
Application Level Security Using an Object-Oriented Graphical
User Interface

Terry Rooker
DE

Na.val Surface Warfa.re Center Dahlgren Division
Daldgren, Virginia 22407

Abstract

The Trusted Computer Security Eva.lua.tion Crit.e-
ria has become a defacto standxd for securit(y fea-
tures in trusted systems. Unfort,mna,tely, the TCSEC
was formulated at a time when computing was done in
centralized facilities wit.11 low level a.ccess (i.e. opera.t-
ing system access) to the computer. Present comput.er
use is much different. Users a.ccess a.pplica.tions, and
only rely on the operaking syst,em t.0 support the ap-
plication. In this style of computing the a.pplica.tion is
more important for security, yet the TCSEC pla.ces a.11
the responsibility in the opera.ting syst.em. In t,his pa-
per we outline some of the changes required to move
the focus for security from t#he operating syst,em to
the applciation. Since much of t.he application relies
on the user interface, some of this cha.nge must a.lso
address the user interface. By empha.sizing the appli-
cation and interface securit,y can be easier a.nd more
consistent across applications, and different computer
systems.

In the United Stat,es, the primary sta.tement, of com-
puter security has been the DOD Trked Comput.er
Security Eva.luation Criteria [i], bet.ter know11 as t.he
Orange Book or TCSEC. iVuch objection to the TC-
SEC stems from its focus on a. single securit,y policy;
the DOD hierarchical system for protection of classi-
fied information [l-4]. These compla.ints a.re valid but
there is a more fundamental problem with the TCSEC.
That problem stems from the time t,ha.t the TCSEC
was originally developed in the mid to late 1970’s. Our
current view of computing is different from tl1a.t t,ime,
and even if the TCSEC was freed from the st,rict.ly
hierarchical policy it would st,ill not address current,
trends in computer use.

We propose an a.lterna.tive t,o t.lie whole style of pro-
tections provided in the TCSEC, a different. view of
security. In the TCSEC t,he protecl.ions a.re loca.ted
in the operating system. In the new view prot,ect,ions
are distributed between the opera.t.ing system, a.nd the

application. The new view is necessary beca.use t.he
t.rend a.way from syst.ems level operations t.o applica-
t,ions. The syskln proposed here c>sploit.s t.hcse t.rc~lds.
It relies upon t.he abst,ra.ct,ions provitl(Yl by modern ap-
plications and object. orient,ed grapllical user iut.crfaces
to enhance the securit,y t.1~a.t is provided by the oper-
at,ing system.

1 Problem Statement

The concept.ual foundation of the TCSIX lies in
the mid t,o 1a.t.e 19iO’s. The st,yle of comput.ing t.hen
wa.s t,ypically a. Inainframe compo kr wit.11 many t,ermi-
na.1 coiiiiect.ioiis. Specia.lized support personnel would
a.ct,ually 0pera.t.e t.he comput,er and run jobs. Today,
users have a cpu sitt.ing on their desk (in some t.ype
of enclosure wit,11 thr necessary ancilkes). They use
a.pplications which are loaded dir&ly ont,o t,heir local
cpu and then run. These t,wo views must be recon-
ciled.

The emphasis was on t.he operat.ing syst.em aud sys-
t.ems level programs. Even casual coml>utcY users hacl
t.0 have a fairly good uiidcrst~anding of t,lie opt>ra.ting
svst,em. In adtlit.ion, t,here were 1101. many commer-
cially ava.ilable utilities or even applicatiol1 programs.
In this environment. t.he users required low level ac-
cess to t,he system t,o perform t,heir job. If a. cert.ain
utility 1la.d not been writt.en by someone elst’ t.hen t,he
user required the t,ools t,o writ,e his/her own. These
tools were compilers, assemblers, and command lan-
gua.ges (such a. \&IS CObI Jobs or Uz\;IX Script.s).
The comput.er secl1rit.y problem was magnified. since
the low level access required low level securit,y prot,tzc-
t.ions. These low Icvcl 1.001s even aggrava.t.c>tl compllt.el
seci1rit.y coIlcer1Is such as convert. cllani& sinccs 1.k
tools provided access t,o such a varicaty of syst.cm re-
sources t.1ia.t. the number of possible covrrt. channels
was greatly iucreasrd.

01993 ACM O-89791-635-2$1.50 105

Permission to copy without fee all or part of this material is gramed.
pmvided that tbc copies are not made or distributed pr. direct commercial
advantage. ,bc ACM copyright notice and the title of the publication and
its date appear. and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise. or to republish.
requires a fee and/or specific pemdssion.

In the current view, a user has a box on her desk.
She haa a variety of software applications that she uses
to do her job. In many cases such users neither desire
access to, nor care to have access to low level system
primitives. Any necessary access to low level opera-
tions is done for the user by the application.

Such application-oriented operations conflicts with
the TCSEC. The TCSEC treats the system in its en-
tirety. Everything from the user interface to the lowest
level of instruction must be considered when evaluat-
ing/certifying a system. Traditionally, it has been felt
that focusing the protections at the lowest level possi-
ble will make it easier to understand the protections.
For a monolithic system that is completely specified
at its inception, this belief is t,rue. The problem a.rises
when you desire to use a different a.pplica.tion. Since
most applications perform low level opera.tion.9 for t,lie
user, they run afoul of the low level protections unless
they or the system were designed for tha.t operat.ion.
Consequently, it is difficult if not impossible to build
a TCSEC style trusted system that allows simple ex-
ecution of applications.

This is not a fa.iling of the TCSEC. It. is simply
a problem tha.t a.rises beca.use we use comput,ers dif-
ferently now. The question should be whet.her only
low level protections a.re necessa.ry in the new st,yle of
computer use. The problem is aggravated since most,
applications are written with disregard for securit.y.
Granted some applications ha.ve simple password pro-
tections, but in general the only security provided in
any measure is meant to protect against unauthorized
duplication. Some researchers are beginning to un-
derstand that the security prot,ections ca.n be loca.ted
in other parts of the system, such a.s in the a,pplica-
tion [G]. This understanding st,ems from the new st,yle
of computer opera.tion. Unfort.unat,ely, such securit,y
distribution is at odds wibh t.he TCSEC.

2 A Solution

Ideally, a new view of computer securit,y should ex-
ploit the new style of comput.ing. This new style in
some cases helps, for example covert channels would
be less of a threat since fewer syst.em resources would
be accessible. In other ca.ses the new style introduces
new problems, for example composing the a.pplicat.ion
security features with the operat.ing syst,em (and pos-
sible different opera.ting syst.ems). Defining this com-
position will be a. major problem in a.chieving any sen-
sible assurance.

The application view of a. computer has several a.d-
vantages for system securit,y. Probably the most, im-

portant is that only the information necessa.ry for the
task at hand is made available to t.he user. In essence
the application provides a. cont,ext, that the syst.em de-
signer can use t.o restrict, fea.tures. For esample in a.
query database at, any given screen there would only
be certain reasonable types of information necessa.ry.
To provide a specific exa.mple consider an online em-
ployment database. When accessing the personal in-
formation for the applicant, only personal history and
employment informa.tion a.re releva.nt. The employ-
ment history can be used to screen for possible em-
ployment against a job database. At this point., the
pers0na.l history ma.y not (and possibly legally could
not) be relevant. When a. possible ma.tch is found
aga.inst, the job list,ing, informat.ion about. t,he employer
would be relevant.. Ot.her wers might. require access
t.0 unemployment. insurance recorcls, which slioriltl be
unavailable to users only screening for employmeiit~.

The applica.tion provides much of t,his prot,ect,ion.
Notice t1ia.t at any time, access t,o t,he operating sys-
tem was not required by the user. Even if the user
must starl, anot.lier applicat.ion, a.ccess t.0 t.lie operat.-
ing system is not necessary. Either a mast.er a.pplica-
t.ioii can be used t.0 co0rtlina.t.e different. applications.
or t.lie applicat~ions t.hemselvcs can call other applica-
tions. Not. all of t,he prot.cct.ion would resitlc in t.he
a.pplicat.ion. The operat,ing syst,em would be respon-
sible for some of t,lie prot.ect.ions. Ideally, a subset of
the security fea.tures would be ident.ified and t,lie op-
erating syst.em would provide t.liose feat.ures a.cross all
a.pplica.tions. The applica.tions would be responsible
for t.he rema.inder if t,liey were applicable to t.he t.ype
of application.

In t,his view of securit.y the informat.ion displayed
for t.he user is import.ant., which leads to t.he user in-
t,erfa.ce. Much of what. t,lie riser sets’s is a funct.ion of
the user int,erface, and not. (he individual applica.tion.
This is part.icularly t,rue of graphical user int.erfaces
(GIJIs). A GUI is a screen display where t.he physica.
display is divided into windows, familiar examples be-
ing the X-window system, and RIicrosoft.‘s Windows.
Not only a.re inclividua.1 processes and a.pplicat.ions dis-
played as separa.te windows, but much of t,he user in-
t,erface is displayed gra.phically, such as but,tons and
bars for window commands, and icons for files or ap-
plicat,ions. Afucl~ of the securit,y feat.rires discliss4
in t.liis paper are also relevant. t,o non-graphical useI
iiit.erfa.ces (i.e. command line iiiterpret,ers. and evc:ii
ascii-ba.sed menus). The problem is (.hat. Girls are in
such demand t.hat it. is bet.t.er t,o focus t.he discussion
on their fea.tures, bearing in mind l.liat. t,lir solrit.ion
does not require a GTJI.

106

The problem with GUIs is the number of levels of
software between the user and the’kernel. The ab-
stract layers of software are: application, window, win-
dow manager, system software, operating system, and
kernel. Not all GUIs have these layers, and some might
even have more. With this number of layers it is lit-
tle wonder that assurance of such a system is suspect.
Some method is required to reduce the complexity.

Objedt orientation offers some hope of reducing the
problem. Object orientation in general promises to
deliver many of the advantages of soft.ware engineer-
ing. In particular object orientation offers encapsula-
tion, inheritance, and abstraction. A truly integrated
object oriented GUI (OOGUI) might offer even more
advantages.

Currently, the only OOGUI commercially ava.ilable
is the NeXTstep environment [lo], so I will use it a.s au
example. The interfa.ce is structured in a.n Object.ive-
C (the object oriented language used for implement.a-
tion, a mix of Smalltalk and C) cla.ss hierarchy. All
classes are subclasses of the Object class which allows
all objects to share certa.in attribut,es. This sharing
is the inheritance. Any class tl1a.t is defined lower in
the hierarchy than an arbitrary class inherit,s all of
the functions and data structures of that class. Those
subclasses are then free to modify or overwrite the
inherited functions and data stru&ures.

NeXTstep minimizes the GUI complexity issue by
eliminating several of the la.yers. For NeXTst,ep t,he
layers are: application, NeXTstep, Mach kernel. For
compatibility the “tra.dit.iona.l” Unix syst.em ca.lls a.re
implement,ed as calls to the kernel, hut. they are not
used by the NeXTstep environment,. All code in a
NeXTstep application is pa.rt of the cla.ss hierarchy,
therefore every function must ha.ve a. pla.ce in the hi-
erarchy. Either a function will be located in a default
location or it will be inserted into t,he hierarchy by the
programmer, possibly inheriting ot,her functions from
superclasses.

The inheritance can help the securit,y issues. The
security functions can be collect,ed into separate
classes, preferably grouped by some functiona. classifi-
cation, i.e. access control object, audit,ing object, etc.
In addition, the methods (messa,ges) in these cla.sses
could not be overwritten. Then a.11 subclasses would
inherit the security properties for the a.ppropriate ac-
tivities. All interaction with the services provided by
the operating system would also a.ut.oma.t,ica.lly get the
security functions.

With security objects there would be three levels of
security abstractions; operat.ing syst,em level prot,ec-
tions, OOGUI level protect,ions, and applicat,ion level

abstractions. When implemented these security ab-
stractions would actually reside in the security objects.
The purpose of these objects would then be three-fold:
to keep the applicat,ions from directly a.ccessing sys-
tem level resources, provide all security functions for
the GUI, and to provide a foundation for applica.tion
developers to include securit.y in t.heir applicat,ions.

3 Future Directions

This t.ype of application level securit,y is essentially
a new paradigm in computer security. The immedi-
ate obstacle is the view influenced by existing security
guidelines. This new view is proposed with as little
bia.s as possible (towards a.ny securit,y policy). This
presenta.tion does not. mean t,hat. it cannot, support. a
DOD st.yle hirrarchy, rat.her t.his t.his pa.radigm sup-
ports a much broader range of opt.ions. Regarding t.he
TCSEC, the main difficu1t.y would be t.he lack of a sin-
gle coherent. trust.ed comput,ing base. Again, the TC-
SEC view of t.he world is monolit.hic opera.t.ing syst,ems
while some iut.erpretations of the TCSEC [8,9] a.dclress
distribut,ecl resources, they st,ill rely on t,he concept of
a single TCB. As distributed security is bet,ter under-
stood, t,he security object will become more fea.sible.
In particular, t.he security object. appears well suit.ed
to a, client, server t,ype archit.ect%urr. The Trust.ed Mach
project. is t,lie only syst,eni currently undergoing evalu-
a.tiou t,hat. support.s anyt,hiug close to this st.ylc of TC’B
[5]. T-Mach at. 1 cast. provides a. 111otlrl 1.0 work \vit,h,
and it would IMP iust.ruct.ive t.o snap t,he requiren1ent.s
of security object.s to the services of T-Mach.

A relat,ed quest.ion is t.he OOGITI it,self. Currently,
NeXTstep is t,he only OOGUI available, alt,hough
other vendors are working on similar 1)roduct.s. AC-
cessing a. distribut~ed TCB’s services would require es-
tensious to t.he OOGUI. The problem a.rises because of
a difference in philosophy. The met.hotls of t.he securit,y
object,s could not. be overwrit,ten. which is count,er t.0
the idea of iuherit.ance. It, might. even require a niod-
ification to the underlying syst,en~ since normally t.he
methods can be overwrit,ten in subclasses. The: issue is
more t.1ia.n simply rest,rict,ing t.lie methods. but. in the
semantics of the methods. For example, since the se-
curity met.hods cannot be overwrit t,en what, should be
t,he desired behavior if a securit,y met,hods wa.s over-
writ,ten by a subcla.ss? An a.clclit.ional fact.or is t.1ia.t
much of the bfalia.vior of t,liis OOGITI is only det,er-
mined at runtime. It. is possil>lf> that. t.he behavior
might, not be tlrt.ect.ed during compilation.

A similar problem es& with ll~e scxcurity consitl-
erat.ious. The securily fuuct ions a~‘(‘ llot provided 1)~ a

107

monolithic TCB. The functionality is provided by sev-
eral different abstractions. There is a major problem
with analyzing the overall securit,y of such a system.
At the higher levels of assurance, a formal model is re-
quired. If the security functions cannot be sufficiently
described the only recourse might be to model the en-
tire system! This solution is obviously unsa.tisfactory.
A better solution would be to provide a method for
composing the security functions when they are pro-
vided by different parts of the system. This question is
even more important since most current approaches to
formal security models rely on first order logic, which
is not suitable for extensible domains. As we better
understand composible security functions, we can be-
gin to understand assurance of security objects.

4 Conclusion

We no longer use computers as we did when the TC-
SEC was developed. This is a sepamte issue from the
complaint about the TCSEC’s focus on the DOD hi-
erarchical security policy. Most users do not have and
do not want system level a.ccess to t,he computer re-
sources. They need to start a.pplica.tions a.nd get work
done. We must move some prot,ections from the oper-
ating system to the applica.tions. A trust,ed operating
system could provide protections for t,hese new ap-
plications, but it would be more difficult. It would be
easier to place the protections in t,lie a.pplication, since
the application can protect those resources it knows it
uses.

The problem then is to provide an environment, tl1a.t
simplifies developing these a.pplications. An object
oriented graphical user int,erface provides one possi-
ble solution. Incorpora.ting security objects into the
inheritance hierarchy the security prot,ect,ions would
automatically be availa.ble t,o a.pplicat.ion code. These
security objects would also provide t.he int,erfa.ce to t.he
operating system level protections.

Such a radical change in trusted systems has its dif-
ficulties. Not all the necessary tools are in place. Work
is required on composing security features across dif-
ferent parts of the system, understanding dist.ribut,ed
TCBs, and the effects of theses cha.nges on the
OOGUI. Such radical change also has promise. Se-
curity would not be as onerous as it is now. Security
features across applications would be more consistent..
The most important adva.ntage would be t1la.t such
security classes would be a major advance towa.rds
providing “plug and play” security in a distribut,ed
architecture.

References

PI

PI

PI

PI

PI

WI

[:I

PI

PI

L. Chalmers, “An Ana.lysis of t,he differences Be-
tween the Computer Security Pract,ices in t,he Mili-
tary and Privat,e Sectors.” Proceedings of t.he 1986
IEEE Symposium on Securit.y and Privacy, 1986.

D. Clark and D. Wilson, “A Comparison of Com-
mercial and Military Computer Security Policies.”
Proceedings of the 1987 IEEE Symposium on Se-
curity and Privacy, 1987.

P. Neumann, “Rainbows and Arrows: How the Se-
curity Criteria Address Computer Misuse.” Pro-
ceedings of the 13th Na.tional Computer Security
Conference, Nat.ioiial Comput.er Security Center,
1990.

D. Parker, “Rest,ating t,he Fouudat.ion of Informa-
tion Securit,y.” Proceedings of the 14th Na,tiona.l
Computer Securit.y Conference, Nat.iona.1 Com-
puter Securit,y Center, 1991.

E. Sebes, R. Freitag, “Trusted Dist,ribut.ed Com-
puting Using Unt,rust,ed Network Soft,wa.re.” Pro-
ceedings of t,he 14t,h Na.tional Comput,er Security
Conference, Nat,iona.l Comput,er Securit.\- Cent,er.
1991.

D. St.erne, RI. Branst.ad, B. Hubl~ard. 13. Mayer,
and D. Wolcot,t.. “An Ana.lysis of Applica.tion spe-
cific Securit.y Policies.” Proceedings of t.lie 14t.b
Na.tional Comput.er Securit.y Conference. Nat ioua.1
Comput,er Seci1rit.y Cent.er, 1991 .

Na.tiona.1 Comput,er Security Cent.er, “Trust,ed
Computer Syst,em Evalua.t.ion C’rit.eria,” DOD
.5’200.28-STD 198.5. 7 -

Nati0na.l Comput,er Sec1lrit.y C’ent,cr. “Trustccl
Da.tabase Rlanagement. System Ill(c~lprel.at.ioi~.”
NCSC-TG-021 Version- 1, 199 1.

Na,tional Computer Securit,y Cent.er, “Trusted
Network Int.erpretation.” NCSC-TC-00.5 \‘ersion-
1, 1987.

[lo] NeXT Computers, Inc., NeSTst.rp Concept,s.
1990.

108

