
What Is the Shape of Your Security Policy?
Security as a Classification Problem

Sven Türpe
Fraunhofer Institute for Secure Information Technology (SIT)

Rheinstrasse 75
64295 Darmstadt, Germany

sven.tuerpe@sit.fraunhofer.de

ABSTRACT
This new paradigm defines security policies on cause-effect
relations and models security mechanisms in analogy with
pattern recognition classifiers. It augments the arsenal of
formal computer security evaluation tools with new tech-
niques. A causality model represents possible causes and
effects; the causes include threats and the effects may be
undesired. Target security policies derived from functional
specifications select permitted causalities. Security mecha-
nisms extract features from causes and effects and enforce
mechanism-specific policies, approximating the target pol-
icy. Advantages of the classifier paradigm are the ability
to generalize from incomplete information and examples,
to measure classification error and mechanism performance,
and to analyze mechanism ensembles and compositions. The
classifier paradigm also offers a conception of problem com-
plexity and suggests paying more attention to the impact of
mechanisms rather than to their inner workings.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
access controls, information flow controls; I.5.m [Pattern
Recognition]: Miscellaneous; F.3.m [Logics and Mean-
ings of Programs]: Miscellaneous

General Terms
Security, Theory

Keywords
Security policy, security analysis, classifier system, high-
dimensional space, secure composition, defense in depth,
threat model, causality

1. INTRODUCTION
We know two fundamentally different ways of evaluating

the security of a system: formal, mechanism-centric eval-
uation and hacking. The most prominent representative of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NSPW’09, September 8–11, 2009, Oxford, United Kingdom
Copyright 2010 ACM 978-1-60558-845-2/09/09 ...$10.00.

mechanism-centric evaluation is the Common Criteria [5]. A
brief overview of the Common Criteria approach along with
a critique of the approach can be found in [2]. The basic idea
of the Common Criteria is to define a set of security mech-
anisms and requirements for each mechanism. One must
provide a rationale for each of the mechanisms by relating
it to a set of assumed threats. Security criteria are speci-
fied for each mechanism. To evaluate a system one uses the
frame thus created and validates whether the system actu-
ally implements it. One problem with this approach is that
one easily loses sight of relevant threats and security consid-
erations once they have been excluded from the frame. The
target of evaluation is not being validated against threats; it
is being validated against an arbitrary frame which is merely
assumed to represent the actual security requirements.

The other end of the spectrum is marked by hacking. A
hacker, be it as an actual attacker or as white-hat security
tester, does not care much about formalism regarding some
security design. A hacker has certain capabilities, partic-
ularly capabilities of interacting with a target. The hacker
also has a goal or a set of potential goals which, if achievable,
would imply that the system is vulnerable to some attack.
It is the task of the security mechanisms in a system to con-
strain the hacker’s capabilities in such a way that none of the
goals can be achieved. The hacker looks for situations where
this is not the case. A problem with the hacker’s approach
is that it is not easily formalized.

The fundamental difference between these two approaches
is emphasized by the fact that the same system can be cer-
tified under the Common Criteria and vulnerable to rather
simple and effective attacks.

As a case in point, the Xerox WorkCentre 2xx series1 mul-
tifunctional printer received a Common Criteria certificate
on April 6th, 2006 [18, 19]. On August 3rd the same year, at
the BlackHat USA conference, Brendan O’Connor presented
several ways of compromising the security of just this type
of device.2 At least 4 serious vulnerabilities are known for
the exact version certified,3 and 19 more were reported for
different versions but likely exist in the certified version as

1The WorkCentre 2xx series comprises the WorkCen-
tre/WorkCentre Pro 232/238/245/255/265/275 models.
2Vulnerabilities in Not-So-Embedded Systems was the title
of his talk.
3The certified versions of the system software are
12.027.24.015, 13.027.24.015, and 14.027.24.015, depending
on the model within the series. Known vulnerabilities for
this exact version are CVE-2006-0825 through CVE-2006-
0828.

well.4 In both categories there are vulnerabilities with CVSS
ratings up to 10, which is the maximum rating and roughly
means instant remote root access for everyone who desires
it and knows the trick.

It is alluring to blame this failure of assessment to the low
assurance level of the security evaluation. The WorkCentre
series was evaluated to EAL 2, which is the second-lowest of
the seven assurance levels defined by the Common Criteria
framework. Formal verification and testing is required only
at the upper end of the scale. However, choosing a higher
assurance level would not likely have solved the problem.
The WorkCentre is essentially a Linux system with a scan-
ner and a printer attached to it, running a Web server and
various other services. But only a small set of security func-
tions was evaluated, ignoring those parts of the system that
turned out to be vulnerable. This case study suggests that
today we have elaborate techniques for evaluating only half
the security factors. It has long been known that security
tends to fail outside the core mechanism [1]. Just so do our
analysis and evaluation techniques.

Since the ultimate goal of information security is to pre-
vent relevant attacks, new techniques for security analysis
are needed. They must be sufficiently formal to produce
reliable statements about the security of a system but they
must also take into account how attacks work in practice.
The formal methods known to date seem to be located more
towards the Common Criteria end of the spectrum.

The approach proposed in this paper is to extend and
generalize the mechanism-centric view and to relate it to
a model of the real world representing legitimate actions as
well as attacker capabilities. When analyzing for instance an
access control mechanism, we would attempt to understand
who will be allowed to do what to which object under this
mechanism. We can extend and generalize this question:
what will the suite of security mechanisms in a system allow
the environment to do to the system, and what will be the
effects?

1.1 Paradigm Outline
The new paradigm roots in a single proposition: pattern

recognition classifiers are a suitable conceptual metaphor for
security mechanisms, lending concepts and analysis tech-
niques to security. Applying this metaphor requires further
ingredients. The paradigm thus comprises four key concepts:

• A world model representing causes and effects. This
world model serves as a reference frame for defining
target policies. The purpose and environment of a sys-
tem determines the causes and effects that matter.

• Permissions on cause-effect pairs as security policies.
While the world model represents possible causalities,
a security policy selects those that one wishes to per-
mit.

• The business logic of the system, or a specification or
model of this business logic. The business logic implies
a security policy.

4Vulnerabilities reported for versions up to a higher ver-
sion number are: CVE-2006-6427 through CVE-2006-6434,
CVE-2006-6436 through CVE-2006-6438, and CVE-2006-
6467 through CVE-2006-6473. For CVE-2006-5290 the ver-
sion numbers affected remain unknown.

• Security mechanisms as classifiers. A security mecha-
nism takes cause-effect pairs as inputs, maps them into
its own feature space, and decides within this space
whether to accept an input or not.

Pattern recognition classifiers offer techniques for deal-
ing with incomplete or noisy information. The above set of
concepts makes these techniques applicable to the security
analysis of systems.

1.2 Rationale
Security mechanisms prevent causes from having effects.

Some causes from having some effects, to be precise. Causes
and effects exist in the real world; the business logic of a
computer system along with the semantics of inputs and
outputs determines which causes lead to which effects. We
might call a system secure if it abides by a defined set of
permitted cause-effect relationships—a target security pol-
icy.

Figure 1: Defense in depth

Individual security mechanisms rarely enforce the target
security policy of a system. They rather enforce mechanism-
specific policies. Yet they do prevent certain causes from
having effects altogether, certain effects from occurring re-
gardless of their cause, or certain causes from having certain
effects. So does the business logic of a system, which consti-
tutes an implicit security mechanism by itself and requires
additional mechanisms for any issue it cannot handle alone.
Figure 1 illustrates this mental model.

Security analysis tries to answer the question whether or
to which extent a system with all its business logic, security
mechanisms, software defects, and other properties, enforces
a given target policy—or which policy a system enforces at
all.

1.3 Paper Organization
The remainder of this paper is organized as follows. Sec-

tion 2 gives some background, describes the general model
underlying considerations in this paper, gives a rationale for
modeling security mechanisms as classifiers, and briefly in-
troduces classifiers as they are used in pattern recognition.
Section 3 semi-formally defines key concepts and notions,
which section 4 illustrates using an example. Section 5 dis-
cusses possible analysis techniques that the classifier analogy
might yield. The paper closes with concluding remarks on
expected advantages, caveats, and questions for further re-
search in section 6.

2. SECURITY AS A CLASSIFICATION
PROBLEM

2.1 Background
Security once seemed easy, and still does so in some text-

books. Information was classified according to a policy. The
policy followed from obvious security objectives like confi-
dentiality. All the security mechanisms of a system had to
do was to enforce the policy. Early developments in informa-
tion and computer security were primarily concerned with
ways of specifying and enforcing security policies [4]. Secu-
rity policies were largely predetermined by concepts and reg-
ulations that independently existed outside the systems, as
was the classification of information according to these poli-
cies. This has led to a number of useful and well-understood
formal security models as well as mechanisms for their en-
forcement.

Soon it was noticed, however, that “a wide range of con-
siderations are pertinent to the engineering of security of
information,” and that “The objective of a secure system
is to prevent all unauthorized use of information, a nega-
tive kind of requirement.” (both quotes from Saltzer and
Schroeder [14]). Many formal security policy models evade
this wide range of considerations by making extensive use of
assumptions, which are often not met by the systems we are
dealing with today.

The security problems and our responses to them have co-
evolved since. Today’s systems incorporate a large number
of different security mechanisms reaching far beyond the rel-
atively simple world of user authentication and access con-
trol. A typical operating system today comprises, among
others, network firewall functions, virus scanning, and se-
curity functions to prevent buffer overflow defects from be-
ing exploited. Applications add their own specific measures,
such as various filters for untrusted data to prevent injec-
tion attacks. Many of these mechanisms are responses to
actual attacks that exploit defects anywhere in the software
to circumvent security functions.

Along with this evolution of attacks and protection, secu-
rity mechanisms have lost the strong external support that
they once got from well-defined security policies. Security
mechanisms no longer merely enforce a clear and simple se-
curity policy on the safe grounds of valid assumptions about
the system and its environment. Increasingly, the suite of
security mechanisms in a system is expected and required to
avert arbitrary attacks while permitting any legitimate uses,
without a precise and complete specification of either one.

As a consequence, we need techniques to analyze compo-
sitions of security mechanisms: the interplay of mechanisms,
the limitations and vulnerabilities, and the effects of adding
yet another patch. This paper explores one candidate frame-
work, the theory of classifiers. Classifiers are a key concept
in pattern recognition and machine learning and have been
thoroughly examined there. I argue that the classifier is a
meaningful abstraction of security mechanisms or, more pre-
cisely, important aspects of security mechanisms. Describing
mechanisms in terms of their classification properties allows
us to analyze the properties of a composition of mechanisms
as we see it in computer systems today.

It seems that we have an intuitive idea of what is a “bad”
versus a “good” approach to improving the security of a sys-
tem or fixing a known issue. An example may illustrate
this. One of the many proposals about how to fight the

growing problem of phishing attacks was to introduce a new
top-level domain, .bank, reserved exclusively for financial in-
stitutions [8]. This proposal has been criticized on various
grounds and has not been implemented so far. The most
compelling argument against it is also the simplest: it does
not add anything to the overall security system (except for
another price tag). Whichever semantics the use of such
a domain may convey is already reliably encoded in SSL
certificates, or could be encoded there. This implies that
wherever and however the security system—which includes
here the user making security decisions—fails to distinguish
phishing attacks from legitimate interaction, the new do-
main would not substantially change anything. To outline a
framework for this kind of reasoning is the purpose of this
paper.

This paper does not propose to use machine learning tech-
niques as a security mechanism, which has been tried on
various occasions. Rather, the idea is to borrow concepts
from this discipline and see how they might be developed
into a security model. This paper does also not propose to
classify attacks or vulnerabilities according to some scheme.

2.2 General Model
Conceptually we can conceive of a system as comprising

business logic and a security system. The business logic is
responsible for the specified functioning of the system. The
security system has to prevent malicious interaction with
the system from having an impact on the business logic or
the environment. Figure 2 depicts this model.

The rationale for choosing this model is threefold. First,
the model is generic and does not refer to any specific secu-
rity objectives or mechanisms. The model is therefore un-
likely to impose restrictions right away. Second, the model
corresponds to (some) system architectures. Input into a
system often has to pass through one or multiple layers
performing security tasks before it will be processed: fire-
walls, input filters, access control, etc. The model is thus
likely to be accurate at least in describing some aspects of
some systems. Third, the model is consistent with the con-
cept of a protected subsystem as described by Saltzer and
Schroeder [14].

Figure 2: General model

For the sake of simplicity, let us assume all security-related
functionality and processing be part of the security system.
This is a simplification; in any real system there is no strict
separation of security functions from business logic. Such
a separation cannot even exist. Faults in the business logic
may be exploitable to malicious ends, and some security
functions may be designed and implemented as an integral
part of the system rather than as a self-contained compo-
nent. However, we can still make the conceptual distinction
between aspects of a system that constitute the intended

Fe
at

ur
e

Y

Feature X

Fe
at

ur
e

Y

Feature X

Class A

Class B
x

x

x

x

x x

x x

x

x

x

x

x
x

x

x

x

x

x

x

x

Class A

Class Bx
x

x

Figure 3: A simple and a complex classification problem

functionality of the system and those that are to be con-
sidered primarily for security reasons. While the distinc-
tion between business logic and security system may seem
somewhat arbitrary, we may define the business logic as ev-
erything in the system that we ignore when thinking about
security. Note that the model, although it may seem so, is
not limited to activity within the boundaries of a physical
system.

Within this high-level model there is only one single se-
curity objective: out of all possible inputs and other inter-
actions with the system, the security system has to identify
those that are safe to be processed by the business logic.
This implies two requirements for the security system, com-
pleteness and accuracy. Completeness means that the se-
curity system covers all relevant inputs or interactions so it
cannot be circumvented by a malicious attacker. Accuracy
means that the security system reliably rejects those that
would lead to unintended results. Unintended by the op-
erator of the system, to be precise, as an attacker has the
opposite intention. The security system can thus be con-
ceived of as a classifier: its task is to separate the permitted
from the forbidden.

2.3 Classification in a Nutshell
Classification is a well-known concept in computer secu-

rity, but this paper uses the term in the way the pattern
recognition [6, 9] community does. A pattern, or class is an
entity that can be named. To recognize a pattern means to
decide which one out of a set of patterns a vector of input
data most likely represents. This is what a generic classifier
does. It takes input vectors from Rn or a subset of Rn and
maps them into a discrete and usually finite set of classes.
The input vectors often originate from analog sources and
sensors capture and digitize these data for further process-
ing. This is, however, not strictly required. The domain
of a classifier may comprise nominal and discrete dimen-
sions. For typical classification problems the range of the
classifier is much smaller than its domain. There are several
approaches to pattern recognition, for instance statistical
classification, neural networks, template matching, or fuzzy
logic approaches.

Optical character recognition is an example of a classi-
fication task. Inputs to the classifier in this task are two-
dimensional pictures of printed characters. These inputs are
noisy, which can be modeled using probability distributions.
The more noisy the data are, the more difficult the task gets.
Even without the noise, some pairs of characters are more

similar than others, which makes the task more challenging.
The expected output from the classifier is the abstract char-
acter that has been recognized or, in statistical terms, the
label that is most likely correct for the input data. Instead
of a single most likely label, some classifiers output proba-
bilities of class membership or a list of classes ordered by
their probability of correctness.

In most classification tasks one does not simply use raw
input data as they are provided by sensors. Rather, a pre-
processing step is added, which extracts features from the
raw data. Consider biometrics for example. To recognize
faces or fingerprints, one does not simply compare images
but rather extracts features such as the distance between
eyes or minutiae. The classification function then works
with multiple such features represented in a feature space.
Features may be discrete or continuous.

Classification problems often involve large numbers of in-
put variables. To make a classifier more efficient, one at-
tempts to reduce the number of variables—and thus, fea-
ture space dimensions—by picking those that do actually
contribute to the classification, i.e. help distinguish mem-
bers of different classes. A number of statistical analysis
methods are available to this end.

While one might construct classifiers using pen, paper and
brains, one typically uses sample patterns. The general idea
is that the probability distribution of all possible inputs can
be derived, to some degree of certainty, from these samples.
The classifier is parameterized to represent the distribution
of the samples, and expected to correctly classify most other
inputs if they follow the same distribution. There are two
distinct ways of approaching this learning task, supervised
and unsupervised. In supervised learning one has a prede-
termined set of labels, such as the abstract characters in
character recognition, and the target class of each sample
(or training) pattern is known. Unsupervised methods on
the other hand work with just the samples, and the learning
algorithm has to determine a set of classes that is suitable as
an abstract representation of the distribution of the inputs.
Unsupervised leads to classifiers that summarize their input
data.

No matter how it is being trained and parameterized, in
the end the classifier needs to somehow represent the target
classes within the feature space in order to classify elements
of this space. It can do so e.g. by representing probabil-
ity densities, decision boundaries, or in some cases by tem-
plates or rule sets. This is where classification problems dif-
fer in their characteristics and complexity [3], and a suitable

type of classifier must be chosen that is capable of solving
the problem. The simplest classifiers are linear, separating
classes by hyperplanes in the feature space. This requires
that classes are, at least approximately, linearly separable.
Figure 3 illustrates a linearly versus a more complex classi-
fication problem.

There are two common ways of dealing with the more
complex problems. One is to use a classifier capable of rep-
resenting more complex subsets of the feature space, e.g. a
non-linear instead of a linear classifier. The other approach
is to approximate complex decision functions by combining
several simpler classifiers [10, 11, 12]. The final decision is
then made by combining the outputs of all classifiers ac-
cording to some rule, e.g. majority voting. The individual
classifiers may work simultaneously on the same input data,
or one can go one step further and combine classifiers work-
ing on different feature spaces derived from the same raw
input data.

To sum up, the key task in classification is to find a classi-
fication function that is a good approximate solution of the
particular classification problem at hand. For such search
problems one can show that “For all possible performance
measure, no search algorithm is better than another when
its performance is averaged over all possible discrete func-
tions.” [16] summarizing [17]. But this No Free Lunch the-
orem seems not to imply that all attempts at optimization
are futile. In particular, problem-specific considerations may
lead to better solutions than a blind heuristic search process,
for which the theorem holds [16].

A conception loosely related to classification, and possi-
bly more suitable for dealing with security problems than
statistical methods, is formal concept analysis [13]. Formal
concept analysis, roughly, deals with classes of objects that
are defined by attributes, and with lattices formed by such
classes.

2.4 Security Mechanisms are Classifiers
It should be obvious that many common security mecha-

nisms can be described as classifiers or have important as-
pects that fit into the framework of classification. A security
mechanism has to decide what is permitted and what is not,
and enforce that decision. A few examples:

User authentication Requests to a system—usually the re-
quest to open a user session—are to be classified to
one out of a set of system users or to the invalid user
class. The features being used vary.

Firewalls A firewall classifies packets or streams of pack-
ets passing it on a network. The features being used
include packet contents as well as contextual informa-
tion such as the interface through which a packet was
received.

Access control Access control mechanisms map tuples of
subjects, actions, objects and possibly further param-
eters to the classes allowed or denied.

Antivirus software An antivirus program attempts to clas-
sify programs to identify those that are malicious.

Emphasis may be on one aspect or the other, classifica-
tion or enforcement. In the examples above, enforcement
is achieved through program routines that enforce decisions
as long as they cannot be circumvented by manipulating

the program itself. Encryption as a mechanism is different:
there is no code to make a decision, but security properties
are strongly enforced through mathematics under certain
side conditions. Yet we can describe even this mechanism
as an implicit classifier. Those in possession of the key can
access the clear text, all others cannot.

Looking at individual mechanisms from a classification
point of view does not promise much new insight. Most of
the considerations from pattern recognition seem irrelevant
since security mechanisms work on structured digital data
rather than analog information. A vast amount of research
is available for each common type of security mechanism,
including design and evaluation criteria.

However, the classifier point of view might be helpful
when considering a security system, the multitude of secu-
rity mechanisms built into a system to fulfill its security ob-
jectives. Viewing all mechanisms as classifiers may provide
an abstract layer on which we can analyze the interworking
of the mechanisms, the degree to which the security system
is capable of fulfilling security objectives, and the impact of
modifications.

Security properties of a mechanism or of configurations of
mechanism may be undecidable, e.g. [7]. This fundamentally
limits formal analysis of mechanisms and their compositions.
A different way of describing mechanisms cannot solve this
problem. But a different mental model might help us to em-
ploy a coping strategy: if all else fails, lower your standards.
The theory of classification offers two strategies that might
be useful here, approximation and transformation. Typi-
cal classifiers represent approximate solutions derived from
samples. Although security properties may be undecidable
in the general case, we can easily obtain sample decisions of
a mechanism for particular inputs. If we could find meaning-
ful ways of generalizing from such samples, tolerating“small”
or “few” errors, we might get results good enough for prac-
tical matters. The second strategy, transformation, reminds
us that we are trying to solve problems rooted in the real
world. There is more than one way of representing a prob-
lem, and some ways may be easier to handle than others. If
some properties are not decidable, what can we learn from
those that are?

3. MODELING FRAMEWORK

3.1 Causality Model
A causality model comprises a space of causes, a space of

effects, and cause-effect relationships. This paper treats the
spaces mainly as sets; they may, however, have meaningful
structure and operations.

Definition 1. Let C and E be spaces of entities, P(C) and
P(E) their power sets, and ;: P(C)×P(E) → {true, false}
a binary relation between P(C) and P(E). We call the
triple W = (C, E, ;) a causality model. Entities c ∈ C
are the elementary causes, entities e ∈ E are the elementary
effects, and ; is the causality relation of W . We call a set
C ⊂ C of elementary causes a cause and a set E ⊂ E of
elementary effects an effect. We will say “C causes E in W”
or “E is an effect of C in W” if C ; E. We call the graph
G; = {(C, E) : C ; E} of the causality relation the valid
causalities of W .

In plain English this definition says that sets of causes
lead to sets of effects. A set of causes may be related to

Figure 4: Causality model

multiple sets of effects and vice versa. The construction does
not distinguish proximate from distal or ultimate causes and
effects, and it offers no immediate way of expressing interde-
pendencies between multiple causes or multiple effects. We
can, however, express the fundamental distinction between
necessary, sufficient and contributory causes. This requires
an auxiliary definition:

Definition 2. Let W = (C, E, ;) be a causality model,
B ⊂ C, C ⊂ C causes in W with B ⊃ C, and E ⊂ E,
F ⊂ E effects with F ⊂ E. W is a proper causality model
and ; a proper causality relation if ∀C, ∀E : C ; E ⇒
C ; F ∧B ; E.

In a proper causality relation, if C causes E it also causes
any subset of E, and any superset of C also causes E.
Adding elementary causes can only ever enlarge the set of ef-
fects, and ignoring an effect does not fundamentally change
the causality.

Definition 3. Let W = (C, E, ;) be a proper world model,
B ⊂ C, C ⊂ C causes and E ⊂ E an effect. C is a sufficient
cause of E if C ; E. C is a contributory cause of E if ∃B ⊇
C : B ; E. C is a necessary cause of E if B ; E ⇒ C ⊆ B
and ∃B ⊇ C : B ; E.

A sufficient cause implies its effect, the effect of a neces-
sary cause implies the cause, and a contributory cause par-
ticipates in at least one causality. These three definitions
should suffice as an outline. We will use causality models as
frames for security analyses. Conceptually they represent a
world model of possible causes, effects, and causality rela-
tions. Causes include the intended use of a system as well
as threats and attacks, and effects include desired effects as
well as the possible results of malicious attacks.

Causality models facilitate simplifications where appro-
priate. In practical applications one might want to consider
simpler models, for instance based only on elementary causes
and elementary effects. This remains possible.

3.2 Security Policies and Vulnerabilities
A security policy specifies which causalities one whishes

to permit. Defined with respect to a particular causality
model, the security policy essentially specifies a subset of
the causality relation of this model.

Definition 4. Let W = (C, E, ;) be a proper causality
model, let G; denote the set of valid permissions in W , and
let π : P(C)× P(E) → {permitted, forbidden} be a binary
relation with the graph Gπ = π−1(permitted). We call π a
security policy in W if Gπ ⊂ G; and Gπ the permissions of
the policy π. We say “π permits (C, E)” if (C, E) ∈ Gπ

Alternatively we could define a policy as an arbitrary bi-
nary relation on P(C) × P(E) and look at the intersection

Figure 5: Security policy. Dashed arrows indicate
forbidden causalities

between the graphs of the causality model and the policy.
This technicality should not matter as we proceed. Note
that (C, E, π) is also a causality model, but not necessarily
proper.

The business logic of a system implies a security policy.
It can handle a certain set of acceptable causes, and it im-
plies a set of effects that operations of the system can have.
The functional specification determines the space of causes,
which technical factors and software defects may modify and
extend for the actual system. The environment of the system
and the possible interpretations of outputs determine the
space of effects. For acceptable causes the business logic, if
implemented correctly, restricts the possible causalities and
thus effects. For any other cause only the causality model
restricts the effects. Effects achievable through acceptable
causes and correct operation of the business logic are desired
effects, all others are undesired.

To make a system secure with respect to a causality model,
we have to equip it with security mechanisms such that the
system abides by the security policy of its business logic
for all causalities and effects under consideration. We thus
define:

Definition 5. Let W = (C, E, ;) be a proper causality
model, S a computer system and τ a security policy in W .
We call τ the target policy for S with respect to W if S abides
by this policy according to its functional specification, as-
suming correctness of the implementation and usage within
the specified—or assumed—limits. We call {C | ∃E : τ per-
mits (C, E)} the set of acceptable causes and {E | ∃C : τ
permits (C, E)} the set of desired effects of S.

Note that a causality (C, E) is not necessarily permitted
by τ if C is acceptable and E is desired. However, if C is not
acceptable or E is not desired we can conclude that (C, E)
is not permitted without further analysis.

The actual security policy which a system enforces may
deviate from its target policy. The system may fail to handle
permitted cause-effect pairs as it should and thus have a
functional defect. And the system may support additional
cause-effect relationships not permitted by its target policy,
which makes the system vulnerable to attacks.

Definition 6. Let W = (C, E, ;) be a proper causality
model, S a system, τ the target policy of S with respect to
W , and π the actual policy that S enforces. Let Gτ and Gπ

denote the graphs of τ and π. We call V = (C, E) ∈ Gπ) a
vulnerability of S if V ∈ Gπ\Gτ . We call a system vulnerable
with respect to W if it has at least one vulnerability.

The entire construction up to this point provides a rough
framework allowing us to discuss security policies and vul-
nerabilities in terms of cause-effect relationships. The next

subsection will attach security mechanisms to the concep-
tions of this framework.

3.3 Security Mechanisms
Security mechanisms impose their own abstractions and

models upon a system, restricting the security policies that
one can enforce using any particular mechanism. Mecha-
nisms with their mechanism-specific policies may or may not
be appropriate to enforce a given target policy with respect
to a causality model. Ignoring the enforcement aspect of
security mechanisms, we can model them as decision func-
tions on feature spaces. The features represent aspects of
causes and effects that a mechanism cares about. We will
later map our causality model into these feature spaces.

Definition 7. Let F = F1 × F2 × . . . × Fn be an n-
dimensional space and R be a set of n-ary relations F →
{true, false}. We call the pair M = (F, R ⊂ R a mechanism
model, F the feature space of the mechanism, and relations
κ ∈ R are mechanism policies. We say a mechanism accepts
an n-tuple f ∈ F under the policy κ if κ(f) = false. Other-
wise we say that κ denies f . We write κaccept(F) for the set
of accepted entities, and κdeny(F) for its complement, the
set of denied entities.

We make no further assumptions regarding the structure
of the feature space at this point. Its dimensions Fi may
be discrete or continuous; the space or any of its dimensions
may be finite or infinite.

A security mechanism does not uniquely define its model.
Several distinct valid models may exist for a mechanism. We
shall not explore validity criteria and feature space transfor-
mations here.

Figure 6: Security mechanism with graph of a mech-
anism policy

We can combine security mechanisms to build a more
complex one. In terms of mechanism models this means
to combine their feature spaces and their policies. Combin-
ing policies may have different meanings depending on how
mechanisms interact in a system. For instance the combined
policy may deny an entity if either of the two mechanisms
denies it, or the combined mechanism may accept it if either
mechanism does so.

Definition 8. Let M1 = (F1, R1) and M2 = (F2, R2) be
mechanism models with F1 = F1,1 × F1,2 × . . . × F1,n and
F2 = F2,1×F2,2× . . .×F2,m, and let F = F1,1× . . .×F1,n×
F2,1 × . . . × F2,m be their combined (m+n)-dimensional
feature space. For F 3 f = (f1, . . . , fn, fn+1, . . . , fn+m)
let f1 = (f1, . . . , fn) be the projection of f into F1 and
f2 = (fn+1, . . . , fn+m) the projection of f into F2. Let

� be a logical operator. We call R1�2 = {κ1�2 | κ1 ∈
R1, κ2 ∈ R2, κ1�2 : F → {true, false}, κ1�2(f ∈ F) =
κ1(f1) � κ2(f2)} the set of �-composed mechanism policies
of M1 and M2.

This definition illustrates only the general idea of com-
posing mechanism models. We shall not explore here how
one could simplify combined features spaces if they had di-
mensions in common, or how to define policy compositions
beyond elementary logic.

Mechanism models can represent more than just security
mechanisms. On can also describe vulnerabilities as mech-
anism models, using composition with the operator ∨ to
model how vulnerabilities override decisions of actual secu-
rity mechanisms.

3.4 Policy Mapping
Having two separate models, one of causalities and se-

curity policies and another of security mechanisms, we can
connect the two by mapping one to the other. The analo-
gous concept in pattern recognition classification is feature
extraction. We assume a causality model constitutes a data
space and a security mechanism provides a feature space,
and represent feature extraction by a partial function.

Definition 9. Let W = (C, E, ;) be a proper causality
model, G; the graph of its causality relation, and M =
(F, R) a mechanism model. We call a partial function φ :
G; → F, f = φ(C, E) a policy mapping of W into M .

Through a policy mapping, a mechanism policy defines a
security policy in the causality model. Since we defined the
mapping as a partial function, its domain may be a subset
of the space in which we define security policies. Note that
this definition implies that security mechanisms cannot cre-
ate new causalities beyond the model considered. Assuming
that a mechanism will not change causalities outside its do-
main, all causalities defined in our model remain unchanged
outside this domain.

Definition 10. Let W = (C, E, ;) be a proper causality
model, M = (F, R) a mechanism model, φ a policy mapping
of W into M , and π a security policy in W . We call the
image {f ∈ F | f = φ(C, E), (C, E) ∈ πpermitted} of the
permissions of π the shape of π in M under φ.

The shape of a security policy defines a relation in the
feature space of M. This relation may or may not be a valid
mechanism policy. We can also look at the effects of a policy
mapping in the other direction.

Definition 11. Let W = (C, E, ;) be a proper causality
model, M = (F, R) a mechanism model, φ a policy mapping
of W into M , and κ a mechanism policy in M . We define
the effective policy φ−1(M, κ) in W as: as G; \φ−1(κdeny).

Figure 7 illustrates the notions. This construction enables
us to analyze how a mechanism behaves and to translate the
results back into our global model of causalities and security
policies.

4. MODELING EXAMPLE
The following example illustrates the notions defined in

section 3. It does not, however, illustrate how to apply the
framework to analyze a system. The example rather shows
how to describe a system using the framework in hindsight.

1

1

2

3

2

Figure 7: Policy mapping. Dots in the feature space represent the shape of a mapped policy

4.1 Scenario
Imagine a system handling applications for leave in an

organization. Employees use this system to request permis-
sion from their bosses before going on vacation. For the
sake of simplicity let us assume the system supports only
the two roles employee and boss, the role boss including the
role employee. We shall assume that the role boss is univer-
sal, that a boss is a boss for every employee. Let the system
be implemented as a Web application with two operations:
create request for all users and an additional operation grant
approval for bosses. Let us assume that the application au-
thenticates its users by username and password. We shall
limit our considerations to attacks through the Web inter-
face of our hypothetical application.

4.2 Causality Model
Elementary causes follow from possible inputs and inter-

actions, events, actors, and side conditions that we want
to consider. In our example we have users—or attackers—
making inputs into a Web application. Each legitimate user
has a role. Mind that we are modeling real-world roles here,
not their enforcement inside the system. Attackers may thus
not have a role assigned. Input comprises a user name, a
password, an action—think of URLs—, and further param-
eters as a parameter string. Finally, the architecture of a
Web application suggests that we should consider two input
modes, through the browser or through plain HTTP. This
gives us the raw material in table 1 to work with. How we use
this material to define elementary causes remains up to our
taste. For this example we shall build a seven-dimensional
space and describe each elementary cause as a 7-tuple (id,
role, user, pass, action, param, mode).

Aspect Range Meaning
id 0. . . n actors (real persons)
role none, employee, boss actual role of an actor
user string user name
pass string password
action string requested action
param string input parameters
mode HTTP, browser input mode

Table 1: Attributes of elementary causes

The purpose of our system dictates some of the possible
effects. If operating normally, the system should produce
as output permits for leave. To describe a permit we need
a person for which it is valid, a person having granted the
permit, and further parameters, such as dates. The set of
elementary effects thus needs to contain, within reasonable
ranges, at least all triples (ID-req, ID-grant, param) (table
2. Furthermore the system may produce error conditions,
and it may produce other effects. To keep the model simple,
let us just use error and other as two additional elemen-
tary effects. Error conditions and other effects do not carry
the attributes of regular effects. This model of effects re-
mains limited to the real-world interpretations of outputs.
For more detailed analyses one might extend this model to
include actual outputs. One could then also model possible
misinterpretations.

Aspect Range Meaning
ID-req 0. . . n applicant
ID-grant 0. . . n person approving the request
param string encoded parameters

Table 2: Attributes of regular elementary effects

We have no reason to limit causalities in any way. A priori
we do not know how the system behaves, so any combina-
tion of elementary causes may lead to any combination of
results. Note that the causality model thus constructed can-
not capture the more subtle aspects of security issues, such
as the order of causes.

4.3 Security Policies
We can now use the causality model to specify security

policies. To outline a policy, we expect the system:

• To produce a valid permit or an error condition if the
cause comprises exactly two elementary causes: one
person with the role employee making a valid request
and one person with the role boss granting this same
request. This imposes conditions on the cause as well
as on the relationship between cause and effect.

• To correctly represent the identities of the persons act-
ing in the output.

• To have no other effect for any combination of causes.

• To produce an error condition for any invalid cause or
combination of causes, and to produce no valid permit
in conjunction with such an error condition.

This is an outline of the strictest reasonable target policy.
We may instead employ a looser policy, demanding only that
the causes are correctly represented in their effects. This
looser policy would allow anyone to grant permits to anyone
as long as the permit correctly shows who made and who
granted it. Such a policy might be sufficient in the scenario
given; the organization will not accept a self-signed permit
as valid even if the system allows an employee to create one.

We still do not know the effective policy which the system
enforces, but we can derive some statements about it from
knowledge about the business logic. Let us assume that the
business logic takes just usernames, actions, and parameters
as inputs. After code review and testing, we might be confi-
dent that the business logic ensures, for valid inputs through
the user interface, that only the correct sequence of the op-
erations request and grant produces a permit as output and
that the output correctly represents all input parameters.
We might also be confident that the business logic reliably
produces error conditions for invalid inputs through the user
interface within the length limits of input fields. Such obser-
vations allow us to check off some of the possible causalities
as handled by the business logic, for instance those with
causes representing inputs rejected by the business logic.
For all others we might need security mechanisms—or more
knowledge regarding the business logic. For instance the
business logic does not guarantee that the roles will be valid
for every output; we do not know how the system will behave
for invalid HTTP requests; and our space of causes includes
every possible combination of any person’s identity and any
username and password.

4.4 Security Mechanisms
To illustrate the modeling of security mechanisms, let us

consider the two obvious mechanisms in our system: user
authentication and the enforcement of roles. We can model
user authentication in a two-dimensional discrete feature
space, the Cartesian product of two sets of strings. One di-
mension represents all possible usernames, the other dimen-
sion represents all possible passwords. Any set of points—
pairs of one username and one password—in this space might
be a mechanism policy. Note that an actual implementation
may impose restrictions on the possible policies. For in-
stance the mechanism may enforce a minimum and a max-
imum length on passwords. Our definition of mechanism
models allows us to represent such limitations as well but
we will not consider them for this example. Figure 8 gives a
idea what the feature space is like. Keep in mind, however,
that we are discussing a discrete space.

We could also represent implementation bugs insofar as
they change the policy that the authentication mechanism
enforces. If, for instance, the mechanism accepted passwords
of arbitrary length but verified only the first eight characters
of every password, the mechanism policy would contain large
equivalence classes of (username, password) pairs for every
user account.

The second mechanism, access control on actions, decides
which actions a user can carry out in the system. Our model
of this mechanism thus uses a two-dimensional feature space.
One dimension represents all possible usernames, the other
dimension the two actions request and grant. A policy in

Figure 8: Feature space for password authentication.
Dots represent the graph of the mechanism policy

Figure 9: Feature space for access control. Dots
represent the graph of a mechanism policy

this space is a set of (username, action) pairs permitted; an
assignment of roles to users defines such a policy. Figure 9
illustrates the feature space for access control.

We might also join the two feature spaces. The result
would be four-dimensional according to the definition above,
with the username dimension redundantly replicated. Defin-
ing a more reasonable 3-dimensional construction should be
straightforward. Policies in this combined space would de-
fine which combinations of usernames and passwords could
be used for which action.

4.5 Policy Mapping and Effective Policies
We constructed our causality model such that all three

features used by the mechanism are present as attributes
of our elementary causes. This makes the mapping ap-
pear simple—and raises interesting questions. Obviously,
the username, password and action attributes should map
to the respective dimensions and values of the mechanism
feature spaces. But do other attributes have an impact?
They do.

Consider two elementary causes differing only in their
mode attribute. One represents an actor with a password
requesting an action through the user interface, the other
represents an actor doing the same through the plain HTTP
interface. According to the target policy, the system should

treat both causes in the same way. If, however, our secu-
rity mechanisms were implemented on the client side, only
the cause going through the user interface would be covered
by their effective policy. The other cause, doing the same
directly through HTTP, would not be in the domain of the
policy mapping.

Whether this matters depends on the target policy. If, for
instance, the system enforces authentication at the server
side and access control on the client side—a typical issue
in Web applications, where removing controls from the user
interface does not imply that a function cannot be called
any more—it may still be capable of enforcing the looser of
the two target policies outlined above.

Or consider invalid actions specified by users. The causal-
ity model permits arbitrary strings as actions while the ac-
cess control mechanism works only on the two logical ac-
tions that make sense for the business logic. Again we find
a large subset of the possible causes not covered by the secu-
rity mechanisms. This means our system may not be secure.
We need either more information regarding system behavior
for the causes not yet covered or further security mechanisms
to ensure other causes will not have an effect.

Finally, when defining a policy mapping we notice that our
security mechanisms do not work with the real identities of
actors. Different actors can achieve the same effects if only
they use the same usernames and passwords.

5. TOWARDS ANALYSIS TECHNIQUES
The conceptual framework defined in section 3 facilitates

several ways of analyzing security mechanisms, compositions
of mechanisms, and their suitability for a given system. This
section outlines possible techniques and approaches.

5.1 Mechanism Analyses
Analyzing a mechanism as a classifier may tell us more

about its capabilities.

Feature space structure.
Dimensions of a mechanism feature space represent as-

pects, factors, and parameters that influence decisions of a
mechanism. Can we find or define meaningful subspaces,
equivalence classes, or metrics in a particular space? In the
space for password authentication for instance we might de-
fine a subset of (username, password) pairs with weak pass-
words. This allows us to define a metric on mechanism poli-
cies, representing the number of weak passwords used, or to
exclude those policies that would contain weak passwords.

Mechanism comparison.
We can compare the feature spaces of two different secu-

rity mechanisms. Two mechanisms are similar if their fea-
ture spaces comprise mostly the same dimensions and both
mechanisms can enforce the same policies on their common
subspace. Combining two such mechanisms may do little
to improve the security of a system unless different policy
mappings justify their combination. Spaces may even be
isomorphic, indicating that two mechanisms are essentially
the same, even if they seem different at the surface. For
instance we know a variety of authentication schemes that
require users to remember some secret and to authenticate
themselves by entering an identifier and the secret.

Mechanism policies.
Mechanism policies may depend on hidden parameters not

visible in the feature space. In our example above, the as-
signment of roles to users determines the policy for access
control. What is the impact of such parameters upon the
policy as a point set in the feature space? Are there for
instance different combinations of hidden parameters that
redundantly lead to the same policy? How does a policy
change if one modifies parameters?

The inner workings of a mechanism may limit its capabil-
ities. Are there meaningful policies one could define in the
feature space of a mechanism but the mechanism is incapable
of enforcing them? This would imply that the mechanism
lacks complexity.

We may also analyze the contribution of individual feature
space dimensions to decisions made by the mechanism. If
we find dimensions that do not contribute, we might be able
to simplify a mechanism, or a mechanism policy, without
losing security. Likewise we might analyze the contribution
of individual mechanisms in a composition. Perhaps a sub-
set of the mechanisms would be sufficient to express those
policies that we are interested in.

Mechanism vulnerabilities.
For many standard mechanisms, possible vulnerabilities

and implementation defects are well-understood. We can in-
terpret vulnerabilities as point sets in a mechanism’s feature
space and analyze how they modify a policy. This makes it
possible to include for instance the results of security testing
in a mechanism model.

5.2 Causality Model Analyses
Causality models define a problem space within which we

discuss target security policies. Analyzing these models may
give us more insight into properties of the security problem
we are trying to solve.

Equivalence classes.
In a causality model, or in a security policy specified in

such a model, we might be able to identify meaningful equiv-
alence classes of causes, effects, or causalities. Obvious can-
didates are:

• All necessary causes for an undesired effect. Suppress-
ing only one of them would be sufficient to suppress
the effects.

• All effects for which a cause is necessary. This tells us
what the impact is if a mechanism denies this cause.

• Classes of causes, such as attackers, users with particu-
lar roles, actors with certain capabilities, and so on. If
they are clearly distinguishable, the security problem
may be easier to solve.

If we find such equivalence classes, we can go on and an-
alyze how mechanisms treat them.

Policy abstractions.
According to the definition in section 3.2, a security policy

may be any subset of the possible causalities in a causality
model. We may, however, find classes of causalities differing
only in certain attributes that a policy consistently permits
or rejects. For the example in section 4 we may for instance

find that the target security policy effectively depends upon
the roles of the actors and the actions carried out. Other
properties of the causes are merely auxiliary properties that
the system needs to distinguish actors from each other.

5.3 Mapping Analyses
Mapping analyses build upon the results of mechanism

and causality model analyses by moving concepts from one
part of the model to the other.

Shapes of policies in feature spaces.
Any given security policy mapped to the feature space of a

mechanism defines a point set there. Is this point set a pol-
icy that the mechanism can enforce? If it is not, which part
of the shape requires additional security measures? Which
properties of causes and effects—if we model properties, as
we did in the example above—determine the shape, and
which properties are invariant to the mapping? For points
or point sets in the feature space, which of the causalities are
mapped to these points? Are multiple causalities mapped
to the same point of the feature space? If so, does the secu-
rity policy consistently permit or forbid all of them? What
are the shapes of meaningful equivalence classes or policy
abstractions and how are they related to enforceable mech-
anism policies?

Effective policies and vulnerabilities.
For a given policy mapping, a mechanism policy defines

an effective security policy. We can analyze in the causal-
ity model the domain of the mapping—the coverage of the
mechanism—and the effective policy itself. Ideally the ef-
fective policy of all mechanisms together should have the
entire set of possible causalities as its domain, and it should
enforce exactly the target policy. If the effective policy has
permissions that are not in the target policy, we have found
a vulnerability.

Searches.
The causality model represents the world with its assumed

restrictions, while a mechanism model represents a security
mechanism as it works and enforces some policy. Some
attacks involve searching a system for vulnerabilities. We
can model this as a search in the feature space of a mecha-
nism. With a password authentication scheme for instance
an attacker might try a number of different passwords for
the same or for different usernames. We can discuss such
searches in the mechanism model and look at their effects
in the causality model. For instance an intermediate step of
the search might imply an effect that ends the attack, either
with success or with failure. We may also look at the causes
of the causality model and analyze which ones an attacker
might be capable of producing, and what the cost of an at-
tack would be. We can then go on and investigate what this
means to the mechanisms. Such considerations may as well
be useful for security testers.

Problem-defined feature spaces.
Instead of analyzing a given solution one might use the

causality model to design an appropriate security system.
This requires that one models causes and effects in sufficient
detail, including those properties that security mechanisms
might use as features. The next step is to identify suitable
equivalence classes of forbidden causalities and design mech-

anisms to handle them. Finally one takes care of the special
cases that remain. This is essentially an extension of threat
modeling [15] as part of the software development cycle.

Error metrics.
Considering the analogy of feature extraction with pol-

icy mappings, we might define error metrics for mechanism
policies with respect to a target policy. Such metrics could
express how many causalities are misclassified by the mech-
anism policy.

5.4 Probabilistic Extension
The focus of the conceptual framework outlined and dis-

cussed in this paper is on the classification properties of
mechanisms, not on the strength of the enforcement of their
decisions. However, some aspects of strength can possibly
be modeled in a probabilistic extension of the framework.
There are two candidates for probabilistic considerations,
the classifier of the mechanism and the problem mapping.

A probabilistic classifier may represent actual probabilis-
tic properties of the security mechanism considered. While
many traditional security mechanisms are entirely determin-
istic, some contemporary security functions use heuristics.
Antivirus software is an example, which besides scanning
for static signatures often has the capability of evaluating
the behavior of a process for patterns of malicious activ-
ity. Probabilistic or fuzzy classifier concepts may be an ap-
propriate model, which captures and represents the risk of
misclassification by the mechanism itself. Biometric authen-
tication is another example of a class of mechanisms that are
inherently probabilistic.

A probabilistic problem mapping may be suitable to model
failures and attacks that are not easily expressed at the clas-
sifier level. Password guessing—with different success prob-
abilities depending e.g. on the number of attempts possible
and access to password hashes—is one example. Phishing
attacks is another, where some success rate may be deter-
mined by factors beyond our control or precise understand-
ing. A probabilistic extension of the problem mapping con-
cept could model such misrepresentations.

6. CONCLUDING REMARKS
This paper has outlined a conceptual framework for an-

alyzing the classification capabilities of a security mecha-
nism. The basic model stems from classifiers as they are
used in pattern recognition applications. Based on this clas-
sifier model of security mechanisms, several possible ways
have been proposed in which a security mechanism can be
analyzed as a solution of a security problem. Besides individ-
ual security mechanisms, compound mechanisms or security
systems can be analyzed. The framework outlined here sup-
plements existing approaches and tools for security analysis
and evaluation.

The classification framework and its analysis methods are
based on considerations that we commonly make when eval-
uating the security of systems and applications beyond their
specific security mechanisms. A variety of actions, inputs,
or other factors in the real world has to be considered in
such an evaluation; only some valid subset must be allowed
to affect the processing by the business logic of an appli-
cation. A security mechanism or a suite of mechanisms is
responsible for proper classification.

6.1 Expected Advantages

Generalization The framework as a modeling approach is
generic in that it does not make specific assumptions
on the inner workings of a security mechanism. It does
not even strictly require that a mechanism is present.
Vulnerabilities through software defects, which are of-
ten exploited in attacks, can be modeled as classifica-
tion failures regardless of the mechanisms present in a
system. The framework can thus capture both aspects
of a security evaluation, mechanisms and implementa-
tion quality.

Analyze effects, not inner workings Traditional approaches
to security analysis focus on the mechanics of security.
Formal methods in particular tend to deal with the
behavior, properties and strength of individual secu-
rity mechanisms and policies. Abstract security ob-
jectives like confidentiality, integrity, and availability
often frame the analysis in a limited model. The new
paradigm proposed shifts attention from how mech-
anisms and policies work towards what they achieve.
This complements the approaches and techniques that
we already know.

Facilitate out-of-the-box thinking An independent model of
the real-world security problem frames analyses un-
der the classifier paradigm. This could make analyses
less prone to errors and omissions caused by the as-
sumptions and biases of individual mechanisms. The
paradigm does not prevent us from using inappropriate
models but at least it suggests to look beyond limited
security mechanism and policy models.

Reasoning with incomplete information Aspects of learn-
ing classifiers have not been discussed here since this
is not the point of this paper. But the essence of ma-
chine learning is to generalize from examples, from in-
complete information. We often encounter incomplete
security information, for instance if individual vulner-
abilities are found in a system. There may be further
instances of similar vulnerabilities, which just have not
been found yet. The classification framework may be
suitable for reasoning and generalization on the basis
of such incomplete information.

A common abstraction If nothing else, a common abstrac-
tion for a variety of security mechanisms and policies is
useful in itself. Even if the theory of classifiers does not
lead to useful techniques after further investigation—
the next subsection will discuss caveats—a unified way
of representing important aspects of different security
mechanisms is a valuable tool for security analysis.

6.2 Caveats and Limitations

Complexity and Computability One of the issues in secu-
rity analysis is the size and complexity of the problem.
A huge number of system states and actions would
have to be considered for the analysis to be complete.
The classification framework does not change this situ-
ation. Another potential issue is computability. In the
end, security analysis means making statements about
the behavior of programs. One might hit fundamental
limits when trying to do this.

Threat modeling and prioritization While the classification
framework comprises a way of modeling what might
happen in the real world, it does not tell us which part
of that model is actually relevant. If we can, however,
prioritize certain parts of a security problem, the clas-
sifier approach allows us to focus on these parts. We
can specifically look at their projections into feature
spaces and analyze how well mechanisms do for these
parts.

Static models The classification framework supports static
models but ignores the dynamics of attacks. In re-
ality, an attack often consists of multiple steps, each
modifying the state of the target or some other entity.
It might be possible to extend the framework to cap-
ture such aspects, e.g. by introducing parameterized
classifiers as descriptions of security mechanisms.

Local models The general model underlying the classifica-
tion framework is the model of a single system. Ap-
plications of the framework might be scaled down to
subsystems and components, but the framework seems
unsuitable for networks of interacting systems with
complex relationships and interactions.

Ambiguity Once the target policy and the mechanisms are
described as classifications in their respective spaces,
the framework can be applied. But there might be
multiple valid models of a security mechanism within
the framework, and the model of the security problem
is left to arbitrary choice.

Feedback loop into the world model Artificial features imply
that the world model depends on the security mecha-
nisms discussed. The classifier paradigm as discussed
here does not address this interdependency. It may
complicate analyses.

Analogy breakdown The classifier paradigm roots in a con-
ceptual metaphor. While striking on the surface, the
analogy may break down as soon as we look at the de-
tails. Pattern recognition builds on similarity among
members of a class and dissimilarity between members
of different classes, on notions of distance, and on sta-
tistical concepts like signal versus noise. Whether and
where such notions have a meaning in security remains
to be investigated, as does the question whether these
concepts are necessary for the paradigm as such.

6.3 Open Questions
This paper outlines an idea without investigating the de-

tails. A number of open questions remain for further re-
search:

Exploring the modeling framework The modeling frame-
work in section 3 thus far consists only of preliminary
definitions. As a prerequisite for further work it needs
to be extended and refined. Transformations and op-
erations on mechanism models are of particular inter-
est, as are formal definitions of the analysis techniques
outlined in section 5.

Modeling techniques The example in section 4 is based on
many ad-hoc decisions. For effective application of the
paradigm we need techniques that help us to build suit-
able causality models for a given system. Choosing an

unsuitable model spoils the analysis. Modeling tech-
niques thus need to guide their users towards appro-
priate considerations.

Does proximity matter in feature spaces? As noted under
caveats above, the classifier analogy may break down
if proximity has no meaning in feature spaces. On
the one hand, modeling typical policies as classifiers
might lead to sets of isolated points where we cannot
draw meaningful conclusions from a point about its
neighborhood. On the other hand, similarity is obvi-
ously meaningful with some common vulnerabilities. A
buffer overflow defect for instance supports a number
of individual attacks that essentially exploit the same
behavior of the software in the same way, differing only
in their payload and effects.

Two examples came up during the workshop. A broken
password hashing function may lead to a system ac-
cepting multiple different passwords for the same user.
While these passwords may not be close to each other
as points in the feature space, they would have the
username in common. The other example is a bug
making the system ignore the second character of each
password during verification. This bug should also
translate to some sort of pattern in the feature space.

Searching the space as an attacker Attackers often start
with a broad search on a system to find potential vul-
nerabilities and then follow traces to find an exploit.
Representing all the security mechanisms of a system
in a high-dimensional space might help us to model
this behavior. We might project search paths back
and forth between the problem space—the causality
model—and the mechanisms space—the implemented
security model. Restrictions differ in these two spaces.
An attack is successful if the attacker obeys the rules
of the world yet finds a hole in the mechanisms space.

Besides representing such behavior, we might take ad-
vantage of it as defenders. If we could systematically
increase the size of the space the attacker has to search,
attacking would become harder. This strategy is well-
known e.g. from cryptography.

How can we determine the mapping of problems to mecha-
nisms? Are there automated ways of determining the
mappings into feature spaces? To complicate things,
the mapping depends on the particular world model
chosen. Also, some aspects could be modeled equally
well in the feature space or in the mapping.

Distinguishing attacks from mistakes An interesting idea
from the workshop discussion is to apply the paradigm
to event classification. Given a space describing a
mechanism, accidental input errors, for instance a user
mistyping a password, and attacks may exhibit differ-
ent characteristics. The mistyping user may hit a point
close to the correct password while a brute force guess-
ing attack either hits random points or even shows a
clear pattern over time.

As an afterthought, different classes of input errors
may also exhibit different patterns. Mistyping a pass-
word can mean a number of different mistakes: hitting
a wrong key on the keyboard; typing the old password

instead of the new one after having changed the pass-
word; or mistakenly typing the password for another
system. It might therefore be interesting to explore
the classifier paradigm from a usable security point of
view.

Representing time The model so far is admittedly static,
which seems not very appropriate. Security mecha-
nisms may base their decisions not only on input but
also on internal state, and attacks may comprise a
series of actions. Adding time as a dimension to all
spaces involved may be a straightforward way of mak-
ing the model dynamic.

Availability of labeled data The paradigm proposes a world
model, which is essentially a labeled dataset. Obtain-
ing such labeled data is expensive. If we could obtain
labeled data for typical security problems, it would be
worthwhile to put them down for reuse.

7. ACKNOWLEDGEMENTS
I owe gratitude to a number of people: to my NSPW shep-

herds, Hilary Hosmer and Steven Greenwald, as well as to
the anonymous reviewers, for many insightful and encourag-
ing remarks helping me to improve my paper; to all NSPW
participants for a lively discussion and a great workshop;
and to my colleagues Katja Seitz and Timo Winkelvos for
reviewing early drafts. This work was supported by CASED
(www.cased.de).

8. REFERENCES
[1] Ross Anderson. Why cryptosystems fail. In CCS ’93:

Proceedings of the 1st ACM conference on Computer
and communications security, pages 215–227, New
York, NY, USA, 1993. ACM.

[2] Ross J. Anderson. Security Engineering: A guide to
building dependable distributed systems. Wiley, 2008.

[3] Mitra Basu and Tin Kam Ho, editors. Data complexity
in pattern recognition. Springer-Verlag New York Inc,
2006.

[4] David Elliot Bell. Looking back at the Bell-La Padula
model. In Proceedings of the 21st Annual Computer
Security Applications Conference, pages 337–351.
IEEE Computer Society Washington, DC, USA, 2005.

[5] Common criteria for information technology security
evaluation v3.1. available online,
http://www.commoncriteriaportal.org/, 2006.

[6] Menahem Friedman and Abraham Kandel.
Introduction to pattern recognition: statistical,
structural, neural and fuzzy logic approaches. World
scientific, 1999.

[7] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D.
Ullman. Protection in operating systems. Commun.
ACM, 19(8):461–471, 1976.

[8] Mikko Hypponen. 21 Solutions to Save the World:
Masters of Their Domain. Foreign Policy, May/June,
2007.

[9] A.K. Jain, R.P.W. Duin, and Jianchang Mao.
Statistical pattern recognition: a review. Pattern
Analysis and Machine Intelligence, IEEE Transactions
on, 22(1):4–37, Jan 2000.

[10] J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas. On
combining classifiers. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 20(3):226–239,
Mar 1998.

[11] J. Kittler, M. Hatef, and Duin R. P. W. Combining
classifiers: A theoretical framework. Pattern Analysis
& Applications, 1(1):18–27, 1998.

[12] Nikunj C. Oza and Kagan Tumer. Classifier
ensembles: Select real-world applications. Information
Fusion, 9(1):4 – 20, 2008. Special Issue on
Applications of Ensemble Methods.

[13] U. Priss. Formal concept analysis in information
science. Annual review of information science and
technology, 40(1), 2006.

[14] Jerome H. Saltzer and Michael D. Schroeder. The
protection of information in computer systems.
Proceedings of the IEEE, 63(9):1278–1308, 1975.

[15] Frank Swiderski and Window Snyder. Threat
Modeling. Microsoft Press, 2004.

[16] D. Whitley and J.P. Watson. Complexity theory and
the no free lunch theorem. Search Methodologies:
Introductory Tutorials in Optimization and Decision
Support Techniques, page 317, 2005.

[17] D. H. Wolpert and W. G. Macready. No free lunch
theorems for search. Technical report, Technical
Report SFI-TR-95-02-010, Santa Fe Institute, 1995.

[18] Xerox workcentre/workcentre pro
232/238/245/255/265/275 multifunction systems
security target. available online,
http://www.commoncriteriaportal.org/files/

epfiles/ST_VID10135-ST.pdf, 2005.

[19] Xerox workcentre/workcentre pro
232/238/245/255/265/275 multifunction systems
validation report. available online,
http://www.commoncriteriaportal.org/files/

epfiles/ST_VID10135-VR.pdf, 2006.

