New Paradigms for High Assurance Software

John McLean
Naval Research Laboratory
Code 5543
Washington, D.C. 20375

Abstract

We present a new paradigm for the development
of trustworthy systems. It differs from our current
paradigm by separating distinct desiderata that are
bundled in the Trusted Computer System Evaluation
Criteria, requiring that our formalisms be tied to real
world concerns, requiring a uniform method for assur-
ing that formalisms are met, replacing a code-then-
validate methodology by a refinement-based method-
ology, and using composability logic to develop sys-
tems from COTS software.

1 Introduction

Anyone presented with our current paradigm for
producing trustworthy systems, as, e.g., presented in
[5], would wonder how the paradigm relates to the
properties we would really like our systems to have.
Nowhere in [5] is there a discussion of why desiderata
are bundled the way they are, how properties and tech-
niques for verifying that systems possess these prop-
erties are supposed to drive up the cost of penetrating
a system, or how we can produce systems that sat-
isfy the criteria in a cost-effective manner. This paper
examines the current paradigm and presents a new
paradigm for producing trustworthy systems that is
derived from considerations of what we would like to
have from our systems. We then put forth specific re-
search proposals to implement the required paradigm
shift in four areas: trust analysis, system property
and specification development, refinement methodol-
ogy, and composability logic.

2 Our Current Paradigm

Our current paradigm for producing secure sys-
tems, as exemplified by [5], consists of trying to spec-

1993 ACM 0-89791-635-2

42

ify some ideal of security, for example, access control,”
and, depending on the level of trust required, spend
varying amounts of money assuring that the ideal pol-
icy has been implemented in the system. At this point
in the process, covert channel and penetration analy-
ses are performed.

One obvious problem with the current approach is
its exclusive focus on confidentiality: it contains no in-
tegrity or availability requirements. A second problem
is that its security levels are too coarse-grained. As we
move from lower to higher evaluation levels within it,
functionality requirements (such as auditing), confi-
dentiality requirements, and assurance requirements
all increase. It is unclear why increases in functional-
ity, confidentiality, and assurance should be bundled.!
What is most unclear is why complete assurance is
not required at every level. It is hard enough to find a
sequence of properties Py, ..., P, such that penetrat-
ing a system with P;y, is costlier than penetrating a
system with P;, even without having to incorporate
considerations reflecting the fact that the likelihood
that a system actually has property P; may differ from
the likelihood that it has property Pi+1. More to the
point, there is no reason to assume that a security
problem missed after having spent $» on demonstrat-
ing that it has some property P; will cost substantially
less to exploit than one that is missed after having
spent $2n on demonstrating that it has FP;. Yet, the
distinction between each level of [5] primarily repre-
sents a difference in the cost of producing a system.
More specifically, it represents the money to be spent
verifying the system’s faithful imiplementation of an
access control policy.

Another problem with the current approach is that
it breaks down even for extremely high assurance sys-
tems. Access control models, such as Bell and La-

*In fact, if one were to strictly follow [5] there is virtually
no leeway. either concerning the ideal (access control) or the
methaod for specifving the ideal (a state machine model with
certain properties).

tThey are. in fact. not bundled in the ITSEC [4].

Padula (BLP) [2], do note preclude the possibility of
covert channels in systems that conform to them even
when explicitly supplemented to include restrictions
on changing security levels [12]. Although Noninter-
ference [6] does a better job with respect to storage
channels, it fails to detect timing channels and to pro-
tect upgraded input [13]. Further, its application is
restricted to deterministic systems, and, more seri-
ously, to deterministic specifications. This makes it
all but unusable for many real systems. Nondetermin-
istic versions of Noninterference based on possibilistic
trace models, such as Nondeducibility [17] and Re-
strictiveness [10], address only nonprobabilistic (i.e.,
noise-free) storage channels and still fail to protect up-
graded input [13]. These models leave the detection
of probabilistic storage channels and all timing chan-
nels to a later stage in system development. Although
there are models that eliminate all channels from sys-
tems that conform to them, for example FM and PNI
[7,13], and techniques for proving that systems satisfy
these models [8], these models and verification tech-
niques are still in the research stage.

The problem with any model that leaves the de-
tection of (some class of) covert channels until after
system coding is that the cost of eliminating any chan-
nels detected at this stage of software development can
be prohibitively expensive. This stems from a variety
of reasons: (1) the improvement in hardware and the
increase in multiprocessor architectures that permit
the construction of extremely fast (e. g., over 750,000
bits/second timing channels), (2) the fact that elim-
inating covert channels can require an entire archi-
tecture to be redrawn, and (3) the fact that making
changes to any computer system is vastly (75 times or
greater) more expensive after code has been produced
than during the specification phase [3]. It is ironic that
one of the early motivations for using formal methods
was as a cost saving measure. Formal specification,
by supporting early error detection, was supposed to
drive down development costs. By leaving the detec-
tion of a large class of security flaws until the end of
the development process, the cost advantage of using
formal specifications is greatly reduced.

The problem is not simply that models such as BLP
and Restrictiveness are not perfect, but that once we
have proven that a system satisfies one of these mod-
els, we don’t know what we really have. We can be
confident that a system that satisfies BLP is secure
with respect to access control, but we know nothing
about covert channels—their presence, their capacity,
their ease of exploitation, the type of data at risk, etc.
Restrictiveness addresses only noiseless storage chan-

43

nels. Like BLP, it gives us no information at all about
the channels that may remain—timing channels and
probabilistic storage channels. Since a noisy channel
can very easily have a higher capacity than a noiseless
channel, we can conclude very little about our sys-
tem. In fact, it wasn't until recently that techniques
even existed for computing the capacity of noisy tim-
ing channels [16].

This problem is compounded by the fact that many
refinement methodologies do not preserve the prop-
erties specified in our models [9]. Functionally cor-
rect implementations of possibilistic models, such as
Nondeducibility or Restrictiveness, do not necessarily
preserve the security properties of these models. Al-
though there is, at least, one refinement technique that
preserves conflidentiality requirements, viz. one based
on call-based trace specification [1,11], application of
this method to security is still in the research stage

[14,15).

3 A New Paradigm

In an ideal world where the cost of security tech-
nology is negligible, we would field only systems that
could provably satisly our most stringent security re-
quirements. However, in any ideal world that is ob-
tainable, we must take into account that assurance can
come only at a cost. In such a world, we should be able
to determine the value of information that is at stake
in a computer system, the resources at a penetrator’s
disposal, the cost of implementing various types of se-
curity properties, the cost incurred by a penetrator
breaking into systems with those properties. and the
cost incurred by an agent learning the information in
a way that does not necessitate breaking the system.
For example, when buying a lock. one must take into
account the value of the goods being protected by the
lock, the type of intruders we are concerned about (e.
g., professional thieves or curious children). the cost
of the various locks available, the expense incurred by
someone successfully breaking the various locks, and
the cost of gaining entry without breaking the lock
(e.g., by bribing the key keeper). Research whose task
is to satisfy these desires falls under the province of
trust analysis.

Not only must we be able to compute the relevant
costs, we must be able to specify and build systems
that fit our needs as determined by our cost calcula-
tions. That is, for any dollar figure. say n. we should
like to be able to specify a system that would cost $n to
break and less than $n to build. (How much less will,
of course, depend on the likelihood that somebody will

attempt to break into the system.) We must also be
prepared to accept the fact that we shall want some
systems to be unbreakable.

When we turn from simple locks to computers,
things become more complicated. We must first be
able to specify a variety of trust types and a variety
of security properties that enforce these trust types.
Roughly, each trust type t would correspond to the
resources a penetrator could be expected to expend
trying to break a system that contained the informa-
tion, and the corresponding set of properties Pt would
be sufficient to guarantee that it would cost more to
break the system than a penetrator would be willing
to spend. However, there is no reason to assume that
these types will be linearly ordered. We may be in-
terested in a system whose confidentiality is very hard
to break (although not unbreakable), whose confiden-
tiality can be broken only by leaving a trail, whose
integrity is unbreakable, and whose availability can be
compromised for only short periods of time.t There
is no obvious dominance relation between such a sys-
tem and one whose confidentiality is unbreakable but
which can be unavailable for long periods of time. Ob-
viously, we must also develop methods for showing, in
some sense, that Pt is the correct set of properties for
trust type t and verification techniques to show that a
system designed to process information of type t sat-
isfies the set of properties Pt.

Once we have an adequate set of security proper-
ties, we must be able to build a system that imple-
ments specific security requirements with high assur-
ance at a reasonable cost. We Dbelieve that this can
be accomplished only by developing formal methods
that allow us to specify and reason about all security-
relevant aspects of system behavior (including time)
and that allow us to reason about compositions of
specifications. The latter ability will allow us to use
commercial off-the-shelf (COTS) software, making as-
surance cost-effective. It will require us to limit our-
selves to user interface specifications, as opposed, e.g.,
to state machine models that discuss implementation
constraints.

We cannot leave out the cost of developing soft-
ware, however, since COTS software may not meet
certain requirements and since even though the cost
of COTS software will be distributed over many sys-
tems, it does not come for free. We can no longer build
systems and then look for security flaws in the com-
pleted system. Experience shows that the changes nec-

! A paradigm possibly to follow here is cryptography where
we settle for encryption that is computationally expensive to
break rather than encryption that is unbreakable and where
authentication issues are separated from confidentiality issues.

essary to correct security flaws found in completed sys-
tems are often too expensive to make. We must move
from a develop-and-validate methodology to a refine-
ment based methodology where specifications state all
system properties that are required and programs are
written in such a way that we know that they satisfy
these properties.

4 How do We Get There

Comparing where we would like to be with our cur-
rent practice with respect to high assurance software,
we see several major needs:

1. We need methods for quantifying the value of the
information stored on a system;

2. We need to develop sets of properties that will
drive up in predictable ways the cost of breaking
system security in various ways:

3. We need methods for predicting the cost of im-
plementing these properties within a system:

4. We need methods for specifying and verifying per-
fect confidentiality (including probabilistic and
timing channels);

5. We need methods for formal-
izing non-confidentiality security properties such
as integrity and availability:

6. We need methods for specifying less-than-perfect
security’;

We need methods for evaluating the appropriate-
ness of the security properties we formulate in (2);

-1

8. We need validation methods that are not limited
in the sorts of availability, integrity. probabilistic,
and timing properties they can prove:

9. We need validation methods that can handle
farger programs;

10. We need validation methods that enable us to val-
idate software down to the machine code level:®

11. We need validation systems that are, themselves,
high assurance systems:

8This is actually insuflicient if we are concerned about high-
assurance sysiems. We stop at the machine code level in this
paper only because we are limiting ourselves to high-assurance
software.

12. We need methods that address the composability
problem with respect to specification and verifi-
cation;

13. We need validation methods that catch security
flaws before they are too expensive to correct;

14. We need a larger stock of specified, trusted com-
ponents from which to build trusted systems.

Needs (1)—(3) represent limitations for system secu-
rity in general, not just for security of high assurance
systems. Some of the needs can be met by research
alone; others require research accompanied by exper-
imentation and experience. All the needs stem, in
some sense, from the fact that much of the local re-
search that has taken place up to now in computer
security has lacked an accurate, global conception of
the ultimate goal.

Given the above considerations, we suggest replac-
ing the current methodology by a new paradigm of
system development. To implement this paradigm,
research needs to focus on four areas: trust analy-
sis, specification, code development, and validation.
These areas are described in turn.

With respect to the trust analysis, we must deter-
mine how much protection various types of informa-
tion deserve, what sort of attacks we wish to protect
information from (e.g., confidentiality violations that
depend on compromising a reference monitor, confi-
dentiality violations that depend on covert channels,
denial of service attacks, integrity attacks, etc.), and
what sort of system properties will provide this pro-
tection. The relation between information value and
system properties can be found only through experi-
ence, but it is a necessary research direction that must
be explored, yet has heretofore been ignored, if we are
to have a security development methodology that has
a firm footing.

With respect to system specifications we must de-
velop a specification language sufficient to capture all
the requirements formulated above. This dictates that
research must move away from considering specifica-
tion languages that are limited to properties of in-
formation flow on noise-free channels to specification
languages that can address, at the very least, general
information flow, integrity, and availability. We must
also move away from specification languages that are
binary, in the sense that a system is described either
as being secure or nonsecure, to languages that allow
us to specify arbitrary sets of requirements that guar-
antee varying degrees of security. This does not mean
that we should not continue work that is designed, for
example, to capture “perfect confidentiality” [7,13],

45

but that this work should be extended to “perfect se-
curity” and to allow for graceful degradation of these
properties.

To guarantee that specifications are correctly im-
plemented, we advocate the development of a system
refinement methodology. Such a methodology will re-
place the current practice of building a system and
then showing that it meets its specification by one
where a system is developed in such a way that its
specification must be met. This assumes that the spec-
ification addresses all concerns we are interested in
and does not leave, for example, covert channel detec-
tion, until the stage when code is written. The work
described in [14] can serve as a starting point since
it. shows how once a specification is proven to satisfy
certain security properties, security concerns can be
ignored during code refinement /verification. Since the
only concern becomes functional correctness. the secu-
rity community can borrow at will from the computer
science community at large.

To make such a paradigm cost effective, we must
develop a set of component specifications and a logic
for reasoning about them. These specifications will be
interface specifications and the logic will allow us to
reason about composite systems made up from vari-
ous components. To simplify the logic. the language
used to specify the components should be the same as
the language used to specify system requirements. We
require that the logic be sound and that any verifica-
tion system used to support it be highly assured. The
system described in [14] can serve as a basis for this
work since it provides a single sound and complete ax-
iomatic system for reasoning about both specifications
and programs and for reasoning about composability
[15].

Summarizing these considerations, we arrive at the
following proposals:

o Institute a research initiative in the area of trust
analysis to determine the resources a penetrator
is likely to expend to compromise various types
of information. For any particular type of infor-
mation, the resources one would expend to learn
the information may differ from the resources one
would spend to deprive legitimate users of the in-
formation and resources one would expend to al-
ter the information.

o Institute a research initiative whose objective is to
discover sets of system properties that will raise
the cost of successfully compromising system se-
curity above those values determined in the above
initiative and methods to show the appropriate-

ness of these properties. Properties required by
perfectly secure systems (systems that allow no
information flow over any channels, maintain per-
fect integrity, and are always available) should not
be ignored, but rather used as a starting point
from which other properties can be formulated by
“graceful degradation.” To this end we suggest
using the work described in [7,13] as a starting
point.

e Modify current specification and verification ef-
forts to address the properties discovered in the
above initiative. The focus here should be the de-
velopment of refinement methods that yield cor-
rect systems rather than the analysis of systems
after their development. The verification systems
developed should be highly assured. We suggest
using the work described in [14] as a starting
point.

o Develop a set of components that can be used
to implement the systems we desire and a ver-
ification method for reasoning about properties
of composite systems made up of these compo-
nents. It would be desirable if the composition
logic resembled the refinement logic of the previ-
ous bullet. For this reason we suggest using the
work described in [15] as a starting point.

5 Concluding Remarks

We have suggested initiating research in four ar-
eas: trust analysis, system property and specification
development, refinement methodology, and compos-
ability logic. It should be pointed out that these are
high risk efforts. For example, although recent espi-
onage cases have shown that the replacement cost of
highly classified information may not be as impossible
to compute as some have assumed, we must also take
into account the cost that may result from the loss
of prestige that can follow information theft. Simi-
larly, as recent debates in the cryptology community
have shown, it is unclear how much various properties
affect the cost system penetration. The outlook for
security preserving refinement methods and compos-
ability logics are not certain either. Nevertheless, I do
not see any alternative to initiating this research. We
cannot afford to continue spending so much money on
systems yet be so unsure about what our money has
bought us in terms of protection. Better to face the
risk of a lifeboat than to stay on a sinking ship.

46

Acknowledgements

I formulated many of the ideas in this paper while
serving as Chair of the National Security Agency’s
Technical Exchange Working Group on High Assur-
ance Software. Other members of the group were
David Czaplicki of NSA, John Faust of Rome Lab-
oratories, Judy Froscher of NRL, Jim Harper of NSA,
Bobby Huynh of CECOM, and Carol Taylor of NSA.
The paper has benefited from participant discussion
during its presentation at the New Security Paradigms
Workshop (September 22-24, 1992) and from audi-
ence discussion after its invited presentation at the
National Computer Security Conference (October 13-
16, 1992).

References

[1] W. Bartussek and D. L. Parnas, “Using Traces To
Write Abstract Specifications For Software Mod-
ules,” Report TR 77-012. University of North Car-
olina, Chapel Hill, N.C.. (December 1977).

D. E. Bell and L. J. LaPadula, “Secure Computer
System: Unified Exposition and Multics Interpre-
tation,” MTR-2997. MITRE Corp., Bedford, MA
(March, 1976). Available as NTIS AD A023 588.

[3] B. Boehm, “Software Engineering.” IEEE Trans-
aclions on Compuiers, Vol. C-25(12) pp. 1226-41
(December 1976).

[4] European Communities Commission, “Interna-
tional Technology Security Evaluation Criteria,”
ISBN 92-826-3004-8, National Computer Security
Center, Luxembourg (1991).

Department of Defense, “Trusted Computer Sys-
tem Evaluation Criteria,” CSC-STD-001-83, Na-
tional Computer Security Center, F't. Meade, MD
(Aug. 1983).

[6] J. A. Goguen and J. Meseguer, “Security Policies
and Security Models,” pp. 11-20 in Proc. 1982
IEEE Symposium on Security and Privacy. IEEE
Computer Society Press (April, 1982).

J. Gray, “Toward a Mathematical Foundation
for Information Flow Security.” Proc. 1991 IEEE
Symposium on Security and Privacy, pp. 21-34,
IEEE Computer Society Press. Oakland, CA.
(1991).

[8] J. Gray and P. Syverson, “A Logical Approach
to Multilevel Security of Probabilistic Systems,”
Proc. 1992 IEEE Symposium on Securily and Pri-
vacy, IEEE Computer Society Press, Oakland,
CA. (1992).

[9] J. Jacob, “On the Derivation of Secure Compo-
nents,” Proc. 1989 IEEE Symposium on Security
and Privacy, IEEE Computer Society Press, Oak-
land, CA. (1989).

[10] D. McCullough, “Specifications for Multi-Level
Security and a Hook-up Property,” in Proc. 1987
IEEE Symposium on Securily and Privacy, IEEE
Computer Society Press (April 1987).

(11} J. McLean, “A Formal Method for the Abstract
Specification of Software,” J. ACM, Vol. 31(3) pp.
600-627 (July 1984).

[12] J. McLean, “Specifying and Modeling Computer
Security,” IEEE Computer, Vol. 23(1) pp. 9-16
(January 1990).

(13] J. McLean, “Security Models and Information
Flow,” in Proc. 1990 IEEE Symposium on Re-
search in Securily and Privacy, IEEE Computer
Society Press (May 1990).

{14] J. McLean, “Proving Noninterference and Func-
tional Correctness Using Traces,” Journal of Com-
puter Securily, Vol. 1(1) pp. 37-57 (1992).

[15] C. Meadows, “Using Traces of Procedure Calls
to Reason About Composability,” Proc. 1992
IEEE Sympostum Research in Security and Pri-
vacy, IEEE Computer Society Press, Oakland,
CA. (1992).

[16] I. Moskowitz, “Variable Noise Effects Upon a
Simple Timing Channel,” Proc. 1991 IEEE Sym-
posium on Security and Privacy, IEEE Computer
Society Press , Qakland, CA. (1991).

[17] D. Sutherland, “A Model of Information,” in
Proc. of the 9th National Computer Security Con-
ference, Gaithersburg, MD. (September, 1986).

47

