  c o d e  b locks  had  b e e n  l o c a t e d  before t h e  
ifeeq i n s t r u c t i o n  ( b a c k w a r d  b r a n c h ) ,  t h e  a b s t r a c t  in- 
t e r p r e t e r  wou ld  h a v e  had  t o  i t e r a t e  o v e r  t h e  c o d e  
a s econd  t i m e  to  d e t e r m i n e  t h e  t y p e  o f  t h e  loca l  
va r i ab le  in  t h e  m e r g e  po in t .  

struction. The runtime of such a data-flow analysis is signif- 
icantly increased if the code contains jumps, exception han- 
dlers, or subroutines, which introduce forks and joins in the 
control-flow graph. When separate control flows are merged 
together, an instruction's predecessors may have different 
abstract stack or variable types. After merging the state 
information of the two incoming control flows, the data-flow 
analysis has to be repeated for all instructions which are 
reachable from this point in the control flow of the method. 
For simplicity, the existing Java verifier repeats the entire 
data-flow analysis for every instruction of a method until 
there are no more changes. 

For average Java programs, the verifier algorithm quickly 
reaches a fixed point after only a few iterations. For straight- 
line code or code that  contains only forward branches, the 
verification algorithm terminates already after a single iter- 
ation (Figure 2). It is obvious t h a t - - i n  theory--the Java 
verifier could need up to n iterations over the method, with 
n being the number of instructions in the method. Since for 
each iteration the verifier might have to visit all instructions, 
the overall complexity is at least O(r~2). 

Such quadratic runtime behavior does not only exist in the- 
ory. In fact, simple Java programs can be constructed that  
expose the worst-case scenario in practice. Figure 3 shows 
a very simple Java program that  does nothing but store an 
integer into a local variable and jump backwards through 
the code until it finally returns. 

Studying the verifier algorithm reveals that  newly computed 
type information is forwarded immediately to instructions 
that come syntactically after the current instruction. To 

1 iconst O; istore 1 
3 / g o t o  LO 

4 / L 3 :  return~'-----.~..,~ 
5 (  L2: ~ iconst O; ifeq LS~,.N 

7 ~ X-goto L2 J 
8 ~ L l : ( i  . . . .  t O; ifeq L2~xX 

"- goto LI 
IllO ~ : ~ 4 i c o n s t 0  ifeqLl J 

13 : ~ goto LO; 
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F i g u r e  3: J a v a  b y t e c o d e  p r o g r a m  t h a t  t akes  n i t-  
e r a t i o n s  t o  be  ve r i f i ed  u s i n g  S u n ' s  s t a n d a r d  D F A  
ver i f i e r  a p p r o a c h .  T h e  e n t r y  s t a t e  for  each  bas ic  
b lock  d e p e n d s  o n  t h e  s u c c e s s o r  bas ic  b lock.  T h e  
t y p e  o f  t h e  first  loca l  v a r i a b l e  is d i s p l a y e d  for each  
i t e r a t i o n  o f  t h e  D F A .  I t  is i n i t i a l l y  a s s u m e d  t o  be  o f  
u n k n o w n  t y p e  a n d  is d i s c o v e r e d  t o  b e  an  in t ege r  (I) 
d u r i n g  success ive  i t e r a t i o n s .  S h a d e d  boxes  ind ica t e  
a c h a n g e  in t h e  c u r r e n t  i t e r a t i o n ,  f r a m e d  boxes  wil l  
b e  v i s i t ed  in t h e  n e x t  i t e r a t i o n .  

35 i i i i i i i 
I X worst case data flow with empty basic blocks 

30 r worst case data flow 

2 s  .. i • i " i " i i 

2 0  • • i . . . .  ~, - - - i  . . i  .... : .~.. 

' °  t- ! ~ i x, " ! " = ' ~ ! ~  - i  
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0 10000 2 ~  ~ ~ 50000 ~ 
method size (bytes) 

F i g u r e  4: Ver i f i ca t ion  t i m e  for  v e r i f y i n g  a s ingle  
m e t h o d  c o n t a i n i n g  a w o r s t - c a s e  da t a - f l ow  scenar io .  
T h e  x-axis  i nd i ca t e s  t h e  l e n g t h  o f  t h e  m e t h o d  by te -  
c o d e  in by tes ,  w h i c h  is p r o p o r t i o n a l  t o  t h e  n u m b e r  
o f  bas ic  b locks  N u s e d  t o  c o n s t r u c t  t h e  code .  T h e  
a r r o w s  i n d i c a t e  for  c o m p a r i s o n  p u r p o s e s  t h e  c o d e  
s ize for  p a t h  l e n g t h  N = 3000. 

instructions that  come syntactically before the current in- 
struction, the new abstractions will only he forwarded in 
the next iteration of the DFA. The simplistic approach of 
the traditional Java bytecode algorithm to iterate over the 
bytecode until a fixed point is reached simplifies the genera- 
tion of attacks like the one shown in Figure 3, but any other 
iteration order would also exhibit a particular (possibly dif- 
ferent) worst-case behavior for which a malicious program 
could be constructed. 

We have measured the verification time for two malicious 
programs designed to exhibit the worst-case performance of 
the Java verifier using the Sun Microsystems Java 2 HotSpot 
Client VM [12]. Figure 4 shows the verification time for a 
single method containing bytecode with an increasing max- 
imum data-flow path of length N. This time includes only 
the time it takes the verifier to prove safety. The code 
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F i g u r e  5: C o m p r e s s i o n  o f  c o n s t r u c t e d  c o d e  e x a m -  
p l e s  us ing  t h e  s t a n d a r d  J A R  a r c h i v e  f o r m a t .  T h e  
c o d e  is e x t r e m e l y  wel l  c o m p r e s s i b l e  as  i t  r e p e a t s  
i den t i ca l  c o d e  p a t t e r n s .  W h i l e  t h e  v e r i f i c a t i o n  t i m e s  
i nc reases  by  o v e r  f a c t o r  5000,  t h e  J A R  f i le  m e r e l y  
g r o w s  b y  l e s s  t h a n  200 by t e s .  

is never actually executed or compiled to executable code. 
The first curve shows the verification time for a worst-case 
path length problem with empty basic blocks. The second 
curve in the graph shows the maximum flow path problem 
with .some additional code added to each basic block, which 
further slows down the verifier. Both curves clearly show 
quadratic growth. 

All measurements were taken on a 2.53 GHz Pentinm 4 and 
the Sun HotSpot VM 1.41. The maximum verification t ime 
we observed on this machine for a single method was ap- 
proximately 40 seconds. Since the size of method code in 
Java is limited, this t ime can not be increased. However, 
to achieve even longer verification times, an attacker could 
hide more than just one of these methods in the code. Just  
including 20 methods instead of one already increases the 
verification t ime to approximately 15 minutes on the test 
machine we used. 

The ~tandard J A R  archive format used by Java can be used 
to drastically reduce the apparent size of the malicious code. 
The code patterns used in the presented scenarios lend them- 
selves for compression due to their very regular structure. 
Figure 5 indicates the compressed size for different prob- 
lem lengths N.  While the verification times increases by 
over factor 5000, the J A R  file merely grows by less than 200 
bytes. The J A R  archive format thus represents another ex- 
ample of a well-meant algorithm with appropriate average- 
case performance, which however exhibits very unexpected 
worst-case behavior. 

We have used the two algorithmic shortcomings described 
here to construct a malicious applet [11] that  disables the 
Java VM of web browsers for some time. The applet  is 
10kb in size and indistinguishable from regular applet code, 
because it is a legal and correct Java program. Short of 
disabling Java applets, the user cannot prevent or interrupt 
the loading of this applet. In fact, existing browsers do 
not even allow the user to interrupt the verification because 
the browser implementor never considered the verification 
t ime to be costly enough. Some browsers, including some 
versions of the Microsoft Internet Explorer, allow the verifier 

bucket bucket 

F i g u r e  6: N o r m a l  o p e r a t i o n  o f  a h a s h  t a b l e  i m p l e -  
m e n t a t i o n  ( r igh t  h a n d  s ide)  v e r s u s  co l l i s ions  c a u s e d  
by, e .g . ,  m a l i c i o u s  i npu t .  

to continue the verification silently and continue to hog the 
CPU in the background even if the user leaves a website 
containing an applet that  takes an excessive amount of t ime 
to verify. 

2.1.2 Attacking the Mobile-Code Compilation Pipe- 
line 

Denial-of-service attacks are not limited to the bytecode ver- 
ification phase, which is executed early in a bytecode-execu- 
tion framework. Any code transformation algorithm applied 
to mobile code during its path from a portable bytecode for- 
mat  to natively executable machine code is vulnerable at its 
point of worst-case complexity. This applies in particular 
to compiler optimization algorithms, which are traditionally 
chosen for speed in the average case but  not  for worst-case 
performance, and some of which use heuristics to solve prob- 
lems like graph coloring and instruction scheduling that  are 
known to be NP-complete [6, 17]. 

An example for such an attackable optimization algorithm is 
register allocation. Register allocation is an important com- 
ponent of any J I T  compiler that  strives to achieve good code 
quality. The classic register-allocating algorithm is struc- 
tured after Chaitin 's graph coloring allocator [6, 5]. Many 
improvements and variants have been proposed [2, 3, 16, 
19], but most of this research was focused on improving the 
average-case performance. Poletto et al. showed that  reg- 
ister allocation using graph-coloring has a quadratic worst- 
case complexity for certain pathological cases [23] and pro- 
posed a linear-scan algorithm for register allocation. This 
algorithm is not guaranteed to find the optimal register al- 
location for any given problem, but  has a linear worst-case 
performance. To truly harden the virtual machine against 
worst-case behavior based denial-of-service attacks, how- 
ever, this principle of trading off some code quality in return 
for linear time complexity has to be extended to the entire 
code-processing pipeline. 

2.1.3 Attacking Data-Structure Operations 
If we abstract from the just presented examples, the com- 
mon property is the worst-case behavior of the underlying 
algorithms. Crosby and Wallach [8] show how to attack sys- 
tems for which the implementation of certain data  structures 
like hash tables is known. Hash tables have an average-case 
complexity of O(n) for inserting n elements, and a worst- 
case complexity of O(n 2) if all elements hash to the same 
bucket in the table. Figure 6 shows the comparison between 
the average case and the worst case as given by [8]. 
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F i g u r e  7:  P e r f o r m a n c e  of  t h e  n e t w o r k  i n t r u s i o n  de-  
t e c t o r  B r o  u n d e r  a t t a c k .  T h e  so l id  l ine  m a r k s  t h e  la- 
t e n c y  for  p r o c e s s i n g  o f  r e c e i v e d  packe t s ,  t h e  d a s h e d  
l ine t h e  n u m b e r  o f  d r o p p e d  p a c k e t s  in t h o u s a n d s .  
T h e  a t t a c k  is ba sed  o n  s e n d i n g  S Y N  packe t s  a t  a 
r a t e  o f  1 6 k b / s e c o n d .  

Crosby and Wallace describe how to compute such an attack 
on hash tables [8]. They also describe attacks on two hash 
table implementations of the Perl interpreter, the Squid web 
proxy, and the DJB DNS cache. Finally, they present an 
attack on the Bro intrusion detection system [22], which 
also is highly vulnerable to the proposed attacks. Figure 7 
shows the result of attacking Bro with SYN packets at a rate 
of 16kb/second. As can be seen, already for this relatively 
slow attack the number of dropped packages and the latency 
in processing received packages is considerable. For more 
details on the attacks c.f. [8]. 

Obviously this kind of attack is not limited to hash tables, 
but in principle can be used against any data  structure and 
its operations that  fulfill three conditions: there must be at 
least an order of magnitude difference between the runtime 
for the average and the worst case, the operations must be 
deterministic, and the source code must be available. 

2.2 Hardware Attacks 
This section complements the just  described attacks on soft- 
ware with two examples for attacks on hardware. We start 
by describing an attack based on the behavior of a power 
supply subsystem when the current drawn by the system 
changes. The second attack targets chips and their on-chip 
heat sensors. Compared to many software systems, hard- 
ware usually has the advantage that  

2.2.1 Power Variability Attacks 
Joseph et al. [18] describe a possible attack caused by the 
increasing focus on power dissipation issues in current micro- 
processors. These issues have lead to a group of proposals 
of power-saving techniques, e.g. clock gating, that  gener- 
ally are very effective in reducing average power. However, 
many of these techniques also result in increased variabil- 
ity of both power dissipation and the current drawn by the 
processor. This increased variabilities can cause supply volt- 
age fluctuations, which is a significant problem since chips 
may malfunction if the supply voltage rises or drops out 
of a chip-specific tolerance range. The variability is caused 

by the power supply's inductance, which together with the 
current variations produces ji t ters on the chip's supply lines. 
This problem is know as the dI/dt problem, since the mag- 
nitude of voltage ripples caused depends on the change of 
current over time. 

2.2.2 Heat Dissipation Attacks 
Another  example for a system that  is vulnerable to worst- 
case behavior based attacks is the cooling system for pro- 
cessors (or chips in general). Obviously, a chip's power and 
heat dissipation depend on the program(s) executed on the 
chip. Consequently, a malicious program might try to over- 
heat  parts of the chip to cause, e.g., increased power usage 
to drain batteries, heat damage to the chip, or general in- 
stability of the system. 

Together with the increase in performance of modern chips 
comes an increase in power density. To allow high perfor- 
mance while keeping cooling cost low, the cooling system 
is optimized for the average case instead of the worst case. 
As the average workload does not induce worst-case power 
dissipation, especially not over longer periods, the cooling 
system can be kept much smaller. To guard the system 
against the worst-case, it then needs to be equipped with 
sensors to throt t le  the system if the on-chip heat gets to 
high, or even shut off or reboot in extreme situations. 

The vulnerability caused by this has been reported by Dad- 
var and Skadron [9]. The authors deal with the Pentium 4, 
a chip that  employs two on-chip sensors to measure heat. 
The chip's thermal control circuit uses an internal thermal 
diode and compares it to a reference current. This sensor 
has been placed close to the area of the chip that  is expected 
to be the hottest  under normal operation. This means that  
under certain circumstances, namely a workload that  does 
not  represent the average case, other regions of the chip 
might actually become hotter  than the area monitored by 
the sensor. The sensor's measurements are not visible from 
the outside, but are used exclusively by the thermal control 
system. Whenever this system detects thermal stress, the 
CPU activity is thrott led by interleaving short periods of 
complete inactivity with normal operation. 

The authors report on their early findings with respect to 
thermal vulnerabilities. Under normal operating conditions 
they were not  able to cause thermal throttling, however with 
partial blocking of the system's air vents or with disabling 
the fans altogether, 1 they could slow down a system by 50%. 
Even more important ,  the new multi-threaded Prescott core 
is reported to reach core temperatures that already during 
normal operation get close to the throttling trigger temper- 
ature. As the authors argue in [9] this will pose a serious 
risk of thermal attacks against such systems. 

3. COUNTERMEASURESmAND WHY 
THEY DO NOT WORK 

In general, the  best countermeasure against the attacks de- 
scribed in this paper is to design systems for the worst case--  

1This requires additional software and user-rights to access 
the corresponding flags in the system, however the authors 
report on several programs that  give "normal" user pro- 
grarns exactly these rights. 
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if it is known. In contrast to security flaws previously discov- 
ered in systems like the JVM [4], the enabling property for 
worst-case behavior based attacks on systems is an inherent 
property of the system and not merely some faulty imple- 
mentation or mis-design that  could easily be exchanged. 

In the case of the JVM verifier, rewriting the algorithm to 
iterate over the code in some other order, or the introduction 
of a work list algorithm, would not significantly improve 
the situation. Each of these algorithms would still expose 
quadratic runtime behavior for some worst case scenarios. 

However, a number of mitigating factors exist. First, cur- 
rent JVMs limit the code size per method to 65,536 bytes. 
On high-end desktop systems this limits the maximum ver- 
ification time we were able to achieve using a single method 
to approximately 40s. This (probably accidental) ceiling 
prevents the construction of worst case scenarios with near- 
infinite verification time. 

Further shortening the maximum method length of Java 
methods is not an option, since long Java methods are not 
uncommon. Some compilers emit t ing Java bytecode gen- 
erate long methods close to the limit defined in the Java 
specification. It would be not surprising if Sun decided to 
remove the current code size l imitation in future versions of 
the Java Virtual Machine. 

It seems unlikely that one could establish a clear set of rules 
to detect classes of malicious input tha t  are responsible for 
causing a system to exhibit its worst-case behavior. For the 
attacks on software systems presented in this paper, such 
rules could be to reject programs because they take more 
than a certain number of iterations to verify or because more 
than a certain number of entries map to the same bucket in 
a hash table. Obviously, any such number would be chosen 
arbitrarily and would impose a very vague and imprecise 
restriction of acceptable programs. 

On the other hand, trying to detect patterns such as the ones 
described in this paper would not eliminate the problem--  
more complex and less obvious examples can be easily con- 
structed. It  would also get us back to the pattern matching 
approach used in virus detection tools, something that  byte- 
code verification was supposed to free us from. 

The impact of the complexity-based attacked just  described 
can be increased increasing the intensity of attacks, e.g. by 
shilSping a large number of malicious methods to the verifier, 
performing several vol tage/current  changes in short time, or 
starting several threads with stress marks in short time. 

4. A NEW SECURITY PARADIGM 
As already pointed out, we contend that  the only chance to 
counter attacks that  are based on the worst-case behavior of 
certain parts of systems is a new security paradigm. Instead 
of targeting only the safety of certain properties of incoming 
data, the new paradigm must also take into account the 
complexity and design of the whole system. In the case of 
the hardware examples presented in this paper this means 
that  the system must be equipped with sensors to identify 
the effects of executing malicious programs. For the software 
examples this means to target the whole compilation path 

from verification up to execution and the careful design and 
selection of all data  structures and operations. 

We are currently investigating possible approaches to harden 
systems against worst-case behavior based attacks. In the 
case of attacks based on algorithmic complexity, the vul- 
nerability demonstrates the need for not only correct but 
also ej~icient algorithms. With software applications, e.g., 
moving to Grid- and service-based architectures, in which 
computations are sent to hosts for execution, these efficient 
algorithms are going to be essential for system reliability in 
the near future. 

As we have shown previously, the code compression format 
used by Java lends itself to conceal from the user the true 
size of transported programs. Compression algorithms can 
also be exploited in many other ways. Clasen used a missing 
range check in the zlib decompression algorithm to construct 
PNG images that  crash the browser because the decompres- 
sion algorithm tries to allocate unreasonably large amounts 
of memory [24]. It is entirely possible that  similar vulnera- 
bilities exist in any other compression format, but this has 
apparently not  yet been studied. 

Our own main interest is to harden Java Virtual Machines 
against the kind of attacks described. Therefore, we are 
currently constructing an "algorithmic testbed" Java Vir- 
tual Machine that  can be configured with different variants 
of critical algorithms. We have also developed a tool to au- 
tomatically generate JVM class files that  present particular 
hard to solve algorithmic puzzles. This tool is currently used 
in benchmarking existing JVMs, highlighting their potential 
vulnerabiUties, and aiding the removal of such vulnerabili- 
ties. Our aim is to harden the existing Java-based infor- 
mation infrastructure already deployed against such worst- 
case behavior based attacks. Although no such attacks have 
yet been reported, they could be very costly in scenarios in 
which computations are sent to remote servers in the form 
of "agents". 

The scope of this process is quite broad by nature: For many 
code optimizations, well known heuristics exist to speed up 
their average case performance. However, little to no em- 
phasis has been placed on the worst-case behavior of these 
algorithms in the context of being a potential security risk. 
In particular, iterative analyses such as escape analysis, reg- 
ister coalescing, live-range splitting, instruction scheduling, 
and register allocation through graph coloring can have a 
very poor worst-case performance. Existing J IT  implemen- 
tations must be analyzed to identify their weaknesses, and 
also to provide a framework of code-optimization algorithms 
with well understood worst-case behaviors. 

For the verifier, we have developed such a hardened algo- 
rithm. After performing an initial type check using a super- 
ficial type system, it converts the Java bytecode to Static 
Single Assignment form (SSA) [25, 1], and only then checks 
the consistency of type flows using the whole Java type sys- 
tem to verify type safety [13, 14]. While this algorithm has 
a higher average-case cost than the standard Java verifica- 
tion algorithm, it has a much better  worst-case behavior. 
Namely, all phases beside the SSA construction can be per- 
formed in linear time. Many higher-end J I T  compilers for 
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Java generate SSA anyway at later stages of dynamic code 
generation. While SSA construction is the main cost in our 
algorithm, these frameworks can get verification at an incre- 
mental cost by using our verifier and reusing the constructed 
SSA. Currently, they perform the standard Java verification 
before starting the actual compilation. 

5. CONCLUSION 
Future software-application architectures are moving to ser- 
vice-based and Grid architectures, in which computations 
are sent to hosts for execution. Soon, these service-based 
execution frameworks will be omni-present, making the ac- 
tual network-based execution mechanism invisible to the 
user. In these architectures, efficient algorithms for each 
step in the chain from receiving mobile code to compiling 
it to native code and executing it will be needed to protect 
against complexity-based attacks. The threat of these sub- 
tle denial-of-service attacks has been neglected, apparently 
because it does not occur in dally average-case use of mo- 
bile code. In the case of an unsupervised server at the heart 
of a service-based framework, however, having the frame- 
work verifying, analyzing, compiling, and executing several 
mobile-code programs in parallel will make each and every 
phase in the framework vulnerable to complexity-based at- 
tacks. 

At the same time chips are being optimized to use as little 
power as possible and their cooling systems are minimized 
to be only as big as necessary. As a result, large groups of 
systems are vulnerable by thermal attacks based on power 
variations and too small cooling systems. 

We therefore advocate a new security paradigm based on 
complexity-hardened systems. Given that currently a large 
amount of vulnerable systems is already in place, there is 
no quick fix to this problem. Instead, we will need to re- 
think the architecture of those systems--while current sys- 
tems have been selected and designed for their average case 
behavior, we will need to construct systems where each step 
and module has a provable worst-case behavior. 
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