
Securing Data Through Avoidance Routing

Erik Kline
Laboratory for Advanced Systems Research

UCLA Computer Science Department
405 Hilgard Avenue

Los Angeles, California, 90095
icebeast@cs.ucla.edu

Peter Reiher
Laboratory for Advanced Systems Research

UCLA Computer Science Department
405 Hilgard Avenue

Los Angeles, California, 90095
reiher@cs.ucla.edu

ABSTRACT
As threats on the Internet become increasingly sophisti-
cated, we now recognize the value in controlling the rout-
ing of data in a manner that ensures security. However,
few technical means for achieving this goal exist. In this
paper we propose and design a system that allows users to
specify regions of the Internet they wish their data to avoid.
Using our system, data will either arrive at the destination
along a path that avoids the specified regions, or no avoiding
path exists. Beyond the design, we discuss the deployment,
performance and security issues of this system, along with
alternative approaches that could be used.

Categories and Subject Descriptors
C.2.0 [General]: Security and protection; C.2.2 [Network

Protocols]: Routing Protocols

General Terms
Security

Keywords
Avoidance Routing, BGP, DFS, Security Properties

1. INTRODUCTION
Throughout history, nations, enterprises and individuals

have gone to great lengths to protect valuable information.
While cryptography is the most commonly used technique,
history is rife with cases where one party was able to break
the cryptography of another [10][14][31]. It is clear that
cryptography is not a perfect solution. A complementary
technique is to ensure that sensitive data is not available
to an opponent. Reducing your adversary’s access to your
encrypted data can significantly increase its safety. Con-
versely, adversaries have historically made effective use of in-
tercepted encrypted data. British intelligence’s ability to in-
tercept and decrypt German communications in both World

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NSPW’09, September 8–11, 2009, Oxford, United Kingdom
Copyright 2010 ACM 978-1-60558-845-2/09/09 ...$10.00.

War I and World War II was a great boon to the allied
war efforts. The intercepted and decrypted Zimmerman
Telegram, for example, allowed the British to influence the
United States to enter World War I [34].

The same situation applies to the modern information age.
While we can use cryptography in an attempt to protect our
information, we have little control over which parties can
observe our encrypted packets. Even without decryption,
merely observing traffic patterns and volume can provide
useful intelligence [29]. Finally, opponents can selectively
drop some or all of our traffic, denying service when it may
be critical. This clearly shows the need for finer control over
the routing of information.

The security value of controlling our Internet routing paths
has been recognized [28], but there are currently no feasible
methods to facilitate this control. At best, we can determine
the route that will be taken, although this is not guaranteed.
While source routing [26] would allow one to force a specific
route, it is not clear how one would go about determining
this route. Further, relatively few Internet routers support
source routing [9]. The only current approach is to have
service providers and autonomous systems manually set up
specific routes via Border Gateway Protocol (BGP) policies.
This is generally done for traffic engineering and quality-of-
service purposes, but not for security reasons. A practical
method for avoiding specific regions of the Internet is needed
for those who require better security for their sensitive data.

One important aspect of this problem is geopolitical. In-
cidents of cyber warfare and cyber espionage continue to
increase. These include the Estonian-Russian incident [33],
Georgian-Russian incident [21], and possible Chinese espi-
onage efforts [27]. Clearly, various nations would prefer not
to route their packets through the territories of their ene-
mies, rightly assuming that those enemies will attempt to
use that data for espionage or to selectively deny service.
One may also wish to avoid countries for legal reasons. For
example, some countries restrict the use of cryptography and
may try to prosecute those using it. Other countries, such as
Sweden [41], have passed laws allowing them to monitor all
cross-border internet traffic. Further, given the prevalence of
economic espionage [18][23], some commercial entities may
have similar concerns.

In this paper we propose a method which allows senders
to specify security properties that they want their data to
avoid, with reasonable assurance that their wishes will be
satisfied. These properties may include geopolitical loca-
tion, corporate ownership, router type or manufacturer, and
specific ASes. Another possible security property is path

attribution, where a path is chosen only if it can or cannot
provide a certain level of attribution about the sender and/or
receiver. We will show how our method is relatively compat-
ible with existing Internet routing protocols. We will also
show that this method will incur low additional routing costs
and achieve reasonable scaling. This will be accomplished
while still allowing many different parties to use avoidance
routing, specifying different sets of properties that they wish
to avoid when sending data.

2. AVOIDANCE ROUTING
In order to conduct routing that avoids nodes with specific

security properties, a system must be able to gather and use
that information in routing decisions. We assume that par-
ticipating routers are already running BGP, and we make use
of the information they have already gathered about avail-
able routes. However, several additional steps are required.
First, the security properties of routers and autonomous sys-
tems must be determined. Second, the properties of adver-
tised routes must be disseminated between routers. Finally,
using this information, particular packets must be routed to
avoid entities with particular security properties. While the
system discussed here is designed at the inter-AS layer, a
similar intra-AS system is required to correctly route pack-
ets.

2.1 Determining Security Properties
In order to perform avoidance routing, every AS must

know the security properties of its routes. While it may be
possible for every router to determine the security proper-
ties of every other router, we believe this is infeasible. If this
information was easily available, it would make more sense
for end hosts to obtain it and use source routing, rather than
gather it at each individual router. Further, since ASes use
BGP to do their inter-AS routing, they only have informa-
tion about routes advertised to them, and nothing about al-
ternative routes. Having global knowledge of security prop-
erties would only help an AS determine if a route intersects
specific properties, but not if an alternative avoiding route
exists. Alternative approaches that could make use of this
information are discussed in Section 5.

The security properties of routes must be determined in
another manner. Obviously, every AS is aware of the se-
curity properties of its own routers. While an important
problem, we consider the method used by an AS to inform
its routers of their security properties to be orthogonal to
goal of this paper. The scheme presented in this paper is in-
dependent of whether ASes manually configure their routers
with their security properties or configure them in a auto-
mated manner.

However, we cannot necessarily rely on ASes to be either
cooperative or truthful about this information. On the con-
trary, it may be in the best self-interest of an adversary to lie
about this information. Some security properties can be val-
idated by a neighbor or remotely. ASes have a high degree
of confidence in the geolocation of their neighbors. Security
properties such as corporate ownership can be validated by
services such as Whois. The AS path information can be
validated using S-BGP [15]. However, other information,
such as router type, manufacturer or firmware version may
not be easily verifiable. How to validate and trust the infor-
mation an AS tells its neighbors is discussed in more detail
in Section 4.

Figure 1: A simple network topology

2.2 Disseminating Security Information
Once the security properties of each AS have been de-

termined, the ASes must determine the security properties
of specific routes. As stated in Section 2.1, it is infeasible
for each router to determine the security properties of other
routers. Instead, each router shares security information
with its neighbors. Routes containing security properties
can be built up and shared in the standard distance vector
or path vector manner. Using this approach, we can leverage
BGP to help pass information about the security properties
of each AS in an advertised path, using BGP optional path
attributes, for example.

The technique we use is based on the augmented address-
ing scheme of Oliveira et al. [24]. In their scheme, they aug-
ment BGP advertisements such that geolocation is encoded
along with AS number. They find that using geolocation in-
formation can determine better routes, rather than simply
using smallest hop count. They also find that this allows for
more aggregation, leading to smaller routing tables.

While their scheme is designed to solve a different prob-
lem, we believe the augmented addressing technique can be
applied in our system. In our system, addresses are aug-
mented with all the security properties of an AS. We deter-
mined the best place to place this data is in BGP optional
path attributes, allowing legacy BGP speakers to operate
without understanding avoidance routing.

We treat security properties like any other routing dy-
namic. If a security property changes, new BGP updates
must be distributed. We believe security properties will
change no faster than routing changes, therefore requiring
BGP updates for changes seems reasonable. Changing secu-
rity properties generally requires manual intervention, such
as deploying a new router, and thus occurs infrequently.
Even properties that can be changed automatically, e.g., up-
grading firmware, occur on the order of months, not minutes.
Further, many changes in security properties will result in
routing changes. For example, if an AS deploys a new router
in a different country, this will undoubtedly generate routing
changes along with the change in security properties.

Figure 1 shows a simple topology, where the only security
property is geopolitical location. In this topology, AS A
originates a data flow to an address in AS F. The shaded
AS D is located in countries that the sender wishes to avoid.
All other ASes are in trusted countries. Clearly, the data
flow should be routed through C. Assuming that B and C
have both advertised a path to F, and both have included
information about the country security property of the next

ASes in the paths, A will know that C is the optimal choice.
If we extend our topology to include more ASes between B-
D and C-E, as long as the security information is included in
each path vector, A can see the entire path and still choose
C.

Obviously, this simple topology makes the decision easy.
In a more complex topology, there might not be an adver-
tised path that avoids the undesired properties, while an
unadvertised path may exist that does. Network conditions
may also change, causing an AS to route along a different
path than advertised. Thus, the default advertised routes
can help select an avoidance route, but cannot guarantee
that this route will succeed or another route will fail. These
issues must be overcome by the method used to actually
route packets.

The list of path security properties is called the security
vector. The security vector is built up step by step as the
path is created, just like the normal BGP path vector. For
example, consider the route from A to C to E to F in Figure
1. This route originated when E advertised to C that E has a
direct route to F. Since each AS only has one security prop-
erty in this example, we shall denote the security property
of F as f, E as e, etc. E’s advertisement to C then contains
the security vector f. C then advertises an E-F route to A,
including the security vector e – f. A would finally store the
C-E-F path vector with the security vector c – e – f.

It is important to realize that the security vector has a
one-to-one correspondence to the path vector. That is, C
has the security property c, E has the security property e,
etc. If F had two different security properties (e.g., located
in two countries), it would specify both. In this case, the
path vector would be C-E-F with security vector c – e –
f1,f2.

Some ASes may wish to participate in more limited forms
of avoidance routing. These ASes may be willing to dis-
tribute some of their security properties, but not others. We
allow this capability by making the security vector a vari-
able length. In this way, an AS can add to the vector only
the security properties it wishes to share. If an AS does not
provide a specific security property that a user cares about,
this AS is treated as untrusted in regard to that property.

2.3 Using Security Properties for Routing
To effectively route packets along avoidance routes, the

senders must be able to specify which properties they wish
to avoid. Further, using this information along with the
information disseminated in Section 2.2, routers must be
able to determine the appropriate route. Attempting to
store all possible avoidance routes to all possible destina-
tions would result in a combinatorial explosion. Knowing
that most routes will never be needed, these routes should
be generated on demand.

When a host wants to use avoidance routing, it must make
a request for the service. This request specifies the desti-
nation and the security properties the user wishes to avoid.
This request is call an avoidance request. Avoidance requests
will be discussed in more detail later.

When a router receives an avoidance request, it has several
steps to perform. It first searches its known routes for any
path to the destination that satisfies the specified security
properties. If such a route exists, the router can immedi-
ately forward the avoidance request on to the next router.
However, if the router does not know of such a route, it must

Algorithm 1 The Search Algorithm.

1: Receive avoidance request
2: Create search table entry
3: for all Advertisements ax to destination do

4: if Security vector in ax ∩ avoidance criteria then

5: Forward along interface for ax

6: Delete search table entry
7: return success

8: end if

9: end for

10: Heuristically sort advertisements to destination
11: for all Sorted advertisement sax do

12: Forward along interface for sax

13: Delete search table entry
14: if Success returned then

15: return success

16: end if

17: end for

18: Delete search table entry
19: return failure

search for one.
The search used is a standard heuristic-based depth-first

search (DFS). The router sorts its possible routes to the
destination based on interface using a heuristic. It then
forwards the avoidance request along the interfaces in order,
until one succeeds or all fail. The search algorithm is shown
in Algorithm 1.

Success and failure are explicitly indicated by the next
router. When a router receives a success message, this indi-
cates that the next router found a path to the destination.
The router can now terminate its search and indicate suc-
cess to the previous router. When success propagates all the
way back to the sender, the route has been established. If
a router receives a failure message, this indicates that the
next router could not find a path to the destination. In
this case, the router tries the next interface. If all interfaces
are exhausted, the router indicates failure to the previous
router.

Some information must be kept during a search. This
information must include the source doing the search, the
destination, the avoidance criteria, and an ordered list of
interfaces yet to try. As the search is conducted, each tested
interface is removed from the list. If the list becomes empty,
then no interface succeeded and failure is indicated. Finally,
the interface on which the search arrived is also stored. This
is done to prevent search loops which are possible using DFS.
A search entry is shown in Figure 2.

One important caveat is that our system does not consider
path-dependent properties. A path-dependent property is
any property where the routing decision is dependent on the
path used to reach the current router. For example, delay
is a path-dependent property. Path-dependent properties
greatly increase the complexity of a search by reducing the
pruning of already visited nodes. If we arrive at node A
from node B and the search fails, this does not mean that if
we arrive at node A from node C, the search will fail.

We could possibly handle path-dependent properties by
using partial searches. Each time a node receives an avoid-
ance request, it conducts a search regardless of whether it
can currently satisfy the path-dependent properties. In this
way, the search data is available and usable for pruning if the

Figure 2: Search table entry

search reaches this node from another path. Another pos-
sibility is to use a limited crankback approach as discussed
by Shin et al. [30], which limits the number of redundant
searches based on several factors, such as the number of
searches already conducted. However, because of the com-
plexity of the problem and our desire to have a high-speed
system, we do not consider path-dependent properties.

What exactly is an avoidance request? An avoidance re-
quest can come in three forms. The first form, called header
form, is an IP option. In header form, the avoidance crite-
ria (the properties to avoid) are specified explicitly as the
option. Header form is most useful if the number of secu-
rity properties is small and the number of packets to send is
small.

The second form, called packet form, uses an entire IP
packet to specify the avoidance criteria. Since IP headers
have a maximum length, if you wish to specify a large num-
ber of criteria, these must be placed elsewhere. Thus, the
packet form was created. The packet form is also essen-
tially a ping, where the receiver will echo the request back
to the sender. We use a ping in order to not adversely affect
TCP. Assuming the common case of the first real packet be-
ing a TCP SYN, that packet’s time to traverse the network
will set up its TCP round-trip time estimate. Finding the
avoidance path may require a heavyweight search operation,
which will distort the true round-trip time. The ping sets
up the path prior to the SYN being sent, ensuring that the
round-trip time is accurate.

The final form is called transport form. In this form, a full
two-way communication session is established between each
hop. The previous hop then sends to the next hop the full
list of avoidance criteria. This is the most heavyweight form
and should only be used if the number of avoidance criteria
is exceedingly large.

2.4 Caching
It is clear that conducting a search for every packet is im-

practical, and with larger avoidance requests it is impossible.
Further, every packet in a particular data flow will want to
take the same avoidance path. Searching for a path for each
packet is inefficient, since the first packet will have already
discovered a viable avoidance path. Finally, since avoidance
requests may require an entire packet or more, routers must
be able to recognize packets that wish to use avoidance rout-
ing without needing to know their avoidance criteria every
time. To solve this issue, we employ caching. The goal is
to ensure that once an avoidance path has been created, all
subsequent packets can be forwarded via the cache with-
out specifying avoidance criteria each time. In this way, the

search is only conducted once.
Avoidance routing actually employes two different caches.

The first cache is called the forwarding cache. This cache is
organized by an index number and contains only three pieces
of information: a destination, a forwarding interface, and the
next index number. When a route is successfully discovered,
a cache entry is created and stored in the next available
cache slot. The index number of this slot is communicated to
the previous router in the success message for the avoidance
path. That router, in turn, will create a cache entry, storing
the index number of the next router. In this way, the source
will receive a success message containing the index number
of the first router along the path.

When the source uses the service, it places the index num-
ber in the IP header as an IP option. The first router receives
the packet, and looks up the forwarding interface based on
the index number. It then validates that the cache desti-
nation and the packet destination match. If so, it changes
the current index number in the packet to that of the next
router and forwards it along the specified interface. In this
way, the avoidance path can be used without every packet
containing the explicit avoidance criteria. Since the forward-
ing cache has small fixed-sized entries, we believe the cache
can eventually sit directly on the router using high-speed
memory. Therefore, the forwarding cache allows quick high-
speed forwarding of packets.

One important optimization in the forwarding cache is
that reverse entries are created when an avoidance request
arrives. This cache entry is identical to a normal cache entry
except it is set up in the reverse direction (to the source),
unless routing policy does not permit the router to send
packets in that direction. Logically, the packet could not
have reached this router from the source unless an avoidance
path exists to this router. The next router index number can
be carried in the avoidance request.

The second cache is called the avoidance cache. This cache
is organized by destination and stores the following infor-
mation: the destination, the forwarding cache index, the
avoidance criteria, the next router index number, and the
forwarding interface. While it may appear that the avoid-
ance cache makes the forwarding cache redundant, there are
two important distinctions. First, avoidance cache entries
are larger, and therefore result in less storage of avoidance
paths per byte of high-speed memory. The second distinc-
tion is more critical. Since avoidance criteria are of variable
length, it is impossible to know a priori the size of cache en-
tries. This makes memory layout and management a more
difficult problem. For these reasons, we deploy the forward-
ing cache which uses small fixed-sized entries, making mem-
ory layout and access far easier.

It may also appear that the avoidance cache is unneces-
sary given the forwarding cache. However, the avoidance
cache serves several purposes. The first purpose is to handle
a packet whose destination does not correspond to the for-
warding cache entry based on index number. For example,
this may occur if the forwarding cache entry was evicted.
In this case, the avoidance cache is checked, the packet can
be quickly forwarded, and the forwarding cache can be up-
dated.

The next purpose, and possibly the most important, is to
store the avoidance criteria. As stated above, the forwarding
cache uses an index system so that individual packets do not
have to contain the avoidance criteria. However, this criteria

Algorithm 2 Using Caching to Forward a Packet.

1: Receive packet using avoidance routing
2: Get cache index from packet
3: Get forwarding cache entry fci

4: if fci exists AND

fci destination = packet destination then

5: Forward along specified interface
6: end if

7: Get avoidance cache entry aci

8: if aci exists then

9: Forward along specified interface
10: Create new forwarding cache entry
11: end if

12: Request previous hop to generate new avoidance request
13: run Algorithm 1

must be maintained in case there is a routing change. When
a routing change occurs along an avoidance path, that path
is no longer valid. The last still-connected router will be the
first to detect the routing change, and thus the invalid path.
At this point, this router will conduct a new search to the
destination using the cached avoidance criteria.

This is also important for resurrecting avoidance criteria
from a previous router. If a packet using avoidance routing
arrives and it does not have a either forwarding cache entry
or an avoidance cache entry, the router can request that the
previous router conduct a new search. While this router has
a valid avoidance path, it also has the avoidance criteria. In
this way, it simply generates a new avoidance request and
sends it along its cache’s interface to the router that does not
have any cache entries. This router now has the avoidance
criteria and can conduct a new search.

The final purpose of the avoidance cache is that of search
optimization. When an avoidance request arrives, the router
checks to see if a cache entry to the destination with the spec-
ified avoidance criteria already exists. If so, it can use the
existing forwarding interface to forward the message along
without searching. This can also be used to store failure.
In this case, a recent search for a specific avoidance path to
a destination failed. This allows us to prevent search loops
and prune branches that have already been used by a pre-
vious search. How the caches work is shown in some detail
in Algorithm 2.

2.5 Path Invalidation
While routing in the Internet is more static than routing

in other domains, such as ad hoc networks, routes do change.
As stated in Section 2.4, the avoidance cache is designed to
recover from a routing change by conducting a new search.

Unfortunately, the router will no longer have any informa-
tion about previously attempted interfaces. Therefore it will
once again start the search as if it had never done it before.
If this router is able to discover an avoidance path to the
destination, it will set up the appropriate cache entries and
inform the previous router of success. The previous router
will be unaware of the route failure. When it receives the
success message, it will discover that no search is being con-
ducted, update its next router index, and then discard the
message. However, if the router receives a failure message,
the router will also discover that no search is underway, but
will not ignore the failure message. It will then check to
see if the failure message corresponds to an avoidance cache

entry. If this is true, then it determines that the next router
on the path had some failure and is no longer usable for this
avoidance path. Just like the first router, this router will
begin a search. In this way, either a new avoidance path
will be discovered or the source will eventually be notified
of failure.

One negative effect of this approach is that these new
searches will be conducted on existing data flows. This may
result in a significant increase in delay, which in turn will
result in a reduction of TCP throughput. Although not cur-
rently part of the design, a possible optimization would be
to explicitly inform the sender or sending AS of an avoid-
ance path invalidation. In this way, the AS could throttle
or stop sending until the new path is constructed, at which
point normal operation could be resumed.

2.6 Partial Deployment
Our system would, of course, benefit from total deploy-

ment. However, since total deployment is not likely to hap-
pen, the system can work in partial deployment, provided
that deployment is contiguous. ASes that do not deploy the
system must be recognized and treated as untrustworthy.
Further, it may be possible to support non-contiguous par-
tial deployment if a secure method of transit between one
island of deployment to another is used. For example, if an
anonymity network is deployed between islands, this can be
used to protect data transitting between them. However,
these methods are generally easily detectable, and may be
attacked as away to cut off one island from another. For
routing performed on behalf of nations, mandating sufficient
partial deployment for their security seems realistic. ASes
may also deploy the system as a value-added service.

3. PERFORMANCE CONCERNS
While there might seem to be major performance issues,

closer examination shows that the avoidance routing system
could be relatively cheap to use and maintain. There are
three main cost issues that we analyze:

• Cost to perform the search

• Additional overhead for ongoing packet delivery

• Additional space and computational overhead for par-
ticipating routers

3.1 Search Cost
The search algorithm’s cost is best expressed in its time

complexity. This cost can be determined by the total nodes
traversed to find the path. Since our search algorithm re-
duces to depth-first search (DFS), we are bounded by the
well-known complexities of DFS. DFS may result in infi-
nite time complexity if loops exist in a graph. In general,
this problem is overcome by marking or remembering which
nodes have already been visited. Our search table entries
and negative cache entries act as a form of marking. The
search complexity is therefore bounded by the worst-case
DFS complexity of O(|V |+ |E|), where V is the set of nodes
in the graph and E is the set of edges between the nodes.
This is the worst case where either no path exists or the last
possible path searched is the correct one.

With total deployment and no optimization, the nodes
in our graph are the routing ASes of the Internet and the
edges are the links connecting them. Therefore, in the worst

case, every Internet routing AS and link will be traversed.
However, our search algorithm reduces complexity by using
partial knowledge of the graph’s topology. We do not explore
paths that cannot possibly reach the destination, reducing
our search space to only the paths from the source to the
destination. Furthermore, we prune paths that cannot pos-
sibly avoid our target properties, including ASes with those
properties. Our complexity is still bounded by O(|V |+ |E|),
but our V is the set of nodes that lie on a possible avoid-
ance path from the source to the destination, and E is the
set of edges between the nodes in V. Finally, the next-hop
selection heuristic may further reduce complexity.

3.2 Forwarding Cost
We assume that the vast majority of all packets forwarded

using avoidance routing will find their forwarding informa-
tion in the forwarding cache. Any packet not using the ser-
vice will be forwarded normally, and should not experience
any additional delay. With suitable indexing, the forward-
ing cache should be able to service forwarding requests as
quickly as a standard forwarding table.

The system does change information within the packet
header, i.e., the index number. This change will incur addi-
tional overhead per packet forwarded using avoidance rout-
ing. However, routers already change the TTL and check-
sum fields in every packet they forward. Further, an IP
spoofing defense called BASE [17] which uses a marking
scheme similar to ours shows negligible additional overhead.

3.3 Router Overhead
Router overhead is expressed in terms of both additional

storage and additional computation. In terms of storage,
the router must store cache entries, the search table, and
route advertisements. The router makes two cache entries
for each avoidance path it sets up, one for the forward path
and another for the return path. Both cache entries are
the same size and contain destination IP prefix (32 bits),
interface (8 bits), and next router index (32 bits). This
means that every avoidance path requires 144 bits.

The size of the both the search table and avoidance cache
is important. However, this value is unknown since both
of these structures store the avoidance criteria, which are
of variable length. However, these structures do not need
to be stored on the router, but instead can be placed on
the route processor. Considering that the Cisco CSR-16-
RP route processor has 4 GB of RAM [42], this seems quite
reasonable.

The other important space parameter is advertisement
storage. Our updates will be larger than standard BGP up-
dates, as the security properties must be augmented to the
updates. Similar to the search table and avoidance cache,
the exact cost of this augmentation is unknown.

The computational cost is also important. If a path al-
ready exists, this cost is negligible, since it is a simple cache
look-up, which, like all table look-ups, can be highly opti-
mized for speed. The case where the path does not exist
is more complex. First, the router needs to compare the
avoidance criteria in the packet to the security criteria in
the advertisements. If we assume each set is sorted, the re-
sult is an ordered set intersection problem, O(2N). Since
this has to be done for M advertisements, it comes out to
O(M ·2N). If all advertisements intersect the avoidance cri-
teria, we pick a neighbor based on a heuristic. In general, the

neighbors need to be ordered based on the heuristic, which
is O(N · logN), although we could attempt to optimize this
by performing some of the work in the first advertisement
search.

The other computational expense involves cache mainte-
nance. Insertion into the cache should be trivial using a good
hash function and indexing (O(1) in the ideal case). If the
cache is full, we must pay the penalty of searching the en-
tire cache for expired entries and removing them. A possible
optimization is to periodically clean the cache when router
load is low. Finally, there is the additional computational
cost for receiving an update of a changed/new/withdrawn
path. The primary additional cost is attributable to con-
structing the new advertisement sent to the neighbors. The
router must update the security vector specified in the adver-
tisement. Updating this vector requires adding the security
properties of this AS to the path’s existing security vector.

Not all storage and computational costs need to be paid
directly by the router. Many of these costs can be offloaded
to route processors, similar to how normal route updates are
processed and generated. In principle, only the forwarding
cache needs to be on the router. Running the search, storing
the search table, storing the avoidance cache, and creating
and processing advertisements can be done on route proces-
sors, allowing the router to continue to process and forward
packets as normal.

4. TRUST AND SECURITY CONCERNS
Clearly, trust is a fundamental issue of any security based

system. Avoidance routing has two forms of trust that have
to be considered. The first involves the problem of trusting
information that an AS provides. In Section 2.1, we discuss
how some information can be validated by the next hop.
However, this is only true if multiple ASes are not collud-
ing. For example, let us assume that we only care about
geopolitical location. AS X is in France, which we do not
trust. AS Y, colluding with AS X, informs us that AS X is
actually in Germany. AS Z, who gets the update from AS
Y, has no way of validating if AS X is in fact in Germany.

There are several possible solutions. One possible solu-
tion is to deploy a signature-based scheme. ASes sign their
security properties. As the path is built, the signatures can
be validated. To do this in a truly trusted manner, each AS
must determine its security properties in some verifiable way.
For example, Cisco routers can generate a known signature
which can be verified.

Another possible solution is to create a global reputation
system for ASes. As ASes continue to send verifiable and
accurate security criteria, their reputation increases. If they
are known to send inaccurate security criteria, or participate
in other nefarious activities, their reputation goes down. In
this way, a reputation level may act as another security prop-
erty. A user may request a path that has a certain minimum
reputation level. Further, a trusted third party could broker
the reputation level of all ASes. This would be similar to
the clearing houses in the financial system. The solution to
this problem is an open question.

The other trust model that must be considered concerns
the actual avoidance routing search. Many of our security
properties may not be homogeneous throughout an AS. For
example, an AS may have routers deployed in multiple coun-
tries. Should we give a packet to this AS and trust it to
internally avoid the routers we do not trust, or should we

not? To solve this problem, we propose two different levels
of avoidance criteria: strict criteria and loose criteria. Strict
criteria means that an AS should be avoided if it does not
homogeneously (strictly) meet that criteria. Loose criteria
allow an AS to participate in avoidance routing even if it
does not homogeneously meet the criteria, but does hetero-
geneously. For example, AS X deploys routers in France and
Belgium. If France is a strict criterion, AS X should not re-
ceive the avoidance packet. If France is a loose criterion, AS
X can still receive the avoidance packet and it is assumed
that AS X will attempt to internally conduct avoidance rout-
ing properly, i.e. only using Belgium. However, if AS X is
only deployed in France, it should not receive the avoidance
packet regardless of criteria level.

There are several other important security concerns that
must be addressed for a system like this one to work. First,
our avoidance criteria information is passed in BGP updates.
We must ensure that our updates are not improperly altered,
causing incorrect routing. This issue is less the core problem
of S-BGP (whether the advertiser has the right to adver-
tise a path to a destination) [15], and more whether BGP
messages have been altered in transit. These issues can be
handled by using IPSec between BGP routers. While some
BGP speakers may not currently use IPSec, it would not be
difficult to begin doing so. Using secure BGP transmission
may be a criterion for trusting an AS.

Another security issue pertains to the search messages
passed from one AS to another. Like the path informa-
tion, search messages must be unaltered. This need, there-
fore, can be alleviated with IPSec. It is also important that
routers not participating in the search cannot send false suc-
cess or failure messages to other routers. Without protec-
tion, this flaw would allow one router to disrupt the search
of another. However, in order for this to occur, the router
must know the source and destination IP addresses and the
avoidance criteria of the search. Without this information,
any false search message would have no effect. Further, the
router knows which interface is currently being searched. If
a success or failure message arrives on another interface, it
will have reason to believe this message is false.

A third possible security flaw is the potential for denial of
service (DoS). It’s possible that an adversary could continu-
ously request different avoidance paths in order to constantly
cause routers to conduct searches. These bogus requests will
also flush caches, resulting in other existing avoidance paths
being lost. We deal with this possible attack with admission
controls. Only trusted users will be allowed to request the
service, and they will be given an allowed rate of service for
requests. ASes are allowed to ignore requests from other
ASes they do not trust, and can rate-limit their peers in any
manner they see fit to use.

5. ALTERNATIVE APPROACHES AND RE-
LATED WORK

There are other routing approaches that attempt to avoid
untrusted nodes, such as source routing [26]. But the ma-
jority of routers are not source-routing capable [9] and many
recommend disabling source routing as it presents a differ-
ent method for IP spoofing [12][45]. Further, source routing
is limited to nine hops based on the maximum length of the
IP header. Even if we ignore these problems, it is hard to
determine which routers to use. One requires knowledge of

the security properties of all routers as well as the topology
of the network. Accurately determining the topology of the
Internet is an extremely difficult problem [25]. By contrast,
we disseminate the security properties via BGP updates and
use the Internet topology knowledge present at each router
to help make routing decisions.

Zlatokrilov and Levy [38][39] attempt to solve this prob-
lem by creating a virtual coordinate system using distance
vectors. They retrieve distance vectors from specific refer-
ence nodes. Using these distance vectors, as well as the
known position of the nodes relative to the source and des-
tination, they generate a coordinate system. They use this
coordinate system to find nodes maximally distant from the
nodes they want to avoid, and source route through them.
To perform avoidance routing using their approach, senders
would already need to know the security properties of every
router. The authors also do not discuss how to use their
system in the current Internet. Khuruna et al. [16] use a
similar technique in ad hoc networking to find paths that
are farthest from the adversarial nodes. This technique suf-
fers similar limitations to Zlatokrilov’s, while also incurring
a slow convergence time.

Another alternative is to use an overlay network. Overlay
networks have been used for a variety of purposes, including
multi-cast routing [4][7], content replication [8][40], content
distribution [6][19][44], and privacy and anonymity [46]. In
general, two types of overlays could be used to accomplish
our goal. A generic overlay network could be used, where
the overlay nodes are set up to avoid the routers we dis-
trust. This requires the creator of the network to be positive
that the paths between nodes do not go through untrusted
routers, which may be extremely difficult if the avoidance
criteria is sufficiently complex. Setting up an overlay can be
costly. Also, unless routing is static, routes between overlay
nodes may change, causing data to go through untrustwor-
thy ASes. Furthermore, overlays are more fragile than our
scheme. An attacker may only need to initiate a DoS attack
on a small number of overlay nodes in order to bring down
the network [3].

An anonymity-type overlay network like Tor [46] could be
used to provide avoidance routing. These networks use en-
cryption and onion routing [2] to hide the identity of the
sender from the receiver or anyone intercepting the com-
munication. In principle, being able to determine who is
talking to whom requires compromising the entire network.
The problem with these networks is that they can be heavy-
weight and easy to detect [22]. An adversary country could
kill Tor traffic, denying service at a critical moment. This
approach also assumes that the attacker cannot break the
cryptography, which is an assumption we prefer not to make.

A final alternative approach would be to design a com-
pletely new routing protocol. In this case, a link state rout-
ing protocol would be optimal, and would be able to support
many different types of security parameters, such as country,
router type, etc. Each node in the link state graph would
specify all of its parameters. When avoidance routing was
conducted, any node that did not meet the requirements
would be removed from the graph. Then one would sim-
ply run Dijkstra’s algorithm on the graph to find a path to
the destination. While this solution is viable, it relies on
being able to get global information about the ASes on the
Internet, which we believe is infeasible. Further, it requires
the deployment of a new routing protocol, toward which the

industry has shown reluctance.
In the ad hoc realm, Yi et al. [36] propose a routing pro-

tocol to avoid untrusted nodes. The protocol assigns each
node a trust value a priori. Messages are then encrypted
based on trust level, where nodes with higher trust levels
can decrypt and forward, while nodes with lower trust lev-
els cannot. This technique is not practical for the Internet.
Each node would have to have different trust information for
different groups of senders, and the cryptography is too ex-
pensive for routers. The TARP approach [1] is close to ours,
as decisions are made based on route attributes rather than
global trust level. TARP avoids nodes based on power con-
sumption or software capabilities, not necessarily security
properties. TARP is based on Dynamic Source Routing [13];
instead of all nodes broadcasting a message, only nodes that
meet the specified properties will. However, since TARP is
built in the ad hoc realm, it has no way of preventing an
untrusted node from overhearing a message. Also, TARP
relies on each node to truthfully inform its neighbors of its
capabilities.

Other ad hoc networking techniques dynamically adjust
trust based on observed behavior [11][20][35]. If the trust
is too low, you do not route towards these nodes. These
techniques are vulnerable to passive attacks (such as inter-
ception). Passive attacks are difficult to observe and are one
of the core motivations for our work. An attacker can also
game this system to gain a high trust before committing his
attack.

Depth-first search has been used before to make routing
decisions for both quality-of-service (QoS) and wireless rout-
ing. Shin et al. [30] use DFS to find routes that meet certain
QoS constraints. This work’s use of DFS is different than
ours, introducing a set of problems that we do not have to
deal with. How messages arrive at a node is important for
this approach in determining the next hop. In their paper,
the search is optimized to solve this problem, while ours is
optimized for different purposes. Stojmenovic et al. [32] use
DFS to route in wireless networks, using GPS and QoS infor-
mation to determine the next hop. Their system must redis-
cover routes each time, since their work is in the MANET
area where the routes change quickly. Furthermore, their
decisions are based on GPS, which is information we cannot
expect to have for Internet routers. Finally, they also make
decisions based on QoS information, which has the same
limitations as Shin’s system.

Finally, avoidance routing is an instance of policy-based
routing [5]. Policy-based routing is any routing scheme where
per-packet routing decisions are made based on some specific
policy. Current policy-based routing mechanisms [43] gen-
erally work on parameters currently carried in the packet,
such as source or destination. This allows for the enforce-
ment of blacklists but does not provide the dynamics we
desire. Our routing decisions are made based on the avoid-
ance criteria specified by the host. Younis and Fahmy [37]
explore constraint-based routing, a combination of policy-
based routing and quality-of-service routing. However, they
do not explore avoidance-based policies or the problem of
how to disseminate or enforce such policies across domains.

6. CONCLUSION
In this paper we provide an overview of an avoidance

routing system that allows users to protect their data by
requesting routes that avoid adversarial or untrustworthy

ASes based on security properties. We believe that this
is an important concern in the current global political and
economic climates. Encryption alone cannot guarantee the
confidentiality of data. Instead, it should be used in con-
cert with other methods to secure sensitive data. We have
discussed, in detail, the design of such a system, and ana-
lyzed the relevant performance and security issues. Finally,
we evaluated all alternative approaches, and concluded that
none can adequately accomplish the goals of our system.

7. REFERENCES
[1] L. Abusalah, A. Khokhar, G. BenBrahim, and

W. ElHajj. TARP: Trust-Aware Routing Protocol. In
International Wireless Communications and Mobile
Computing Conference, 2006.

[2] R. Anderson. Hiding Routing Information.
Information Hiding, 1174:137–150, 1996.

[3] B. Awerbuch and C. Scheideler. Toward Scalable and
Robust Overlay Networks. In International Workshop
on Peer-To-Peer Systems, 2007.

[4] S. Banerjee, B. Bhattacharjee, and C. Kommareddy.
Scalable Application Layer Multicast. In ACM
SIGCOMM, 2002.

[5] H-W. Braun. Models of Policy Based Routing. RFC
1104, 1989.

[6] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham,
and S. Shenker. Making Gnutella-like P2P Systems
Scalable. In Applications, Technologies, Architectures,
and Protocols for Computer Communications, 2003.

[7] Y. Chu, S. Rao, and H. Zhang. A Case for End
System Multicast. In ACM SIGMETRICS, 2000.

[8] I. Clarke, T. W. Hong, S. G. Miller, O. Sandberg, and
B. Wiley. Protecting Freedom of Information Online
with Freenet. IEEE Internet Computing, 6(1):40–49,
January-February 2002.

[9] R. Govindan and H Tangmunarunkit. Heuristics for
Internet Map Discovery. In IEEE Infocom 2000, 2000.

[10] P. Gutman. Lessons Learned in Implementing and
Deploying Crypto Software. In Usenix Security
Symposium, 2002.

[11] L. He. A Novel Scheme on Building a Trusted IP
Routing Infrastructure. In International Conference
on Networking and Services, 2006.

[12] D. Hoelzer. The Dangers of Source Routing.
http://enclave
forensics.com/Blog/files/dbe04629c14a2d07495a38bbf2fc98d9-
5.html,
2009.

[13] D. Johnson. The Dynamic Source Routing Protocol
(DSR) for Mobile Ad Hoc Networks for IPv4. RFC
4728, 2007.

[14] D. Kahn. The Codebreakers. MacMillan, 1967.

[15] S. Kent, C. Lynn, and K. Seo. Secure Border Gateway
Protocol (Secure BGP). IEEE Journal on Selected
Areas in Communication, 18(4), April 2000.

[16] S. Khurana, N. Gupta, and N. Aneja. Minimum
Exposed Path to the Attack (MEPA) in Mobile Ad
hoc Network (MANET). In International Conference
on Networking, 2007.

[17] H. Lee, M. Kwon, G. Hasker, and A. Perrig. BASE:
An Incrementally Deployable Mechanism for Viable IP

Spoofing Prevention. In ASIAN ACM Symposium on
Information, Computer and Communications Security,
2007.

[18] J. A. Lewis. Securing Cyberspace for the 44th
President. Center for Strategic and International
Studies, 2008.

[19] J. Li, G. Popek, and P. Reiher. Resilient
Self-Organizing Overlay Networks for Security Update
Delivery. IEEE Journal on Selected Areas in
Communications, Special Issue on Service Overlay
Networks, 22(1), January 2004.

[20] Z. Liu, A. Joy, and R. Thompson. A Dynamic Trust
Model for Mobile Ad Hoc Networks. In IEEE
International Workshop on Future Trends of
Distributed Computing Systems, 2004.

[21] J. Menn. Expert: Cyber-attacks on Georgia websites
tied to mob, Russian government.
http://latimesblogs.latimes.com/technology/
2008/08/experts-debate.html, August 13 2008.

[22] S. Murdoch and G. Danezis. Low-Cost Traffic Analysis
of Tor. In IEEE Symposium on Security and Privacy,
2005.

[23] US Department of Justice memo. Chinese National
Sentenced For Committing Economic Espionage With
the Intent to Benefit China Navy Research Center.
http://www.cybercrime.gov/mengSent.pdf, June 2008.

[24] R. Oliveira, M. Lad, B. Zhang, and L. Zhang.
Geographically Informed Inter-Domain Routing. In
IEEE ICNP, 2007.

[25] R. Oliveira, D. Pei, W. Willinger, B. Zhang, and
L. Zhang. the (in)Completeness of the Observed
Internet AS-level Structure. In IEEE/ACM
Transactions on Networking, 2010.

[26] J. Postel. Internet Protocol. RFC 791, 1981.

[27] R. Rohozinski and R. Deibert, editors. Tracking
GhostNet: Investigating a Cyber Espionage Network.
Information Warfare Monitor, 2009.

[28] F. Schneider. Network Neutrality versus Network
Trustworthiness? IEEE Security and Privacy, 6(4),
July-August 2008.

[29] B. Schneier. Secrets and Lies, pages 34–35. John
Wiley and Sons, Inc., 2000.

[30] D. Shin, E. K. P. Chong, and H. Siegel. A
Multiconstraint QoS Routing Scheme using the
Depth-First Search Method with Limited Crankbacks.
In IEEE Workshop on High Performance Switching
and Routing, 2001.

[31] S. Singh. The Code Book. Anchor Books, 2000.

[32] I. Stojmenovic, M. Russel, and B. Vukojevic. Depth
First Search and Location Based Localized Routing
and QoS Routing in Wireless Networks. In Computers
and Informatics, 2000.

[33] I. Traynor. Russia accused of unleashing cyberwar to
disable Estonia.
http://www.guardian.co.uk/world/2007/may/17/topsto-
ries3.russia, May 17
2007.

[34] B. Tuchman. The Zimmerman Telegram. MacMillan,
1966.

[35] R. Yang, Q. Pan, W. Wang, and M. Li. Secure
Enhancement Scheme for Routing Protocol in Mobile

Ad Hoc Networks. In IEEE International Conference
on Distributed Computing Systems Workshops, 2005.

[36] S. Yi, P. Naldurg, and R. Kravets. A Security-Aware
Routing Protocol for Wireless Ad Hoc Networks. In
ACM Symposium on Mobile Ad Hoc Networking &
Computing, 2001.

[37] O. Younis and S. Fahmy. Constraint-Based Routing in
the Internet: Basic Principles and Recent Research. In
IEEE Communications Surveys and Tutorial, 2003.

[38] H. Zlatokrilov and H. Levy. Navigation in Distance
Vector Spaces and Its Use for Node Avoidance
Routing. In IEEE Infocom 2007, 2007.

[39] H. Zlatokrilov and H. Levy. Area Avoidance Routing
in Distance Vector Networks. In IEEE Infocom 2008,
2008.

[40] Akamai. http://www.akamai.com, 2008.

[41] BBC News. Sweden approves wiretapping law.
http://news.bbc.co.uk/2/hi/europe/7463333.stm,
June 19 2008.

[42] Cisco, Inc.
http://www.cisco.com/en/US/prod/collateral/routers/
ps5763/ps5862/product data sheet09186a008022d5f3.html,
2008.

[43] Configuring Policy-Based Routing.
http://www.cisco.com/en/US/
docs/ios/12 0/qos/configuration/guide/qcpolicy.html,
2008.

[44] Gnutella. http://www.gnutella.com, 2008.

[45] Source Address Spoofing.
http://technet.microsoft.com/en-
us/library/cc723706.aspx,
2008.

[46] Tor. http://www.torproject.org, 2008.

