
Generative Usability: Security and User Centered Design
beyond the Appliance

Luke Church
University of Cambridge

Computer Laboratory
Cambridge, UK, CB3 0FD

luke@church.name

Alma Whitten
Google

76 Buckingham Palace Road
London, UK, SW1 9TQ

alma@google.com

ABSTRACT
In this position paper we consider the ways in which users can be
given control over technology and information, considering the
spectrum of design possibilities from ‘generative component’
solutions, to ‘appliance’ solutions. We show how security
concerns and the processes of user centered design tend to
encourage a migration towards the appliance end of the spectrum
and then describe problems that arise from this. We then suggest
an alternative route towards allowing users more direct control
over their information via end user programming, discuss some of
the challenges in doing so and how they might be overcome and
conclude with a suggestion of a practical first step that system
designers might consider.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – User-centered design, Graphical user interfaces
(GUI); D.4.6 [Operating Systems]: Security and Protection –
Access Controls; K.4.1 [Computers and Society]: Public Policy
Issues - Privacy

General Terms
Design, Security, Human Factors.

Keywords
Security Usability, HCI-SEC, Appliance, End User Programming,
Meaningful choices

1. INTRODUCTION
What is the purpose of Computer Security? Arguably, it is about
giving people control over computers and information. It shares
this goal with Human Computer Interaction (HCI), but has often
approached the problems from a different direction. In this paper
we discuss a challenge that both disciplines are facing: what is the
best way of offering users such control, though appliancisation, or
further flexibility?

We examine the pressures towards appliancisation in both
disciplines and consider some of the implications of these
decisions, which as Zittrain puts it, may shape ‘The Future of the
Internet’ [28].

Expanding on Zittrain’s analysis, we then consider some of the
challenges that need to be addressed in order to support
‘generativity’. We conclude by synthesizing some of the lessons
from HCI and Security and discussing some directions that seem
promising.

2. THE STATUS QUO – HOW ARE WE
DOING?
First, let’s consider the state of technology. The usability of
computers has improved dramatically. This is evidenced both by
their commercial success and widescale deployment to users with
little formal training, as well as in personal correspondence with
Clayton Lewis, co-author of a seminal early paper on usability
[12].
A lot of the gains in usability appear to have come from adopting
a direct manipulation style of user interface [25]; with operations
being performed on visual representations of objects, rather than
by formulating abstract commands to be applied later.
Consider for example, a standard desktop file system. In the days
in which Gould and Lewis wrote their paper, moving a text file
from one directory to another would have involved typing an
instruction such as ‘mv nspw.txt /home/old/paper’ –
now, it would involve dragging an iconic representation of the file
onto an iconic representation of the folder. For users who don’t
want to do large numbers of complex operations, this seems like
progress.
But, if we consider the challenge of setting access permissions on
the same file, it’s a different story. Where the old way of doing
this involved using something like the chmod command, the UI
version is only cosmetically different, with tick-box
representations of the various options – but with no substantial fix
for the underlying challenge.
Security configuration interfaces are like this, Whitten [27]
described it as the Abstraction property:
“Computer security management often involves security policies,
which are systems of abstract rules … The creation and
management of such rules is an activity which programmers take
for granted, but which may be alien and unintuitive to many
members of the wider user population. User interface design for
security will need to take this into account”
Work in the psychology of programming has characterized
programming as the loss of direct manipulation [3] - showing that
end users begin to program either when they create operations to
be performed in their absence or operations to be performed
repeatedly over lots of objects. Security configuration, almost by
definition, is doing exactly this. The abstraction property can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NSPW’09, September 8–11, 2009, Oxford, United Kingdom.
Copyright 2010 ACM 978-1-60558-845-2/09/09...$10.00.

therefore be strengthened from an observation, to an inevitable
consequence of the nature of security.
A similar conclusion applies to the Lack of feedback property,
also by Whitten:
“The need to prevent dangerous errors makes it imperative to
provide good feedback to the user, but providing good feedback
for security management is a difficult problem. …., the correct
security configuration is the one which does what the user “really
wants”, and since only the user knows what that is, it is hard for
security software to perform much useful error checking.”
Again considering our example of the file system; the feedback
from moving the file is relatively good, especially in the graphical
version. It now appears contained within the new folder, as
opposed to the old one. For the security configuration system, as
suggested above, there is little that can be easily done other than
displaying what the user has chosen and allowing them to check
its correctness.
This is another characteristic of programming systems – because
they are rules to be employed over future information, their state
space is usually too large to directly visualize and ‘errors’ look, at
best, like unusual configurations. So designing feedback now
shifts from being about designing state visualizations (like which
files are in which folders) to designing tools to help users reason
about their system, again undoing direct manipulation and
producing another layer of abstracted behaviors. If anything, the
presence of a malicious advisory in security amplifies this
challenge; the likelihood, and impact of, the user experiencing
problems due to an unknown state is higher than when they’re
only dealing with bugs triggered by random chance.
This leaves us in a difficult position when trying to build security
systems that are usable. We’ve got most of the usability in
computer systems by removing the elements that were
programming – we now either have to begin adding them back in,
or we have to defer the decisions to experts and embed these
decisions into the systems we are trying to build – appliancising
the security behavior of the system.
It is unsurprising that many engineers, when trying to give users
control over their technology and information, have opted for the
later solution. We’ll return to the former in Section 5. But for
now, let’s expand a little on what we mean by the appliance
model of security.

3. TOWARDS APPLIANCES?
We join Zittrain [28] in suggesting that there is a continuum of
user freedom in technology, between ‘appliances’ and ‘generative
technology’.
Let’s start with an example from domestic technology. Toasters
are an example of appliances, they’re good at cooking pre-sliced
bread, but that’s pretty much all they’re good at. Ovens on the
other hand are at the generative end, they aren’t so easy to use to
make toast, but are far more flexible – and can be used to cook
things that their inventors hadn’t thought of.
With computers, things get a little more subtle, but the continuum
is still there. A PC is a long way towards the generative end – it
can be reprogrammed by its owner in pretty substantial ways, a

Tivo on the otherhand is an appliance. It serves only a single
purpose and cannot be substantially reprogrammed1 by its user.
Zittrain argues that computing technology is at a critical point; the
flexibility of generative PCs has resulted in a proliferation of
instabilities and ‘badware’. Out of a frustration at the insecurities
of their generative computers, users may turn to locked-down
appliances, requesting e.g. single purpose phones [17]. In such
devices, security technologies start to serve a dual purpose –
protecting the end users’ information, and more problematically,
‘protecting’ the device from the end user. Zittrain was talking
primarily about the flexibility of devices, but the same debate
applies equally to software systems. Unable to offer meaningful
security policy choices, we are seeing increasing numbers of
systems which are deployed with a small number of preset
policies from which the user may choose. This is the
‘appliancisation’ of the security model of the system. We suggest
that this approach has serious problems, and we should not be too
quick to adopt it, without giving its harder alternatives a fair trial.
First, let’s consider another pressure towards the appliancisation,
from a possibly surprising source – User Centered Design.

3.1 User Centered Design and the Appliance
User Centered Design (UCD) is a collection of design
philosophies and methodologies focused around building
technology to serve users. The paper mentioned earlier by Gould
and Lewis [12] which is considered to be one of the canonical
works [21] has as a central aspect the ‘early focus on users and
tasks’.
UCD has been interpreted and incorporated into a large number of
frameworks and processes. In order to understand how it
influences the drive towards to appliancisation, let’s consider the
version discussed in Jenson’s excellent practical guide to UCD in
industry [16].
Jenson stresses four blindnesses that can hamper the product
design, the two that concern us here are: user blindness – making
incorrect assumptions about who the user is, and feature blindness
– products becoming awash with sophisticated features.
Jenson recommends the use of scenarios and personas to address
these blindnesses. These are approaches which seek to produce
representations of concrete instances of tasks, contexts and people
around which to determine functionality. This helps avoid unduly
abstracting away from users, which we have previously argued [4]
is a major cause of usability problems in modern software.
Greatly over-simplified UCD could be seen as saying that
technology design should be done by finding out who your users
are and what they want to do, and building technology to do that.
The difficulty is that this applies pressure towards the appliance
model of technology. In order to see how, let’s look at a design
maneuver that is recommended by Jenson, and then see how it
often occurs in complex cases – such as security configuration.
One of the solutions that Jenson advocates to feature blindness is
“Make the Easy, Easy and the Hard, Hard”. This common-sense
recommendation suggests that commonly used features should be

1 We need to be careful not to confuse terminology here. There

are degrees of ‘reprogrammability’ – a Tivo can be
reprogrammed to record a different program, but can’t be
reappropriated to support e.g. mashing up of different TV
channels

promoted to the front of the user interface, whilst advanced
features should be hidden. The rationale being that the users of the
advanced features are precisely the user community who can best
cope with the additional operations.
Like much of the UCD agenda, it would seem perverse to find
much fault in this suggestion. Placing little used, complex
features, deeper inside menu hierarchies than commonly used
ones seems sensible – especially if one believes as Jenson and
Maeda [16, 20] do, that there is an economy of usability – one
can’t make something easier without making something else
harder. This makes some sense when talking about screen real-
estate, but it also occurs in a more complex form in the design of
programming-like systems, of which we argued that security
configuration is one.
A common problem in configuration systems is viscosity
(resistance to change – frequently caused by having to perform the
same operation multiple times). This is tedious and annoys
computer scientists2. A typical design maneuver to address this is
to introduce an abstraction. [14]. This allows a collection of
entities to be named, and changed simultaneously – either by the
programmer editing them, or by adopting the abstraction provided
by an expert. However, adding an abstraction to a system has
side-effects; Firstly, it generally increases premature commitment
(the degree to which users have to make decisions ahead of time).
The decision as to what the appropriate abstraction is typically has
to be made a long time before it’s used, this is especially the case
when it’s supplied by an expert. Secondly, it reduces viscosity, if
the abstraction aligns to what you want to do (in our terminology
if it is role expressive). If the abstraction doesn’t align, then at
best viscosity remains the same, more usually, it actually
increases, usually because the designers of the UI have followed
Jenson’s principle – they’ve made what they believe is the
common operation, the one that aligns with the abstraction, easier,
so they can bury the alternative, manual version, deeper in the
menu hierarchy.

Figure 1 - The viscosity shaping cycle

2 E.g. Terrence Parr’s motto: “Why program by hand in five days

what you spend five years of your life automating” -
http://www.parr.us/terence/index.html

This effect, viscosity shaping (summarized in Figure 1) results in
a normative force as to how the technology should be used – users
are strongly rewarded for taking the ‘easy route’ that fits with the
abstractions. If this normativity is taken to its limit, an appliance
is the result; this makes the easy, easy, but the hard, impossible.

3.2 Summarizing the pressures of appliances
At this point, it’s worth standing back and reviewing what’s
happened here. Our original goal was to give users control over
technology and information. The way the appliance achieves this
is to have an expert decide, ahead of time, what the product can
and cannot do.
This is a slightly odd conclusion – that we give people control by
having someone else define what they can do. However, every
step along the way was well intentioned, to protect the user from
the side-effects of insecurity and because it’s easier to achieve
usability by embedding pre-defined normative abstractions, than
by building systems whereby users can painlessly express their
own.
So the pressures of both security and user centered design all
seem to incline towards appliances.

4. PROBLEMS WITH SECURITY
APPLIANCES
In Section 3 we reviewed the pressure that security and user
centered design cause towards appliancising, embedding security
behaviors. In this section we look at the problems of this
approach.
The difficulty is that, as suggested above, it’s a questionable form
of control. This creates problems with the user experience – at
best the user is presented with a number of options but without
understanding the decisions embedded within them, there is little
they can do beyond hoping that the mental models they have of
what is provided is accurate. A study on users’ assumptions about
the privacy behaviors of websites that have a privacy policy is not
encouraging in this regard with many users assuming that just the
presence of a policy meant their data was strongly protected. [15].
If users’ model of the presence of such policies is so problematic,
we certainly should not assume that their models as to what the
policies do are accurate.
The usability problem here is fairly inescapable – how can a user
make meaningful choices about the selections of experts? One
option is blind faith, that the users must just trust whatever the
expert has given them, but this is hardly a meaningful choice and
if our goal is to give users control, a ‘solution’ that we should be
reluctant to adopt.
Another option is for the expert to provide summaries of their
policies, and the user can choose between the policies on basis of
the summaries. But as both authors have pointed out
independently, security is one of the places where this kind of
summarizing abstraction doesn’t seem to work well [27, 6].
A final option is for the users to understand the policies provided,
and choose between them in full knowledge. However, if they are
capable of doing this, why not also allow them to edit the
policies?
We suggest that this is important as there is another aspect to the
question – that a user being able to intentionally express their
security wishes creates a qualitatively different experience than
choosing from a selection of opaque options provided by experts.
We suggest that supporting this experiential different might be

crucial for building systems which allow the users to trust that
their wishes will be respected, rather than the current cynicism
over security/privacy behaviors – one of the challenges Zittrain
argues needed to be addressed.
There are also systemic issues with appliancisation; as suggested
above it represents a shift away from our core suggested goal for
security and HCI, of giving users control over technology, to one
of giving technologists control. There is always going to be some
need for negotiation between users and producers, but this is a
particularly worrying form of ‘negotiation’. In many cases, when
we appliancise security policies, we dramatically shift the power
balance towards the technologists, essentially removing the ability
for technically minded end users to use their skills to contribute to
the conversation.
This places an impossible requirement on technologists: we must
predict all the ways in which people might use the technology we
create, and create security policies that support all the positive
aspects. Would we security professionals, in January 2001,
honestly have predicted that a system that allowed arbitrary users
to write information to a website, and that using a blend of social
and technical mechanisms to prevent ‘abuse’ was a good idea?
Yet, Wikipedia succeeds. In an appliance model, such as the
walled gardens of AOL and Compuserve, the administrators
would have had to decide in advance that this was something they
wished to support, but our ability to predict technology in this way
has historically been notoriously poor.
Market forces don’t provide much of a solution to this problem
either. The tendency of networked systems towards monopolies
has become almost a truism of modern economics. [24] Even if
there was a range of options to choose from, for the same reason
that users that users struggle to understand the configuration
options provided by experts it is something of a market for
lemons, where the buyers and sellers have asymmetric
information about the product, and the buyers therefore struggle to
make accurately informed choices.
Another systemic issue is the incentives shift that occurs when
control is taken away from the users and given to the
technologists associated with companies. Zittrain goes into
considerable detail discussing the threats of this which range from
‘perfect enforcement’ – using the security policies delivered by
experts to ensure that illegal things can’t be done, rather than
punishing them after the fact, to the loss of ‘tolerated uses’ –
where technically illegal but not realistically enforceable practices
grow into accepted uses of the technology and ‘surveillance’ –
that companies tend to use appliances to accumulate data about
their users, even when they have nothing to do with the vendor,
and that this turns them into honey pots for judicial authorities.
All these concerns with appliancing security models are
particularly serious in domains for which the social norms are still
being negotiated. Privacy is one of these. We do not yet know
how much information individuals will be happy disclosing in
order to improve advertising results – whilst we have to guess in
order to build technology, the appliance model of security policy
would have us assume that those guesses were correct, rather than
offering users the ability to suggest changes.
Privacy is uniquely susceptible to this problem, as we don’t even
have good ways of gathering people’s desires in indirect manners.
In [1] Acquisti and Grossklags shows that users’ decisions change
radically dependent on context. If we adopt the appliance model,
we will have to understand all these behaviors and embed them

into our technologies. This goal currently seems somewhat
elusive.
Finally, there are problems as to how well behaviors generalize.
Does an 18 year old European university student have the same
privacy desires as a 75 year old Asian rural pensioner? How will
we cope with this diversity if we are to make the choices ahead of
time? How will we cope with the diversity of different policies
that we’ll need to offer – ultimately the thing that we appliancised
to avoid having to do in the first place?
To summarize: we are suggesting that there a number of serious
problems with appliance models for security policy, and that we
should not attempt to predict all of the complexity of our users’
wishes ahead of time, but should instead design tools to allow
them to meaningfully express their wishes.

5. THE CHALLENGES OF MEANINGFUL
CONTROL
If we are to attempt to design security technologies without
resorting to appliancisation, there are a number of challenges to be
met. We outline these challenges here and then look at some
promising pointers in each direction.
The challenges spread right across the disciplines of Security and
HCI – from tactical problems of how to design user interface
mechanisms, through to strategic challenges of how to have
spectrum discussions about security. The problems are hard, but
we don’t need perfect answers in order to make progress.

5.1 Mechanisms
Let’s start at the mechanism scale. We have argued that security
configuration is an act of programming – but most of the current
user interfaces are using design techniques that were specifically
developed to avoid their users having to do programming. Take
for example Facebook’s privacy configuration UI, at the time of
writing it contained 61 drop options spread across 7 screens.
There are a number of problems with doing this that limit the use
of interfaces for providing meaningful control. The most obvious
are viscosity, and diffuseness.
In order to assess, and improve such interfaces we need a way of
talking about the usability of programming mechanisms. Here at
least, there is some progress – viscosity and diffuseness are both
parts of the Cognitive Dimensions of Notations Framework [14], a
structural tool for discussing the usability of notations that are
used for programming. As a framework it has some problems, for
example it is comparatively difficult to learn, a problem that we
are actively addressing. More problematically for our purposes, it
is not sufficient to talk about the usability of programming
mechanisms – in order to give meaningful control, we must also
consider the user experience of programming.
Consider the case of discovering that someone gained access to
some information on Facebook that you didn’t expect them to be
able to. It is not sufficient to be able to change the appropriate
settings to ensure that such access couldn’t take place, it is also
crucial that when modifying your privacy settings you have some
confidence in the results of your changes. What creates such
feelings of confidence? What inhibits them? At what level of
flexibility does it become more confidence inspiring to use
programming-like techniques? How can we ensure that these
feelings are grounded in actual security properties, so users may
safely use them as a heuristic?

Here the progress is more modest. Results in other areas of
psychology of programming and visual language design give
some good pointers to start with, e.g. the ability to query an IDE
as to why a specific behavior occurs [18], and work in the factors
that affect user confidence in spreadsheets [2]. An interesting case
to consider here is programming by example – where the system
attempts to infer abstractions automatically from a series of direct
manipulations provided by the user. We have previously
suggested that this might be an interesting approach to addressing
end user programming for security [8], however whether it
possible to build such systems in a way that inspires sufficient
confidence that users would feel happy configuring their security
systems this way remains an open question. Exploring this seems
a promising route to understanding the experiential, rather than
purely computational effects of program construction.
We have some tentative progress in expanding these areas of
research into a framework for discussing the user experience of
programming but much work, both theoretical and empirical, is
needed.

5.2 Strategies
Moving away slightly from the mechanisms, there are challenges
in supporting the higher level strategies that end users may wish
to use to go about configuring security systems. It is often
considered in software engineering to be a good idea to think hard
about the design of a system, before beginning to build it.
Languages have tools, like type systems, built into them to
support this behavior. These tools bring premature commitment
and useful awkwardness – the act of thinking hard about the
system in a particular way is useful in finding some types of
problems.
However, this strategy is not the only possible one. An alternative
is exploratory design, supporting the user in an activity whereby
they fluidly change the data structures and behavioral rules,
consider the behavior of the system they have created and rapidly
iterate.
This is some evidence that both professional programmers [9] and
end user programmers [19, 26] employ a range of different
strategies. However, we know very little about what strategies
support a positive user experience for security configuration and
whether there are behaviors that we are missing by assuming a
similarity between professionals (both programmers, and security
engineers) and end users. These groups may achieve their desired
security behaviors, and confidence in such behaviors, in very
different ways. We suggest this is an important area to investigate
further.

5.3 Long-Term Usability Shaping
Continuing the progression from the tactical to the strategic
challenges in supporting meaningful choices, we must also
consider the long term implications of our usability decisions.
Most discussions of usability typically address the immediate
properties of a system, e.g. how long will it take this user to
perform a given task? However this is inadequate for our
purposes. It is increasingly common to see security usability
designs that look fine in the short term, but suffer problems in
long term use. Examples include the ‘muscle memory’ of
automatically clicking ok to security dialog boxes [23] and
alternative password schemes that suffer from interference when
they are used by more than one different site. How such systems

behave in the laboratory may be a poor predictor for how they
behave after months of use and widespread deployment.
In most systems, usability improves with time as users become
familiar with the system. Security systems seem to be unusual in
that, in many cases, the reverse appears to be true, both in
mechanisms like the above and in programming-like
configuration systems. As suggested in Section 5.2, such systems
are often designed with the assumption that the ‘correct behavior’
is for the user to have thought hard designing their desired
configuration and then implemented it. Over time, many small
incremental changes erode the original design, in much the same
way that ‘coherence’ declines in other software. We need better
ways of discussing long-term usability of configuration systems in
this regard and how to shape them to support the long term
desired, secure, behavior.
There is a related, but more subtle usability effect that occurs over
long term use. We are proposing to build systems that allow users
to craft their own solutions to problems but as we commented on
in Section 3.1 abstractions have a shaping effect, making some
things easier than others. We currently do not have a good way of
predicting or discussing this effect, but it is important for a
number of reasons.
Firstly, and most directly, we want to design systems that
encourage generativity – end users appropriating the technology
for their own use – in order to do this we need to understand
which properties of systems encourage this behavior and which
discourage it. As we suggested before, in direct manipulation
systems where user interface elements compete for screen space it
is hard not to make divergent behaviors more costly in favor of
behaviors supported by the abstraction. But this is much less true
of programming-like systems which tend to escape the limits of
screen space. So there is some hope that we can escape the worst
of the normative effect of abstractions by supporting
programming, but much further work is needed to understand how
to build abstractions that support this. E.g. which features of an
API encourage appropriation? How high-level should it be? How
can we build abstractions that can be partially deconstructed for
reappropriation? How can we structure the API, so it’s easy to
find the underlying components? Will consumers mix levels
elements from different levels of abstraction? How can we build
languages that support this?
Secondly, notations for programming languages tend to live for a
very long time and undergo many design increments. Our
understanding of how to design programming languages that
remain usable after design changes have occurred is limited.
There is some very tentative work in this area discussing, for
example, the way that secondary notations – notations that are not
part of the primary syntax, e.g. comments – tend to be
appropriated for social uses, which can then be supported by
carefully designed computational mechanisms. Indentation in
code is an example where this has happened [7, 13]. Another
example is the suggested process for evolving notations from the
metadesign community who propose a strategy for Seeding,
Evolutionary Growth and Reseeding – where an initial system is
provided, the behavior of users within the system are observed
and then direct computational support is provided for the users
operations the users commonly perform [10]. However, while
such work on long term usability impact of notations is ongoing,
there is still much to do.

Thirdly, and even more subtly, we need to consider the social
impact of the primitives we design. In [5] Bowker and Star
describe in extensive detail the way that abstraction choice within
systems carries political and social implications. When our
abstractions are solely in the technical domain, there seems to be
little risk. However as we suggested in [4] abstractions for
security often carry strong social implications. For example, is the
structuring of capabilities and role based access control
universally appropriate? The historical studies in both [5] and
even Focualt’s [11] show that if a technology deploying such an
infrastructure became very widely accepted, it would tend to
disadvantage those who didn’t fit within the system, i.e. groups
who didn’t think about access management in this way. This is
both an important reason to allow end users to construct their own
abstractions, as they have the most knowledge of local
sensitivities [8], but also a reason to carefully investigate the
shaping effects that our primitives have. At the moment, we
suggest, we simply don’t know whether this is a serious problem
or not.

5.4 Spectrum discussions
At a still more strategic level, what we are suggesting is a shift to
support a property, generativity, of the technology eco-system.
We believe that this is needed for providing users with a
meaningful choice in terms of security. However, as we have
repeatedly asserted, this is not a black and white matter – there is
a spectrum of behavior from generative technology to the
appliance, and the ideal place for any given technology to be at
along that spectrum is influenced by many factors.
Discussions of spectrums are difficult, and security, usability and
socio-technical implications of design are all particularly fraught.
In security, for example, some socio-technical norms have been
established as to what is an insecure system; say executing
arbitrary code from an unknown source with high privilege – there
are few cases indeed where we currently wish to do this. But the
analogous rhetorical style of categorically declaring things in
HCI-SEC as unusable is generally flawed – just because you
display a dialog box asking the user a question doesn’t
automatically mean that it will suffer from the ‘muscle memory’
problem described previously, and just because the user has to
learn something in order to use the system correctly doesn’t mean
that the designer is engaging in harmful ‘train and blame’
behavior. Of course, many systems in security are also like this,
they would be insecure if deployed outside the context in which
they were designed for us. Issues of generativity are also, we
suggest, likely to be like this. So the discussions along each of
these axes are hard, and simplistic reductions are of little use.
But our challenge is even greater than this, we don’t only need to
be able to discuss systems along these axes, we need ways of
discussing interactions between them. How much generativity are
we willing to give up for some extra usability? What are the
implications for usability, and generativity, of a security design
change which restricts the way in which a primitive might be
used?
In order to progress our designs for security and privacy systems
in a way that grows a healthy technological eco-system [21], we
need to find ways to have nuanced conversations like this.

5.5 Levels of abstraction
A final challenge: at what level of abstraction should we have
these design discussions? We have suggested at various points
throughout this paper, that various different levels are appropriate.

For example, we suggested that designing solutions for specific,
concrete, users is a good idea in terms of grounding the design in
what a real user may want, but runs the risk of ‘over-fitting’, and
driving us towards building appliances to solve specific problems,
with all the problems that brings.
We have also commented that over-abstracting away from the
users runs a risk of allowing incorrect assumptions to be
introduced into the design, harming usability and security and
generatively.
These challenges seem somewhat inevitable, the challenge then is
not so much to pick a level of abstraction, but to be prepared to
talk about the design of a system at different levels – and to be
aware of the risks of doing so. Currently, we have a better
understanding of how to build secure, usable systems whilst
working with the highly concrete, if we are to support
generativity, and meaningful control we need to step back a little
and be prepared to have more abstract conversations, but to accept
that doing so carries risks.

6. CONCLUSION: THE LAST MILE OF
DESIGN
In this paper we have outlined some of the current state of security
and usability design practice, and pressures that are driving
industry towards building appliances. We have expressed some
concerns as to why this is problematic, both in terms of whether it
is possible to build systems that offer meaningful choice in this
way and whether the type of usability that we achieve by
appliancisation is what we want to support our technological eco-
system.
We proposed structuring an alternative approach by directly
supporting programming activities and have highlighted that there
are a number of significant challenges along the way to achieving
this, requiring new ways of thinking, talking and designing the
usability and security of systems – but at that it offers potential
rewards in increased usability, security, generativity as well as the
potential for better user experiences.
In most deployed systems, this is too large a challenge to address
directly, so we suggest a practical route forwards – to begin easing
meaningful choice back into systems by allowing the users to
perform the ‘last mile of design’. By this, we mean, for any given
project rather than providing security configuration systems by
either a constrained set of expert-determined opaque presets, or an
unusable direct manipulation interface to a programming
language, such as huge numbers of tick boxes – think about the
problem as if it were a minimal programming language. What
properties does it need to support? What would be a helpful way
of allowing small, user defined abstractions? What would be a
way of allowing the user to define rules over those abstractions,
without having to learn a complex syntax? How can you give the
user a feeling of confidence in what they have created? How
might they go about debugging such a configuration?
We are working on projects doing exactly this, which we suggest
may form the beginnings of a new paradigm for security usability.

7. ACKNOWLEDGMENTS
We thank Alan Blackwell and Thomas Green for many invaluable
conversations. Luke Church’s research is supported by the
Eastman Kodak company.

8. REFERENCES
[1] Acquisti, A. and Grossklags J. 2007. What Can Behavioural

Economics Teach Us About Privacy?. In Acquisti A.,
Vimercati S.C., Gritzalis S., Lambrinoudakis C.
(eds), Digital Privacy: Theory, Technologies and Practices,
Auerbach Publications (Taylor and Francis Group), 363-377,
2007.

[2] Beckwith, L. 2007. Gender HCI Issues in End-User
Programming. Doctoral Thesis. Available at
http://hdl.handle.net/1957/4954

[3] Blackwell, A. and Burnett, M. 2002. Applying Attention
Investment to End-User Programming. In Proceedings of the
IEEE 2002 Symposia on Human Centric Computing
Languages and Environments (Hcc'02) (September 03 - 06,
2002). HCC. IEEE Computer Society, Washington, DC, 28.

[4] Blackwell, A.F., Church, L. and Green, T.R.G. 2008. The
abstract is 'an enemy': Alternative perspectives to
computational thinking. In Proceedings PPIG'08, 20th annual
workshop of the Psychology of Programming Interest Group,
34-43.

[5] Bowker, G. C. and Star, S. L. 2000 Sorting Things Out:
Classification and its Consequences. MIT Press.

[6] Church, L. 2006. Refactored Cognitive Dimensions and
Secure Development. Presented at WIP-PPIG’06. Work in
Progress Psychology of Programming Interest Group.
Available at:
http://www.lukechurch.net/Professional/Publications/PPIG-
2006-01-RCDsAndSD-Paper.pdf

[7] Church, L. 2007. Tradeoffs in Future Proofing Notations.
Presented at WIP-PPIG’07. Work in Progress Psychology of
Programming Interest Group. Available at:
http://www.lukechurch.net/Professional/Publications/PPIG-
2007-01-TradeoffsinFutureProofingNotations-Paper.pdf

[8] Church, L. 2008. End User Security: The democratisation of
security usability. Presented at the first international
workshop on Security and Human Behavior, SHB’08. Draft
available at:
http://www.lukechurch.net/Professional/Publications/SHB-
2008.pdf

[9] Clarke, S. 2004. Measuring API Usability, Dr. Dr. Dobb's
Journal Special Windows/.NET Supplement. Available at:
http://www.ddj.com/windows/184405654

[10] Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A. G., and
Mehandjiev, N. 2004. Meta-design: a manifesto for end-user
development. Commun. ACM 47, 9 (Sep. 2004), 33-37.
DOI= http://doi.acm.org/10.1145/1015864.1015884

[11] Foucault, M. 1979. The History of Sexuality: Volume 1.
Allen Lane.

[12] Gould, J. D. and Lewis, C. 1985. Designing for usability: key
principles and what designers think. Commun. ACM 28, 3
(Mar. 1985), 300-311. DOI=
http://doi.acm.org/10.1145/3166.3170

[13] Green, T.R.G. 2006. The Hindsight Saga, Keynote address
presented at VL/HCC, PPIG’06, 18th annual workshop of the
Psychology of Programming Interest Group

[14] Green, T.R.G and Petre, M. 1996. Usability analysis of
visual programming environments: a "cognitive dimensions"

framework. Journal of Visual Languages and Computing,
7:131-174.

[15] Hoofnagle, C. J. and King, J. 2008 ,Research Report: What
Californians Understand About Privacy Offline (May 15,
2008). Available at SSRN: http://ssrn.com/abstract=1133075

[16] Jenson, S. 2002 The Simplicity Shift: Innovative Design
Tactics in a Corporate World. Cambridge University Press.

[17] Jobs, S. 2007. Macworld San Francisco 2007 Keynote
Address, Jan. 9, 2007, available at
http://www.apple.com/quicktime/qtv/mwsf07/

[18] Ko, A. J. and Myers, B. A. 2008. Debugging reinvented:
asking and answering why and why not questions about
program behavior. In Proceedings of the 30th international
Conference on Software Engineering (Leipzig, Germany,
May 10 - 18, 2008). ICSE '08. ACM, New York, NY, 301-
310. DOI= http://doi.acm.org/10.1145/1368088.1368130

[19] Ko, A. J. Abraham, R. Beckwith, L. Blackwell, A. Burnett,
M, Erwig, M. Lawrence, J. Lieberman, H. Myers, B. Beth
Rosson, M. Rothermel, G. Scaffidi, C. Shaw, M. and
Wiedenbeck S. (in press). The State of the Art in End-User
Software Engineering. Accepted for publication in ACM
Computing Surveys.

[20] Maeda, J. 2006 The Laws of Simplicity (Simplicity: Design,
Technology, Business, Life). The MIT Press.

[21] Nardi, B. A. and O'Day, V. L. 1999 Information Ecologies:
Using Technology with Heart. MIT Press.

[22] Preece, J., Rogers, Y., and Sharp, H. 2002 Interaction
Design. 1st. John Wiley & Sons, Inc.

[23] Schneier, B. 2006. Microsoft Vista's Endless Security
Warnings. Available at
http://www.schneier.com/blog/archives/2006/04/microsoft_v
ista.html

[24] Shapiro, C. and Varian, H. R. 1998 Information Rules: a
Strategic Guide to the Network Economy. Harvard Business
School Press.

[25] Shneiderman, B. 1987. Direct manipulation: A step beyond
programming languages. In Human-Computer interaction: A
Multidisciplinary Approach, R. M. Baecker, Ed. Morgan
Kaufmann Publishers, San Francisco, CA, 461-467.

[26] Subrahmaniyan, N., Beckwith, L., Grigoreanu, V., Burnett,
M., Wiedenbeck, S., Narayanan, V., Bucht, K., Drummond,
R., and Fern, X. 2008. Testing vs. code inspection vs. what
else?: male and female end users' debugging strategies.
In Proceeding of the Twenty-Sixth Annual SIGCHI
Conference on Human Factors in Computing
Systems (Florence, Italy, April 05 - 10, 2008). CHI '08.
ACM, New York, NY, 617-626. DOI=
http://doi.acm.org/10.1145/1357054.1357153

[27] Whitten, A. and Tygar, J. D. 1999. Why Johnny can't
encrypt: a usability evaluation of PGP 5.0. In Proceedings of
the 8th Conference on USENIX Security Symposium -
Volume 8 (Washington, D.C., August 23 - 26, 1999).
USENIX Security Symposium. USENIX Association,
Berkeley, CA, 14-14.

[28] Zittrain, J. 2008 The Future of the Internet--And how to Stop
it. Yale University Press

