
Useful Password Hashing:
How to Waste Computing Cycles with Style

Markus Dürmuth
Horst-Görtz-Institute for IT Security

Ruhr-University Bochum
Bochum, Germany

markus.duermuth@rub.de

ABSTRACT
Password-based authentication is widely used today, despite
problems with security and usability. To control the negative
effects of some of these problems, best practice mandates
that servers do not store passwords in clear, but password
hashes are used. Password hashes slow down the password
verification and thus the rate of password guessing in the
event of a server compromise. A slower password hash is
more secure, as the attacker needs more resources to test
password guesses, but at the same time it slows down pass-
word verification for the legitimate server. This puts a prac-
tical limit on the hardness of the password hash and thus
the security of password storage.

We propose a conceptually new method to construct pass-
word hashes called “useful” password hashes (UPHs), that
do not simply waste computing cycles as other constructions
do (e.g., iterating MD5 for several thousand times), but use
those cycles to solve other computational problems at the
same time, while still being a secure password hash. This
way, we are convinced that server operators are willing to use
slower password hashes, thus increasing the overall security
of password-based authentication.

We give three constructions, based on problems from the
field of cryptography: brute-forcing block ciphers, solving
discrete logarithms, and factoring integers. These construc-
tions demonstrate that UPHs can be constructed from prob-
lems of practical interest, and we are convinced that these
constructions can be adapted to a variety of other problems
as well.

Categories and Subject Descriptors
K.6.5 [Computing Milieux]: Security and Protection —
Authentication

General Terms
Security

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
NSPW’13, September 9–12, 2013, Banff, AB, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2582-0/13/09 ...$15.00.
http://dx.doi.org/10.1145/2535813.2535817 .

Keywords
Authentication, password hashing

1. INTRODUCTION
Passwords are still the most widely used form of user au-

thentication on the Internet. This is unlikely to change in
the foreseeable future, because alternative technologies such
as security-tokens and biometric identification have a num-
ber of drawbacks that prevent their wide-spread use out-
side of specific realms: Security tokens, for example, need
to be managed, which is a complicated task for Internet-
wide services with millions of users, they can be lost, and
they require some standardized interface to connect them
to every possible computing device (including desktop com-
puters, mobile phones, tablet PCs, and others). Biometric
identification systems require extra hardware readers, false-
rejects cause user annoyance, and many biometrics are no se-
crets (e.g., we leave fingerprints on many surfaces we touch).
Passwords, on the other hand, are highly portable, easy to
understand by users, and relatively easy to manage for the
administrators. Still, there are a number of problems, most
notably the trade-off between strong password vs. passwords
that humans can conveniently remember. Various stud-
ies and recommendations have been published presenting
the imminent threat of insufficiently strong passwords (see,
e.g., [3, 21, 34]).

Best practice mandates that passwords are not stored in
clear in computer systems, and typically only the hash of a
password is stored. Assuming that these hash functions are
one-way, i.e., it is intractable to compute a matching input to
a given output, the most efficient attack against such pass-
word hashes are guessing attacks, where the attacker sys-
tematically “guesses” a large number of likely password can-
didates, applies the password hash, and verifies if the result
matches. Studies indicate that a substantial number of pass-
words can be guessed with moderately fast hardware [35].
Therefore, using plain MD5, SHA-1, or even newer hash
functions such as SHA-256 or SHA-3, is not considered safe.

To slow down guessing attacks, so-called password hashes
were proposed. These are hash functions specifically de-
signed for storing passwords, and they are constructed in
a way that makes them slow to evaluate in order to lower
the number of guesses an attacker can verify given a fixed
amount of resources. Commonly used password hashes are
iterated hash functions (e.g., 500 iterations of MD5, or sev-
eral thousand iterations of SHA-1), the password-based key
derivation function PBKDF2 (PKCS #5 v2.0 and RFC
2898 [14, 10]), bcrypt [28], which is based on the Blowfish

31

key setup phase, and scrypt [25], which is designed to use
large amounts of memory trying to slow down computations
specifically on GPUs.

While using these functions slows down an attacker as
desired, it naturally also slows down the verification by the
legitimate server by approximately the same factor (depend-
ing on the computer architecture used by the legitimate
server and the attacker, respectively). This is problematic
because the more secure the password hash is, the more
it slows down the legitimate server, and thus server opera-
tors might hesitate to use password hashes that offer high
security. The reason here is that, from the point of view
of the server operator, the computing cycles spent for the
password hash are actually “wasted computing cycles”. We
believe that, if there was a way to spend these cycles in a
way that is “useful” for the server operator, then he will be
more willing to use slow password hashes.

In this work we will explore constructions that have dual
use: First, they are secure password hashes suitable to store
passwords securely, and second, using them as password
hashes will let the legitimate server to solve some other prob-
lem of interest as a “side product”. We are, to the best of
our knowledge, the first to consider such functions. We pro-
vide three specific constructions that solve three different
problems from the field of cryptography, but we believe the
idea is by no means restricted to those problems. On the
contrary, the constructions show different strategies that we
expect to be applicable to other problems and similar con-
structions as well.

1.1 Related work
It was observed early that users tend to choose weak pass-

words [20], and several subsequent studies have found similar
results [3, 36, 37, 15, 8, 19, 4]. Several tools are freely avail-
able to perform attacks against hashed passwords. Probably
best known is John the Ripper [9], which has fast imple-
mentations for various password hashing schemes (mostly
for CPUs) as well as sophisticated mangling rules that ef-
ficiently produce password candidates from carefully cho-
sen dictionaries (containing English words, names, and more
strings that are typically used for passwords) that are trans-
formed by mangling rules. Another well-known tool is Hash-
Cat [1], which is particularly interesting because it offers one
of the fastest and most complete collections of implementa-
tions of password hashes on GPUs. More password guessers
have been proposed in the literature. One example is based
on probabilistic grammars [34], which can be seen as a way
to automatically extract mangling rules from sets of real-
world passwords. Another approach uses Markov models,
which have proven suitable for a number of tasks related
to human-readable text. Narayanan et al. [21] proposed
a method which guessed passwords in some random order
and was mostly suited for the use in rainbow tables (this
method is implemented in John the Ripper as an extension
to the above attack). A more recent variant was proposed
by Castelluccia et al. [6] and can produce password guesses
in decreasing order of likelihood.

To prevent guessing attacks one can either use a stronger
password hash or force the user to choose stronger pass-
words. The latter is usually tried by using password rules,
which is largely ineffective and creates major usability is-
sues, and no satisfying solution has been found yet. While
traditionally simple hash functions (most notably MD5 and

SHA-1) are used, these are a poor choice nowadays: Pass-
word crackers on modern GPUs can verify up to billions of
guesses per second [1] when such simple hashes are used,
which cracks even relatively strong passwords in reasonable
time. Iterated hash functions, such as 500 iterations of MD5
were a reasonable choice before the widespread availabil-
ity of cheap GPUs, but their use is discouraged nowadays.
PBKDF2 [14, 10] is significantly stronger, but still can be
evaluated fast enough to mount a substantial guessing at-
tack [10]. The password hash bcrypt [28] is probably the
best choice nowadays, but it is not yet clear if fast imple-
mentations on FPGAs might exist, which seems possible as
the memory footprint of the algorithm is relatively small.
To specifically address this issue scrypt [25] was proposed,
which uses large amounts of memory. However, it lacks wide
acceptance, and the large memory requirements make it even
hard to implement on the legitimate server. Recently, a com-
petition was announced [24] to find a suitable replacement.
Note that our proposal does not target this competition, but
rather seeks fundamentally new ideas in the field of password
hashes.

Several papers aim to measure the strength of passwords.
So-called pro-active password checkers where used to ex-
clude weak passwords [31, 16, 3, 23, 5], however, most pro-
active password checkers use relatively simple rule-sets to
determine password strength, which have been shown to be
a rather bad indicator of real-world password strength [33,
17, 7]. More recently, Schechter et al. [30] classified pass-
word strength by counting the number of times a certain
password is present in the password database, and Markov
models have been shown to be a very good predictor of pass-
word strength and can be implemented in a secure way [7].

A related idea in the context of proof-of-work systems,
termed bread-pudding protocols, was proposed by Jakobs-
son and Juels [13], but their design cannot use arbitrary
problems as underlying problem, and they give examples
for problems very similar to the proof-of-work only. Becker
et at. [2] mention using proofs-of-work to compute some-
thing useful as interesting research direction. The concept
is vaguely related to the Chinese Lottery [18, 29] which uti-
lizes spare cycles of existing hardware.

1.2 Outline
Section 2 briefly reviews relevant aspects of password

hashing, before Section 3 introduces the concept of useful
password hashes and discusses basic requirements. In Sec-
tions 4–6 we give three constructions for UPHs based on
three different problems, brute-forcing block ciphers, com-
puting discrete logarithms, and factoring integers, which
demonstrate the usefulness of the basic idea and outline
strategies in implementing UPHs. In Section 7 we discuss
these constructions and give some hints towards practical
applications. We conclude with some final remarks in Sec-
tion 8.

2. PASSWORD HASHING
Storing passwords in clear is bad practice, because in case

the password database leaks all passwords are leaked as well.
This is problematic, because not only gives this the attacker
access to the server, but he is accessing the server in a way
virtually indistinguishable from a legitimate user. Further-
more, if the user used the same password on other accounts

32

(so-called password re-use is frequently found [11, 12]) the
attacker gains access to those accounts as well.

2.1 Classical password hashing
To store passwords more securely, a password pwd is usu-

ally not stored in plain, but the hash of the password is
stored instead, and a random value called salt is included in
the hash to prevent pre-computation attacks such as rain-
bow tables [22]. Basically, these schemes work as follows:

• Store password: When the server receives a new pass-
word pwd for the user uid he chooses a random string s
(called salt), computes the hash

h = H(pwd ‖ s),
and stores the tuple (uid, h, s) in the password
database.

• Verify password: To verify the correctness of a pass-
word pwd′ for user uid, the server retrieves the tuple
(uid, h, s) from the database. If

h
?
= H(pwd′ ‖ s)

then the verification succeeds and the provided pass-
word is correct, otherwise verification fails.

If an attacker has access to the password hash h and
the salt s the attacker can test a large number of pass-
words pwd1, pwd2, pwd3, . . . by computing the hashes hi =
H(pwdi ‖ s) and comparing those to the stored hash h (this
is called an offline guessing attack). Such an attack typically
has a high probability of success. This is usually countered
by making the hash function H slower to evaluate.

2.2 Properties of password hashes
Next we discuss the properties that password hashes need

to fulfill in order to be secure.
A password hash must be pre-image resistant, i.e., given

the output h it must be infeasible to determine an input x
such that h = H(x). This is one of the classical properties of
hash functions and the reason why hash functions were and
still are the central ingredient for password hashes. Note
that it is not necessary to find the “correct” password, any
password that hashes to the correct value is sufficient, but
usually the correct password will be easier to find if it is
selected from a small subset of strings.

The function should be slow to evaluate. While this slows
down the legitimate server as much as it slows down the
attacker, the slow-down affects the attacker much more, be-
cause he needs to test many passwords (often millions or
billions) to find the correct one. However, the weaker pass-
words are the slower should the password hash be, and there
is a limit on what the server infrastructure is able to handle.
This is the origin of our work, as we try to make it more likely
that operators tolerate more expensive password hashing by
giving password hashing additional use.

One often requires that the slow-down is particularly
strong for computing architectures different from CPUs, as
legitimate servers typically use CPUs, and attackers cur-
rently have best results using GPUs or FPGAs. We do not
specifically consider this aspect because we believe that if
UPHs are deployed in practice, then login servers will use
the most appropriate hardware architecture for the problem
at hand.

On determinism: For traditional password hashing as out-
lined above it is necessary that the hash function H is de-
terministic, as otherwise verifying a correct password is not
possible (or at least it is less efficient). In the sequel we will
use password hashes that are not deterministic, however, we
can still correctly verify a password because we have a more
complex verification function that makes sure that verifica-
tion is handled correctly. (In some sense, adding salt to tra-
ditional hashes is exactly a way to make the password hash
not deterministic, and we follow that path even further.)

On parallelism: Sometimes it is claimed that password
hashes should be hard to parallelize to increase their se-
curity. However, this is incorrect, as the task of pass-
word guessing is incredibly parallelizable anyway, as individ-
ual password guesses can be verified independently of each
other. In contrast, being able to parallelize a single pass-
word verification might even be desirable, as it can decrease
the latency of password verification in cases when there are
more computing cores than logins attempts at a point in
time. The constructions we give in the following are easily
parallelizable.

3. USEFUL PASSWORD HASHING
A useful password hash (UPH) is a password hash that

fulfills two tasks at the same time: First and most impor-
tantly, it is a secure password hash, and second, it utilizes
the computations required for securely storing passwords to
compute some “useful” or “interesting” computational prob-
lem that we will call the base problem in the sequel.

3.1 General idea
The overall structure of a UPH is somewhat more general

as that of normal password hashing:

• Initialization: A useful password hashing scheme aims
at solving some specific problem. The specific instance
of the problem is given as input to the initialization,
and we can set up public parameters for subsequent
computations. We run

param← init(input)

to initialize some global parameters. There is a pass-
word database that keeps the password hashes, and in
addition we initialize an empty database D that will
typically collect partial results.

• Store password: Given a password pwd for user uid,
one computes

h← create(pwd, param)

and stores the tuple (uid, h) in a database.

(When casting the “normal” password hash in this
framework, create would choose a random salt and
store the salt as well as the hash in the output tuple.)

• Verify password: To verify the correctness of a pass-
word pwd′ for user uid, the server first retrieves the
tuple (uid, h) from the database, runs

(b, data, h′)← verify(param, h),

and accepts the password if and only if b equals true.
He adds data to the database D.

33

He may also output an updated password hash h′ that
will replace the previous password hash h in the pass-
word database, to ensure that work is not repeated
when verifying the same password multiple times.
(Typically he will re-run h′ ← create(pwd, param).)

• Finalize: Finally, we use the data collected in D to
solve the base problem. We run

x← final(D)

to create the answer x. Typically it is very easy to de-
termine when final(·) should be run, e.g., when there
are enough entries in D, or final(·) could be run from
time to time and checks itself it this condition is met.

For robustness it is desirable to only have simple access
patterns to the global data (the database D and some global
constants), because several processes will access this memory
in parallel, possibly from different servers, so consistency can
be an issue here. We assume that the server is interested
in solving the base problem, e.g., we can tolerate limited
overhead compared with solving the problem directly.

3.2 Terminology
The basic attacks we consider in this work are offline

guessing attacks, where an attacker learns the content of a
server’s password database and thus does not require inter-
action with the server to test and verify password guesses.
Hashing the passwords, as discussed above, basically means
that the (legitimate) server is playing “against himself”, as
he is voluntarily spending computational work for verifica-
tion of passwords that is not necessary (unless the password
database leaks). A lazy server would decide not to follow
that scheme and save computations by deviating from the
scheme. (Note that by simply storing the passwords in plain
he can always reduce his computational load to basically
zero, so we need to assume some external motivation for
him to follow the more secure password hashing scheme.)

The overhead measures how efficient the conversion from
the base problem to the password hash is. Let tbase denote
the time (e.g., measured in computing cycles or execution
time on a specific platform) to solve the base problem using
state-of-the art algorithms, and let tuph denote the time to
solve the problem using the UPH construction. Then the

overhead is
tuph
tbase
− 1. An overhead of 0 means that the run-

time is the same, while an overhead of 1 means that the UPH
construction requires double the time compared to state-of-
the art algorithms.

3.3 Properties
Next, we discuss several properties that UPHs should

have. Probably the most obvious one is correctness, where
we distinguish the following two types of correctness. First,
correct verification of the password hash, which means that
if a user provides the correct password for verification, then
the verification should succeed (at least with overwhelming
probability). Second, correctness of the computation of the
base problem, once it terminates. Here we can usually trust
the legitimate server to correctly follow the protocol as he
is at least semi-trusted and shares some interest in the out-
come of the computation, e.g., we can assume that he stores
correct data in the database D. (In addition, all problems
we use for demonstration in the sequel have the property
that solutions are easy to check for correctness.)

Another potential issue originates from using external in-
put (the base problem, composed of the algorithm and it’s
input) in a security-critical problem. Resilience against ma-
licious data means that the construction should be secure
against attacks where the problem instance is chosen mali-
ciously.

When selecting a base problem for a UPH, we need to
consider the incentives of the involved parties. We need to
ensure that we select a problem that the honest server has
an advantage from, while the attacker trying to brute-force
a password database has no advantage (or a far smaller one).
For example, using Bitcoin mining as base problem is not
ideal, as this would enable an attacker to basically break
passwords for free, while mining Bitcoins. Ideally, we would
use a problem that the server operator needs to perform any-
way, e.g., parts of the SSL handshake, or database queries
he has to perform anyway, as those provide practically no
value for an attacker.

Furthermore, we need to avoid the possibility of cherry-
picking, a notion from the context of proof-of-works which
means that an attacker can try to select “easier” problem
instances and solve only those.

Finally, a general concern (also with the current state-of-
the art in password hashing) is that one uses cryptographic
algorithms in a way they where not designed for. E.g., when
using (iterated) MD5 we use the property that this construc-
tion (hopefully) cannot be substantially sped up, which is
far from the standard assumption of pre-image resistance.
Similarly, when using a UPH we assume that the underly-
ing construction cannot substantially speed up (pre-image
resistance of the UPHs is ensured by their construction).

4. CONSTRUCTION 1: BRUTE-FORCING
BLOCK-CIPHERS

Our first example for a UPH bases on the problem of a
brute-force key-guessing attack against a block cipher with
known cleartext/ciphertext pairs. This is a simple construc-
tion, but is well-suited to illustrate the basic idea and also
demonstrates one way of constructing UPHs from a general
class of problems.

4.1 Construction
Let Ek(m) be an encryption scheme with key-space K,

message space M , and ciphertext space C. For easier
presentation we consider the DES encryption scheme with
|K| = 256 and |M | = |C| = 264. We are given a cleartext-
ciphertext pair m0, c0 ∈ {0, 1}64, and our task is to find a
key k0 ∈ {0, 1}64 such that Ek0(m0) = c0. Randomly draw-
ing an element x from a set X is denoted as x←R X.

• Initialization: We select a strength parameter γ such
that 2γ · tDES matches the “intended strength” of the
password hash, i.e., the average time for verifying a
password. (Here, tDES is the time it takes to evaluate
DES on a single block on the target computer archi-
tecture.) (The database D is not needed in this first
construction.)

• Store password: To store a password pwd , first select
a random salt r, compute a (pseudo-)random prefix
kpref := H(pwd ‖ r) ∈ {0, 1}56−γ−1 (truncating the
output if necessary), select a random suffix ksuf ←R

{0, 1}γ+1, and let k1 := kpref ‖ ksuf . Compute c1 :=

34

Ek1(m0) and

h := H(pwd ‖ k1)
and store

(uid, h, r, c1)

in the password database.

• Verify password: To verify a password pwd ′ for user
uid, we first retrieve the matching database entry
(uid, h, r, c1). Furthermore, we have access to the pub-
lic parameters γ,m0, c0.

The verifier computes kpref := H(pwd ‖ r), iterates
over all ksuf ∈ {0, 1}γ+1 and tests, for each k = kpref ‖
ksuf , if

c1
?
= Ek(m0). (1)

If this condition is met, then (with high probability)
we found the key used for preparing the challenge, and
we can test if

h
?
= H(pwd ‖ k).

If this test succeeds that password is correct, and in-
correct otherwise.

In addition, in Equation 1 we can additionally test if

c0
?
= Ek(m0), (2)

which has almost no overhead. If this second condition
is met then we have solved the original challenge, and
we can add the key k to the database D.

If the password verification is successful, a fresh pass-
word hash is generated using the routine store pass-
word using fresh randomness.

• Finalize: For the simple scheme described here there
is nothing left to do, so we test if D is non-empty and
if so we output the key k, which is, with high prob-
ability, the correct key. If we have additional mes-
sage/ciphertext pairs we can test here if the found key
matches these pairs as well to increase our confidence.

Intuitively, in the above construction we create a random
salt k1 from a small subset of the keyspace (those with a
fixed prefix) and use this salt in the password hash as be-
fore. However, we do not store the salt in plain, but give
a ciphertext/plaintext pair that identifies it. As the plain-
text for this pair is the same plaintext as for the challenge,
brute-forcing for the salt is effectively the same as brute-
forcing the given challenge. So just adding one comparison
per tested key solves the original challenge, virtually with-
out any overhead. (The only drawback is that we cannot
systematically search the entire keyspace, but have to rely
on probabilistically selecting keys, but the average number
of attempts is the same.)

4.2 Analysis
The basic idea in this construction is that we take a prob-

lem where we have a large space to search (K), divide this
into smaller subsets of tractable size (those with a fixed pre-
fix kpref) that eventually span the entire space, and force the
verifier to search that smaller spaces. The crucial question
here was how we can manage to create a problem instance

(the pair m0, c1) from the smaller space (quickly) that, when
solved, helps us towards solving the original problem in-
stance (the pair m0, c0).

Parameter selection: The work the legitimate server has
to do is to search the space with prefix kpref , which con-
tains 2 · 2γ keys, to find the index k1 which was chosen ran-
domly from that subspace. Regardless of the order he uses
to pick the candidates, he will need an expected number of
2γ guesses to find the correct index, and to test each guess
he has to compute a DES encryption, so in total he requires
time 2γ · tDES .

Correctness: For reasonable parameters γ the above
scheme is correct with very high probability. Assuming DES
behaves like a random cipher, we get an expected number of
2γ+1−64 keys in the search-space that correctly decrypt c1,
and even if we hit by accident such a bad key, if we choose the
candidate keys (somewhat) randomly, we will likely hit an-
other (hopefully the correct) key on the next login attempt,
so no long-term harm is done. Also, we can easily incor-
porate a second message-ciphertext pair into the scheme to
reduce the error rate.

Overhead: An important question is comparing the run-
time for solving the base problem directly or solving it using
the UPH. For the above scheme, we see that the overhead
is minimal, i.e., solving the problem takes about the same
computational resources in both cases.

First, note that the expected number of DES computa-
tions is the same in both cases, as k1 is chosen uniformly at
random. Furthermore, the main loop of the password hash
is iterating over a consecutive block of DES keys, which is
what a brute-forcer has to do as well.

So the main source of overhead in our implementation
comes from storing the passwords, which he basically has
to do once for each verification. Storing requires one DES
operation and minimal other operations, which is negligible
for any reasonable values of γ.

Another source of overhead is that unsuccessful login at-
tempts do not allow the server to store a fresh copy of the
password, which means that the same computations are per-
formed on the next login attempt. This can be somewhat
mitigated by storing several hashes for the same account and
using a fresh or random one for each login attempt (also see
the discussion in Section 7).

Lazy server: A server that wants to spend less time in the
verification can skip the test in Equation 2, but anything
else is required for the actual password verification. This
one equality test is so fast that we do not think it constitutes
a problem, as the server opted to deploy the system in the
first place we assume that he has at least some interest in
solving the base problem.

5. CONSTRUCTION 2: DISCRETE LOGA-
RITHMS

Our second construction uses a variant of Pollard’s Rho
algorithm to solve discrete logarithms in cyclic groups.

5.1 (Parallel) Pollard’s Rho algorithm
Let us briefly review the discrete logarithm problem. Let

g be a generator of a finite cyclic group G = 〈g〉 of order
N , and h ∈ G another element. The discrete logarithm of h
to the basis g is an element x = logg(h) such that gx = h,
where we usually require that 0 ≤ x < N .

35

In the following we consider groups of prime order only,
i.e., where N is a prime number, and the discrete logarithm
is unique. Most applications in cryptography such as the
Diffie-Hellman key exchange and ElGamal encryption are
based on prime order groups. The hardness of solving dis-
crete logarithms depends on the underlying group G, but
several groups are known where it is believed to be hard.

For generic groups, Pollard’s Rho algorithm is the fastest
algorithm known (ignoring constant terms). It bases on the
idea that, if we choose random elements of the form gai ·hbi

for random numbers ai, bi ←R [0, . . . , N − 1], and we find
two such elements that collide, then we can compute the
discrete logarithm. I.e., if

ga1 · hb1 = ga2 · hb2

then

dlogg(h) = (a2 − a1) · (b1 − b2)
−1 mod N (3)

if b1− b2 is invertible, i.e., if b1 �= b2 mod N (as N is prime).
Pollard’s Rho algorithm improves the memory require-

ments of the direct approach to find those elements. It uses
a function f : G→ G which should resemble a“random func-
tion”, a common choice being

f(x) =

⎧⎨
⎩

h · x if x ∈ S1,
x2 if x ∈ S2,
g · x if x ∈ S3.

for a partition S1, S2, S3 of G that have roughly equal size.
Now, starting at a random point ga1 · hb1 and successively
applying f(x), we get a sequence of group elements. This
sequence will eventually reach a point that it has visited
previously, and will necessarily repeat from that point on.
One can use Floyd’s cycle-finding algorithm to detect such
cycles and find two elements that are the same but have,
with high probability, different exponents ai, bi.
The original algorithm is inherently sequential, so a paral-

lelizable version was proposed by Oorschot and Wiener [32].
It uses the notion of distinguished points, e.g., elements of
G where the binary encoding starts with a certain num-
ber of 0s. Every processor starts with a separate uni-

formly chosen point y(i) = ga
(i) · hb(i) , and uses the func-

tion f to produce further points. Once a processor reaches

a distinguished point y
(i)
j = ga

(i)
j · hb

(i)
j it sends the triple

(y
(i)
j , a

(i)
j , b

(i)
j) to a central server. Once the server sees two

records with the same group elements he can compute the
discrete logarithm in the same way as before.

5.2 Construction
The approach here is conceptually different from the

above, as it is hard for this algorithm to construct the des-
ignated target point. Instead, we use another general idea
that considers a couple of threads in parallel, where we have
computed the output for one of the threads before.

• Initialization: As public parameters we have the de-
scription of a group G of prime order N , and two el-
ements g, h where we want to learn the discrete loga-
rithm of h to the base g in G.

We select a security parameter γ such that γ ·tseq gives
the desired computation time of the legitimate server,
and tseq is the average time to compute a sequence
until the first designated point is reached.

• Store password: For storing a password pwd for
a user uid we select a random salt r, compute
(pseudo-)random elements a(i), b(i) := H(pwd ‖ r ‖
i) ∈ [0, . . . , N − 1] × [0, . . . , N − 1] for i = 1, . . . , 2 · γ
(using an appropriate encoding), we choose one index

i0 ←R {1, . . . , 2 · γ}, we iterate yi0 = ga
(i0)

hb(i0)

for x
times until finding the first designated point and split
the output into two halves s ‖ t := fx(yi0). We add
the designated point to the database D.

We compute

h := H(pwd ‖ s)
and store the tuple

(uid, h, t, r).

• Verify password: To verify if a provided password pwd′

is the correct one for user uid, first retrieve the correct
entry (uid, h, t, r) from the database and re-compute

the a(i), b(i) := H(pwd ‖ r ‖ i).
Compute the y(i) = ga

(i0)

hb(i0)

for i = 1, . . . , 2 · γ and
iterate f for x times to reach the first designated point
(keeping track of the exponents as described above)

and split the output as s(i) ‖ t(i) := fx(y(i)).

If one of the t(i) matches t then use the corresponding
other half s(i) to compute

h′ := H(pwd′ ‖ s(i)).
If h = h′ then accept the password.

In addition, we store all designated points with the cor-
responding exponents a, b in the database D. Finally,
we store a fresh hash in the password database.

• Finalize: From time to time, we test if two entries
exists with the same element x. In this case we can
use Equation 3 to compute the discrete logarithm from
the stored exponents.

5.3 Analysis
The basic idea in this construction is different from the

first construction. Whereas in the first construction we could
divide the search-space (of keys) and efficiently create one
instance by encrypting with a random key, this does not
really work here because the function f is pretty much ran-
dom and we cannot (efficiently) sample a point from later
in the sequence (this takes about as much time as actually
solving it). So we have to take a different approach. We
consider several chains in parallel (which we can do with-
out loosing efficiency due to the construction of the parallel
Pollard’s Rho algorithm). We compute a random “salt” s
by advancing one random chain until we get a designated
point. This element serves as random element similar to the
first construction: we use it as salt to randomize the actual
password hash, and use the other half as identifier to allow
the verifier to see when he found the correct group element.
(Alternatively, we could use the hash of that element for
the same purpose, or define that a password is valid if “any”
of the candidate elements has the correct hash, but both
alternatives would increase the overhead.)

Parameter selection: We need to compute, on average, 2 ·
γ/2 = γ of the chains in order to find the correct designated
(end-)point. As f behaves “randomly” it seems unlikely that

36

one can decide substantially earlier than when arriving at
the designated point which chain is the correct one. This
results in an average complexity of γ · tseq.
Correctness: Correctness is easy to see, as with high prob-

ability only the“correct”group element will have the correct
tag t and thus we will use the correct salt s as input to the
hash function.

Overhead: This construction is more general than the first
one, but also has a higher overhead, as we have to evaluate
one chain twice, once when storing and once when verifying
a password. The number of parallel chains is a critical pa-
rameter here, as it directly influences the overhead (which
is lower the more parallel chains we are using), but also the
runtime of verification.

Lazy server: As before, a lazy server can avoid a couple of
equality tests if he only is interested in verifying a password
without doing additional work, which hardly decreases his
computations.

6. CONSTRUCTION 3: INTEGER FAC-
TORIZATION

Finally, we will sketch a construction based on the
quadratic sieve for factoring integers. We provide a little
less details on this construction to keep the presentation
easy to follow and not obstruct the main ideas.

6.1 Quadratic sieve
We consider the problem of factoring integers that are

composed of two prime factors of (approximately) equal size
N = p · q, where the task is to find the factors p and q,
given N .
The quadratic sieve [26, 27] tries to find two integers a �= b

such that

a2 = b2 mod N.

Then gcd(a ± b,N) is a non-trivial factor with reasonable
probability.

For finding such a and b, we consider the polynomial

Q(x) = (x+

√
N�)2 −N. (4)

Our goal is to find values x such that Q(x) is a smooth
number, i.e., a number that has only small factors, where
the bound needs to be specified later. (The prime numbers
smaller than the bound are called the factoring base.) If we
have found enough numbers such that the Q(xi) are smooth,
we can find a subset x1, . . . , xr of those such that the product
Q(x1) · . . . ·Q(xr) is a square. Writing x̃ := x +
√N� this
means

a2 = Q(x1) · . . . ·Q(xr) = (x̃1 · . . . · x̃r)
2 = b2 mod N

which will allow us to factor N .
There is an efficient method to test smoothness of Q(x)

for an entire range of values of x, the so-called sieving step;
the details are not relevant for our construction and we refer
to [27]. For a smooth number this gives us, for each prime
in the factor base, the parity of the exponent. There are
different polynomials Q(x) that can be used; this was used
before for the “factoring by email”, and we will use it to split
the work into smaller work packages.

6.2 Construction
The construction works as follows:

• Initialization: Public parameters are the number N
to be factored, and the parameters required for the
quadratic sieve, i.e., the range of x to be checked and
the smoothness bound. (Both parameters also influ-
ence the running time and the overhead, see discussion
below.)

Furthermore, we choose a hardness parameter γ such
that γ · TQS is the designated average time for a ver-
ification, where TQS is the time required for running
a complete sieving step (for a single polynomial Q(X)
and x from the chosen range).

The database D, initially empty, will contain the
smooth numbers found, including the vector giving the
parity for the exponents of the prime numbers in the
factor base.

• Store password: To store a password pwd for a
user uid we select a random salt r, compute 2 · γ
(pseudo-)random polynomialsQ1(x), . . . , Q2·γ(x) from
the set of polynomials suitable for factoring, using
H(pwd ‖ r) as randomness for the selection algorithm
(possibly extending if required) choose a random index
j ←R {1, . . . , 2 ·γ} and perform quadratic sieving with
Qj(x). If we find smooth integers we add this infor-
mation to D. We hash the entire output of the sieving
step and split it in two halves

s ‖ t := H(data).

As before, we compute

h := H(s ‖ pwd)

and store the tuple

(uid, h, t, r).

• Verify password: To verify if a provided password pwd′

is correct for the user uid, one first retrieves the match-
ing entry (uid, h, t, r) from the password database, and
re-computes the polynomials Q1(x), . . . , Q2·γ(x) as be-
fore.

He runs the sieving step for the polynomials
Q1(x), . . . , Q2·γ(x), hashes the output for each s′ ‖
t′ := H(data) to obtain the values s′, t′ as above, and
compares if t′ = t.

If a t′ matches, we use the corresponding other half s′

to compute

h′ := H(s′ ‖ pwd′),

and if h = h′ then accept the password.

In addition, we add each smooth number to the
database D including the factorization vector.

• Finalize: From time to time, we test if enough smooth
numbers have been found. (We need as many smooth
numbers as there are primes in the factoring base, so
that the resulting matrix can be solves.)

We then execute the so-called linear algebra step of the
quadratic sieve to find a subset of the smooth numbers
so that each exponent for the primes in the factor base
is even, thus a square again. With reasonable proba-
bility this already gives the factorization. Otherwise
we re-run the linear algebra step with another subset
of smooth numbers and try again.

37

6.3 Analysis
The construction is similar to the previous construction.
Parameter selection: Again, we need on average 2·γ/2 = γ

executions of the sieving step, and, as we need to reproduce
the entire output of the sieving step, most likely there are
no shortcuts in computing this. This results in an average
complexity of γ · tQS .

Correctness: Correctness is easy to see, as finding an in-
correct s′ for the target t is extremely unlikely.

Calculation of the overhead and for the lazy server setting
is the same as before.

7. DISCUSSION
Finally, we discuss some aspects of UPHs that are impor-

tant for practical deployment.
Multiple servers: When multiple login servers are de-

ployed, consistency across those servers could be an issue.
Fortunately, the hashes are independent so we can write a
fresh hash/problem on each server, thus we do not need con-
sistency across the servers. This potentially prevents some
optimizations that require consistent state between the in-
stances. Careful implementations might be able to keep con-
sistent state.

Changing to another problem instance: Once the base
problem is solved, the usefulness of the construction is gone.
However, as the password is still stored using the old prob-
lem, the hashing scheme still needs to be supported; if a
user logs in rarely a scheme might need to be supported for
years.

This can be prevented by storing a users password in sev-
eral ways, for example once using the UPH and once with
a “traditional” password hash. While the problem is not
solved we use the UPH version, after the problem is solved
we delete the UPH version and use the version stored using
the traditional password hash, creating new instances of the
UPH scheme (for a new base problem) as soon as the user
logs in the next time.

Storing multiple versions of the same users password also
has the advantage that, in case there is an error storing the
new instance of the UPH, that we can resort to a stable
hash that is never changed, potentially stored in another
(static) database. This can also simplify the event when a
user changes his password, where we can simply delete all
UPH instances and update the static hash.

Other computational problems: An obvious and very in-
teresting question is for what kind of computational problem
UPHs exist. This is beyond the scope of this work, but we
believe that a large number of parallelizable search problems
can be cast as a UPH.

8. CONCLUSION
We have introduced the notion of useful password hashes

UPHs, that actually put the computing cycles that are
spent for computing password hashes to good use by solving
various cryptographic problems. We showed constructions
brute-forcing block-ciphers, computing discrete logarithms
using Pollard’s Rho algorithm, and factoring integers us-
ing the quadratic sieve. The constructions we have demon-
strated should be adaptable to a number of search problems,
and we conjecture that many more problems can be solved
using UPHs.

We hope that this will motivate the server operators to
make use of stronger password hashes, as the cycles are
not actually wasted. Currently used password hashes of-
fer hardly any (iterated MD5) to medium (bcrypt) security
only, putting our passwords at risk.

Acknowledgments
The author would like to thank the anonymous reviewers,
the shepherd Rainer Böhme, and all participants of NSPW
2013 for the valuable feedback and interesting discussions.

9. REFERENCES
[1] Atom. HashCat. Online at

http://hashcat.net/oclhashcat-plus/.

[2] Jörg Becker, Dominic Breuker, Tobias Heide, Justus
Holler, Hans Peter Rauer, and Rainer Böhme. Can we
afford integrity by proof-of-work? scenarios inspired
by the bitcoin currency. In Proc. of Workshop on the
Economics of Information Security (WEIS), 2012.

[3] M. Bishop and D. V. Klein. Improving system security
via proactive password checking. Computers &
Security, 14(3):233–249, 1995.

[4] Joseph Bonneau. The science of guessing: analyzing
an anonymized corpus of 70 million passwords. In
2012 IEEE Symposium on Security and Privacy, 2012.

[5] William E. Burr, Donna F. Dodson, and W. Timothy
Polk. Electronic authentication guideline: NIST
special publication 800-63, 2006.

[6] Claude Castelluccia, Abdelberi Chaabane, Markus
Dürmuth, and Daniele Perito. Omen: An improved
password cracker leveraging personal information. In
submission, 2013.

[7] Claude Castelluccia, Markus Dürmuth, and Daniele
Perito. Adaptive password-strength meters from
Markov models. In Proc. Network and Distributed
Systems Security Symposium (NDSS). The Internet
Society, 2012.

[8] J. A. Cazier and D. B. Medlin. Password security: An
empirical investigation into e-commerce passwords and
their crack times. Information Security Journal: A
Global Perspective, 15(6):45–55, 2006.

[9] Solar Designer. John the Ripper. Online at
http://www.openwall.com/john/.

[10] Markus Dürmuth, Tim Güneysu, Markus Kasper,
Christof Paar, Tolga Yalçin, and Ralf Zimmermann.
Evaluation of standardized password-based key
derivation against parallel processing platforms. In
17th European Symposium on Research in Computer
Security (ESORICS 2012), volume 7459 of Lecture
Notes in Computer Science, pages 716–733. Springer,
2012.

[11] D. Florencio and C. Herley. A large-scale study of web
password habits. In WWW ’07: Proceedings of the
16th international conference on World Wide Web,
pages 657–666. ACM, 2007.

[12] Blake Ives, Kenneth R. Walsh, and Helmut Schneider.
The domino effect of password reuse. Communications
of the ACM, 47(4):75, April 2004.

[13] Markus Jakobsson and Ari Juels. Proofs of work and
bread pudding protocols. In Proc. IFIP TC6/TC11
Joint Working Conference on Secure Information

38

Networks: Communications and Multimedia Security
(CMS 99), pages 258–272. Kluwer, B.V., 1999.

[14] B. Kaliski. PKCS #5: Password-Based Cryptography
Specification Version 2.0. RFC 2898, Sept. 2000.
http://tools.ietf.org/html/rfc2898.

[15] G. Kedem and Y. Ishihara. Brute force attack on
UNIX passwords with SIMD computer. In Proceedings
of the 3rd USENIX Windows NT Symposium, 1999.

[16] D. V. Klein. Foiling the cracker: A survey of, and
improvements to, password security. In Proc. USENIX
UNIX Security Workshop, 1990.

[17] Saranga Komanduri, Richard Shay, Patrick Gage
Kelley, Michelle L. Mazurek, Lujo Bauer, Nicolas
Christin, Lorrie Faith Cranor, and Serge Egelman. Of
passwords and people: Measuring the effect of
password-composition policies. In CHI 2011:
Conference on Human Factors in Computing Systems,
2011.

[18] Marcus Leech. Chinese lottery cryptanalysis revisited:
The internet as a codebreaking tool. RFC 3607,
available online at
ftp://ftp.rfc-editor.org/in-notes/rfc3607.txt,
2003.

[19] S. Marechal. Advances in password cracking. Journal
in Computer Virology, 4(1):73–81, 2008.

[20] Robert Morris and Ken Thompson. Password security:
a case history. Commun. ACM, 22(11):594–597, 1979.

[21] Arvind Narayanan and Vitaly Shmatikov. Fast
dictionary attacks on passwords using time-space
tradeoff. In Proc. 12th ACM conference on Computer
and communications security, pages 364–372, New
York, NY, USA, 2005. ACM.

[22] Philippe Oechslin. Making a faster cryptanalytic
time-memory trade-off. In 23rd Annual International
Cryptology Conference (CRYPTO 2003), volume 2729
of Lecture Notes in Computer Science, pages 617–630.
Springer, 2003.

[23] The password meter. Online at
http://www.passwordmeter.com/.

[24] Password hashing competition. Online at
http://password-hashing.net, 2013.

[25] Colin Percival. Stronger key derivation via sequential
memory-hard functions. In BSDCan’09, 2009.

[26] Carl Pomerance. Analysis and comparison of some
integer factoring algorithms. Math. Centre Tract 154,
Computational Methods in Number Theory, Part I,
pages 89–139, 1982.

[27] Carl Pomerance. A tale of two sieves. Notices of the
AMS, 43(12):1473–1485, 1996.

[28] Niels Provos and David Mazieres. A future-adaptable
password scheme. In Proc. of 1999 USENIX Annual
Technical Conference, pages 81–92, 1999.

[29] Jean-Jacques Quisquater and Yvo G. Desmedt.
Chinese lotto as an exhaustive code-breaking machine.
Computer, 24(11):14–22, 1991.

[30] Stuart Schechter, Cormac Herley, and Michael
Mitzenmacher. Popularity is everything: a new
approach to protecting passwords from
statistical-guessing attacks. In Proceedings of the 5th
USENIX conference on Hot topics in security, pages
1–8. USENIX Association, 2010.

[31] E. H. Spafford. Observing reusable password choices.
In Proceedings of the 3rd Security Symposium, pages
299–312. USENIX, 1992.

[32] Paul C. van Oorschot and Michael J. Wiener. Parallel
collision search with cryptanalytic applications. J.
Cryptology, 12(1):1–28, 1999.

[33] Matt Weir, Sudhir Aggarwal, Michael Collins, and
Henry Stern. Testing metrics for password creation
policies by attacking large sets of revealed passwords.
In Proceedings of the 17th ACM conference on
Computer and communications security (CCS 2010),
pages 162–175. ACM, 2010.

[34] Matt Weir, Sudhir Aggarwal, Breno de Medeiros, and
Bill Glodek. Password cracking using probabilistic
context-free grammars. In IEEE Symposium on
Security and Privacy, pages 391–405. IEEE Computer
Society, 2009.

[35] Openwall Community Wiki. John the Ripper
benchmarks, April 2012.
http://openwall.info/wiki/john/benchmarks.

[36] T. Wu. A real-world analysis of kerberos password
security. In Network and Distributed System Security
Symposium, 1999.

[37] M. Zviran and W. J. Haga. Password security: an
empirical study. J. Mgt. Info. Sys., 15(4):161–185,
1999.

39

