
The Reference Monitor:
An Idea Whose Time has Come

Terry Rooker
A41

Naval Surface Warfare Center Dahlgren Division
Dahlgren, Va 22448

trooker@xobu.nswc.navy.mil

Abstract

As operating systems were developed, limitations in the
hardware and software technologies forced the designers
to develop large monolithic core programs called
kernels. Over time all major operating system
functionality was concentrated into these large
unstructured programs. When trusted systems were built
from these kernels, the simple idea of a reference
validation mechanism was not easily implemented. In
place of this simple idea ponderous structures were
developed in an effort to break apart and modularize the
monolithic kernels. This process has become part of the
trusted systems development since it is incorporated into
the Trusted Computer System Evaluation Criteria. In the
last five years there has been a major change in the way
operating systems are built. Investigation of current
projects reveals that operating systems are now built
along modular lines, and there is a concerted effort to
reduce the size of the monolithic kernels. Consequently,
implementing a small modular reference validation
mechanism is now possible in its original form. In some
cases, the operating system designers are incorporating
a reference validation mechanism, albeit without
assurance, to solve some of their own design problems.
So technology has finally caught up with the idea of the
reference monitor, and it is now possible to use these
implementations. Lest the picture seem too optimistic,
there are other trends in operating system design that
are less favorable to trusted systems development, and
any change in our view of trusted systems must also
allowfor these other developments.

Historically, as computer operations became more
complex, the task of managing the computer resources
was increasingly automated. The programs managed
these resources came to be called operating systems.
Because of limitations in the hardware and software, the
operating system core, called a kernel, became
increasingly large. Most operating system functionality
was included in this core. To improve the performance
of this core program, structured programming was not

used to avoid the overhead associated with that style of
programming. The result was a large, poorly designed
program where the only consideration was efficiency.

In the 1970’s there was increasing awareness of the risk
involved with computer operations, and attempts were
made to develop trusted computers. The goal of this
work was computers with a specified functionality to
support trusted functions, but more importantly
assurance requirements were developed to ensure that the
desired functionality was implemented correctly. The
complex kernels were difficult to understand, much less
make assurance statements about. The Anderson Report
[2] introduced several concepts in an attempt to provide a
framework for developing trusted operating systems.
These concepts were fundamental to describing the
problem, and have been instrumental since they were
proposed [11.

The Anderson Report identified three requirements for a
trusted system: 1) an access control mechanism; 2) an
authorization mechanism; and 3) controlled execution of
operating system services and user programs. The
Anderson Report in particular proposed the reference
monitor as a means of satisfying these requirements. The
reference monitor would validate all references by
subjects to ensure both that the access was authorized
and also of the correct type (i.e. read, or write). As we
will see, these conclusions are still applicable today.

The requirements statement for trusted systems in the US
department of Defense is the Trusted Computer System
Evaluation Criteria (TCSEC) and its interpretations. The
concepts of the Anderson Report were incorporated into
the TCSEC. In particular, the TCSEC establishes the
reference validation mechanism (RVM) as the
implementation of the reference monitor. The Anderson
Report listed three design requirements for the RVM that
are continued into the TCSEC:

1993ACM O-89791-635-2 192

Applications

/I p-j)

- -
7

OS/2
subsytem

\

\

\

v
I

7
Posix

I
subsystem

I
Win32 1 / I

subsytem /

I /
I
I

i \ I /

I
WindowsNT

1 7 P
I I
I Executive

I
I

Kernel I
I

I

\ \
\ \ Hardware abstraction Layer I

\ \ I Y ,--------1,----

Hardware

Figure 1: WindowsNT architecture [61

a. The RVM must be tamperproof.

b. The RVM must always be invoked

c. The RVM must be small enough to be subject
to analysis and test, the completeness of which
can be assured. [101

Something New

objective (c) is not fully supported because of the
size or complexity of the reference validation
mechanism. For convenience, these evaluation
criteria use the term Trusted Computing Base to
refer to the reference validation mechanism, be it a
security kernel, front-end security filter, or the
entire trusted computer system.” [lo, p. 67](the
emphasis is mine)

Even the TCSEC had to face the reality of then current Abrams et al fault the TCSEC for not specifying what
operating system design. In particular the TCSEC had to functions or system software belongs in the TCB. Our
modify the concept of the reference monitor because of the interpretation is that the TCSEC simply acknowledged the
monolithic nature of the kernels: then state of the art.

“In order to encourage the widespread commercial
availability of trusted computer systems, these
evaluation criteria have been designed to address
those systems in which a security kernel is
specifically implemented as well as those in which
a security kernel has not been implemented. The
latter case includes those systems in which

Operating system vendors must maintain compatibility
with older releases of their product, so there is considerable
inertia to only incrementally change their product. Even
though better ideas for building operating systems have
been around, most major products still rely on some
variation of the large monolithic kernel. This trend is
starting to change, although most systems in development

193

r-7
1 APP~ 1

L--J

r-7
I

UNIX
Emu1 I

L--J

r-7
1 APP~ I

L--J

r--i
I

UNIX
Emu1 I

L---l

F/Ij /Lljr /

Mach

Figure 2: Mach architecture [71

that use a different structure are new starts, and do not rely
on a specific existing product. The new trend is towards
client server architectures with backwards compatibility
provided by special servers. Ideally, these architectures
would be implemented using an object-oriented
environment, although none to date have been able to
exploit this technology. In particular we will examine three
systems currently under development; WindowsNT, Mach,
and Hurd.

WindowsNT is an interim product to span the gap between
the MSDOS-based Windows 3.1 and the development
project called Cairo. Windows, running on top of MS-
DOS, was a microcomputer operating system built in the
old style. Cairo will be a true object-oriented, client-server
system. WindowsNT provides a client-server system [63,
although without the advantages of object-orientation.
There is a core of operating system functionality that is
contained in the kernel, which isolates the applications
from the particular hardware. Then there are subsystems
that provide services for the specific system calls of an
existing operating system, for example there is a OS/2
subsystem, and a Win32s subsystem which allows for
compatibility with MSDOS. There is also a part of the
kernel that contains all the machine specific code so that

porting to different hardware involves only changing code
within this section. This design is displayed in figure 1.

Mach is a research project of Carnegie Mellon
University[7,9]. The intent of the project was not to
provide a stand alone operating system, but to provide a
core message passing system that would support client-
server operating system developments. The actual client-
server micro kernel is Mach 3.0. Earlier releases were
more traditional designs with a built-in BSD interface
(release 2.5). Mach provides services such as process
management and communication (with a port assigned to
each thread, the Mach equivalent of a process) that can be
used to build specific servers. For example, the BSD
interface in Mach 2.5 is just a server in Mach 3.0. This
architecture is displayed in figure 2.

The GNU Hurd is an example of a system built (building?)
on the Mach 3.0 micro kernel. For those not familiar with
the Free Software Foundation (FSF), we should provide
some background. The FSF develops a line of products
around the name of GNU (a recursive acronym, GNU’s
Not Unix). These products are distributed under a
copyright notice that isknown as the GNU or FSF Copyleft.
Copies are distributed for free, and can be re-distributed as
long as there is no charge for the FSF software. Among

194

-
I
I
I
I
I
I
I
I
I
I
I

Authentication
Server

Translator

r--l
I APP~ I

L---1

h r--l
j Port p

L--J

their projects is Hurd (also rumored to be a recursive
acronym). Hurd is a Unix compatible operating system
that would be distributed under the Copyleft. It would be a
true client-server system based on the Mach 3.0 micro
kernel. Interestingly, in the description of the system [4],
Michael Bushnell arrives at the same conclusions as the
Anderson Report! On top of the micro kernel there would
only be two servers running in kernel mode, the
authentication server and the process server. The process
server basically provides an interface to the underlying
micro kernel for system administration purposes.

The authentication server arbitrates requests for access, as
the name implies. The architecture also relies on the Mach
abstraction of a port, which is the communications
medium. All operating system services would be provided
as user mode processes. Other processes would access
them through ports. In addition, the owner of a
process/application could install a translator that would
provide a semantics for the port. For example, the port that
accesses the file system would provide a protocol that
implements the usual file system semantics. Since Mach
ports have a sophisticated access semantics, it is possible

r--l
I

File
Sys tern I

L--J

‘r - - I
4 Port 1

Process
Server

Mach

Figure 3: Hurd architecture [41

that the choice of translator on a given port could be
specified for different users. This architecture is displayed
in figure 3.

Something Old

With the possible exception of WindowsNT, which is
targeted initially at the TCSEC C2 class, these architectures
appear to have been developed independently of trusted
systems ideas. When we examine the RVM concept there
is a surprising parallelism between the RVM and these
modem operating systems. Abrams et al discuss some of
the architectural implications of the reference monitor, and
RVM. The stylized architecture they develop (see figure 4)
is very similar to the architectures of the three systems we
discussed.

The technology for operating system implementation has
finally caught up with theory. The concept of a reference
monitor is finally found in some modem operating system
designs. This survey of recent development reveals that the

195

Figure 4: Domain Separation Kernel Concept [11

reference monitor is embedded in the client-server
architectures currently popular for operating system design.
Independent of any trust evaluations it is being used to
provide for more secure operating systems.

Paradigm Shift

Ironically, the appearance of the reference monitor in
modem operating systems will cause a change in how
trusted systems are viewed. Since the reference monitor
could not be directly implemented in the large monolithic
kernels, there have been many techniques developed to
overcome this limitation. Since the RVM is now possible
in the operating system kernel, these techniques are of little
use. This change in view is more apparent at the higher
levels (B2+) of TCSEC evaluation. There is an increasing
requirement for modularization of the TCB, and the client-
server architectures readily support that modularization.
With present systems, much effort must be expended to
separate the parts of the large kernel, and somehow split
the kernel into identifiable modules. It is these techniques
that wiil be of little use in the new architectures.

Abrams et al also discuss the slight change in usage of the
terms security kernel and RVM. In view of the fact that
monolithic kernels were divided arbitrarily, it is not
surprising that there is confusion. With the better defined
architectures of the client-server operating systems it is
much easier to maintain the distinction. In this case, the
RVM and trusted processes map to specific identifiable
parts of the system.

In this case, the shift is not away from the old paradigm,
but rather that it is now possible to utilize the old paradigm.
For twenty years we have known how to build a better

system. We just did not have all the right tools. The tools
are now getting into place. The problem is that there is an
existing body of experience in trying to adapt the old tools
to that paradigm [cf. 33. Slowly as the new tools become
available, the experience will change to finally exploit the
old paradigm.

While some may argue that this change hardly constitutes a
new paradigm, it is important to realize that many
complaints with the current paradigm stem from the
implementation of that paradigm and not the paradigm
itself. The RVM is a theoretical construct that was usually
not implemented. Rather a monolithic kernel was
arbitrarily divided and a one of the those subdivsions was
simply called the RVM. Of the current operating systems
described above, all will allow distribution within a single
CPU, and across multiple CPUs. Such distribution would
allow the ‘old paradigm to help solve ‘new’ problems such
as security in client-server architectures.

New Paradigms?

The problem with change, is that once it is started it is not
always easy to stop. The same people that are
implementing the client-server architecture which directly
provide for a RVM, are also looking at other technologies
to exploit. Some of these ideas could be troublesome to the
trusted systems community.

Client-server architectures are made possible by the higher
performance computers now available. The higher
performance comes about from several developments,
although we will only discuss a couple of them as
examples. The biggest source of improved performance is
faster CPU’s. One disadvantage of these faster CPU’s is

196

that they can aggravate the covert channel problem. In
particular, the increased speeds may allow an increased
bandwidth in timing covert channels.

Another source of improved performance are increasing
word sizes in modem computers. The current state of the
art is 32 bit machines, and 64 bit machines are becoming
available. The virtual address space is related to the size of
the registers. A 64 bit machine implies a 64 bit virtual
address space. There is already at least one research
program that is attempting to utilize a 64 bit virtual address
space [5]. In this design some artifacts of small address
spaces disappear. Specifically the notion of a process with
a separate virtual address space is not used. Since virtual
process separation by using distinct address spaces is
embedded in many notions of trusted systems, discarding
these artifacts could have a major impact on our
understanding of trusted systems. In this architecture
processes are given separate ranges of address space, and
inter-process communications are then done by sharing a
region of the virtual address space. For high assurance
systems, such a system would require a major redefinition
of separation.

In the previous discussion of the modern systems, many
functions that are currently considered in the kernel would
now be run in user mode. In essence, these functions are
elevated (demoted?) to the status of trusted applications.
Trusted applications are another area where there is
insufficient experience for evaluation. Some of the
advantages of trusted applications are discussed in a
previous paper [l 11, while some of the disadvantages are
also becoming known [8].

What will be shape of this new paradigm? Some of its
necessary features are apparent. Covert channels will be at
least as much of a concern, possibly aggravated by higher
speeds, and shared virtual address spaces. We must come
to terms with trusted applications, and methods for their
assurance. There are some advantages in the new view.
Operating systems will be more modular, and better
defined. In addition, the kernel mode portion of the
systems will be smaller.

Conclusion

There is an idea that has been around for a long time, that
of the reference monitor. For the last twenty years, the
large monolithic kernels of operating systems prevented a
direct implementation of the RVM. Current work in
operating system design exploits some of the features of
the RVM, even without the trust considerations.
Consequently, we are now in the position where our
technology is just now allowing us to adopt a twenty year
old concept. This is not a new occurrence, after all tanks,
and helicopters were envisioned by Leonardo DaVinci.
The problem for system designers is to unlearn the
techniques that were used to force-fit the old technology

into the new idea. While we are changing these tocls, we
must also keep an eye open for the new technologies that
may invalidate current techniques in a manner not as
favorable for trusted system development.

References

[l] M. Abrams, J. Hearney, and M. Joyce, “Mediation and
Separation in Contemporary Information Technology
Systems”. Proceedings of the 15th National Computer
Security Conference, National Computer Security Center,
1992.

[2] J. Anderson, Computer Security Technology
Planning Study, ESD-TR-73-51 Vol I, AD-758 206,
ESD/AFSC, Hanscom AFB, Bedford, Ma, Ott 72.

[3] J. Arnold, D. Baker, F. Belvin, R. Bottomly, S.
Chokani, and D. Downs, “Assessing Moduahity in Trusted
Computing Bases”. Proceedings of the 15th National
Computer Security Conference, National Computer
Security Center, 1992.

[4] M. Bushnell, “Towards a News Strategy of Operating
System Design”. Posted to USENET group comp.os.mach,
dated Jan 1993.

[5] J. Chase, H. Levy M. Baker-Harvey, and E. Lazoucha,
“How to Use a 64-Bit Virtual Address Space”. Technical
Report 92-03-02, University of Washington, Seattle, Wa,
1992.

[63 H. Custer, Inside WindowsNT. Microsoft Press,
Redmond, Wa, 1992.

[7] P. Guedes and D. Julin, “Object-Oriented Interfaces in
the Mach 3.0 Multi-Server System”, Technical Report,
Carnegie Mellon University, Pittsburgh, Pa, 1991.

[8] D. Howe, “Information System Security Engineering:
Multilevel Distributed Systems Employing Object-Oriented
Techniques”, submitted to the National Computer Security
Conference, 1992.

[9] K. Loepere, Mach 3 Kernel Principles. Open
Software Foundation, Cambridge, Ma, 1992.

[lo] National Computer Security Center, “Trusted
Computer System Evaluation Criteria”, DOD 5200.28-
STD, 1985.

[l l] T. Rooker, “Application Level Security Using an
Object Oriented Graphical User Interface”, To appear in
New Security Paradigms, 1992.

197

