
Integration of Formal and Heuristic Reasoning as a Basis for
Testing and Debugging Computer Security Policy

J. Bret Michael

Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

Abstract

Errors can arise in defining and evaluating com-
puter security policy as well as in translating computer
security policy into procedures. The effect of such
errors in policy upon the secure operation of infor-
mation systems can impose unacceptable levels of risk
from the perspective of procurers and users of informa-
tion systems. Relying on computer security paradigms
based solely on formal methods makes it difficult if
not impossible to detect and/or reason about certain
classes of threats to computer security and vulnerabil-
ities of information systems to these threats, especially
for those aspects of information systems that are more
readily amenable to modeling via non-formal methods.
We present a paradigm integrating formal and heuris-
tic reasoning as a basis for testing for and debugging
computer security policy. To illustrate our approach,
and to support our arguments, we consider the prob-
lem of reasoning about the plans of an agent who may
be trying to compromise the security of an information
system.

1 Introduction

Advances in information technology have resulted
in shifts in computer security paradigms as well as
in computer security theory. A computer security
paradigm is a convention or template for represent-
ing and reasoning about computer security, whereas a
computer security theory is a plausible or scientifically
accepted principle offered to explain computer secu-
rity phenomena in an information system context. It
is possible for a shift in paradigm to occur while the
underlying theory remains unchanged, and vice versa.

Recent advances in distributed computing tech-

01993 ACM O-89791-635-2 $1.50

Edgar H. Sibley
David C. Littma.n

George Mason University
4400 University Drive
Fairfax, Virginia 22030

nology, for instance, have lead to both new com-
puter security theories and paradigms. For example,
Wilkes [lo] envisions the need for new theories and
paradigms to address distributed computing a.rchitec-
tures founded upon the concept of secure enclaves.

[T]he natural organization of a business firm
would appear to offer scope for keeping sensi-
tive information within the confines of a par-
ticular computer or computer system. Each
system would, in fa.ct, form a. secure en-
clave connected to other systems by links
along which information could he pa,ssed
from inside the encla.ve [wit.h] the links
. . . connected to servers dedicated to the pur-
pose [in a client-server system].

Information transfer from one secure encla.ve
to another can be caused t,o happen either by
algorithm . . . or by a person opera.ting within
that enclave.

Existing theories and paradigms, specifically those
based upon centralized computSing concepts, a.re not
necessarily adequate for plamling for and ensuring se-
cure distributed processing of informa,tion. For ex-
ample, what does the simple security property* mean
in terms of object-oriented client-server+ technology?
As demonstrated by Jajodia, and Kogan [3], aa object
in the object-oriented sense can take on the role of a
Bell-LaPadula (BLP) Model [l] subject OT object.

Similarly, do existing comput,er security paradigms
provide necessary and sufficient, support for model-
ing and reasoning about client-server information sys-

*A subject s may have read access t.o an object o if and only
if C(o) 5 C(s), where C is the security class.

tA client-server architect,ure is one of many possible classes
of architectures from which to implement. a distributed infor-
mation system.

69

Permission to copy without fee all or part of this matexiai is grantid,
provided that the copies arc not made or distributed for direct ComerCial
advmmgc, the ACM copyright notice and tbc tillr of the publication and
its date appear. and notice is given that copying is by pemxisrion of the
Association for Computing Machinery. To copy otherwise. or to republish,
requires a fee and/or specific permission.

terns, in which the architecture incorporates object-
oriented constructs such as objects, messages, and sin-
gle or multiple inheritance?

Sibley, Michael, and Sandhu [7] argue that it is in-
cumbent upon users of a computer security paradigm
or adherents to a computer security theory to un-
derstand the assumptions underlying the paradigm or
theory, respectively. For instance, one of the assump-
tions made in the BLP Model is that information is
stored, labeled, and retrieved as containerized files. A
containerized file, however, is an inappropriate data
structure for use in modeling and reasoning about ob-
jects stored, labeled, and accessed at multiple levels of
granularity (e.g., document, section, paragraph, sen-
tence, word, byte, and so on); that is, for some objects,
there do not exist “natural” analogs to containerized
files in, for instance, a multilevel secure (MLS) data-
base management system (DBMS).

2 Formal Methods

One view of the process by which computer security
policies are transformed into information systems is as
follows: computer security policies are defined, eval-
uated, and then translated into procedures [8]. Dur-
ing this process, errors can be introduced into com-
puter security policy. Policy is often stated in a nat-
ural language (e.g., English) and policy semantics are
context dependent. Imprecision in policy definition
contributes to the introduction of, for example, incon-
sistent, unintended, or unsound policies. Errors in the
definition and evaluation of computer security policy
become embedded in an information system if they
are not detected and resolved prior to mapping policy
to procedures.

Formal methods have been introduced into com-
puter security paradigms as a means for understanding
policy and managing the complexity involved in rep-
resenting and and reasoning about secure information
systems. Formal methods provide a basis for system-
atically and mathematically representing and reason-
ing about security policies and procedures, irrespec-
tive of whether the policies and procedures are to be
performed manually or automated.

Formal methods cannot be used to model and/or
reason about certain classes of errors introduced into
information systems. For example, it is impossible to
determine if computer security policy is complete for
any information system. McLean [4] proved that it
is possible to derive a non-secure information system
that does not violate the axioms set forth in the BLP
Model. The BLP Model is incomplete in that it ignors

information system internals such as the raising of low-
level system inputs via information processing.

Dobson et al. [2] contend that formal methods
are not sufficient for representing and reasoning about
technological and social aspects of computing. For ex-
ample, the BLP Model cannot capture negotiations
between BLP subjects resulting in granting, revok-
ing, and delegating permissions, roles, responsibilities,
obligations, and so on, specified in computer secu-
rity policy. That is, interpretation and enactment of
computer security policy is a sociotechnological issue.
Dobson et al. suggest that some degree of reliance
on “non-formal” methods, such as models based upon
conversations between two parties (e.g., speech acts),
is a prerequisite to understa.nding a.nd ma.naging both
the sociological and technological a.spects of int,ra- and
inter-enterprise computing.

3 Should Not Happen Assertions

Although formal methods are not applicable for
representing and reasoning about all facets of com-
puter security policy, forma,1 methods can assist us in
precisely articulating a.nd analyzing “should not. hap-
pen” (SNH) assertions, one of many ways in which
security policies can be formulated. For example, the
following is a statement of the simple security property
as a SNH assertion:

A subject s should not h.aue read access to
an object o if th.e security class of s does not
dominate the security class of o.

This SNH assertion corresponds t,o anticipated and
unanticipated actions of informa.tion system users to
access information classified a.bove their clea.rance
level. The simple security property, here sta.ted as a
policy, is intended to discoura.ge users from perform-
ing actions resulting in unauthorized access t.o infor-
mation; that is, a policy is intended to influence be-
havior, whether it. be a 1luma.n or a. computer proxy
for a human (e.g., a. computer process). The proce-
dures in an information system for implementing this
policy are intended to both discoumge, check for, and
prevent unauthorized access to information.

Testing for a.nd debugging errors in computer se-
curity policy requires some level of both forma.1 and
heuristic reasoning. For example, Michael [5] demon-
strated that the ability of a resolution-style theorem
prover to detect logica. inconsist.encies between com-
posed security policies is dependent upou heuristic
reasoning about how to complete linkages bet,ween and

70

disambiguate policy axioms; heuristic reasoning about
domain information is applied in structuring policy
axioms to guide the theorem prover in its search for
logical contradictions between policy axioms.

Furthermore, it is not possible to model all of the
possible inputs to and outputs generated by an in-
formation system explicitly. Consequently it is not
possible to determine whether a set of SNH assertions
is complete with respect to outcomes directly or indi-
rectly resulting in the transition of an information sys-
tem into or out of a secure state (i.e., a state in which
computer security policy is not violated). Wahlstrom
[9] describes the application of new technologies as a
process of trial and error, arguing that it is difficult
to predict the behavior and outcome of actions of au-
tomated systems and humans because technological
systems interact with an unpredictable socioeconomic
environment.

There are trade-offs to be weighed in deciding
whether to apply formal or heuristic reasoning in test-
ing and debugging computer security policy. Heuristic
reasoning produces conclusions, whereas formal rea-
soning yields formal proofs. The risks associated with
operating a secure information systems may dictate
the construction of formal proofs that errors do not ex-
ist in a set of computer security policies and/or their
counterpart procedures embedded in an information
system. However, conclusions rather than proofs must
suffice when formal methods cannot be applied.

4 Integration of Formal and Heuristic
Reasoning

We propose a computer security paradigm based
upon the integration of heuristic and formal reason-
ing. In this paradigm, heuristic reasoning is used to
provide intermediate testing and debugging of policy,
in support of formal methods. Consider the following
scenario:

Suppose a person is observed simultaneously
quacking like a duck and entering data into
a MLS DBMS from a compartmented mode
workstation; two minutes later the person
abruptly stops quacking like a duck while con-
tinuing to type at the keyboard.

In what ways can quacking like a duck contribute to
security violations? Does this sequence of observed
actions provide us with an indication as to whether the
MLS DBMS transitioned into or out of a secure state?
Are there explict SNH assertions in place addressing

the observed actions and their outcomes? If not, were
the actions and/or outcomes unanticipated?

One of the problems that arises in answering
questions about plans-sequences of actions devised
and/or enacted by an actor to achieve a goal-and
plan outcomes is that they are not always observable
or inferable, such as the creation and use of a covert
channel. For example, a user may perform actions af-
ter regular business hours or behind an office partition,
making observation difficult or unlikely. Similarly, in
some caSes previously observed actions may not have
been recorded for future reference. Without a record
of past observations, it may be difficult to infer goals
and/or likely outcomes of the actions, especially if pat-
tern matching is to be used in analyzing the actions.
Consequently, gaps in our knowledge of or ability to
observe or infer plans can result in an incorrect policy,
unsound policy, or incomplete policy, that is, errors in
the coverage of anticipated and unanticipated plans
and plan outcomes.

The actions of the user quacking like a duck may
not have been anticipa.ted by the person or persons
observing the user’s actions. The user’s plan ma.y be
difficult to determine. For example, the user’s actions
may appear to the observer to have no distinct pattern
from which to infer the goal(s) behind of the sequence
of actions. If the plan or its outcome cannot be ob-
served or derived, there is little if any basis upon which
to determine whether SNH assert,ions cover the user’s
plan or the plan’s outcome.

Figure 1 shows a categorization of SNH assertions.
Assuming that it is not possible to observe or infer the
plan or its outcome, we can only deduce that the plan
and outcome fall in the areas delineated by -4 or 8.*
In this diagram, we know that plans and outcomes
contained in the areas A n B or B n c’ are covered by
SNH assertions. The SNH assertions a.re incomplete if
there exist any plans or plan out,comes in area.s A - C
or B - C. SNH assertions contained in the a.rea de-
fined by C - (A U B) are unsound in the sense that
these assertions do not correspond to possible plans
and outcomes. Incompleteness and unsoundness indi-
cate errors have been introduced during policy defi-
nition, policy evaluation, or policy mapping. A SUIII-

mary of each area in the Venn diagra,m is summarized
in Table 1.

The acceptable level of risk tha.t an information sys-
tem will transition into one or more non-secure stat,es
due to an unanticipated sequence of a.ctions or unmod-
eled SNH assertions will vary among users or procurers

IThis is an example of the complekness problem; we make
a tacit assumption that A u B u C is the Herbrand Universe.

71

A: Anticipated plans and/or known outcomes
B: Unanticipated plans and/or unknown outcomes
C: Should not happen assertions
A U B: All possible plans and outcomes

Figure 1: Venn diagram

Table 1: Summary of error types by area

Area \ Error Description
1 No error: there exist SNH assertions covering all

AnC

BnC

plans and outcomes in this area
No error: there exist SNH assertions covering all
plans and outcomes in this area
Error: all plans and outcomes in this area are not

A-C covered by SNH assertions
1 Error: all plans and outcomes in this area are not

B-C covered by SNH assertions
Error: there exist SNH assertions in this area that

C - (A U B) do not correspond to possible plans and outcomes

of information systems.
Heuristic reasoning, based upon the knowledge of

previously observed behaviors and their outcomes and
heuristic rules founded upon domain knowledge, can
be used to reason about computer security policy.
Rather than representing computer security policy
explicitly, testing and debugging can be performed
upon plans. Michael et al. [6] explored a modeling
paradigm for representing intentions in information
systems. Specifically, they attempted to model the
state of an actor, with respect to computer security
policy, as a triple: Is the actor ready, willing, and
a&?§ For instance, for the time interval over which
the person intermittently quacks like a duck, he or she
is ready, willing, and able to violate computer security
policy.

tion in computation, input, and output operations per-
formed by a MLS DBMS.

Heuristic Rule 2 Sudden and temporary reductions
in computation, input, and output operations per-
formed by a MLS DBMS can be used io create a covert
channel.

Relying on current observat,ions of the users at
other workstations and the two rules derived from past
observations, one conclusion we ca.n make is that the
user’s goal in qua.cking like a. duck over different inter-
vals of time is to pass classified information to una.u-
thorized parties, that is, to create and use a covert
channel. Based upon this conclusion, we could pro-
pose the definition and evaluation of the following new
policy (SNH assertion):

Suppose the following heuristic rules are at the dis-
posal of the person responsible for testing and debug-
ging computer security policy:

Policy 1 A person shall not perform actions that can
be observed by and potentially disturb users, while at
their workstations, of a MLS DBMS.

Heuristic Rule 1 A sequence of actions that dis- This policy can now be axioma.tized so that formal
tracts users working at compartmented mode work- methods can be applied in testing and debugging the
stations can result in a sudden and tem,porary reduc- policy in the context of a. secure information system.

SComputer processes and other inanimate objects are as-
sumed to always be in a willing state; they have the volition of
the person or persons who created them.

In summary, some of the reasons why formally mod-
eling the behavior of actors is difficult include the fol-
lowing:

72

Definition of goal states is imprecise.

Precise definitions of what constitutes “computer
security policy” or “computer security” is con-
founded by the circumscription problem.

Security policies may be implicit (e.g., known to
actors but not explicitly represented in manual or
automated records) or depend upon unstated or
unknown (to the modeler) domain knowledge.

Heuristic reasoning can be used to either predict out-
comes for “what-if” scenarios or reason about an ob-
served scenario; that is, heuristic reasoning supports
both proactive and ex post facto threat and vulnera-
bility analysis.

Moreover, the task of reasoning about computer se-
curity policy and its implications is ill-structured, such
as in

l Understanding and managing the interface be-
tween policy and requirements.

l Evaluating the intent underlying actions.

l Applying formal methods with limited domain
knowledge.

l Observing behavior from which to predict future
behavior, only when conditions permit.

l Determining whether action sequences remain
within a certain bound.

Our hypothesis is that effective use of heuristic rea-
soning can lead to the effective generation of SNH as-
sertions; that is, heuristic reasoning can be used to
identify and model domain knowledge in support of
formal methods.

5 Testing for and Debugging Errors

We envision testing for and debugging computer se-
curity policy taking place at system design, compile,
and run-time. At design- and compile-time, structural
and static checking are performed, respectively. At
run-time, however, plan checking is performed and is
based upon policy dynamics; that is, changes in policy
interaction and introduction of real-world knowledge.
Upon completion of a particular check, computer se-
curity policies (and consequently the procedures im-
plementing security policies) can be modified to effect
desired changes in the behavior of a system or its users
if unanticipated outcomes occur and are not covered

by existing SNH assertions, and/or SNH assertions are
violated.

The four phases of testing and debugging computer
security policy are shown in Figure 2.

1. policy knowledge base building,

2. plan compilation,

3. plan execution and monitoring,

4. correction of the policy knowledge base on the
basis of unexpected outcomes or SNH assertions;
that is, feedback to phases (1) through (3).

Formal methods can be applied during phases (1) and
(2), whereas heuristic reasoning is required during
phases (3) and (4).

6 Computer Support for Modeling and
Reasoning About Plans

Some aspects of testing and debugging computer
security policy are readily automated. Sibley et al.
[8] describe a policy workbench a.s a set of integrated
computer-based tools for assist.ing users in defining
policy, evaluating policy, and mapping policy to pro-
cedures.

Figure 3 depicts the flow of da.ta among components
of a hypothetical policy workbench architecture. We
are currently exploring this and other candidate pol-
icy workbench architectures. In this a,rchitecture, the
following information is stored in a knowledge base:
(1) formalized policies and doma,in knowledge, (2) ab-
duced and executed plans, and (3) formal deductions
and heuristic conclusions. All of the components, rep-
resented as annotated boxes in the diagram, rely on
the information in the knowledge ba.se to ca,rry out
their functions. The knowledge base is updated to
reflect newly performed observa,tions and inferences;
that is, testing and debugging of policy is an iterative
and dynamic process. There is a,n underlying assump-
tion that organizations modify their computer security
policies over time in response to actual or predicted
changes in the environment in which their informa-
tion systems operate.

7 Summary

Modeling paradigms based solely on forma.1 meth-
ods are not adequate for representming and rea.soning

13

policy and
domain knowledge

I

Policy Knowledge
Base Building

I

Plan
Compilation

I

feedback

Plan Execution
and Monitoring

I

Correction of
Knowledge Base

Figure 2: Four phases involved in testing and debugging computer security policy

about all aspects of an information system or com-
puter security policy. Heuristic reasoning assists mod-
elers in dealing with ill-structured aspects of computer
security policy. We are exploring the coupling of for-
mal and heuristic representation and reasoning tech-
niques, with the goal of improving the state-of-the-art
in defining and evaluating computer security policy,
as well as translating computer security policy into
procedures.

Acknowledgements

Richard Wexelblat actively participated in research
meetings which produced some of the ideas which were
subsequently further refined and presented in this pa-
per. This work was not funded through Argonne Na-
tional Laboratory.

References 161

[l] Bell, D. E., and LaPadula, L. J., Secure Com-
puter System: Unified Exposition and Multics
Interpretation. Technical Report MTR-2997, The
MITRE Corporation, Bedford, Massachusetts,
March, 1976.

[2] Dobson, J. E., Blyth, A. J. C., Chudge, J., and
Strens, M. R., “The ORDIT Approach to Require-
ments Identification,” Proceedings of the Sixteenth

[31

PI

[51

PI

14

Annual Internation,al Computer Software and Ap-
plications Conferen,ce. Los Alamitos, California:
IEEE Computer Society Press, 1992, pp. 356-361.

Jajodia, S., and Kogan, B., “Integrating an
Object-Oriented Data Model with Multilevel Se-
curity,” Proceedings of th,e IEEE Computer Society
Symposium on Research in Security and Privacy.
Los Alamitos, California: IEEE Computer Society
Press, 1990, pp. 76-85.

McLean, J., “The Specification and Modeling

of Computer Security,” IEEE Computer 23, 11

(1990) pp. 9-16.

Michael, J. B. A Formal Approach to Testing
the Consistency of Composed Security Policies,
Ph.D. dissertation, School of Information Tech-
nology and Engineering, George Ma.son University,
1993.

Michael, J. B., Sibley, E. H., and Wexelblat, R.
L., “A Modeling Paradigm for Representing Inten-
tions in Information Systems,” Proceedings of the
First Workshop on Information Technologies and
Systems. Massachusetts Institute of Technology
Sloan School of Management, Cambridge, Mas-
sachusetts, 1991, pp. 21-34.

Sibley, E. H., Michael, J. B., and Sandhu, R. S.
“A Case-Study of Security Policy for Manual and
Automated Systems,” In Proceedings of the Sixth
Annual Conference on Com.puter Assurance. IEEE

formalized policies and
domain knowledge

observed

formal deductions.
heuristic conclusions,

and debugging information

abducsd and
executed plans

goals and
obserwd plans

formal deductions,
heuristic conclusions,

and debugging information

Figure 3: Data flow among components of a policy workbench

Computer Society Press, Los Alamitos, California,
1991, pp. 63-68.

[8] Sibley, E. H., Wexelblat, R. L., Michael, J. B.,
Tanner, M. C., and Littman, D. C., “The Role
of Policy in Requirements Definition,” Proceed-
ings of the IEEE International Symposium on Re-
quirements Engineering. Los Alamitos, California:
IEEE Computer Society Press, 1993, pp. 277-280.

[9] Wahlstrom, B. “Avoiding Technological Risks:
The Dilemma of Complexity,” Journal of Z’echno-
logical Forecasting and Social Change 42, 4 (1992),
pp. 351-365.

[lo] Wilkes, M. V., “Revisiting Computer Security in
the Business World,” Communications of the ACM
34, 8 (1991), pp. 19-21.

75

