
Applying Problem-Structuring Methods
to Problems in Computer Security

 Peter Gutmann
University of Auckland

Department of Computer Science
Private Bag 92010, New Zealand

+64 9 373-7599

pgut001@cs.auckland.ac.nz

ABSTRACT
Solutions to security problems, particularly ones involving
cryptography, have typically been approached through the Inside-
Out Threat Model, “this is our solution and whatever it addresses
is the threat”. Email encryption/signing and SSL/TLS are two
examples of the Inside-Out Threat Model, with the existence of a
multi-billion dollar global cybercrime industry testifying to the
fact that the threat-modelling performed during the design process
was aimed more at satisfying the cryptographers’ rather than the
end users’ needs. This paper looks at the application of problem-
structuring methods or PSMs, a technique from the field of social
planning, to address computer security problems, not so much to
define technical solutions but to help analyse the problem so that
the most appropriate, rather than simply the most technologically
trendy, solution is applied to the problem.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
elicitation methods; D.2.10 [Software Engineering]: Design –
methodologies; H.1.2 [Information Systems]: User/Machine
Systems – human factors; K.6.1 [Management of Computing
and Information Systems]: Project and People Management –
systems analysis and design.

General Terms
Design, Security.

Keywords
Problem-structuring methods, wicked problems, soft operations
research, soft systems methodology.

1. INTRODUCTION
Engineering solutions for security problems is always a tricky
business. Try this simple exercise: Grab a passing geek and ask
them how they’d solve the problem of securely authenticating
users over the Internet. They’ll probably tell you to use OpenID
(or some pet equivalent), LDAP, SecurID (or a pet equivalent),
smart phones as access tokens, or something similar. They’re

unlikely to ask who’s being authenticated, to what, under which
conditions, in which environment, what the budget is, how easy
the authentication mechanism has to be to use it, and so on, or
even whether authentication makes any sense when what’s
usually required is authorisation of an action rather than just plain
authentication. This is a prime example of the Inside-Out Threat
Model in action, with the solution decided at the wrong end of the
design process. The intent of applying formal problem-structuring
methods is to turn this process around, moving the technology
decisions to the end of the design process (if they’re even needed)
and considerations that affect the choice of technology to the
start.

Problem-structuring methods are a technique designed to solve
“wicked problems” and come from the field of social planning.
Wicked problems were first proposed in the early 1970s as a way
of modelling the process for dealing with social, environmental,
and political issues and have since been extended to various other
fields, but not (as far as the author is aware) to computer security.
Amongst a wicked problem’s weaponry are such diverse elements
as a lack of any definitive formulation of the problem, a lack of a
stopping rule (so that one of the core requirements for dealing
with a wicked problem is the art of not deciding too early which
solution you’re going to apply), solutions that are rateable only as
“better” or “worse” and not true or false, no clear idea of a which
steps or operations are necessary to get to the desired goal, and a
variety of ideological and political differences among
stakeholders. With these sorts of problems, simply defining and
analysing the problem becomes a significant, if not major,
component of the solution. The techniques used to address these
sorts of problems are therefore rather appropriately labelled
“problem-structuring methods” (PSMs) rather than “problem-
solving methods”.

2. PROBLEM-STRUCTURING METHODS
Employing problem-structuring methods or PSMs to address
computer security problems is helpful in order to avoid the natural
tendency of geeks to leap in with their favourite piece of
technology without considering the environmental, social,
political, and legal aspects of the overall problem. A typical
example of this occurred just before this paper was being finalised
when a CA trusted by web browsers was used to issue fraudulent
certificates for high-value sites. The response to this failure of
browser PKI was endless discussion in technical forums about
how to solve the problem through the application of more PKI,
despite there being “no evidence of a single user being saved from
harm by a certificate error, anywhere, ever” [1]. Consideration of
what the overall problem that was meant to be being solved was
(in the case of web browsers, wide-scale phishing of users and to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NSPW’11, September 12–15, 2011, Marin County, CA, USA.
Copyright 2011 ACM 978-1-4503-1078-9/11/09...$10.00.

37

a lesser extent drive-by downloads and other unpleasantness), was
almost entirely absent.

There are quite a range of PSMs (a more complete discussion of
the background behind them and their various pros and cons is
given elsewhere [2]), but the one that seems most appropriate for
looking at technology problems involving computer security is
the Soft Systems Methodology or SSM [3][4][5]. The framework
provided by SSM presents a powerful analysis tool for examining
security issues in a manner that’s usually not applied to this type
of problem.

Gather information
on the problem

situation

Express the
problem situation

Define changes to
make

Take action

Root definitions of
the system

Conceptual model
of the system

named in the root
definition

to the real world

Compare model

Real world

System model of the
real world

Figure 1: The Soft Systems Methodology as a problem-
structuring method

As shown in Figure 1, PSMs work by analysing the real-world
situation, building a conceptual model of it, comparing the real-
world situation to the model and applying corrections if
necessary, and then making any changes that are indicated by the
model. In the words of one of the originators of PSMs, they
represent “an organised version of doing purposeful ‘thinking’”
[6]. This sort of thing really appeals to the way that technologists
think and work, because it follows a very careful, systematic
approach to dealing with an issue.

What PSMs do is act as forcing functions for designs, making
participants consider all manner of environmental factors before
they begin and only allowing them to decide on concrete solutions
towards the end of the design process. In other words providing
that the participants follow the design process correctly they’re
forced to choose a solution that actually addresses the problem
rather than just picking a silver bullet out of a hat. PSMs present
the exact opposite of the process involved with the Inside-Out
Threat Model.

3. APPLYING THE SOFT SYSTEMS
METHODOLOGY
Explaining how the Soft Systems Methodology (SSM) works is
best done by walking through an example of how it might be

applied in practice, in this case applied to the problem of users
interacting securely with an online service like a bank or an
online store. This is something that we haven’t really figured out
how to do yet, or more specifically it’s something for which we
have endless numbers of technology-based proposals for solutions
but nothing that really works very well in practice, making it a
useful known-hard problem to apply the SSM to.

3.1 Finding Out
The first phase of the SSM is called Finding Out, and consists of
discovering the scope of the problem and its environment. The
Finding Out stage consists of two sub-stages, the external and the
internal Finding Out stages. The external Finding Out stage
involves going out and asking everyone that’ll be involved in
using, deploying, administering, and paying for the system, or in
problem-solving jargon the stakeholders, what they consider the
issues to be. This is an information-gathering stage that involves
acquiring enough information from the stakeholders to build a
general picture of what the problem that’s meant to be solved
actually is. It’s important not to skip this stage (no matter how
superfluous it may seem) because participants typically don’t
know it nearly as well as they think they do. For example in one
study, in which the participants reluctantly went through the
Finding Out phase to appease the external observers that were
present, they ended up gathering twenty-two pages of material
that painted a rather different picture of the problem than they had
initially assumed [7].

Once the field work has been completed and used to obtain any
required data from the external Finding Out stage, the next step is
the internal Finding Out stage. This takes the information that’s
been gathered and uses it to build an (unstructured) picture of the
problem to be solved. There are a variety of ways in which this
Finding Out phases can be carried out, but one quite usable form
breaks things down into three related analysis steps. The first step
involves identifying the roles of the participants in the system,
generally referred to as ‘clients’ in SSM terminology. The second
step involves defining the social environment such as social rules,
values, and norms of behaviour in which the problem to be solved
is situated, referred to as the ‘social system’ in SSM terminology.
Finally, the third step involves examining the political
environment in which the system has to operate, identifying
‘commodities’ in SSM terminology, authority, political, and legal
constraints and how they’re applied and transmitted.

In some problem situations these issues can become very thorny,
and a long, long way removed from anything technology-related.
Consider the problem of Internet voting. Apart from the very
obvious environmental requirement that users have to trust the
system, the loser in the election also has to be convinced that
they’ve lost. In the case of a hotly-contested election such as in
the US in 2000 the entire election process (and by extension the
government of a country) can be derailed if the system isn’t able
to provide convincing evidence not so much that the purported
winner really won (they’re unlikely to want to challenge this
result) but that the purported loser really lost. This threat-model
view is more or less the inverse of the electoral view, which only
concerns itself with who won.

Note how just this initial process already differs radically from
the traditional security approach of deciding on a particular
solution like SSL/TLS or digital signatures and only then trying to
figure out how to apply it, with issues such as asking whether it
can actually work in this environment being left to post-mortem

38

analyses after deployment. SSM (and PSMs in general) make this
background analysis a fundamental step in the problem-solving
approach, forcing participants in the process to think about the
environment in which their (potential) solution has to operate.
This prevents the automatic application of the traditional Inside-
Out Threat Model, both because it now becomes hard to justify
blindly applying it and because participants won’t get to that
particular step until much, much later in the SSM process.

For the case of bootstrapping secure communications, typical
roles involved in the process are the end users, the system
administrators (meaning the people who administer and control
the system and not just the IT system administrators or sysadmins
in charge of running the actual equipment, a group of people that
ranges from those with direct influence like company directors
and managers through to ones with indirect influence like
company lawyers and marketing people), the system developers,
and (obviously) various types of attacker.

In terms of the environment in which the system has to operate,
the end user just wants to get things done and doesn’t want to
have to take a series of night-school classes just to be able to use a
site’s logon mechanism (this particular issue is very hard for
geeks to understand, since if they’re able to eventually figure it
out then absolutely anyone should be able to figure it out), they
expect things to happen automatically without requiring tedious
manual intervention, they generally have little awareness of
security threats (if it says “bank” on the sign then it’s a bank and
there’s no need to go out and perform a series of background
checks to verify this), and they want to be able to authenticate
from work, from home, and from an Internet café in Kazakhstan
using whatever mechanism is most convenient.

System administrators (the technical ones in this case) want to go
with whatever requires the least amount of work for them. The
middlemen (network providers and ISPs) want no part in
anything, they just provide the tubes and collect rent for them.
Corporate-level administrators want to spend as little money as
possible, and their primary security concern is “will this affect our
stock price”, or in some cases “will this appear on the front page
of $national_paper”. The marketing people are more interested
in the perception of security than actual security (it’s their job to
convince customers/users to come in, and that requires creating
the perception of a safe environment). Finally, the lawyers are
worried about legal liability, regulatory constraints, and all the
other things that lawyers are paid to worry about (this case tends
to blend with the next step, examining the political environment
in which the system has to operate).

Finally, at the political level, there are compliance and regulatory
constraints like PCI-DSS, consumer protection laws, computer
crime laws, the general reluctance of law enforcement agencies to
pursue computer crime, and various messy cross-jurisdictional
issues such as the fact that even if your current physical
environment is one where X is the norm, your logical
environment may be one where Y is the norm (a participant in
one problem-structuring exercise described this situation as “like
going to a corner dairy in Pakistan and being fed pork rinds”).
Consider for example a German tourist currently on holiday in
Spain who goes to a hotel’s web site to book a room for a few
days, with the site being run through a cloud provider in Ireland.
The 2006 EU Data Retention Directive requires that all EU
countries create a law requiring that data be retained for between
six months and two years. In Germany it’s six months, in Spain

it’s a year, and in Ireland it’s two years. The German government
is quite adamant that when German citizens are involved the data
has to be deleted after six months. Spain claims that its law takes
precedence. In Ireland you’re breaking the law if you delete the
data before two years are up [8]. This is the sort of situation in
which, if participants don’t get their lawyers involved fairly early
in the problem-solving process, they can end up in deep trouble.

3.2 Formulating Root Definitions
Following the Finding Out stage, the next SSM step consists of
Formulating Root Definitions, which define what’s relevant in
exploring the problem space. These are formalised using the
mnemonic CATWOE, which stands for Customer, Actors,
Transformation Process, Weltanschauung, Owner, and
Environmental Constraints. The Customer is the beneficiary (or
sometimes the victim) of the system, the Actors are the
participants in the system, the Transformation Process is what the
activity of the system operates on expressed in terms of the inputs
and outputs of the transformation process, the Weltanschauung is
the world view underlying the system (“Weltanschauung” is a
German word that’s usually translated as worldview, although
that’s something of a simplification of its full meaning), the
Owner is the person or people with the ability to stop the system
(sometimes Customers, Actors, and Owners can overlap), and the
Environmental Constraints are the constraints that the
environment places on the system.

CATWOE isn’t just an arbitrary categorisation but was built from
real-world experience with observing what people were and
weren’t taking into account in the problem-solving process. In
particular SSM practitioners found that people tended to omit
both Actors and Owners because they were “too obvious to be
noticed” and so they were never considered as part of the SSM
process [5]. By explicitly requiring them to be specified as part
of CATWOE, SSM ensures that they’re taken into account during
the problem-solving process.

Going back to the Finding Out results, it’s now possible to create
the necessary Root Definition using CATWOE. In most designs
involving security, the role of the Customers, Actors, and Owners
are fixed: The Customer is the user, the Actor is the organisation
that’s running the system, and the Owner is the attacker. This
leaves the Transformation, Weltanschauung, and Environment to
be resolved. Since CATWOE is a mnemonic used to help
remember what’s involved and not a strict ordering of operations,
it’s not absolutely necessary to go through the process in the order
implied by the mnemonic. In particular for security modelling it’s
often easier to leave the Transformation step until the end, since
it’s heavily influenced by the Weltanschauung and Environment.
This means that the remaining TWE steps would be done as
WET.

Continuing the process of addressing the sample problem given
earlier, the Weltanschauung of the users (or at least as it’s
typically perceived by security geeks) is that the users trust too
much while the security geeks would be seen by the users as
trusting too little. In addition if something goes wrong then the
users regard the system as being at fault and not themselves, and
specifically they consider that it’s the system’s job to protect them
and not their job to invest massive amounts of effort (far beyond
anything required in the real world) to stay secure.

The Environment consists of unreliable (both in the sense of
availability and of resistance to attack) networks, the general need

39

to run things over HTTP because of firewalls, a need to make a
profit at some point (that is, it doesn’t make much sense to spend
$1M to protect $5 unless you’re a government department) and by
extension the fact that most organisations see security as a
“hygiene issue”, it’s something that’s good to have but that
doesn’t really add any value since you don’t directly make money
off it, a user endpoint in an unknown state, the fact that the user is
geographically separated from the systems that they’ll be
interacting with, and the fact that we have no direct physical
channel to the user (users generally trust things involving physical
presence more than they do the more nebulous presence of a site
on the Internet, and a direct physical channel could be leveraged
to help secure the Internet channel, as some European banks do
by bootstrapping Internet authentication from bank branch visits
or information distributed via postal mail).

The Transformation is fairly straightforward, we want to go from
an untrusted to a trusted state, or more abstractly we want to solve
the problem of trusted knowledge distribution.

Finally, we have the Root Definition, which is that we want to
validate customers using systems that we don’t control over a
network that we don’t control against systems that we do control
in a situation where it’s advantageous for attackers to manipulate
the process, and it all has to be done on a shoestring budget
(there’s a good reason why these sorts of things are called
“wicked problems”).

The above is only one particular way of approaching things,
which is why Figure 1 shows this stage as being part of a very
iterative process. At the moment we’ve framed the problem from
the point of view of the defender. What happens when we look at
it from the attacker’s perspective? In other words rather than
looking at what the defenders are trying to achieve, can we look
at what the attackers are trying to achieve? About a decade ago
the primary motivation for attackers would have been ego
gratification, whereas today it’s far more likely to be a
commercial motive. On the other hand for targets with little
directly realisable financial value to attackers it may be that the
only motivation for attackers would be either ego gratification or
espionage in the case of certain government and industry targets.

With this alternative view the Customers are now the hackers
and/or the people paying them, the Owners become the defenders,
the Actors become the people working with and using the system
(which includes the bad guys), and the Transformation and Root
Definition are restated in terms of the attackers’ goals rather than
the defenders goals. A typical root definition for a financially
motivated attacker might be that they want to obtain (if it’s a
phishing attack) or extract (if it’s a data theft attack) access-
control and authorisation information without the defenders being
aware of the loss so that the information can then be exploited at
leisure. As with the defenders’ root definitions, this can then be
moved on to the next stage.

3.3 Building Conceptual Models
The next SSM stage involves Building Conceptual Models. This
takes the Root Definition and uses verbs to describe the activities
that are required by the Root Definition. It’s important that the
model contains a monitoring mechanism (in SSM terms this is the
‘monitoring and control’ system) that monitors its effectiveness
(is it doing the right thing?), its efficacy (does it work properly?),
and its efficiency (is this the best way of doing this?). Two other
options that are sometimes added to the monitoring mechanism

for the general-purpose SSM are ethics (is it morally sound?) and
elegance (is it beautiful?). These are appropriate in some
situations in which the SSM is applied, but are generally
unneeded here: it’s hard to think of how one would create an
unethical encryption mechanism (although some uses of DRM
have been suggested as possible candidates), and arguing with
geeks about the aesthetics of a technical solution would be like
wrestling with a pig in mud where after awhile you realise that the
pig is enjoying it. For these reasons it’s best to focus only on the
first three ‘e’s, effectiveness, efficacy, and efficiency.

One important factor to take into account when building the
model is that it must use only those terms that are present in the
Root Definition. So for example one part of the model could
specify that “communications with users (customers) cannot
infringe on PCI-DSS or other regulatory controls”, “attackers
(owners) cannot be allowed to have knowledge of
communications”, and “attackers (owners) can pretend to be users
(customers) or administrators of the system (actors)”, but it
couldn’t specify that “users (customers) will use smart phones as
authentication tokens” because this appears nowhere in the root
definition. Without this constraint it becomes far too easy to start
inserting specific instances of real-world systems into the model,
micromanaging it to death (or at least to unworkability) before it
can be passed on to the remaining steps in the SSM process.

For the secure communications bootstrap problem, one approach,
which requires very little in the way of actual security technology,
might be to simply convince the customers that they’re secure
without doing much else, thus meeting the needs of at least some
of the stakeholders (the marketing people, the sysadmins, and
probably management) even if it may not satisfy some of the
others (notably the lawyers). One way of convincing the
customers that they’re secure might be to refund their money in
the case of fraud, allowing you to claim that “no customer has
ever lost money through fraud”, not because there isn’t any fraud
but because when there was some, the customer didn’t have to
carry the cost. This is more or less the system used by banks that
issue credit and debit cards when they dump liability on
merchants, and in this case is a situation where applying the full
five ‘e’s, specifically including ethics, would provide a better
model than using just the basic three ‘e’s.

Looking at this from another point of view, can we analyse the
problem from the perspective of the prevent/detect/correct
approach that’s sometimes applied to situations like this? The
problem can’t readily be prevented since there’s no direct control
available over the client environment or the network (the few
attempts by banks to force customers to use a particular PC
configuration in order to engage in online banking have resulted
in little more than extensive negative media coverage for the
banks), we can only take limited steps to detect problems through
fraud-monitoring techniques, and therefore our only real option is
to step in at the correction stage by refunding the customer’s
money in the case of any losses.

One mechanism that’s been proposed for dealing with the risk-
avoidance that organisations like to engage in at this point is by
trying to put a financial cost on the value of security. This is a
real problem with many organisations (or at least the people who
run them) who don’t think ahead too far, being concerned mostly
with the cost right now rather than how much they should spend
for future security. Unfortunately this approach has historically
proven very difficult (if not impossible) to implement, being

40

subject to Geer’s Law, after security philosopher Dan Geer, “Any
security technology whose effectiveness can’t be empirically
determined is indistinguishable from blind luck” [9].

For the alternative model that looks at the situation from the
financially-motivated attacker’s point of view (in which,
obviously, the ‘e’ of ethics doesn’t have much place), the
monitoring mechanism is fairly straightforward and is derived
from the attacker’s dual goals are of escaping detection (or at least
prosecution) and obtaining valid, fresh financial information and
using it before the defenders have time to react. The monitoring
mechanism for the validity and usefulness of the financial
information that’s being obtained is more or less built in, since the
attackers have direct feedback as to whether the account
credentials that they’ve stolen are current and valid. The
monitoring mechanism for evading prosecution is less obvious,
but checking whether botnets and servers are being shut down by
defenders provides some level of feedback. The efficiency in this
case isn’t usually a major consideration for attackers since the
resources being consumed are someone else’s, and efficacy
concerns are addressed by applying the attack in quantity rather
than quality.

Trying to analyse the attackers’ situation through the application
of standard economic models leads to very odd results. The
attackers are using other people’s resources, running over other
people’s bandwidth, financing their attacks with other people’s
money (stolen credit card and bank account credentials), and if
something goes wrong then someone else gets blamed.
Conventional economic theory doesn’t really have any way of
representing something like this because theft isn’t normally a
part of standard economic models. For example, externalities
theory, which looks at costs or benefits that are spilled over onto
third parties, assumes honest trade, not theft. One effect of this
unusual situation is that even the most ineffective and inefficient
attacks are still worthwhile for attackers, because someone else is
carrying all of the costs. So if standard analysis tools like
conventional economic theory can’t deal with this, is there a way
of using the SSM to analyse this problem?

Unlike the defenders, who as Geer’s Law points out often have no
way of determining how successful they’ve been, the attackers
have a very easily quantifiable success metric, either the number
of accounts looted or how much their employers are paying them
for their work. Since the intended goal of using the attacker’s
model is to help analyse things from the defender’s point of view,
this immediately points to two defence strategies that target both
of these success metrics. On the one hand we can try and make it
much harder for attackers to know which accounts are valid and
which aren’t, perhaps by seeding financial data with large
numbers of tarpit accounts that appear valuable but aren’t,
causing them to waste the one resource that they can’t get for
free, their own time, on no-value accounts, and on the other hand
we can try and target the higher-level financial controllers rather
than the low-level, disposable foot soldiers (more fully exploring
these alternative paths goes somewhat beyond the scope of this
paper).

3.4 Using Models
The next SSM stages involve Using Models, which take the
model and look to see how it applies to the real world. This can
create the iterative situation illustrated in Figure 1 in which an
attempt to apply the model indicates that it has some

shortcomings that need to be addressed, requiring going back an
earlier stage in the SSM process to redo a definition or portion of
the model.

One of the simplest ways to handle this stage is to “operate” the
system on paper, checking how well the model copes within the
framework of the Root Definitions. This process is particularly
appropriate for software developers, who often use a similar
process of mental symbolic execution of code during the coding
process [10][11][12][13].

One useful feature of SSM’s built-in monitoring mechanism is
that it can help avoid a situation in which a solution converges on
a local maximum that may not actually be a particularly good
overall solution. By explicitly building an evaluation mechanism
into the overall design process, SSM tries to avoid having a
design converge on an inviting but suboptimal solution.

An example of an iteration might be the earlier requirement that
“attackers (owners) cannot be allowed to have knowledge of
communications”. Quite frequently, what’s actually required in
this case isn’t confidentiality but authorisation. For example
since the numbers on credit cards are used as authorisation tokens
it’s necessary to keep them secret, but if they were used as part of
a robust authorisation mechanism then there’d be no need to keep
the credit card number secret because even if the information was
sent in the clear an attacker would still have the authorisation
mechanism to contend with. So by changing this part of the
model to “attackers (owners) cannot undetectably manipulate the
communications” and then operating this new variant on paper,
it’s possible to see whether the change improves (or worsens) the
overall situation.

As Figure 1 shows, these last two stages of the SSM are a very
iterative process. Much more so than for the defenders, the
attackers would use this stage to insert a typical attack into the
model, run through it to see how well it works, and then try again
if it doesn’t (although given that any attack will be successful if
you throw enough of someone else’s resources at it, and the
attackers have little shortage of those, the number of iterations
may be less than expected).

One way of using the concept of operating the model as a
simulator is to apply the paper-execution process while changing
some of the input parameters [14]. For example what happens if
you change some aspect of the Weltanschauung or the
Environment? Does this make things harder or easier? This type
of exploratory evaluation can help identify situations where the
solution to the problem isn’t some magical application of
technology but to modify your underlying assumptions about the
nature of the problem, redefining it in such a way that it’s more
amenable to solution. An example of this occurs with the
problem of securely sending email between different branches of
a company, where redefining the underlying assumption from
“everyone has to have email encryption on their desktop” to “we
need to securely get email from branch A to branch B” moves the
potential solution from the near-impossible task of deploying
email encryption to every desktop to the much simpler one of
using STARTTLS [15] or a corporate S/MIME or PGP gateway.
Another example of changing the model was the one given earlier
of switching from confidentiality as a communications goal to
authentication/authorisation as a communications goal. Even if it
seems like a lot of work, the process of using the model on
different sets of input data can provide real insights into the true
nature of the situation.

41

You can also use the simulator runs to try and explore what
happens when some of the stakeholders have conflicting goals
that are identified during the Finding Out phase. By running the
two different viewpoints through the simulator (or changing the
simulator’s parameters, depending on the level at which the
differences take effect) you can explore which of the different
options produces the best (or perhaps the least bad) result.

This iterative operation may mean going back to an even earlier
stage in the SSM processing, requiring that you gather additional
information on the problem situation that may not have been
considered relevant the first time round. For example your
solution may be one that requires the middlemen (network
providers and ISPs) take a more active role in the process. Seeing
whether this is in fact feasible or not would require going back to
the Finding Out phase to gather further information.

This can even involve discarding an initial requirement if it’s now
been found to create insurmountable obstacles. For example there
might be a particular feature that was added to the design because
it was felt that it’d be nice to have it present (this is another case
of a hygiene-issue feature mentioned earlier that everyone agrees
is a good idea even if there’s no compelling argument supporting
it) or something that was added for political or marketing reasons
that now turns out to create an insurmountable obstacle to coming
up with a solution. Something like this can be discarded and the
SSM process re-run to determine whether it really is as necessary
(or even just desirable) as it may have first appeared.

3.5 Defining Changes and Taking Action
The final steps, Defining Changes and Taking Action, are pretty
self-explanatory and involve making changes in the real-world
system based on what’s been defined by the model. The Defining
Changes step may have identified a number of changes that could
be made, but that doesn’t necessarily mean that they should be
made, which is why it’s a separate step from Taking Action.
Defining Changes identifies the changes that are worth trying,
meaning that they’re both desirable and feasible, and then finally
Taking Action puts them into effect. As with the earlier use of
Actors and Owners, CATWOE’s explicit inclusion of the
Weltanschauung within which the system has to operate ensures
that constraints and conditions imposed by the environment can’t
be easily ignored. This is particularly important for technological
systems because it’s something that geeks often ignore.

Note that throughout this entire discussion, the actual technology
that might be applied hasn’t really cropped up yet. In fact for the
case of the example problem that’s used here, to the distress of
geeks everywhere, the best action for the defenders to take may
require the skills of the marketing department more than those of
the IT department. Applying a PSM isn’t guaranteed to produce
the results that geeks would prefer, but rather the results that arise
from the information that’s gathered and the model that’s built
with it. In practice this requires a fairly strong-willed coordinator
to resist the intense desire of the geeks to “solve” the problem
with their favourite technology, a real-world problem that’ll be
covered in more detail in a future paper.

Applying a PSM may also not produce the results that a manager,
believing that his company has the best programmers in the world
and that surely they can come up with a software solution to this
problem, would prefer (this is the so-called moon-ghetto
metaphor, “if we can put a man on the moon then we should be
able so solve the problem of inner-city ghettos” [16]) would

prefer. Working through a PSM lets them derive the fact that
there really is no technical solution to a problem and it’ll have to
be addressed another way. Having them to discover this form
themselves is an important step, since they may not believe it if
anyone else tries to tell them.

4. CONCLUSION
This paper has presented a new mechanism for addressing
computer security problems whose primary contribution is the
fact that it’s a formal problem-structuring method that forces
participants to think about the problem that they’re solving rather
than applying the more usual approach of leaping in with their
favourite technology and hoping that, like the mythical silver
bullet, it’ll end up doing what they want. Problem structuring
methods like the SSM described here provide a problem
structuring method and not a guaranteed problem solving method.
As the introduction pointed out, the problem may be a genuinely
unsolvable one, with the only possible tradeoffs being between an
awful solution and a less awful one. In this case an approach such
as having the marketing people convince users that they’re safe
and refunding their money in the case of fraud may indeed be the
best (meaning the least awful) one.

5. ACKNOWLEDGMENTS
The author would like to thank Bob Williams, members of the
Auckland Information Security Interest Group (ISIG), attendees
of Kiwi Foo, and participants in the 2011 New Security
Paradigms Workshop for their input into this work.

6. REFERENCES

[1] “So Long, And No Thanks for the Externalities: The
Rational Rejection of Security Advice by Users”, Cormac
Herley, Proceedings of the 2009 New Security Paradigms
Workshop (NSPW’09), September 2009, p.133.

[2] “Engineering Security”, Peter Gutmann, to appear.

[3] “The Use of Soft Systems Methodology in Practice”, John
Mingers and Sarah Taylor, Journal of the Operational
Research Society, Vol.43, No.4 (April 1992), p.321.

[4] “Soft Systems Methodology: A Thirty Year Retrospective”,
Peter Checkland, Systems Research and Behavioral Science,
Vol.17, No.S1 (November 2000), p.S11.

[5] “Soft Systems Methodology”, Peter Checkland, in “Rational
Analysis for a Problematic World Revisited (2nd ed)”, John
Wiley and Sons, 2001, p.61.

[6] “Using Soft Systems Methodology in the Design of
Information Systems”, John Mingers, in “Information
Systems Provision: The Contribution of Soft Systems
Methodology”, McGraw-Hill, 1995.

[7] “Soft Systems Methodology in Action”, Peter Checkland and
Jim Scholes, John Wiley and Sons, 1999.

[8] “Cloud Computing Roundtable”, Eric Grosse, John Howie,
James Ransome, Jim Reavis and Steve Schmidt, IEEE
Security and Privacy, Vol.8, No.6 (November/December
2010), p.17.

[9] Paraphrased from the analysis first presented in “Information
Security: Why the Future Belongs to the Quants”, Daniel

42

Geer, Kevin Soo Hoo and Andrew Jaquith, IEEE Security &
Privacy, Vol.1, No.4 (July/August 2003), p.32.

[10] “Towards a theory of the cognitive processes in computer
programming”, Ruven Brooks, International Journal of
Man-Machine Studies, Vol.9, No.6 (November 1977), p.737.

[11] “Change-Episodes in Coding: When and How Do
Programmers Change Their Code?”, Wayne Gray and John
Anderson, Empirical Studies of Programmers: Second
Workshop, Ablex Publishing Corporation, 1987, p,185.

[12] “Cognitive Processes in Software Design: Activities in the
Early, Upstream Design”, Raymonde Guindon, Herb
Krasner, and Bill Curtis, Proceedings of Human-Computer
Interaction (INTERACT’87), Elsevier Science Publishers,
1987, p.383.

[13] “A Model of Software Design”, Beth Adelson and Elliot
Soloway, in The Nature of Expertise, Lawrence Erlbaum and
Associates, 1988, p.185.

[14] “Soft Systems Methodology”, Bob Williams, December
2005, http://users.actrix.co.nz/bobwill/-
ssm.pdf.

[15] “SMTP Service Extension for Secure SMTP over TLS“,
RFC 2487, Paul Hoffman, January 1999.

[16] “Intellectualizing about the Moon-Ghetto Metaphor: A Study
of the Current Malaise of Rational Analysis of Social
Problems”, Richard Nelson, Policy Sciences, Vol.5, No.4
(December 1974), p.375.

43

