
Average Case vs. Worst Case Margins of Safety in
System Design

Christian W. Probst
Informatics and Mathematical Modelling

Technical University of Denmark
2800 Kongens Lyngby, Denmark

probst@imm.dtu.dk

ABSTRACT
We predict t ha t we will soon witness a t tacks on all kinds of
systems t h a t will be based on the at tacked systems' worst-
case behavior. For example, the worst-case performance of
Java Bytecode Verification rises quadrat ical ly with program
length. By sending a legal, bu t difficult-to-verify program
to a server vir tual machine, we can keep t ha t server occu-
pied for an inordinate amount of time, effectively making
it unavailable for useful work. The problem, however, is
not restricted to mobile-code verification: for example, an
attacker could exploit knowledge about a jus t - in- t ime com-
piler's register al locator by sending it a part icularly difficult
to solve graph-coloring puzzle. The same vulnerabil i ty can
be exploited if the at tacker has in t imate knowledge of the
da ta structures used in the at tacked system. Similar prob-
lems occur in hardware, e.g. wi th respect to power variabil-
ity or the heat dissipation of processors. Malicious programs
can exploit which par ts of computer chips dissipate power,
thereby overheating regions of the chip t h a t are known to
contain no t empera tu re sensors. This a t tack could be used
to affect ba t te ry life or cause early chip aging. Unfortu-
nately, worst case-based at tacks are ha rd to counter wi thout
also limiting the system's behavior in the average case.

1. INTRODUCTION
Recently, first a t tacks based on the worst-case behavior of
systems have been r epo r t ed - - in areas as different as mobile
code [12], general applications [8], and heat dissipation of
processors [9]. The main character is t ic shared by these at-
tacks is t h a t they target systems t h a t have been optimized
for the average case and do not include sufficient margin of
safety for the worst case.

In this paper, we contend t h a t correct behavior in the av-
erage case is not sufficient to defend systems against worst-
case behavior based attacks. Instead, there needs to be a
dual focus on the (worst-case-)performance. Otherwise, as

NSPW 2005 Lake Arrowhead CA USA
© 2006 ACM 1-59593-317-4/06/02....$5.00
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Andreas Gal Michael Franz
Donald Bren School of Information and

Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

{gal,franz}@uci.edu

we will show, systems become vulnerable. Often this means
t h a t systems need to be re-designed to prevent such at tacks
in the first place.

For example, the JVM bytecode verification algori thm ex-
hibi ts quadrat ic worst-case execution complexity. We have
been able to construct relatively small mobile programs t h a t
require hours of verification on high-end workstations. The
programs in quest ion are perfectly legal JVM code, perform
no malicious action on the host, and will eventually be veri-
fied as being safe. However, the process of verification itself
is so costly as to effectively cons t i tu te a denial-of-service at-
tack. Current mobile code systems t reat verification and
just- in-t ime code generat ion as atomic operations. As far
as we know, there is not a single existing Java Vir tual Ma-
chine in which verification or just- in-t ime code generation
can be in terrupted by the user---other than by killing the
whole Vir tual Machine. And for the increasingly impor tan t
server-side virtual machines, human intervention is not even
an option.

The problem with these kind of at tacks is t h a t the scenar-
ios where the a t t ack occurs do not const i tute "illegal" uses
of the system being attacked. In fact, there might be com-
pletely reasonable valid and useful programs or inputs, t h a t
jus t by incident---or by malicious in tent - -cause the system
to exhibi t some kind of worst-case behavior. There often
exist simple precaut ions against these attacks. In the case
of bytecode verification, e.g., one could deploy a t radi t ional
moni tor t ha t would abor t verification when a certain t ime
limit is exceeded. It is noteworthy, however, t h a t these coun-
termeasures always come with the risk of rejecting certain
useful programs.

Hence, the problem is similar to t ha t of defending against
low-intensity viruses or worms t h a t cause damage while "fly-
ing under the radar" wi thout ever t ipping off an intrusion-
detect ion system. Unlike such a low-intensity virus or worm,
however, the a t tack in our case consumes all of the cycles of
the host and prevents useful calculations.

Unfor tunate ly , ' a t tacks based on worst-case behavior can af-
fect a/l parts of systems. In the compilation pipeline of Mo-
bile Code Execution Frameworks, e.g., an adversary tha t
knows the target v i r tual machine 's register allocation algo-
r i thm might be able to maliciously craft a valid mobile-code
program containing a part icularly difficult to solve graph-

25

coloring puzzle. Or, to attack the heat sensors present on
modem processors, an adversary could send a program that
specifically over-uses parts of the chip that are not close
to sensors. This kind of attack results in an overheating
of parts of the chip, thereby causing, e.g., increased power
consumption or accelerated chip aging [9].

An interesting point to note is that "security by obscurity"
seems to be a perfectly valid approach to secure systems
against this kind of attacks. However, in the end it only
increases the effort needed to obtain the necessary informa-
tion to run an attack. In the case of systems whose source
code is avMlable this effort is basically not existent, for bi-
naries and hardware it consists of re-engineering the system
behavior and exploring its construction, and for systems for
which only the input /output behavior can be observed the
effort consists in analyzing exactly behavior.

In the realm of hardware, "security by obscurity" is applied
by default. Since, e.g, the on-chip temperature sensors are
hidden in the chip packaging, there is no easy way to find out
whether the chip only has sensors as described in the spec-
ification. As we will discuss briefly in Section 2.2.2, chips
might very well contain more heat sensors than documented,
to limit the chip's vulnerability.

The remainder of this paper is structured as follows: The
next section gives several examples for systems that have
not been designed 'with the worst case in mind. The exam-
pies chosen come from two areas, namely the vulnerability
and attackability of data operations and hardware systems.
These examples support our contention that a paradigm
shift is necessary towards making systems aware of worst-
case behavior based attacks and hardening them against
those attacks. In Section 3, we argue that the solution may
very well lie in designing systems based on their worst-case,
rather than average-case behavior. Currently, systems like
virtual machines, J IT compilers, and many processors are
fine tuned for either high performance or low cost in the
average case, with the hope that the worst case will rarely
occur--we assert that this approach is simply too dangerous.
A summary concludes our paper (Section 5).

2. WORST CASE BEHAVIOR-BASED AT-
TACKS

Systems that accept user programs or inputs must use spe-
cial care to avoid that the input causes one or several system
components to exhibit worst-case behavior. This section
presents some examples for such systems that must be opti-
mized for the worst and not for the average case. We start
by looking at attacks based on some form of algorithmic
complexity (Section 2.1), and later on present an example
from the realm of hardware (Section 2.2). A commonality
of the attacks described is that in order to succeed, the at-
tacker needs intimate knowledge about the implementation
or the system layout.

Beside the examples presented, there are many more docu-
mented in literature. Garfinkel [15] describes nested HTML
tables as an attack on some browser. Due to bad imple-
mentation of the layout algorithms in Some browsers, they
would perform super-linear work to determine the on-screen
layout of the table. Stubblefield and Dean [10] describe an

1: todo ~-- true
2: w h i l e todo = t rue d o
3: todo ~ false
4: for all i in all instructions of a method do
5: i f i was changed t h e n
6: todo ~ true
7: check whether stack and local variable types

match definition of i
8: calculate new state after i
9: for al l s in all successor instructions of i do

10: i f current s tate for s ~ new state derived from
i t h e n

11: assume state after i as new entry state for s
12: mark s as changed
13: e n d i f
14: e n d for
15: e n d i f
16: e n d for
17: e n d w h i l e

F i g u r e 1: T h e s t a n d a r d v e r i f i c a t i o n a l g o r i t h m found
in S u n M i e r o s y s t e m ' s J V M i m p l e m e n t a t i o n s .

attack against SSL servers. In this attack a malicious client
coerces a web server into performing expensive RSA decryp-
tion. Again this attack is based on the intimate knowledge
of the implementation of the web server.

2.1 Algorithmic Complexity Attacks
In this section we look at three examples from different
areas, that are closely related. We start with a denial-0f-
service attack on the Java Bytecode Verifier, based on the
knowledge how a large class of Virtual Machines perform
verification. The next attack applies the same ideas to the
compilation pipeline in mobile-code execution frameworks.
Finally, we describe the general case that the first two ex-
amples axe specializations of, namely the attackability based
on the worst-case behavior of operations on data structures.

2.1.1 Java Bytecode Verification
Static mobile code verification was introduced as an alter-
native to the dynamic checking of type safety properties at
runtime through dynamic execution monitors [7] by Gosling
and Yellin [28, 21]. Using dynamic runtime checks can cause
a significant runtime overhead at execution time. The ba-
sic ingredient of every JVM bytecode verifier is an abstract
interpreter for Java Virtual Machine Language instructions.
The stacks and virtual registers of this abstract interpreter
store types, rather than values. Similarly, the instructions
of the abstract interpreter operate at the type-level only
and do not perform any actual calculations. For an exten-
sive discussion of conditions for bytecode to be accepted by
the verifier see [20]. Figure 1 shows a simplified version of
the algorithm that is used, with slight modifications, in all
Java Virtual Machine implementations that we are aware
of, including Sun's own CVM [27] and HotSpot virtual ma-
chines [26].

Regarding the complexity of verification, the analysis of
straight-line code is inexpensive, since the abstract inter-
preter only propagates type information through the instruc-
tions and computes the abstract stack state after each in-

26

I . iconst O; ifeq LI
r - - " l

3 (/ i c o n s t O; istore I

5 ~ goto L2
6 ~LI: ~fconst 2;fstore 1 It
8 "L2: return

F i g u r e 2: Ver i f i ca t ion o f J a v a b y t e - c o d e t h r o u g h i t-
e r a t i v e da ta - f low analys is . T h e ve r i f i e r t r a v e r s e s t h e
m e t h o d f r o m t h e f i rs t i n s t r u c t i o n t o t h e las t . W h i l e
c o n d i t i o n a l b r a n c h i n s t r u c t i o n s s u c h as ifeq are ei-
t h e r t a k e n or n o t - t a k e n by t h e v i r t u a l m a c h i n e , t h e
a b s t r a c t i n t e r p r e t e r cons ide r s b o t h cases a t t h e s a m e
t ime . I n th i s e x a m p l e , t h e loca l v a r i a b l e is se t t o a
f l o a t i n o n e of t h e b ranches , a n d t o a n i n t e g e r in
t h e o t h e r . A t t h e m e r g e p o i n t (i n s t r u c t i o n 8), t h e
t y p e o f t h e va r i ab l e b e c o m e s T, b e c a u s e t h e t y p e o f
t h e loca l va r i ab le d e p e n d s o n w h e t h e r t h e b r a n c h
was t a k e n or not . A n y a t t e m p t s by t h e p r o g r a m to
r e a d loca l va r i ab les o f t y p e T w o u l d b e r e j e c t e d by
t h e ver i f ier . T h e e x a m p l e c o d e s h o w n h e r e c o n t a i n s
no b a c k w a r d b r a n c h e s , and h e n c e t h e ana lys i s c a n
be c o m p l e t e d in a s ing le i t e r a t i o n . I f t h e t a k e n a n d
n o t - t a k e n c o d e b locks had b e e n l o c a t e d before t h e
ifeeq i n s t r u c t i o n (b a c k w a r d b r a n c h) , t h e a b s t r a c t in-
t e r p r e t e r wou ld h a v e had t o i t e r a t e o v e r t h e c o d e
a s econd t i m e to d e t e r m i n e t h e t y p e o f t h e loca l
va r i ab le in t h e m e r g e po in t .

struction. The runtime of such a data-flow analysis is signif-
icantly increased if the code contains jumps, exception han-
dlers, or subroutines, which introduce forks and joins in the
control-flow graph. When separate control flows are merged
together, an instruction's predecessors may have different
abstract stack or variable types. After merging the state
information of the two incoming control flows, the data-flow
analysis has to be repeated for all instructions which are
reachable from this point in the control flow of the method.
For simplicity, the existing Java verifier repeats the entire
data-flow analysis for every instruction of a method until
there are no more changes.

For average Java programs, the verifier algorithm quickly
reaches a fixed point after only a few iterations. For straight-
line code or code that contains only forward branches, the
verification algorithm terminates already after a single iter-
ation (Figure 2). It is obvious t h a t - - i n theory--the Java
verifier could need up to n iterations over the method, with
n being the number of instructions in the method. Since for
each iteration the verifier might have to visit all instructions,
the overall complexity is at least O(r~2).

Such quadratic runtime behavior does not only exist in the-
ory. In fact, simple Java programs can be constructed that
expose the worst-case scenario in practice. Figure 3 shows
a very simple Java program that does nothing but store an
integer into a local variable and jump backwards through
the code until it finally returns.

Studying the verifier algorithm reveals that newly computed
type information is forwarded immediately to instructions
that come syntactically after the current instruction. To

1 iconst O; istore 1
3 / g o t o LO

4 / L 3 : return~'-----.~..,~
5 (L2: ~ iconst O; ifeq LS~,.N

7 ~ X-goto L2 J
8 ~ L l : (i t O; ifeq L2~xX

"- goto LI
IllO ~ : ~ 4 i c o n s t 0 ifeqLl J

13 : ~ goto LO;

1

-!i
! 7
i : " !

Iteration
2 3

7 -i-
! !

,~ z

!

!

!

i

!

4

¥

i
¥

1
1

I

1

i

1

F i g u r e 3: J a v a b y t e c o d e p r o g r a m t h a t t akes n i t-
e r a t i o n s t o be ve r i f i ed u s i n g S u n ' s s t a n d a r d D F A
ver i f i e r a p p r o a c h . T h e e n t r y s t a t e for each bas ic
b lock d e p e n d s o n t h e s u c c e s s o r bas ic b lock. T h e
t y p e o f t h e first loca l v a r i a b l e is d i s p l a y e d for each
i t e r a t i o n o f t h e D F A . I t is i n i t i a l l y a s s u m e d t o be o f
u n k n o w n t y p e a n d is d i s c o v e r e d t o b e an in t ege r (I)
d u r i n g success ive i t e r a t i o n s . S h a d e d boxes ind ica t e
a c h a n g e in t h e c u r r e n t i t e r a t i o n , f r a m e d boxes wil l
b e v i s i t ed in t h e n e x t i t e r a t i o n .

35 i i i i i i i
I X worst case data flow with empty basic blocks

30 r worst case data flow

2 s .. i • i " i " i i

2 0 • • i ~, - - - i . . i : .~..

' ° t- ! ~ i x, " ! " = ' ~ ! ~ - i
, . , i . \ ', i. ,i i

0 10000 2 ~ ~ ~ 50000 ~
method size (bytes)

F i g u r e 4: Ver i f i ca t ion t i m e for v e r i f y i n g a s ingle
m e t h o d c o n t a i n i n g a w o r s t - c a s e da t a - f l ow scenar io .
T h e x-axis i nd i ca t e s t h e l e n g t h o f t h e m e t h o d by te -
c o d e in by tes , w h i c h is p r o p o r t i o n a l t o t h e n u m b e r
o f bas ic b locks N u s e d t o c o n s t r u c t t h e code . T h e
a r r o w s i n d i c a t e for c o m p a r i s o n p u r p o s e s t h e c o d e
s ize for p a t h l e n g t h N = 3000.

instructions that come syntactically before the current in-
struction, the new abstractions will only he forwarded in
the next iteration of the DFA. The simplistic approach of
the traditional Java bytecode algorithm to iterate over the
bytecode until a fixed point is reached simplifies the genera-
tion of attacks like the one shown in Figure 3, but any other
iteration order would also exhibit a particular (possibly dif-
ferent) worst-case behavior for which a malicious program
could be constructed.

We have measured the verification time for two malicious
programs designed to exhibit the worst-case performance of
the Java verifier using the Sun Microsystems Java 2 HotSpot
Client VM [12]. Figure 4 shows the verification time for a
single method containing bytecode with an increasing max-
imum data-flow path of length N. This time includes only
the time it takes the verifier to prove safety. The code

27

E

8OOOO

50OOO

4OOOO

3OOOO

10000

0

' v~rifi~ion time ' ' i i ~~

i i ~ i ~ ~ ~ ~e ~
i i i i i i i / i i

! i i i i .~(~ i !
i , . . ! , i - ! . . y i.-. i i i. L. jy

0
520 540 .~0 580 600 620 640 ~ 0 680 700 720

JAil archive size (bytes)

5OOO

3000 "~

1000

F i g u r e 5: C o m p r e s s i o n o f c o n s t r u c t e d c o d e e x a m -
p l e s us ing t h e s t a n d a r d J A R a r c h i v e f o r m a t . T h e
c o d e is e x t r e m e l y wel l c o m p r e s s i b l e as i t r e p e a t s
i den t i ca l c o d e p a t t e r n s . W h i l e t h e v e r i f i c a t i o n t i m e s
i nc reases by o v e r f a c t o r 5000, t h e J A R f i le m e r e l y
g r o w s b y l e s s t h a n 200 by t e s .

is never actually executed or compiled to executable code.
The first curve shows the verification time for a worst-case
path length problem with empty basic blocks. The second
curve in the graph shows the maximum flow path problem
with .some additional code added to each basic block, which
further slows down the verifier. Both curves clearly show
quadratic growth.

All measurements were taken on a 2.53 GHz Pentinm 4 and
the Sun HotSpot VM 1.41. The maximum verification t ime
we observed on this machine for a single method was ap-
proximately 40 seconds. Since the size of method code in
Java is limited, this t ime can not be increased. However,
to achieve even longer verification times, an attacker could
hide more than just one of these methods in the code. Just
including 20 methods instead of one already increases the
verification t ime to approximately 15 minutes on the test
machine we used.

The ~tandard J A R archive format used by Java can be used
to drastically reduce the apparent size of the malicious code.
The code patterns used in the presented scenarios lend them-
selves for compression due to their very regular structure.
Figure 5 indicates the compressed size for different prob-
lem lengths N. While the verification times increases by
over factor 5000, the J A R file merely grows by less than 200
bytes. The J A R archive format thus represents another ex-
ample of a well-meant algorithm with appropriate average-
case performance, which however exhibits very unexpected
worst-case behavior.

We have used the two algorithmic shortcomings described
here to construct a malicious applet [11] that disables the
Java VM of web browsers for some time. The applet is
10kb in size and indistinguishable from regular applet code,
because it is a legal and correct Java program. Short of
disabling Java applets, the user cannot prevent or interrupt
the loading of this applet. In fact, existing browsers do
not even allow the user to interrupt the verification because
the browser implementor never considered the verification
t ime to be costly enough. Some browsers, including some
versions of the Microsoft Internet Explorer, allow the verifier

bucket bucket

F i g u r e 6: N o r m a l o p e r a t i o n o f a h a s h t a b l e i m p l e -
m e n t a t i o n (r igh t h a n d s ide) v e r s u s co l l i s ions c a u s e d
by, e .g . , m a l i c i o u s i npu t .

to continue the verification silently and continue to hog the
CPU in the background even if the user leaves a website
containing an applet that takes an excessive amount of t ime
to verify.

2.1.2 Attacking the Mobile-Code Compilation Pipe-
line

Denial-of-service attacks are not limited to the bytecode ver-
ification phase, which is executed early in a bytecode-execu-
tion framework. Any code transformation algorithm applied
to mobile code during its path from a portable bytecode for-
mat to natively executable machine code is vulnerable at its
point of worst-case complexity. This applies in particular
to compiler optimization algorithms, which are traditionally
chosen for speed in the average case but not for worst-case
performance, and some of which use heuristics to solve prob-
lems like graph coloring and instruction scheduling that are
known to be NP-complete [6, 17].

An example for such an attackable optimization algorithm is
register allocation. Register allocation is an important com-
ponent of any J I T compiler that strives to achieve good code
quality. The classic register-allocating algorithm is struc-
tured after Chaitin 's graph coloring allocator [6, 5]. Many
improvements and variants have been proposed [2, 3, 16,
19], but most of this research was focused on improving the
average-case performance. Poletto et al. showed that reg-
ister allocation using graph-coloring has a quadratic worst-
case complexity for certain pathological cases [23] and pro-
posed a linear-scan algorithm for register allocation. This
algorithm is not guaranteed to find the optimal register al-
location for any given problem, but has a linear worst-case
performance. To truly harden the virtual machine against
worst-case behavior based denial-of-service attacks, how-
ever, this principle of trading off some code quality in return
for linear time complexity has to be extended to the entire
code-processing pipeline.

2.1.3 Attacking Data-Structure Operations
If we abstract from the just presented examples, the com-
mon property is the worst-case behavior of the underlying
algorithms. Crosby and Wallach [8] show how to attack sys-
tems for which the implementation of certain data structures
like hash tables is known. Hash tables have an average-case
complexity of O(n) for inserting n elements, and a worst-
case complexity of O(n 2) if all elements hash to the same
bucket in the table. Figure 6 shows the comparison between
the average case and the worst case as given by [8].

28

- - - cummulative dropped packets [
- - packet processing latency

90

8 0 -

70-

'°

~'=" 30
0 10
minutes into the attack

i ," 20

• ' 16

4 ~

15 20 25

F i g u r e 7: P e r f o r m a n c e of t h e n e t w o r k i n t r u s i o n de-
t e c t o r B r o u n d e r a t t a c k . T h e so l id l ine m a r k s t h e la-
t e n c y for p r o c e s s i n g o f r e c e i v e d packe t s , t h e d a s h e d
l ine t h e n u m b e r o f d r o p p e d p a c k e t s in t h o u s a n d s .
T h e a t t a c k is ba sed o n s e n d i n g S Y N packe t s a t a
r a t e o f 1 6 k b / s e c o n d .

Crosby and Wallace describe how to compute such an attack
on hash tables [8]. They also describe attacks on two hash
table implementations of the Perl interpreter, the Squid web
proxy, and the DJB DNS cache. Finally, they present an
attack on the Bro intrusion detection system [22], which
also is highly vulnerable to the proposed attacks. Figure 7
shows the result of attacking Bro with SYN packets at a rate
of 16kb/second. As can be seen, already for this relatively
slow attack the number of dropped packages and the latency
in processing received packages is considerable. For more
details on the attacks c.f. [8].

Obviously this kind of attack is not limited to hash tables,
but in principle can be used against any data structure and
its operations that fulfill three conditions: there must be at
least an order of magnitude difference between the runtime
for the average and the worst case, the operations must be
deterministic, and the source code must be available.

2.2 Hardware Attacks
This section complements the just described attacks on soft-
ware with two examples for attacks on hardware. We start
by describing an attack based on the behavior of a power
supply subsystem when the current drawn by the system
changes. The second attack targets chips and their on-chip
heat sensors. Compared to many software systems, hard-
ware usually has the advantage that

2.2.1 Power Variability Attacks
Joseph et al. [18] describe a possible attack caused by the
increasing focus on power dissipation issues in current micro-
processors. These issues have lead to a group of proposals
of power-saving techniques, e.g. clock gating, that gener-
ally are very effective in reducing average power. However,
many of these techniques also result in increased variabil-
ity of both power dissipation and the current drawn by the
processor. This increased variabilities can cause supply volt-
age fluctuations, which is a significant problem since chips
may malfunction if the supply voltage rises or drops out
of a chip-specific tolerance range. The variability is caused

by the power supply's inductance, which together with the
current variations produces ji t ters on the chip's supply lines.
This problem is know as the dI/dt problem, since the mag-
nitude of voltage ripples caused depends on the change of
current over time.

2.2.2 Heat Dissipation Attacks
Another example for a system that is vulnerable to worst-
case behavior based attacks is the cooling system for pro-
cessors (or chips in general). Obviously, a chip's power and
heat dissipation depend on the program(s) executed on the
chip. Consequently, a malicious program might try to over-
heat parts of the chip to cause, e.g., increased power usage
to drain batteries, heat damage to the chip, or general in-
stability of the system.

Together with the increase in performance of modern chips
comes an increase in power density. To allow high perfor-
mance while keeping cooling cost low, the cooling system
is optimized for the average case instead of the worst case.
As the average workload does not induce worst-case power
dissipation, especially not over longer periods, the cooling
system can be kept much smaller. To guard the system
against the worst-case, it then needs to be equipped with
sensors to throt t le the system if the on-chip heat gets to
high, or even shut off or reboot in extreme situations.

The vulnerability caused by this has been reported by Dad-
var and Skadron [9]. The authors deal with the Pentium 4,
a chip that employs two on-chip sensors to measure heat.
The chip's thermal control circuit uses an internal thermal
diode and compares it to a reference current. This sensor
has been placed close to the area of the chip that is expected
to be the hottest under normal operation. This means that
under certain circumstances, namely a workload that does
not represent the average case, other regions of the chip
might actually become hotter than the area monitored by
the sensor. The sensor's measurements are not visible from
the outside, but are used exclusively by the thermal control
system. Whenever this system detects thermal stress, the
CPU activity is thrott led by interleaving short periods of
complete inactivity with normal operation.

The authors report on their early findings with respect to
thermal vulnerabilities. Under normal operating conditions
they were not able to cause thermal throttling, however with
partial blocking of the system's air vents or with disabling
the fans altogether, 1 they could slow down a system by 50%.
Even more important , the new multi-threaded Prescott core
is reported to reach core temperatures that already during
normal operation get close to the throttling trigger temper-
ature. As the authors argue in [9] this will pose a serious
risk of thermal attacks against such systems.

3. COUNTERMEASURESmAND WHY
THEY DO NOT WORK

In general, the best countermeasure against the attacks de-
scribed in this paper is to design systems for the worst case--

1This requires additional software and user-rights to access
the corresponding flags in the system, however the authors
report on several programs that give "normal" user pro-
grarns exactly these rights.

29

if it is known. In contrast to security flaws previously discov-
ered in systems like the JVM [4], the enabling property for
worst-case behavior based attacks on systems is an inherent
property of the system and not merely some faulty imple-
mentation or mis-design that could easily be exchanged.

In the case of the JVM verifier, rewriting the algorithm to
iterate over the code in some other order, or the introduction
of a work list algorithm, would not significantly improve
the situation. Each of these algorithms would still expose
quadratic runtime behavior for some worst case scenarios.

However, a number of mitigating factors exist. First, cur-
rent JVMs limit the code size per method to 65,536 bytes.
On high-end desktop systems this limits the maximum ver-
ification time we were able to achieve using a single method
to approximately 40s. This (probably accidental) ceiling
prevents the construction of worst case scenarios with near-
infinite verification time.

Further shortening the maximum method length of Java
methods is not an option, since long Java methods are not
uncommon. Some compilers emit t ing Java bytecode gen-
erate long methods close to the limit defined in the Java
specification. It would be not surprising if Sun decided to
remove the current code size l imitation in future versions of
the Java Virtual Machine.

It seems unlikely that one could establish a clear set of rules
to detect classes of malicious input tha t are responsible for
causing a system to exhibit its worst-case behavior. For the
attacks on software systems presented in this paper, such
rules could be to reject programs because they take more
than a certain number of iterations to verify or because more
than a certain number of entries map to the same bucket in
a hash table. Obviously, any such number would be chosen
arbitrarily and would impose a very vague and imprecise
restriction of acceptable programs.

On the other hand, trying to detect patterns such as the ones
described in this paper would not eliminate the problem--
more complex and less obvious examples can be easily con-
structed. It would also get us back to the pattern matching
approach used in virus detection tools, something that byte-
code verification was supposed to free us from.

The impact of the complexity-based attacked just described
can be increased increasing the intensity of attacks, e.g. by
shilSping a large number of malicious methods to the verifier,
performing several vol tage/current changes in short time, or
starting several threads with stress marks in short time.

4. A NEW SECURITY PARADIGM
As already pointed out, we contend that the only chance to
counter attacks that are based on the worst-case behavior of
certain parts of systems is a new security paradigm. Instead
of targeting only the safety of certain properties of incoming
data, the new paradigm must also take into account the
complexity and design of the whole system. In the case of
the hardware examples presented in this paper this means
that the system must be equipped with sensors to identify
the effects of executing malicious programs. For the software
examples this means to target the whole compilation path

from verification up to execution and the careful design and
selection of all data structures and operations.

We are currently investigating possible approaches to harden
systems against worst-case behavior based attacks. In the
case of attacks based on algorithmic complexity, the vul-
nerability demonstrates the need for not only correct but
also ej~icient algorithms. With software applications, e.g.,
moving to Grid- and service-based architectures, in which
computations are sent to hosts for execution, these efficient
algorithms are going to be essential for system reliability in
the near future.

As we have shown previously, the code compression format
used by Java lends itself to conceal from the user the true
size of transported programs. Compression algorithms can
also be exploited in many other ways. Clasen used a missing
range check in the zlib decompression algorithm to construct
PNG images that crash the browser because the decompres-
sion algorithm tries to allocate unreasonably large amounts
of memory [24]. It is entirely possible that similar vulnera-
bilities exist in any other compression format, but this has
apparently not yet been studied.

Our own main interest is to harden Java Virtual Machines
against the kind of attacks described. Therefore, we are
currently constructing an "algorithmic testbed" Java Vir-
tual Machine that can be configured with different variants
of critical algorithms. We have also developed a tool to au-
tomatically generate JVM class files that present particular
hard to solve algorithmic puzzles. This tool is currently used
in benchmarking existing JVMs, highlighting their potential
vulnerabiUties, and aiding the removal of such vulnerabili-
ties. Our aim is to harden the existing Java-based infor-
mation infrastructure already deployed against such worst-
case behavior based attacks. Although no such attacks have
yet been reported, they could be very costly in scenarios in
which computations are sent to remote servers in the form
of "agents".

The scope of this process is quite broad by nature: For many
code optimizations, well known heuristics exist to speed up
their average case performance. However, little to no em-
phasis has been placed on the worst-case behavior of these
algorithms in the context of being a potential security risk.
In particular, iterative analyses such as escape analysis, reg-
ister coalescing, live-range splitting, instruction scheduling,
and register allocation through graph coloring can have a
very poor worst-case performance. Existing J IT implemen-
tations must be analyzed to identify their weaknesses, and
also to provide a framework of code-optimization algorithms
with well understood worst-case behaviors.

For the verifier, we have developed such a hardened algo-
rithm. After performing an initial type check using a super-
ficial type system, it converts the Java bytecode to Static
Single Assignment form (SSA) [25, 1], and only then checks
the consistency of type flows using the whole Java type sys-
tem to verify type safety [13, 14]. While this algorithm has
a higher average-case cost than the standard Java verifica-
tion algorithm, it has a much better worst-case behavior.
Namely, all phases beside the SSA construction can be per-
formed in linear time. Many higher-end J I T compilers for

30

Java generate SSA anyway at later stages of dynamic code
generation. While SSA construction is the main cost in our
algorithm, these frameworks can get verification at an incre-
mental cost by using our verifier and reusing the constructed
SSA. Currently, they perform the standard Java verification
before starting the actual compilation.

5. CONCLUSION
Future software-application architectures are moving to ser-
vice-based and Grid architectures, in which computations
are sent to hosts for execution. Soon, these service-based
execution frameworks will be omni-present, making the ac-
tual network-based execution mechanism invisible to the
user. In these architectures, efficient algorithms for each
step in the chain from receiving mobile code to compiling
it to native code and executing it will be needed to protect
against complexity-based attacks. The threat of these sub-
tle denial-of-service attacks has been neglected, apparently
because it does not occur in dally average-case use of mo-
bile code. In the case of an unsupervised server at the heart
of a service-based framework, however, having the frame-
work verifying, analyzing, compiling, and executing several
mobile-code programs in parallel will make each and every
phase in the framework vulnerable to complexity-based at-
tacks.

At the same time chips are being optimized to use as little
power as possible and their cooling systems are minimized
to be only as big as necessary. As a result, large groups of
systems are vulnerable by thermal attacks based on power
variations and too small cooling systems.

We therefore advocate a new security paradigm based on
complexity-hardened systems. Given that currently a large
amount of vulnerable systems is already in place, there is
no quick fix to this problem. Instead, we will need to re-
think the architecture of those systems--while current sys-
tems have been selected and designed for their average case
behavior, we will need to construct systems where each step
and module has a provable worst-case behavior.

Acknowledgments
We thank the anonymous reviewers as well as the organizers
and participants of the New Security Paradigms Workshop
2005 for their input to the final version of this paper.

This research effort was partially funded by the National
Science Foundation (NSF) under grants TC-0209163 and
ITR-0205712 and by the Office of Naval Research (ONR /
under agreement N00014-01-1-0854. The U.S. Government
is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright annota-
tion thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of the National Science founda-
tion (NSF), the Office of Naval Research (ONR), or any
other agency of the U.S. Government.

6. REFERENCES
[1] B. Alpern, M. N. Wegman, and F. K. Zadeck.

Detecting Equality of Values in Programs. In
Proceedings of the 15th A CM SIGPLAN Symposium
on Principles of Programming Languages (POPL),
pages 1-11, San Diego, California, January 1988.

[2] A. W. Appel and K. J. Supowit. Generalization of the
sethi-ullman algorithm for register allocation. Software
- Practice and Experience, 17(6):417-421, 1987.

[3] P. Briggs, K. D. Cooper, and L. Torczon.
Improvements to graph coloring register allocation.
A CM Transactions on Programming Languages and
Systems, 16(3/:428-455 , May 1994.

[4] CERT Coordination Center, Carnegie Mellon
University, http://www.cert.org.

[5] G. J. Chaitin. Register allocation and spilling via
graph coloring. In Proceedings of the SIGPLAN 198~
Symposium on Compiler Construction (CC), pages
98-105, Boston, MA, June 1982.

[6] G. J. Chaitin, M. A. Anslander, A. K. Chandra,
J. Cocke, Martin, E. Hopkins, and P. W. Markstein.
Register allocation via graph coloring. Computer
Languages, 6(1/:47-57 , 1981.

[7] R. M. Cohen. The defensive Java Virtual Machine
specification version 0.5. Technical report,
Computational Logic, Inc., May 1997.

[8] S. A. Crosby and D. S. Wallach. Denial of Service via
Algorithmic Complexity Attacks. In Proceedings of the
~003 USENIX Symposium on Virtual Machines.
USENIX Association, 2003.

[9] P. Dadvar and K. Skadron. Potential Thermal
Security Risks. In $lst IEEE SEMI-THERM
Symposium. IEEE, 2005.

[10] D. Dean and A. Stubblefield. Using Client Puzzles to
Protect TLS. In Proceedings of the ~001 USENIX
Security Symposium. USENIX Association, 2001.

[11] A. Gal, C. W. Probst, and M. Franz. An Applet
performing a complexty-based Denial-of-Service attack
on the verifier. Available at
http://nil, ics.uci, edu/exploit.

[12] A. Gal, C. W. Probst, and M. Franz. A Denial of
Service Attack on the Java Bytecode Verifier.
Technical Report 03-23, University of California,
Irvine, School of Information and Computer Science,
2003.

[13] A. Gal, C. W. Probst, and M. Franz. Proofing: An
Efficient and Safe Alternative to Mobile-Code
Verification. Technical Report 03-24, University of
California, Irvine, School of Information and
Computer Science, November 2003.

[14] A. Gal, C. W. Probst, and M. Franz. Integrated Java
Bytecode Verification. In Proceedings of the First
International Workshop on Abstract Interpretation of
Object Oriented Languages, January 2005.

31

[15] S. Garfinkel. Script for a king. HotWired Packet,
h t tp : / /hotwired, lycos, com/packet/gaff inkel/96/
45/geek.html and see
ht tp : / / s imson.v±neyard.net / table .html for the
table attack., November 1996.

[16] L. George and A. W. Appel. Iterated register
coalescing. ACM Transactions on Programming
Languages and Systems, 18(3):300-324, May 1996.

[17] J. Hennessy and T. Gross. Postpazs code optimization
of pipeline constraints. A CM Transactions on
Pro9ramming Languages and Systems, 5(3):422-448,
July 1983.

[18] R. Joseph, D. Brooks, and M. Martonosi. Control
Techniques to Eliminate Voltage Emergencies in High
Performance Processors. In HPCA '03: Proceedings of
the The Ninth International Symposium on
High-Performance Computer Architecture (HPCA '08),
page 79, Washington, DC, USA, 2003. IEEE
Computer Society.

[19] S. Lelalt, G. R. Gao, and C. Eisenbeis. A New Fast
Algorithm for Optimal Register Allocation in Modulo
Scheduled Loops. In K. Koskimies, editor, Proceedings
of the 7th International Conference on Compiler
Construction (CC'98), volume 1383, pages 204-218,
Lisbon, Portugal, March 28 - April 4 1998. Springer.

[20] X. Leroy. Java Bytecode Verification: Algorithms and
Formalizations. Journal of Automated Reasoning,
30(3/4):235-269, 2003.

[21] T. Lindholm and F. Yellin. The Java Virtual Machine
Specifications Addison-Wesley, 1996.

[22] V. Paxson. Bro: A System for Detecting Network
Intruders in Real Time. Proceedings of the 7th
Security Symposium. (USENIX Association: Berkeley,
CA), 1998.

[23] M. Poletto and V. Sarkar. Linear scan register
allocation. A CM Transactions on Programming
Languages and Systems, 21(5):895-913, 1999.

[24] Redhat. Vulnerability in zlib library, Advisory ID:
RHSA-2002:026-35, 2002.

[25] B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Global Value Numbering and Redundant
Computations. In Proceedings of the 15th ACM
SIGPLAN Symposium on Principles of Programming
Languages (POPL), pages 12-17, San Diego,
California, January 1988.

[26] Sun Microsystems. The Java Hotspot Virtual
Machine, 2002.

[27] Sun Microsystems. CDC: An Application Framework
for Personal Mobile Devices,
http://java.sun.com/products/cdc/, 2003.

[28] F. Yellin. Low level security in Java. In O'Reilly and
Associates and Web Consortium (W3C), editors,
World Wide Web Journal: The Fourth International
WWW Conference Proceedings, pages 369-380.
O'Reilly & Associates, Inc., 1995.

32

