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ABSTRACT
Is more always better? Is conventional wisdom always the
right guideline in the development of security policies that
have large opportunity costs? Is the evaluation of security
measures after their introduction the best way? In the past,
these questions were frequently left unasked before the intro-
duction of many public security measures. In this paper we
put forward the new paradigm that agent-based simulations
are an effective and most likely the only sustainable way
for the evaluation of public security measures in a complex
environment. As a case-study we provide a critical assess-
ment of the power of Telecommunications Data Retention
(TDR), which was introduced in most European countries,
despite its huge impact on privacy. Up to now it is unknown
whether TDR has any benefits in the identification of ter-
rorist dark nets in the period before an attack. The results
of our agent-based simulations suggest, contrary to conven-
tional wisdom, that the current practice of acquiring more
data may not necessarily yield higher identification rates.

Categories and Subject Descriptors: K.4.m [Com-
puting Milieux]: Computers and Society—Miscellaneous

General Terms: Security

Keywords: simulations, data retention, privacy

The worst thing is to rush into action before the
consequences have been properly debated.

–Perikles

1. INTRODUCTION
Conventional wisdom suggests that more is better. Ar-

guably this assumption has led to major changes in the per-
ception of anonymity, privacy, and access to data in the
public and private spheres. In particular this became most
evident in the aftermath of the 9/11 attacks: several data
retention projects were introduced around the world in order
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to track terrorist activities. The Advance Passenger Infor-
mation System (APIS) of the US Transportation Security
Administration stores passenger name records of all airline
travelers entering and leaving the US; the Terrorist Finance
Tracking Program (TFTP) of the Federal Bureau of Inves-
tigation tracks financial transactions of all kinds; agencies
were granted access to the records of financial transactions
processed by the Society for Worldwide Interbank Finan-
cial Telecommunication (SWIFT); telecommunication data
retention laws have been passed in many European states
following a EU commission directive, requiring telecommu-
nication providers to store and make available to law en-
forcement and other agencies call detail records (CDRs) of
all attempted and successful communication events made
over their infrastructure. These programs enable large-scale
data analysis in order to search for patterns of current and
future criminal and terrorist activities.

Despite their potentially huge privacy impact, the prac-
tical utility of most of the above-mentioned programs has
rarely been critically assessed. If evaluations have been per-
formed at all, they were done after the introduction of such
programs, based on empirical data of the past. Conceptu-
ally, all these programs have large opportunity costs and
therefore it is most desirable to judge on their effectiveness
already before introduction.

In this paper we put forward the paradigm that public
security policies, in particular ones that have a huge impact
on privacy, should be critically and experimentally assessed
before their introduction through simulations. In particular,
for the pro-active analysis of the impact of security measures
on complex dynamic systems, we propose to use agent-based
simulations.

Historically, in biology [6], sociology [17], economics [9],
and econophysics [11] agent-based simulations [10, 18] haven
been very successful. The insight gained in this way turned
out to be profoundly different from investigations on static
data (such as traditional social network analysis) and from
approaches of functional modeling via aggregates and aver-
age cases. Simulations outperform empirical studies in the
sense that they allow to control external conditions, that
are not realized now but might come into existence in the
future. Therefore, they are the only sustainable evaluation
paradigm to achieve predictive power on the efficiency and
reliability of public security measures.

To illustrate the usefulness of the new paradigm, we apply
as a case-study agent-based simulation to quantify the abil-
ity of Telecommunication Data Retention (see Section 2)
to identify “terrorist cells” in a controlled environment of
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realistic communication dynamics. The results are indeed
counter-intuitive, as they suggest that the naive paradigm
of “more is better” can be violated, and that sometimes
smaller amount of used data can be more informative.

2. TELECOMMUNICATIONS DATA
RETENTION

Laws on Telecommunication Data Retention (TDR) have
been passed in many European states over the past years in
order to implement an EU directive [4]. Under this legisla-
tion, any telecommunication provider is required to keep a
log of metadata of all calls made using its infrastructure. For
example, for calls performed over a mobile phone, providers
are required to log the phone numbers of caller and callee, as
well the time of the call, its duration and the geographical
location of the caller. This data is supposed to be stored for
a period between sixth months and two years and can be
accessed by law enforcement agencies. Initially targeted to
combat organized crime and international terrorism, TDR
logs soon became utilized in the prosecution of minor of-
fenses [3], a tendency recently considered in violation of the
German constitution by the Federal Constitutional Court of
Germany [12]. At the same time European TDR regulations
were ruled as unconstitutional by the Romanian constitu-
tional court [5] and by the constitutional court of the Czech
Republic [26].

The mandatory introduction of data retention of the com-
munication behavior of the European population immedi-
ately sparked a lively discussion on its privacy impact. Sup-
porters claim that it is an essential tool to fight crime and
prevent future terroristic acts. Opponents doubt the use-
fulness of the data for terror prevention and point to the
massive erosion of privacy of each citizen: the stored TDR
data allows to generate detailed profiles of the “digital life”
(or even movement profiles in case of mobile communication)
of almost every European citizen [16].

Even though data retention went into effect in Europe
in 2007 and was widely implemented in national legislation
soon thereafter, there are up to now no scientific studies
publicly available that evaluate the practical usefulness of
TDR to combat crime. In this context, one has to distin-
guish between a pre incident and a post incident analysis:
in the former, TDR records are used to predict future crimes
or uncover yet unknown terrorist plans, while in the latter
case TDR records are used as evidence in the prosecution
of (past) crimes. Juridical practice shows that TDR may
have positive effects if used in a post incident analysis: for
example, a recent statement issued by the German govern-
ment to the Federal Constitutional Court of Germany lists
cases in which judges relied on TDR data as evidence [3],
even though it remains open whether the cases could have
been supported by other types of evidence. However, up to
now it is still unknown whether automatic analysis of TDR
records is useful in the pre incident case. Yet, this applica-
tion has been used as a key argument in the political debate
supporting the introduction of TDR legislation.

In this paper we apply agent-based simulations in order
to answer the question whether automatic analysis of TDR
records helps to uncover criminal activities and terrorist
plots, such as revealing a terrorist cell in a large network
of communicating users. Since there are no large-scale real-
world call records available for a scientific study, we set up

the simulation in such a way that both the network topology
and the call behavior of agents conform to statistical rules
that are well-known from real-world telecommunication net-
works (this process is described in detail in Section 3). We
add small cells of terrorists with known topology to the net-
work. Subsequently, we investigate in Section 4 a set of
measures, which assess the communication behavior of an
agent based on its TDR logs and have the potential to dis-
tinguish ordinary users from terrorists. In particular, we
found that a distinctive set of measures exists, that (at least
in theory) can distinguish the communication behavior of
terrorists and ordinary users. Some of these measures are
stable under implementation details and different commu-
nity sizes. Our results indicate that the fervid discussed
length of the retention period has indeed influence on the
usefulness of TDR.

3. SIMULATION METHODOLOGY
To empirically study the applicability of TDR in a pre

incident analysis scenario, we perform agent-based simula-
tions of networks of communicating users (called ‘ordinary
users’ in the sequel), which we amend with small networks
of ‘terrorists’. During the simulation, we keep a log file of all
communication events of all agents (that is, both terrorists
and ordinary users) in the same way as telecommunication
providers implement TDR.

The collected data is interpreted in order to answer the
following questions:

1. What is the overall information that can be extracted
from TDR records in an ex post analysis, which knows
the division of agents into a set of ordinary users and
a set of terrorists? In other words, how do the com-
munication behavior and the implied, transient com-
munication networks of ordinary users differ from that
of terrorists?

2. What are suitable measures to distinguish ordinary
users from terrorists in an automated way?

3. Are these measures stable under changing environmen-
tal conditions?

When designing the simulation study, one faces several
problems: First, although there exists ample knowledge on
aggregate communication statistics, no individualized empir-
ical data on communication patterns is publicly available.
Second, while the structures of terrorist networks from the
last decade were successfully reconstructed, data on the indi-
vidual communication behavior of real terrorists is not com-
prehensively available. Third, conceptually, there are myr-
iad analysis procedures that can be applied to TDR data
records in order to answer the above questions; in particu-
lar, their performance may differ substantially and a precise
description is often not available.

In order to tackle these problems, we chose the following
simulation strategy, which tries to match reality as closely
as possible, given the limited public knowledge of empirical
data.

Simulation approach. Our simulation is agent-based, where
each ordinary user and terrorist is modeled as an agent,
who autonomously decides on its activities. Before the sim-
ulation starts, we fix the topology of the communication
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network in order to reflect well-known properties of commu-
nication networks. In particular, we construct a topology
graph, consisting of nodes for each agent and edges indicat-
ing possible communication partners. The topology we use
for the network of ordinary users is described below. To this
network we add a small terrorist cell with a topology that
conforms to a real-world terror network.

On the resulting network, we perform a large number
of simulation steps, where every step corresponds to one
communication event. We simulated an overall period of
three consecutive years for each set-up. Each agent is au-
tonomously allowed to choose its communication partner
based on a randomized strategy (which, however, must con-
form to the chosen topology). Furthermore, he can individ-
ually determine the duration of the communication event
(or the amount of information that is transmitted) and the
waiting time until his next communication event takes place.
The choice of these temporal characteristics is described in
detail below. Subsequently, the agent waits until the next
event needs to be performed.

The simulation itself records all communication events
performed by all agents in order to establish a database of
Call Data Records (CDRs) in accordance with the EU di-
rective on TDR [4]. The database contains the identity of
caller and recipient, the time of the call and its duration.

Topology of communication networks. While there is no em-
pirical data on the CDR of large communities available for
public research, the topological behavior of large communi-
cation networks has been studied extensively [14, 28, 23].
For example, it is known that many communication net-
works show “scale-free” behavior: the fraction of partici-
pants (nodes in the topology graph) who have k communi-
cation partners (i.e., have node degree k) follows a power
law k−α for some parameter α > 0; this behaviour has
been found in e-mail [14], landline phone [28, 24] and mobile
phone networks [23]. The landline communication network
was found to have an α of about 2.1, while mobile commu-
nication networks exhibit a significantly larger parameter
α > 7.0.1 Furthermore, networks usually show an assorta-
tive behavior [21, 23]: well-connected nodes tend to connect
to other well-connected nodes. That is, the average num-
ber of communication partners of a node of degree k is an
increasing function of k.

In order to realistically simulate a large telecommunica-
tion network, we generated several random topology graphs
of 50,000 to 1,000,000 communicating agents using the
GraphTool2 software for different values of α. All graphs
were generated to closely resemble the empirical results de-
scribed by [23]. In particular, the random growth strategy
employed by GraphTool resulted in scale-free networks with
an assortative nature.

Temporal characteristics. Similarly to the topology of net-
works, some knowledge on the temporal characteristics of
communication networks is available in the public literature.
Most importantly, the time t between subsequent commu-
nication events (e-mails or phone calls) is known to follow
an exponential distribution μe−μ·t, as described in [28, 29]

1Even though some of the studies are quite old, we expect
that the shapes of the distributions are stable, while the
parameters vary.
2http://projects.skewed.de/graph-tool/

for the case of a phone network. In our simulation, agents
follow this rule.

The amount of data transferred in a single communication
refers to the duration of a telephone call or the size of an
Internet-based communication event. In a phone network we
assume, without loss of generality, that the amount of data
transfer is a monotonous function of the call duration. In
our simulation, the amount of information conveyed within a
communication event is randomly drawn from a log-normal
distribution. This immediately leads to a higher informa-
tion transfer of well-connected members of the community—
which is the central, coordinating characteristic of “lead-
ers” (or communication hubs) in civil and terrorist projects.
Note that we did not model diurnal effects in the communi-
cation.

The temporal and topological properties of the commu-
nication network depend on each other. For example, [23]
reports that the average total information transfer between
two entities in a network (i.e., the sum of the information
transferred in all communication events) is almost constant
in the product of the node degrees of sender and recipient
[22]. Our simulation satisfies this condition as well by im-
plementing a special randomized strategy for the selection
of communication partners.

Topology of terrorist network. The topology of terrorist net-
works has been intensively studied in the scientific litera-
ture. For example, [20, 19] depict the topology of several
dark networks [31], among them the network of the 9/11
attacks or the Bali bombings. In our simulation, we use the
topology of the networks described in [20] to model terrorist
communication networks. Even though one may argue that
these graphs are incomplete, they resemble the most precise
data on the structure of “real” terrorist networks that are
available in the public literature.

We merged the terrorist cell with the network of ordinary
users by connecting terrorist agents with other users by ran-
dom links in order to simulate contacts of each member of
the terror network to the “outside”, reflecting that terrorists
need to behave insuspiciously and to do normal business in
every-day life.3

Temporal characteristics of terrorist traffic. Naturally there
is no precise knowledge on the temporal characteristics
(for example call and inter-call duration) of communication
events between members of the terrorist network publicly
available. Therefore we take the route of a worst-case sce-
nario for the analyst: we assume in the simulation that the
basic statistical models of temporal characteristics of the
terrorist network are similar to that of ordinary users. More
precisely, we assume a universal mean of this distribution,
but allow for a broader or denser width of the distribution
for the terrorist network to account for a different dynam-
ics as a precursor of a hypothetical attack (e.g. the need
for more communication to set up the attack or a potential
“radio silence” beforehand). Technically, we model this ef-
fect by rescaling the standard deviation of the information
amount transmitted within each communication event by a
factor f . During the simulation, we varied f in the range of

3A different approach would have been labeling some nodes
of the random network as terrorist agents; however, this
approach does not easily allow the use of known topologies
of terrorist networks.
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Figure 1: Statistical properties of the simulated CDR and topological features of the resulting transient
communication networks; (a) degree distribution of the network; (b) distribution of the average neighbor
degree with respect to the node degrees; (c) total information transfer with respect to the node degree; (d)
average total information transfer depending on the product of the degrees of the communication partners.

0.6 to 1.4 and analyzed the influence of f on the stability of
the proposed measures.

Validation of the simulation. In order to validate the above-
mentioned simulation strategy, we compare the statistical
properties of the resulting communication network to those
of real communication networks reported in the open liter-
ature [14, 28, 23].

Figure 1 shows some statistics of a representative simula-
tion run. In particular, Figure 1(a) shows that the simulated
network is scale-free, i.e., the node degrees follow a power
law, as expected. Figure 1(b) shows that the network is
indeed assortative: highly connected nodes tend to connect
to other highly connected nodes. That is, the average node
degree of the neighbors of an agent increases depending on
its own node degree. Both figures show that the networks of
our setup closely resemble the empirical results of Onella et
al. (both figures are very similar to Figures 4 and 7 of [23]).
Figure 1(c) shows the total (cumulative) information trans-
fer, depending on the node degree of the sending user; as
expected, highly connected users tend to communicate more
than low connected users. Finally, Figure 1(d) shows the to-
tal (cumulative) information sent between two specific users,
depending on the product of the degrees of sender and re-

cipient. The graph shows independence, which is exactly
the behavior observed empirically by Onella et al. (compare
Figure 10 of [23]).

Discussion. Due to the unavailability of empirical data at
the level of individuals we took a “sampling route”: we
created communities of individuals in a way to fulfill the
known statistical properties at the macroscopic level. Ar-
guably, this does not fully capture reality; to cope with such
a shortcoming, we decided to sample over several incarna-
tions and analyze always the worst case for terrorists in these
instances. Fortunately, detailed knowledge is available on
the structure of darknets. Therefore, our modeling approach
is empirically fully supported for them. For the integration
of darknets into society and the temporal characteristics of
terrorist traffic we were not able to obtain empirical data.
Therefore, we modeled a worst-case scenario for the analyst:
a) the terrorists’ communications behavior is similar to av-
erage persons, but might only vary in intensity, and b) the
connection of the terrorists to the outside world is governed
by the same statistics as for normal citizens.

While the simulation results presented in Section 5 are
influenced by the underlying model, we want to stress that,
when more empirical data is made available, the simulation
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can easily be adapted and the implication of this study may
be revisited.

4. MEASURES
At the moment, analysis of dark networks is predomi-

nantly performed by manual, non-automated approaches us-
ing tools of data visualization4, which allow to visualize the
communication patterns, link it with external information
and compute simple properties of the topology graph. Au-
tomated methods are—to the best of our knowledge—not
reported in the open literature. Thus, one task was to iden-
tify measures which potentially allow to distinguish terror-
ists from ordinary users in an automated manner based on
CDRs.

For the sake of notation, we let a communication event be
denoted as ε = (t, i, j, d), where t denotes the initialization
time of the communication event, i and j denote identities of
sender and recipient, while d denotes the call duration (i.e.,
the amount of transmitted information). For a given com-
munication event ε we will denote its components as ε[t], ε[i],
ε[j] and ε[d]. The total set of communication events will be
called T , while T |a→ := {(t′, i′, j′, d′) ∈ T | i′ = a} denotes
the set of all communication events that agent a initiates.
As abbreviations, we write IAa :=

P
ε∈T |a→ ε[d] for the total

information amount an agent a is sending in all its commu-
nication events, while callsa := |{ε | ε ∈ T |a→}| denotes the
total number of calls and ka := |{ε[j] | ε ∈ T |a→}| the to-
tal number of communication partners of agent a. Note,
that this is an empirically measured number and does not
necessarily conform to the degree of a in the static topology
graph, typically discussed when all data is available. Rather,
in our case it depends highly on the retention period.

Let ε ∈ T be a communication event between sender ε[i]
and recipient ε[j]. We denote with nextε the subsequent
communication where ε[j] acts as sender. We further de-
note with τ the length of the retention period (in days) and
with Ca the clustering coefficient of a node a. For a Boolean
variable B we write 〈B〉 to denote the function 〈B〉 = 1 if B
is true and 〈B〉 = 0 otherwise. Figure 2 lists the set of mea-
sures (having the potential to distinguish between terrorists
and ordinary users) that we investigate in our study. Each
measure assigns a single score to each user, based on the
simulated CDR data. We distinguish between three types
of measures:

• Measures that depend only on the topological data or
on the global communication behavior of a single agent.
Besides simple quantities (such as the average number
of calls or communication partners per day) we con-
sider the clustering coefficient of the node (which de-
scribes the connectedness of the neighbors of a single
agent), possibly scaled by the average number of calls
or communication partners. One may expect, due to
the command structure of most terrorist networks, a
larger connectedness of the cells, which results both in
a larger clustering coefficient and higher communica-
tion behavior.

• Measures that depend on all communication events of
an agent. In contrast to the above measures, which

4Well-known software packages include Cytoscape [25],
Gephi [7], Pajek [8], Sentinel Visualizer [1], and SocNetV
[2]. See also [30].

only depend on “global” properties of an agent, one
can define measures that depend on each individual
communication event performed during the retention
period. For example, we may compute a sum of the
information amounts transferred during all communi-
cation event of an agent, weighted by either the clus-
tering coefficient or the node degree of sender or re-
cipient. This way, messages sent by (or received by)
highly connected agents get pronounced, which poten-
tially again reflect the command structure within the
network.

• Measures that reflect the interdependencies between
communication events. Since some communication
events (for example ones that contain commands) may
trigger other communication events by peers, it may be
worthwhile to trace pre-cursors of chains of communi-
cation by appropriate measures. To this end, we make
the (probably not always realistic) assumption that
an agent who received a command in a chain of events
relays that command to one of his subordinates, with-
out engaging in any other distracting communication
event. Thus, given a communication event between
agents a and b, it is worthwhile to study the statistical
properties of the next communication event that b ini-
tiates with an agent c. For example, one can compute
covariances between the clustering coefficients or node
degrees of a, b and c or measure the total flow of infor-
mation of a that is relayed via b to c. We furthermore
consider a measure that quantifies the flow of informa-
tion between a and c, conditioned over the event that
b reports less information to c than received from a;
this event occurs in a chain of command, if one agent
receives its orders and assigns small sub-tasks to all its
subordinates.

Theoretically, one can define much more involved mea-
sures, which combine properties of sequences of dependent
communication events. However, measures correlating more
and more persons or events are necessarily less significant
due to statistics: the overall number of targeted persons
(terrorists) eventually determines the maximal number of
correlated entities. In a setting with just a few terrorists, a
rule-of-thumb argument on statistical fluctuations increas-
ing with the square root of the number of entities [27] pro-
hibits the usage of more than two dependent communication
events in a measure.

5. RESULTS AND ANALYSIS
We performed the simulations, as described in the last

section, for varying parameter settings: in particular, we
considered networks of sizes 50,000 to 1,000,000 agents, and
varied the parameter f in the range of [0.6, 1.4]. Fur-
thermore, we varied the data retention period to span
[7, 14, 30, 182, 365] days (i.e., only communication events
within the respective retention period were used in the anal-
ysis). Unless otherwise mentioned, we show results averaged
over a) these parameters, b) three different terrorist net-
works, and c) at least two independent runs for each of these
incarnations. The rationale behind this procedure is the sit-
uation law enforcement officials face: as nothing is known on
the existence, the size, and the behavior of potential terror-
ist cells, one needs to include (and therefore average over) a
large number of potential threats. At the same time TDR
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Measures involving global properties of a single agent:
Average number of calls per day

Sa = callsa/τ
Average number of communication partners per day

Pa = ka/τ
Clustering coefficient Ca of agent
Clustering coefficient of agent, divided by the total number of outgoing calls

Ca/callsa

Clustering coefficient divided by the total information amount transferred
Ca/IAa

Measures involving all communication events of an agent:
Information transfer of agent, weighted by degree of recipient

κa =
P

ε∈T |a→ ε[d]kε[j]

Weighted Information transfer κa divided by total information transfer
κa/IAa

Information transfer of agent, weighted by clustering coefficient of sender

γ
(1)
a =

P
ε∈T |a→ ε[d]Cε[i]

Weighted Information transfer γ
(1)
a divided by total information transfer

γ
(1)
a /IAa

Information transfer of agent, weighted by clustering coefficient of recipient

γ
(2)
a =

P
ε∈T |a→ ε[d]Cε[j]

Weighted Information transfer γ
(2)
a divided by total information transfer

γ
(2)
a /IAa

Measures involving properties of three communicating agents:
Covariance between the node degree of the receiver and the node degree of the receiver of the subsequent
dependent communication event

μ
(1)
a =

P
ε∈T |a→ kε[j]knextε[j]

Covariance between the node degree of the sender and the node degree of the receiver of the subsequent
dependent communication event

μ
(2)
a =

P
ε∈T |a→ kaknextε[j]

Covariance between the clustering coefficient of the receiver and the node degree of the receiver of the
subsequent dependent communication event

ν
(1)
a =

P
ε∈T |a→ Cε[j]knextε[j]

Covariance between the degree distribution of the receiver and the clustering coefficient of the receiver of the
subsequent dependent communication event

ν
(2)
a =

P
ε∈T |a→ kε[j]Cnextε[j]

Sum of the information amount transferred by the subsequent dependent communication events of the receiver
αa =

P
ε∈T |a→ nextε[d]

Same as above, conditioned on the event that this information amount is smaller than the information originally
transmitted, normalized by information amount

σa/IAa =
P

ε∈T |a→ nextε[d] 〈ε[d] > nextε[d]〉 /IAa

Figure 2: Collection of measures used to characterize all communication dynamics in the various simulations.
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procedures need to be standardized, reproducible, and ap-
plicable to various communities and countries.

Identifying and selecting suitable measures. Given the set
of measures defined in Section 4, we first identified those
measures that are able to discriminate between terrorists
and ordinary users. To this end, we needed to rank the
measures. A suitable “quality function” is the mutual in-
formation I(p, m) between an indicator variable p ∈ {0, 1}
for the agents’ character (terrorist or ordinary user) and the
particular measure m. The mutual information thus quan-
tifies the amount of information an observer gains about the
character p of a person, when the measure m is extracted
from CDR databases. For law enforcement purposes in a
pre incident analysis a high mutual information (MI) is ob-
viously desirable.

All measures described above are real-valued and defined
on a continuous domain. To derive required histograms of
observables for the MI computation, we binned these values
always into 10 bins. We ensured that this detail does not
influence our overall results.

As the range and the occupancy of histogram bins for
any two measures was found to vary considerably, the ab-
solute value of the mutual information is not adequate to
rank different measures against each other. In order to put
all measures on an equal footing, we need to normalize by
the entropy H(p) of p and the entropy H(m) of the partic-
ular measure m. Since for each run the entropy H(p) stays
constant and will therefore not influence the ranking of a
measure, we therefore will deal with the normalized mutual
information I(p, m)/H(m) from here on.

Figure 3 shows the results in the form of bean plots [15],
i.e., empirical probability distributions, where the bar in-
dicates the mean value. Obviously, there are two distin-
guished sets of measures: one with an larger normalized MI,
that therefore lend itself to distinguishing terrorists from
normal users (σ normalized by the information amount, κ

normalized by information amount, γ(2), the clustering co-
efficient of the agent, and γ(1) and γ(2), both normalized by
the information amount). The other measures yield a rather
low normalized MI and are thus not significant. Comparing
sub-figures (a) and (b) and the bean plots for the different
population sizes shows that the identification procedure is
rather stable under varying environmental (community size)
and regulatory conditions (retention period).

Confirming the identified and selected measures. To confirm
the results, we ran an orthogonal analysis: for each mea-
sure m, we define the empirical distribution pT over the set
of all terrorists and over the set of all ordinary users pO

and compute the Kullback-Leibler divergences D(pT ‖ pO).
Important measures, i.e. ones which can discriminate best
between terrorists and ordinary users, need to show high
Kullback-Leibler divergence (DKL) values, according to the
Chernoff-Stein-Lemma of hypothesis testing [13]. Figure 4
shows the results of this analysis; measures, which were iden-
tified as important by the first analysis method, are shaded
in gray. The five measures with the highest DKL indeed
correspond to the same measures found by the first analysis
method, only γ(2) yields a lower DKL.

Stability of relevant measures. Ideally, any suitable mea-
sure to distinguish between ordinary users and terrorists is
stable with respect to varying external conditions of their
usage. For example, a good measure needs to be applica-
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Figure 4: Kullback-Leibler divergence (DKL) be-
tween empirical histograms for all measures. The
DKL is computed between the histograms of mea-
sures restricted to terrorists and to ordinary agents;
measures shaded in gray were identified as relevant
in the first step (see Figure 3).

ble to communication dynamics of any community size and
any terrorists’ cell size. Also small variations in the terror-
ists’ behavior should not influence the overall significance
of a detection mechanism. To illustrate this stability, we
show in Figure 5 the results for varying community sizes
and varying terrorists’ behavior (modeled via f) for some of
the important measures, identified above. It is evident that
for community sizes larger than a small city these measures
do not vary too much. For very small communities (less than
105 persons) there is some sensitivity. Such community sizes
are, however, not the proposed scenario of TDR. Note, that
the factor f also does not influence the value of the normal-
ized MI to a large extend. We observed the same behavior
for the other important measures (graphs are omitted due
to space restrictions).

We have thus established a set of measures that might be
applicable cross-country- and cross-jurisdiction-wise. These
measures are capable of signaling important behavior and
their relative importance—as expressed by their respective
ranking in comparison to other, unsuitable measures—is
maintained.

Influence of the data retention period. One central question
in the context of TDR implementation is the optimal data
retention period. The longer the period, the more communi-
cation events are stored and analyzed, which allows in turn
to uncover a larger set of contacts for each individual agent.
On the downside, this aggravates the privacy problems and
potentially increases the noise level within the data, leading
to a lower classification rate.

To investigate the influence of the data retention period,
we show in Figure 6 the results, where we differentiate be-
tween different communication behavior of the terrorists
given by the parameter f . Clearly and unsurprisingly, the
information extractable from a given measure grows with
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Figure 3: Bean plots of the normalized mutual information I(p, m)/H(m) for all measures of Figure 2 for (a)
90 days and (b) 365 days retention period. A bean plot shows the empirical distribution function (upwards)
of a measure. For each measure, the left portion of the gray shaded area shows the results for a population
size of 150,000 agents, the right part for a size of 600,000 agents, thus eventually comparing these different
set-ups. The black bar indicates the average of the respective distribution.

the number of days for which CDRs are available. However,
for a retention period larger than 90 days our results suggest
a declining quality of all predictive measures. Interestingly,
this holds for all measures and all communication behavior.
The terrorists actually do not have to adapt their behavior
to circumvent detection, but would rather be better off in
a regulatory setting with a retention period of half or a full
year. The only exception is the sixth measure (σ/IA), where
for f = 1 we found a more or less monotonous increase in the
predictive power. However, here terrorists can adapt, and
destroy the signal all together by switching to a modified
dynamics. This comes as no surprise as σ/IA measures the
flow of “hierarchical information” in a chain. If, however,
terrorists start to communicate very small pieces or do the
opposite (collecting information and then communicating in
few, long events), these hierarchies are not as transparent as
for f = 1.

Clearly, one could argue that—even if data is stored
for a longer period of time—one can perform an analysis
over smaller time periods to reduce the above-mentioned
adverse effects (thereby effectively throwing away observa-
tions). However, given the huge privacy impact this is highly
undesirable: the “need-to-know” principle demands that
only the minimal required information should be collected
and utilized.

6. CONCLUSION
In this paper we have put forward the paradigm that the

effectiveness of new public security measures should be eval-
uated experimentally by agent-based simulation. Due to the
complexity of society and the involved networks of human
interactions, simulation is the analysis tool of choice—even
allowing for predictions. A predictive assessment is particu-

larly important in those cases, where steps are undertaken
that induce high opportunity costs (such as gross damages
to individuals’ privacy), while showing unclear effectiveness.

As a case study we reported results of an agent-based
simulation tailored towards answering the question whether
TDR is useful in a pre incident analysis, where call data
records are used to uncover a dark-net of terrorists embed-
ded in a large telecommunication network of ordinary citi-
zens. In particular, our results indicate that there is indeed
a distinctive set of measures that can provide information
on the character of an individual (terrorist/ordinary citizen)
based on his call records. The chosen measures are stable
under implementation details and environmental conditions
such as community size or call durations. However, contrary
to conventional wisdom, large retention periods can spoil the
detection accuracy of the measures used in our study, ques-
tioning the wisdom of “the more data, the better”.
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Figure 6: Normalized mutual information for all suitable measures as a function of the retention period;
the individual lines identify different communication behavior of terrorists (solid lines f = 0.6, dashed lines
f = 1.0, and dotted lines f = 1.4).
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