Application Level Security Using an Object-Oriented Graphical
User Interface

Terry Rooker

D25

Naval Surface Warfare Center Dahlgren Division
Dahlgren, Virginia 22407

Abstract

The Trusted Computer Security Evaluation Crite-
ria has become a defacto standard for security fea-
tures in trusted systems. Unfortunately, the TCSEC
was formulated at a time when computing was done in
centralized facilities with low level access (i.e. operat-
ing system access) to the computer. Present computer
use 1s much different. Users access applications, and
only rely on the operating system to support the ap-
plication. In this style of computing the application is
more important for security, yet the TCSEC places all
the responsibility in the operating system. In this pa-
per we outline some of the changes required to move
the focus for security from the operating system to
the applciation. Since much of the application relies
on the user interface, some of this change must also
address the user interface. By emphasizing the appli-
cation and interface security can be easier and more
consistent across applications, and different computer
systems.

In the United States, the primary statement of com-
puter security has been the DOD Trusted Computer
Security Evaluation Criteria [7], better known as the
Orange Book or TCSEC. Much objection to the TC-
SEC stems from its focus on a single security policy;
the DOD hierarchical system for protection of classi-
fied information [1-4]). These complaints are valid but
there is a more fundamental problem with the TCSEC.
That problem stems from the time that the TCSEC
was originally developed in the mid to late 1970’s. Our
current view of computing is different from that time,
and even if the TCSEC was freed from the strictly
hierarchical policy it would still not address current
trends in computer use.

We propose an alternative to the whole style of pro-
tections provided in the TCSEC, a different view of
security. In the TCSEC the protections are located
in the operating system. In the new view protections
are distributed between the operating system, and the

©1993 ACM 0-89791-635-2 $1.50

105

application. The new view is necessary because the
trend away from systems level operations to applica-
tions. The system proposed here exploits these trends.
It relies upon the abstractions provided by modern ap-
plications and object oriented graphical user interfaces
to enhance the security that is provided by the oper-
ating system.

1 Problem Statement

The conceptual foundation of the TCSEC lies in
the mid to late 1970’s. The style of computing then
was typically a mainframe computer with many termi-
nal connections. Specialized support personnel would
actually operate the computer and run jobs. Today,
users have a cpu sitting on their desk {in some type
of enclosure with the necessary ancillaries). They use
applications which are loaded directly onto their local
cpu and then run. These two views must be recon-
ciled.

The emphasis was on the operating system and sys-
tems level programs. Even casual computer users had
to have a fairly good understanding of the operating
system. In addition, there were nol many commet-
cially available utilities or even application programs.
In this environment the users required low level ac-
cess to the system to perform their job. If a certain
utility had not been written by someone else then the
user required the tools to write his/her own. These
tools were compilers, assemblers, and command lan-
guages (such a VMS COM jobs or UNIX Scripts).
The computer security problem was maguified. since
the low level access required low level security protec-
tions. These low level tools even aggravated computer
security concerns such as convert channels since the
tools provided access to such a variety of system re-
sources that the number of possible covert channels
was greatly increased.

Permission 10 copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct cormercial
advantage, the ACM copyright notice and the title of the publication and
i:s date appear, and nol'ice ‘ls. gi:l_en that copying is by permission of the

ion for Computing y. To copy otherwise, or to republish,
requires a fee and/or specific permission.

In the current view, a user has a box on her desk.
She has a variety of software applications that she uses
to do her job. In many cases such users neither desire
access to, nor care to have access to low level system
primitives. Any necessary access to low level opera-
tions is done for the user by the application.

Such application-oriented operations conflicts with
the TCSEC. The TCSEC treats the system in its en-
tirety. Everything from the user interface to the lowest
level of instruction must be considered when evaluat-
ing/certifying a system. Traditionally, it has been felt
that focusing the protections at the lowest level possi-
ble will make it easier to understand the protections.
For a monolithic system that is completely specified
at its inception, this belief is true. The problem arises
when you desire to use a different application. Since
most applications perform low level operations for the
user, they run afoul of the low level protections unless
they or the system were designed for that operation.
Consequently, it is difficult if not impossible to build
a TCSEC style trusted system that allows simple ex-
ecution of applications.

This is not a failing of the TCSEC. It is simply
a problem that arises because we use computers dif-
ferently now. The question should be whether only
low level protections are necessary in the new style of
computer use. The problem is aggravated since most
applications are written with disregard for security.
Granted some applications have simple password pro-
tections, but in general the only security provided in
any measure is meant to protect against unauthorized
duplication. Some researchers are beginning to un-
derstand that the security protections can be located
in other parts of the system, such as in the applica-
tion [6]. This understanding stems from the new style
of computer operation. Unfortunately, such security
distribution is at odds with the TCSEC.

2 A Solution

Ideally, a new view of computer security should ex-
ploit the new style of computing. This new style in
some cases helps, for example covert channels would
be less of a threat since fewer system resources would
be accessible. In other cases the new style introduces
new problems, for example composing the application
security features with the operating system (and pos-
sible different operating systems). Defining this com-
position will be a major problem in achieving any sen-
sible assurance.

The application view of a computer has several ad-
vantages for system security. Probably the most im-

106

portant is that only the information necessary for the
task at hand is made available to the user. In essence
the application provides a context that the system de-
signer can use to restrict features. For example in a
query database at any given screen there would only
be certain reasonable types of information necessary.
To provide a specific example consider an online em-
ployment database. When accessing the personal in-
formation for the applicant, only personal history and
employment information are relevant. The employ-
ment history can be used to screen for possible em-
ployment against a job database. At this point, the
personal history may not (and possibly legally could
not) be relevant. When a possible match is found
against the job listing, information about the employer
would be relevant. Other users might require access
to unemployment insurance records, which should be
unavailable to users only screcning for employment.

The application provides much of this protection.
Notice that at any time, access to the operating sys-
tem was not required by the user. Even if the user
must start another application, access to the operat-
ing system is not necessary. Either a master applica-
tion can be used to coordinate different applications.
or the applications themselves can call other applica-
tions. Not all of the protection would reside in the
application. The operating system would be respon-
sible for some of the protections. Ideally, a subset of
the security features would be identified and the op-
erating system would provide those features across all
applications. The applications would be responsible
for the remainder if they were applicable to the type
of application.

In this view of security the information displayed
for the user is important, which leads to the user in-
terface. Much of what the user sees is a function of
the user interface, and not the individual application.
This is particularly true of graphical user interfaces
(GUIs). A GUI is a screen display where the physical
display is divided into windows, familiar examples be-
ing the X-window system, and Microsoft’s Windows.
Not only are individual processes and applications dis-
played as separate windows, but much of the user in-
terface is displayed graphically, such as buttons and
bars for window commands, and icons for files or ap-
plications. Much of the security features discussed
in this paper are also relevant to non-graphical user
interfaces (i.e. command line interpreters, and even
ascii-based menus). The problem is that GUls are in
such demand that it is better to focus the discussion
on their features, bearing in mind that the solution
does not require a GUI.

The problem with GUlIs is the number of levels of
software between the user and the kernel. The ab-
stract layers of software are: application, window, win-
dow manager, system software, operating system, and
kernel. Not all GUIs have these layers, and some might
even have more. With this number of layers it is lit-
tle wonder that assurance of such a system is suspect.
Some method is required to reduce the complexity.

Object orientation offers some hope of reducing the
problem. Object orientation in general promises to
deliver many of the advantages of software engineer-
ing. In particular object orientation offers encapsula-
tion, inheritance, and abstraction. A truly integrated
object oriented GUI (OOGUI) might offer even more
advantages.

Currently, the only OOGUI commercially available
is the NeXTstep environment [10], so I will use it as an
example. The interface is structured in an Objective-
C (the object oriented language used for implementa-
tion, a mix of Smalltalk and C) class hierarchy. All
classes are subclasses of the Object class which allows
all objects to share certain attributes. This sharing
is the inheritance. Any class that is defined lower in
the hierarchy than an arbitrary class inherits all of
the functions and data structures of that class. Those
subclasses are then free to modify or overwrite the
inherited functions and data structures.

NeXTstep minimizes the GUT complexity issue by
eliminating several of the layers. For NeXTstep the
layers are: application, NeXTstep, Mach kernel. For
compatibility the “traditional” Unix system calls are
implemented as calls to the kernel, but they are not
used by the NeXTstep environment. All code in a
NeXTstep application is part of the class hierarchy,
therefore every function must have a place in the hi-
erarchy. Either a function will be located in a default
location or it will be inserted into the hierarchy by the
programmer, possibly inheriting other functions from
superclasses.

The inheritance can help the security issues. The
security functions can be collected into separate
classes, preferably grouped by some functional classifi-
cation, i.e. access control object, auditing object, etc.
In addition, the methods (messages) in these classes
could not be overwritten. Then all subclasses would
inherit the security properties for the appropriate ac-
tivities. All interaction with the services provided by
the operating system would also automatically get the
security functions.

With security objects there would be three levels of
security abstractions; operating system level protec-
tions, OOGUI level protections, and application level

107

abstractions. When implemented these security ab-
stractions would actually reside in the security objects.
The purpose of these objects would then be three-fold:
to keep the applications from directly accessing sys-
tem level resources, provide all security functions for
the GUI, and to provide a foundation for application
developers to include security in their applications.

3 Future Directions

This type of application level security is essentially
a new paradigm in computer security. The immedi-
ate obstacle is the view influenced by existing security
guidelines. This new view is proposed with as little
bias as possible (towards any security policy). This
presentation does not mean that it cannot support a
DOD style hierarchy, rather this this paradigm sup-
ports a much broader range of options. Regarding the
TCSEC, the main difficulty would be the lack of a sin-
gle coherent trusted computing base. Again, the TC-
SEC view of the world is monolithic operating systems
while some interpretations of the TCSEC [8,9] address
distributed resources, they still rely on the concept of
a single TCB. As distributed security is better under-
stood, the security object will become more feasible.
In particular, the security object appears well suited
to a client server type architecture. The Trusted Mach
project is the only system currently undergoing evalu-
ation that supports anything close to this style of TCB
[5]. T-Mach at least provides a model to work with.
and it would be instructive to map the requirements
of security objects to the services of T-Mach.

A related question is the OOGUT itself. Currently,
NeXTstep is the only OOGUI available, although
other vendors are working on similar products. Ac-
cessing a distributed TCB’s services would require ex-
tensions to the OOGUI The problem arises because of
a difference in philosophy. The methods of the security
objects could not be overwritten. which is counter to
the idea of inheritance. It might even require a mod-
ification to the underlying system since normally the
methods can be overwritten in subclasses. The issue is
more than simply restricting the methods, but in the
semantics of the methods. For example, since the se-
curity methods cannot be overwritten what should be
the desired behavior if a security methods was over-
written by a subclass? An additional factor is that
much of the behavior of this OOGUI is only deter-
mined at runtime. It is possible that the behavior
might not be detected during compilation.

A similar problem exists with the security consid-
erations. The security functions arc not provided by a

monolithic TCB. The functionality is provided by sev-
eral different abstractions. There is a major problem
with analyzing the overall security of such a system.
At the higher levels of assurance, a formal model is re-
quired. If the security functions cannot be sufficiently
described the only recourse might be to model the en-
tire system! This solution is obviously unsatisfactory.
A better solution would be to provide a method for
composing the security functions when they are pro-
vided by different parts of the system. This question is
even more important since most current approaches to
formal security models rely on first order logic, which
is not suitable for extensible domains. As we better
understand composible security functions, we can be-
gin to understand assurance of security objects.

4 Conclusion

We no longer use computers as we did when the TC-
SEC was developed. This is a separate issue from the
complaint about the TCSEC’s focus on the DOD hi-
erarchical security policy. Most users do not have and
do not want system level access to the computer re-
sources. They need to start applications and get work
done. We must move some protections from the oper-
ating system to the applications. A trusted operating
system could provide protections for these new ap-
plications, but it would be more difficult. It would be
easier to place the protections in the application, since
the application can protect those resources it knows it
uses.

The problem then is to provide an environment that
simplifies developing these applications. An object
oriented graphical user interface provides one possi-
ble solution. Incorporating security objects into the
inheritance hierarchy the security protections would
automatically be available to application code. These
security objects would also provide the interface to the
operating system level protections.

Such a radical change in trusted systems has its dif-
ficulties. Not all the necessary tools are in place. Work
is required on composing security features across dif-
ferent parts of the system, understanding distributed
TCBs, and the effects of theses changes on the
OOGULI. Such radical change also has promise. Se-
curity would not be as onerous as it is now. Security
features across applications would be more consistent.
The most important advantage would be that such
security classes would be a major advance towards
providing “plug and play” security in a distributed
architecture.

108

References

[1] L. Chalmers, “An Analysis of the differences Be-
tween the Computer Security Practices in the Mili-
tary and Private Sectors.” Proceedings of the 1986
IEEE Symposium on Security and Privacy, 1986.

[2] D. Clark and D. Wilson, “A Comparison of Com-
mercial and Military Computer Security Policies.”
Proceedings of the 1987 IEEE Symposium on Se-

curity and Privacy, 1987.

P. Neumann, “Rainbows and Arrows: How the Se-
curity Criteria Address Computer Misuse.” Pro-
ceedings of the 13th National Computer Security
Conference, National Computer Security Center,

1990.

(3]

[4] D. Parker, “Restating the Foundation of Informa-
tion Security.” Proceedings of the 14th National
Computer Security Conference, National Com-

puter Security Center, 1991.

E. Sebes, R. Freitag, “Trusted Distributed Com-
puting Using Untrusted Network Software.” Pro-
ceedings of the 14th National Computer Security
Conference, National Computer Security Center,
1991.

(6] D. Sterne, M. Branstad, B. Hubbard, B. Mayer,
and D. Wolcott, “An Analysis of Application spe-
cific Security Policies.” Proceedings of the 14th
National Computer Security Conference. National

Computer Security Center, 1991.

“Trusted
DOD

National Computer Security Center,
Computer System Evaluation Criteria,”
5200.28-STD, 1985.

National Computer Security Center, “Trusted
Database Management System Interpretation.”

NCSC-TG-021 Version-1, 1991.

National Computer Security Center, “Trusted
Network Interpretation.” NCSC-TG-005 Version-
1, 1987.

[10] NeXT Computers, Inc., NeXTstep Concepts,
1990.

