
External Consistency in a Networking Environment

Leonard J. LaPadula and James G. Williams

The MITRE Corporation

Abstract Paradigms for information integrity in
computer systems have focused in the past on
modeling a computer’s internal mechanisms.
Biba integrity and recent attempts to “latticize”
any computer-based policy are examples.
Traditional paradigms for enterprise integrity
focus on business procedures without regard to
computer systems, double-entry bookkeeping
being one example. Taking cues from the 1987
work of Clark and Wilson, we have modeled the
interface between an enterprise and its computer
system. In earlier work, we described a rigorous
external-consistency model that defines user and
computer responsibilities and the relationships
between them. In this white paper we raise
issues for a new paradigm - to extend our
external consistency model to the interface
between an enterprise and a distributed automated
system.

INTRODUCTION

In this paper we pose a problem for discussion at
the New Security Paradigms II workshop. We
have a model of external consistency for a trusted
computer system [l] that looks promising, but it
is oriented toward a single, multi-user computer
system. The problem is how to apply it to a
distributed processing environment.

At last year’s workshop the attendees identified
numerous shifts that seemed desirable. The three
shifts most relevant to our modeling of external
consistency are:

l From emphasis on technical security in
relative ignorance of usage, operational
needs, and environment to cognizance and
treatment of all aspects of the usage of
computers in an enterprise

01993 ACM O-89791-635-2 $1.50
131

From a narrow view of security modeling,
focusing on internal requirements and rules of
operation, to modeling at higher levels of
abstraction, including enterprise modeling
From the current reference monitor concept to
a more general version to accommodate the
need for user-system mediation, system-
dependent policies, multiple policies, and
integrity and availability requirements

Over the past year we have developed a model of
external consistency for automated systems. The
model reflects these shifts in thinking and
emphasis. However, our orientation in
developing external consistency requirements
focuses on the environment and services normally
associated with a single, multi-user computer
system. We believe that the model has wider
applicability to many configurations of automated
systems. We also believe, though, that in
looking explicitly at distributed environments we
will inevitably discover additionally needed
requirements and interesting corollaries to our
work. In this paper we will give an informal
description of our external consistency model and
then frame a problem for discussion by the
attendees of the workshop.

A SUMMARY OF THE EXTERNAL-
CONSISTENCY MODEL

Perspective

Last year, at the debut of the New Security
Paradigms Workshop, we introduced a taxonomy
of stages in defining requirements for a trusted
computer system [2]. This taxonomy also
provides useful background for our extemal-
consistency work. After the discussions at the
workshop in 1992, we expanded the taxonomy
from its original five stages to the following
seven stages.

Fwmission to copy without fee alt cf part of this material is granted.
provided that the copies arc not made or distributed for direct commercial
advantage. dx ACM copyright notice and the tide of the publication and
its date appear, and notice is given that copying is by pumission of the
Association for Computing Machinery. To copy oth%wiw. or to republish.
requires I) fee and/or sptcitk permission.

Table 1. The First Four Stages of the Requirements Taxonomy

STAGE OF
ELABORATION DESCRIPTION

1 -- Enterprise
Description

An enterprise description produces a model of an enterprise,
describing the activities, responsibilities, and methods that
realize the goals of the enterprise, such as a description of
roles, responsibilities, interactions with customers, and data
flow at enterprise sites. The enterprise description gives
needed background for stating the trust objectives for the
enterprise.

A trust objective identifies a goal that counters information-related
2 -- Trust Objectives misfortunes in an enterprise, an important component of which

is a computing system.

3 -- External-Interface An external-intelface requirements model describes the behaviors
Requirements of the computing system, its users, and other entities in the

Model system’s environment in such a way as to allocate
responsibilities for achieving the identified trust objectives,
thereby showing how the system supports the identified trust
objectives.

4 -- Internal An internal requirements model describes, in an abstract manner,
Requirements how the system responsibilities given in the external model are
Model met within the system.

l Enterprise Description
l Trust Objectives
l External-Interface Requirements Model
l Internal Requirements Model
l Rules of Operation
l Functional Design
l Hardware and Software Description

The fast four of these stages are most relevant to
the work we have done; they are described in
table 1.

Our work on external-consistency models has
focused on stages 2 and 3. Work like Dobson’s
[3] focuses on stage 1. One could profitably use
Dobson’s approach to describe the environment
for application of an automated system satisfying
our external-consistency model. In developing
our model, we have had in mind an enterprise of
the general kind described by Clark and Wilson
r41.

Clark and Wilson argued that
l There is a distinct set of security policies,

related to integrity rather than disclosure,

which are often of highest priority in the
commercial data processing environment.

l Some separate mechanisms are required for
enforcement of these policies, disjoint from
those of the Orange Book.

We agree with the main tenets of their arguments.
However, while they and others have put their
attention on the foundational characteristics of
mechanisms, we have examined fundamental
aspects of an integrity policy itself. The aspect of
integrity we are particularly interested in is
external consistency.

The External-Consistency Objective

In the context of computing systems, external
consistency is the ability of a computing system
to give correct information about its external
environment. Some typical examples where
external consistency is important are as follows.

l An inventory program reports that a
warehouse contains given levels of various
supplies: the named supplies should actually
be at the warehouse in the amounts claimed.

132

A bank statement produced by an automated
system lists a particular balance for an
account: the balance should be correct at the
time it is issued.
A computing system issues a “sell” order for
one million shares of stock: the order should
reflect the intent of its controlling
organization.

Key to modeling external consistency is the fact
that computers produce output that users interpret
as statements about real-world entities. We
envision a situation in which users exchange
assertions, requests, and questions with an
automated information system. In our modeling,
we require each input and output to be cast in.
terms of a stable proposition - that is, a
proposition whose truth is independent of the
time the assertion is made and whose precision is
specified within the proposition itself. In the
informal language of this paper, we simply refer
to inputs and outputs, understanding that careful
definition of these terms is needed for formal
modeling.

The external-consistency objective is that each
output assertion or request be real-world correct.
For an assertion, correctness means
correspondence to reality - each assertion received
from the system is a true description of reality.
This objective applies to all assertions made by
the system, including account status reports,
financial transactions, purported facts about the
behavior of programs, and so forth. For a
request, correctness means legitimacy according
to some preassigned criteria - each request
received from the system is legitimate according
to some enterprise-specific or application-specific
set of criteria. We assume that each enterprise or
application provides criteria for judging the
legitimacy of requests associated with that
enterprise or application.

Basic Responsibilities

The first step in elaborating external-consistency
objectives is to allocate responsibility between a
system and its users, identified as stage 3 in our
taxonomy. We specify an allocation of
responsibilities that allows the vendor to actively
share responsibility for achieving the extemal-
consistency objective.

Automated System Responsibilities

In devising requirements for the automated
system, we want to determine what the vendor-
supplied hardware/software configuration should
do to support the external-consistency objective,
on the assumption that the system is installed
properly and then not tampered with or
inappropriately modified. There are some output
assertions that a properly installed system, and its
vendor, might accept full responsibility for. An
example is assertions based on reading the system
clock, a trusted input device that directly observes
the passage of time.

The correctness of most outputs, however,
depends on the correctness of previous relevant
inputs. Consider the stock-market sell order.
Besides issuing the order, the computer system
might assert that the sell order was approved by
an authorized user other than the one initiating the
sell order. We expect such an assertion to be
true. However, the computer system cannot
force the assertion to be true; it can, at best, assert
that it has received a sell request and an approval
by an authenticated user who seemed to be
different from the one making the request.

We want the computer’s sell order to be a correct
representation of the will of the enterprise it
works for. In terms of the external-consistency
objective, the sell order should be a true
description of reality. What the vendor and the
computer system can do is warrant the sell order -
they can guarantee that if the user-supplied
information on which the sell order is based is
correct, then so is the sell order. For reasons of
audit and to serve other, related enterprise
activities such as error correction, we would like
the computer system to maintain an accurate
record of the particular information that supports
the sell order - we call this set of information an
input/output (I/O) basis. In effect, the vendor
supplies a limited warranty, where the limitations
for a given warranted output are given by its I/O
basis.

For reasons of efficiency, we assume that not all
system outputs must meet the extemal-
consistency objective. Those that should can be
marked as warranted by the system. Previous
outputs may be included in an I/O basis to allow a
more natural correspondence with typical
business practices. For example, the basis for

133

this months bank statement includes the closing
balance from last months statement, which is
appropriate, if it wasn’t contested.

User Responsibilities

External consistency depends on correct inputs.
The fundamental responsibility of the users is to
provide correct inputs to the automated system.
In the simplest of models one would require that
all assertions and requests made to the system by
its users be correct. This requirement will not, in
general, be met in the real world. Thus, for the
sake of utility, we are led to consider refinements.

Refinements

Consider situations having a mix of naive and
experienced users, in which experienced users are
able to avoid mistakes and catch errors made by
others. Central to this situation is the fact that the
automated system will be receiving both correct
and incorrect inputs. Thus, the automated system
needs procedures and mechanisms by which it
can distinguish warrantable outputs, those based
on correct inputs, from outputs that may have
been contaminated by incorrect inputs. We begin
with some examples and observations.

The software that implements a banks teller
functions might employ an underlying database of
transaction constraints, managed by a designated
administrator. This constraints-database might
rule out negative checking balances and might
impose minimum balances for certain types of
accounts. The teller software then simply
disallows teller updates not consistent with the
constraints-database. Thus, we can distinguish
inputs of the “experienced” user from those of the
“naive” user. The automated system considers
the rules of the constraints-database’s
administrator correct, and subsequent attempted
updates of a contrary nature incorrect. Also, the
bank may require tellers to get approval from
bank officers for certain classes of transactions.
An input in these cases is considered correct by
the teller software when it is appropriately
corroborated by a different authorized user.
Thus, we require that “experienced” users certify
to the automated system that certain kinds of
inputs are correct. The automated system should
then treat all other inputs as potentially incorrect
because, for example, they are given by

“inexperienced” users. The automated system
must then internally keep track of data derived
from or based on correct inputs so that it can tell
which of its outputs it can warrant.

An authorized administrator can use a
correctness-ensuring projile to certify a type of
input as being correct. The profile consists of
input-event attributes such as type of data, the
input device or communications path used,
whether the input has been corroborated by
previous inputs with specified input attributes,
and, for user inputs, user identity, user role, and
explicit evidence of correctness provided by the
user. Given a collection of correctness-ensuring
profiles, the automated system can tell users
which outputs are based on correct inputs and
are, therefore, correct. It can also refuse to use
inputs when they are contraindicated by
correctness-ensuring profiles.

The system also can run user-supplied or built-in
integrity validators to catch incorrect inputs.
Integrity validators are conceptually similar to
those transformation procedures of Clark and
Wilson [4] that are used to transform inputs into
constrained data items. Naturally, the user-
supplied integrity validators must be certified to
the system as being correct inputs.

Thus, the automated system accepts an input as
being correct if it can warrantably claim that its
input-event profile is correctness-ensuring and
that the input has been approved by all relevant,
certified integrity-validators. We refer to such
inputs as being “certified.”

These refinements lead to the following definition
of responsibilities for the automated system and
its users.

Automated System Responsibilities

The automated system must keep account of
which outputs are warrantable and must identify
such outputs as warranted. The conditions that
pertain for warranted outputs are as follows.

. Every output marked as warranted is
warrantable in the sense that it has a credible
I/O basis and it is correct given that each item
of its f/O basis is correct.

134

l An I/O basis is credible if and only if its
inputs are certified and its outputs are
warrantable - that is, it is a warrantable basis
whose inputs are certified.

l An input is certzjied if and only if (a) it is a
direct observation by the system, or (b) it has
been approved by all relevant, certified
integrity validators and the automated system
can warrantably claim that its input-event
profile is correctness-ensuring.

User Responsibilities

The fundamental user responsibility can now be
expressed as an input-correctness responsibility:
All certified inputs to the system must be correct.

For the automated system to make use of certified
inputs - that is, to realize utility for the enterprise -
the administrators or “experienced users” of the
system must carry out their roles in defining
correctness-ensuring profiles, installing integrity
validators, and so forth.

Modeling More Capable Systems

We have pursued the formal modeling of external
consistency beyond the framework reported in
[11, to include error correction and retraction. We
give a summary here of the desired objectives and
corresponding user and system requirements,
since they are of interest for the problem we pose
later.

In the real world even certified inputs may be
incorrect. Hence, we must settle for a less
absolute form of the external-consistency
objective. The best one can hope for is to
discover such errors after the fact and then limit
their consequences. We require, at a minimum,
that failures of the objective be traceable. That is,
if a given output is incorrect, we should be able to
identify erroneous inputs or system failings that
caused the incorrect output. If the system is
functioning properly, an output error can only be
the result of some erroneous input. This gives
rise to an accountability objective for external
consistency: If a warranted output is incorrect,
then qualified error investigators will determine
the cause of that error. That is, they will learn
whether that error is due to a system malfunction
and, if not, what incorrect inputs supported the
erroneous output. We imagine, for example, that

authorized administrators assign reliable error
reporters and error investigators who inform the
automated system of previous incorrect inputs
through certified inputs. When an output error is
reported to the automated system, the automated
system must cooperate by collecting and
providing relevant historical data such as the I/O
bases of outputs involved in the error.

When a bank deposits a paycheck in the wrong
account, several kinds of actions are necessary to
address the error fully. The original deposit must
be voided and replaced with the correct deposit.
It is also necessary to know how the error has
propagated, so that erroneous outputs to creditors
and credit bureaus can be rescinded. Corrective
input to the banks automated system should be
treated as more credible than a previous certified
but incorrect input, and later outputs should be
regarded as more credible than the bad-credit
reports they rescind, even though those reports
were warranted. Considerations like these give
rise to an error-suppression objective: Errors fail
to propagate once they are recognized.

Restoration of external consistency after an error
depends on the availability of corrective
information. To model this situation we develop
the notion of a supplanting relation among inputs.
Input B supplants input A only if an authorized
administrator has provided an input to the
automated system certifying that input B is more
credible than input A. This notion enables the
automated system to issue retractions. The error-
retraction objective is: Whenever a certified input
is found to be incorrect by an authorized error
investigator, each retractable output which that
input supports is retracted by some later, more
credible output to the same recipients, and
possibly others as well.

THE PROBLEM

How would you apply our external consistency
model to a distributed systems environment? For
discussing this question we posit a network of
secure wallets and then suggest some of the
issues to be addressed.

135

The Network

The “secure-wallet network’ is a collection of
secure electronic wallets and one or more bank
servers. An electronic wallet is essentially a
wallet-size, special-purpose computer that enables
its owner to transfer money. A bank server is
fundamentally a third party to transactions to
provide an official record, support audit, enforce
nonrepudiation, and so forth.

In our imaginary network, electronic wallets can
interface to each other directly, either port-to-port
or via common-carrier phone lines. They can
also interface to bank servers by the same
methods. Although many uses can be envisioned
for such a network, we restrict our attention to
“cash” transfers, essentially the operation and
management of electronic checking accounts. To
motivate subsequent discussion of issues, we
describe the following scenario involving Person-
One, Person-Two, Bar-Wallet, Bank Server-One,
and Bank Server-Two.

l Person-One and Person-Two go out to a
Tavern for friendly drinks and a game of
darts. To make the dart games more
interesting, the following conditions are
agreed to: loser for the evening pays the
winner $60, winner pays for all the evening’s
drinks. (Note that this setup has positive
feedback - losing player tends to drink more,
thereby lessening chances of winning, and
winning player tends to drink less to reduce
the bar bill. We do not claim “political
correctness. “)

l At the end of the evening, Person-One is the
loser of the dart game. Person One and
Person Two put their electronic wallets “port-
to-port” and Person-One instructs Wallet-One
to transfer $60 to Wallet-Two. Person-Two
then puts Wallet-Two “port-to-port” with the
Bar-Wallet and authorizes transfer of $76
(that includes tax and gratuity) to the Tavern.

l Next morning, Person-Two attaches WaIlet-
Two to Bank Server-Two via phone line.
Wallet-Two reports the previous day’s
transactions and receives acknowledgment of
those transactions. Similarly the Bar-Wallet
“plugs in” to Bank Server-One and, among
other transactions, gets confutation of
payment of the $76 by Person-Two. Later
that same morning, Person-One groggily dials

up Bank Server-One, attaches Wallet-One to
the telephone interface, and instructs Wallet-
One to report the previous day’s transactions.

The Issues

There are plenty of issues one could address.
Since we wish to support the external consistency
objective we have discussed, we are interested in
general questions of the following kind.

How should the automated system
requirements be allocated across the
components of the network?
What fine tuning or tailoring of the user
requirements is necessary?
What additional automated system or user
requirements arise?

More specific questions can be asked; some are:
Is the owner of an electronic wallet, in
addition to being a user, to be considered an
authorized administrator for some purposes?
Are integrity validators useful in both the
electronic wallet and the bank server?
If electronic wallets and bank servers are
provided by different vendors, how do the
vendors cooperatively share responsibility for
achieving the external consistency objective?
Must electronic wallets maintain I/O bases? If
so, for how long? Does it suffice to maintain
them, for example, only until the next
reporting of transactions to a bank server?
Can the notion of endorsed inputs be applied
here? For example, similarly to use of a
cashier’s check, it might be possible to have a
three-way transaction in which Bank Server-
One “endorses” the transfer of a large sum
from Wallet-One to Wallet-Two.

In the case of nonendorsed transfers,
nonrepudiation becomes important. How can
nonrepudiation be ensured?
Which system elements are most crucial to
access mediation and what do they do?

136

REFERENCES

[l] Williams, J. G. and L. J. LaPadula, June
1993, “Automated Support for External
Consistency”, Proceedings of the Sixth IEEE
Workshop on Computer Security
Foundations, Franconia, NH.

[2] LaPadula, L. J., September, 1992,
“Prospect on Security Paradigms”,
Proceedings of the ACM Workshop on New
Security Paradigms, Little Compton, RI.

[3] Dobson, J. E. and J. A. McDermid, 1989,
“Security Models and Enterprise Models”, in
Database Security: Status and Prospects II,
ed. C. E. Landwehr, pp. l-39, Elsevier
Science Publishers, Amsterdam.

[4] Clark, David D. and D. R. Wilson, April
1987, “A Comparison of Commercial and
Military Computer Security Policies,”
Proceedings of the I987 IEEE Symposium
on Security and Privacy.

137

