The No-Policy Paradigm: Towards a Policy-Free Protocol
Supporting a Secure X Window System

Mark Smith
AT&T Bell Laboratories
Guilford Center
Greensboro, North Carolina 27420

Abstract

This paper proposes a framework for a secure, inter-
operable X Window System* protocol. It reintroduces
the concept of a policy-free protocol within the context
of the X Window System with the goal of achieving
industry consensus on that protocol for secure oper-
ation. We claim that this consensus can be achieved
without requiring vendors to agree on a single stan-
dard security policy, much less agreeing on a particu-
lar implementation of a security policy. A policy-free
protocol framework and its impact on X Window ap-
plications is proposed. The relevance of this frame-
work to other trusted systems is explored.

1 Introduction

The problem of constructing a secure X Window
system has been treated in several prior accounts [2,
4, 6, 11]. Epstein [4] in particular contains a break-
down of the secure X Window problem by problem
area (e.g., mandatory access control, discretionary ac-
cess control, object reuse) and by level of trust (e.g.,
B1 trust, Compartmented Mode Workstation trust,
B3 trust). These treatments hint at the problem of
creating a secure interoperable X. In order for any X
Window system to be consistent with X’s original de-
sign goals, it must be interoperable. That is, it must
be possible for the user to run an X Window client
from any machine on the network where the X Server
runs, independent of the hardware architecture of the
machine the client is running on. See Figure 1 for a
possible X Window topology.

Interoperability is attained through the specifica-
tion of a standard X protocol as defined by the MIT
X Consortium. As vendors gain more experience with

*The X Window System is a trademark of the Massachusetts
Institute of Technology.

©1993 ACM 0-89791-635-2 $1.50

109

X and desire additional X capabilities, the standard
evolves. There is a facility called extension that allows
a vendor to “burn in” novel X protocol extensions.
These vendor-specific extensions may be reviewed by
the MIT X Consortium for eventual inclusion into a
new X standard. When an extension is approved and
included in the X Window standard, the facilities it
provides become effectively interoperable. The MIT
X Consortium also includes in its “sample server” a
set of extensions which are not yet in the standard
but which are deemed to be of sufficient value to war-
rant inclusion. A vendor need not {and sometimes
does not) pass on the MIT sample server verbatim to
its customers.
lect or reject any extensions it receives from the MIT
sample server. An extension thus becomes eflectively
interoperable if all vendors choose to include it in their
delivered X Servers.

There are two problems with X Window security
extensions.

Instead. a vendor may clioose to se-

I. The MIT X Consortium has historically included
only the most mininial notion of access control in
its X protocol standard.

2. Several vendors have added access control exten-
sions to the X protocol. These extensions are not
interoperable; moreover, they do not necessarily
reflect the same security policy.

We propose a framework for the creation of a single
X protocol extension that is capable of supporting all
the security features, attributes and policies that ven-
dors (and their customers) desire. Industry consensus
on a protocol fitting this framework would yicld an X
Window extension, leading eventually to an interop-
erable secure X Window system.

The proposal defines separable policy-frce and
policy-defining subsystems. This rearchitecture of
security-providing facilities is similar to that proposed

Permission to copy without fee all or part of this material is granted,
provided that the copics arc not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
i;s date appear, and notice _15. gil/cn that copying is by permission of the

for Computing inery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

machine t
vendor A

I client 4|

machine 2
vandor B

Network

graphic
display

machine 3

vendor C

Figure 1: An X window topology

in [1], [3] and suggested by [12]. In particular, [1] sug-
gests a policy-free mechanism for access control with
architectural advantages similar to those of our pro-
posal. Perhaps more relevant is the fact that X was
originally designed based on the principle of a policy-
free protocol [7]. X is window management policy-free,
allowing vendors the freedom to design and develop X
window managers however they see fit. Though there
has been some criticism of policy-free protocols for use
in a graphical system, they have the distinct advan-
tage of allowing vendors to standardize on relatively
non-controversial, mechanistic protocols, rather than
on much more controversial window management poli-
cies, for example.

Experience has shown that similar difficulties exist
when vendors attempt to standardize on a particu-
lar protocol supporting security attributes or policies.
Even in cases where vendors agree on the security pol-
icy (e.g., the Compartmented Mode Workstation pol-
icy), they do not necessarily agree upon the protocol,
since security policies can be implemented using vari-
ous techniques (e.g., separation vs. fine grained access
control) and typically these techniques impact the pro-
tocol. Furthermore, certain aspects of “standard” se-
curity policies may be left to the interpretation of the
vendor and the accrediting body, and different “sub-
policies” may be allowable under the standard (for
example, access control lists are optional for the Com-
partmented Mode Workstation). Finally, a single ven-
dor may desire to support a customer base demanding
different security policies.

What is desired therefore is a protocol that passes
two tests: (1) it must allow the vendor to use what-
ever technique the vendor desires to implement the
security policy, and (2) it must allow implementation
of the security policy of the vendor’s choice. It is also
highly desirable that the protocol minimally impact

110

the performance of the system. We claim that only
a protocol passing these tests has a chance to attain
vendor consensus leading to interoperability.

A framework for creating such a policy-free proto-
col is proposed in the following section. The protocol’s
impact on the X Server and policy-defining X clients
are explored, followed by a summary of the expected
impact on the embedded base of X Window clients
(referred to as the COTS, or commercial off the shelf,
client base). Finally, a generalization of the archi-
tectural principle of policy-free interfaces supporting
security policies is discussed.

Throughout this paper, the term “X" refers to the
MIT X Window System, “CMW?" refers to the Com-
partmented Mode Workstation. and "ACI" refers to
Access Control Information.

2 Proposed Protocol Framework
2.1 Protocol Overview

The attempt to specify a protocol supporting var-
ious security policies and implementations thereof is
similar to the functional decomposition methodology
of an object-oriented system, or more particularly that
of a strongly typed system. This decomposition is thus
similar to the one described by LOCK [10], which spec-
ifies security policy based on object and subject type
rules.

In particular, “subjects” and “objects” should be
type-classified in a policy-free protocol in order to sup-
port a large class of labeling security policies. llow-
ever, such a classification is not sufficient to specify
very fine-grained policies that make use of object ac-
cess control lists, or subject capabilities [12]. There-
fore, for the protocol to be sulficiently general. it

must also include the ability to identify ACI on a per-
subject or per-object basis.

There are other issues to consider besides what
might be called ”pure” access control. The protocol
must not preclude the construction of a secure infras-
tructure capable of being accredited. Such an infras-
tructure must pass certain integrity tests; for example,
a change to an object’s ACI cannot be made while it is
being accessed (the tranquility property). Also, provi-
sion must be made for trusted paths, so that X clients
doing trusted I/O have provably unspoofable access to
the physical display, and so that the X Server has un-
spoofable access to trusted policy-cognizant X clients.
Other infrastructure requirements will be introduced
in the following sections as well.

2.2 Architecture

The key aspect of the architecture shown in Figure
2 is the construction of a policy-defining client (PDC),
providing the basic Access Control Decision Function
(ADF) as defined in (3] and [12]; the X Server, in
nearly all cases, provides the analogous Access Control
Enforcement Function (AEF). Note that the PDC has
the same client/server relationship to the X Server as
any other client; it can be similarly relocated to any
machine on the network.

In addition to the server/client relationship, the
network over which the X Server, PDC, and other
X clients communicate must provide certain authen-
tication capabilities. In particular, it must not allow
an untrusted application to spoof the PDC, and it
must allow the PDC to authenticate any other client.
This particular requirement also implies that the tra-
ditional meaning of “X client” must be strengthened:
historically, “X client” has meant “a connection to the
X Server.” In theory, the X protocol allows more than
one process to communicate on a single connection
to the X Server, although in practice this capability
has not been widely used. In order for the PDC to
authenticate a client, it must assume that a client is
a subject, and therefore there can only be a single
identifiable client on a connection. The network must
provide a way to restrict access to a connection in the
required manner.

2.3 Proposed Mechanisms

The framework for the policy-free protocol will be
summarized by high-level functions enumerated be-
low. These functions can be considered at the logical
level of the Xlib interface [8], and similarly, each one

111

would correspond to a particular protocol request or
event.t

2.3.1 Access Control Mechanisms (including
cut and paste)

The proposed framework implies that the X Server
assume the role of Access Control Enforcement Func-
tion (AEF) and that the PDC be the Access Control
Decision Function (ADF). Basically this means that
the X Server sends an event when a subject attempts
to access an object, and that the PDC replies with a
request indicating (1) whether the access was granted,
and (2) if not, what error condition is represented by
the access denial.

This separation of duty allows a clean implemen-
tation of mediated policies. The most well-known of
this class of policies is the CMW cut and paste pol-
icy. In this policy, when a subject attempts to paste
previously cut data into a target window whose secu-
rity classification differs from that of the source win-
dow, an interactive window session is required before
the paste operation can complete. This interaction re-
minds the user of the source and target window classi-
fications and asks the user to verify the reclassification.
Such an interaction can be handled cleanly and with-
out race conditions if the PDC initiates the interactive
verification session upon receiving the appropriate ac-
cess control request. Other interesting mediation poli-
cies can be similarly implemented.

The separation of duty also allows a straightforward
implementation of floating information labels as spec-
ified by the CMW requirements. In particular, the
PDC can implement the policy whereby a successful
“read” access to a particular object by a particular
subject results in a change to the ACI of the subject,
based on the relationship between the client’s current
ACI and the newly accessed object’s ACIL.

The following mechanisms are sufficient to imple-
ment access control:

¢ RequestAccess(entityID. entityType. cli-
entID, accessMethod) event. The X Server
sends this “event” (really a request) to the PDC
whenever a subject (specified by clientID at-
tempts to access an entity! (specified by enti-

tA request is a protocol message from an X client to the X
Server; an event or response is a protocol message from the X
Serverto an X client. The X protocolis asyuchronous; the result
of a failed request is typically an error response. Note that a
protocol message is classified as a request or as an event based
solely on whether it is input to or output from the X Server.

! An entity is a subject or an object.

machine 1
vendor A

machine 2
vendor B

Secure
Network

graphic
display

machine 3
vendor C

Figure 2: An X window topology with a policy-defining client

tyID). The X Server also sends the entity’s type
(entityType).

Entities in the X Server must be classified by type
in order to take advantage of type-based policies.
The decomposition of X Windows entities into
types has been treated elsewhere (e.g., [2]) and
is outside the scope of this paper. We general-
ize the usual object decomposition somewhat by
allowing the definition of subject access policies.
This is necessary in order to implement a gener-
alized form of privilege described later.

¢ AccessAnswer(yesno) request. This “re-
quest” (really a reply) is the PDC’s reply to the
RequestAccess() policy question. yesno con-
tains the answer, either ‘yes’ or an error return
defining what the access denial policy is for this
particular access request.

Note that the PDC need not send an immediate
AccessAnswer() reply upon receipt of a Reques-
tAccess(). Rather, as described above, it can imple-
ment a mediation policy on the access, or even delay
the request to throttle a covert channel, before reply-
ing.

A RequestAccess() might also signal the PDC to
create a new access control binding. For example, the
successful attempt to create a new object would typi-
cally cause the PDC to synthesize new ACI (perhaps
from the subject’s ACI) to be bound to the object.

2.3.2 Access Control Information Binding
Mechanisms

There must be a way for X to bind ACI to subjects
and objects. In order for the protocol to remain policy-
free, this ACI must be uninterpreted by the X Server.

112

The protocol should therefore provide only a transport
mechanism and binding semantics for ACI.

An important consideration is the location of the
bindings between entities and ACI. These bindings
should be stored in the PDC, since it must be able
to make access decisions based on current bindings.
If the X Server stored the bindings, it would have to
verify the validity of every AccessAnswer() request
by checking the existence of the accessed object.

The ACT binding may be rather static (e.g.. Bell-
LaPadula mandatory access) or may be rather dy-
namic (e.g., CMW subject floating information labels
or object ACLs). The potential for dynamism requires
that the binding mechanisms be as general as possible,
allowing the PDC fine-grained control over the ACI.

The following mechanisms are sufficient to imple-
nient ACI binding policies:

¢ BindClient ACI(clientID, client ACI) event.
The X Server sends this event to the PDC. The
event contains the handle of a client (a clien-
tID) that just connected to the X Server, and the
ACI of this client as reported from the network.
Thus, a network supporting a secure X Window
systermn must be able to provide this service; his-
torically, similar services have been proposed for
secure network services such as MAXSIX [13].
The PDC binds the clientACI to the client de-
noted by clientID.¥

§In general, any secure distributed system must include a
networked identification and authentication service; otherwise a
remote trusted server cannot enforce policy. A formal definition
of this network service is not an X interoperability issue and is
beyond the scope of this paper.

1 The format of the client ACI should be general enough to
handle all types of access control information in a machine-
independent fashion. The formal specification of this format
should be defined by a standards body and will not be further
explored here.

¢ BindObjectACI(objectID, objectACI)
event. This event is similar to BindClient ACI()
and requires that the PDC bind the access control
information to a particular X Server object. It is
expected that this event is the result of a privi-
leged client’s desire to change the ACI of a par-
ticular object (see the “Policy emulation mecha-
nisms” section below).

The PDC is also capable of binding object ACI
unprompted; for example, as a side effect of a
successful RequestAccess() event requesting a
new object be created. In that case, a reasonable
policy would be that the newly created object is
bound to ACI derived from the creating client’s
bound ACI.

2.3.3 Privilege Assertion Mechanisms

There are two general classes of privilege which are
relevant to the protocol framework. First, there are
subject privileges which are used by the PDC in order
for it to implement windowing security policy. Many
vendors desire to define fine-grained privilege policies
which allow clients the right to enable and disable their
own current privilege set (privilege bracketing: see [4]).
The following mechanism is sufficient to allow in-band
(that is, X protocol) privilege bracketing:

¢ BindClientACI(clientACI) request. This
request has syntax similar to the Bind-
ClientACI() event described above. In this

case, the client requests that its privilege set be
changed as specified by the clientACI. The X
Server forwards this request to the PDC using
the BindClientACI() event. The PDC defines
a policy which decides whether to honor the ACI
(privilege) change request, presumably based on
the ACI already bound to the requesting client.

Note that it is possible for the PDC to grant fine-
grained policy-defining privileges to other clients as it
sees fit using only the mechanisms supporting this first
class of privilege.l

lOne possible use of this mechanism would be to support a
complex privilege-bracketed information labeling scheme. For
example, a vendor may wish to implement a policy whereby
the rterm terminal emulator will change the visible information
label in a window based on the information in that window.
One way to implement this policy is as follows: (1) zterm is
granted the “create TCB-private window” and “change privilege
to write to TCB-private window” privileges by the secure OS;
(2) the zterm is bound to these privileges when it connects to
the X Server; (3) wterm creates a TCB-private label window,
which the PDC allows; (4) when it notices that it must write

113

The second class of privilege is the class of policy-
defining privileges, in particular, the privilege to be a
policy-defining client. A mechanism must exist allow-
ing the PDC to declare itself as a PDC to the X Server.
The following mechanism is sufficient to support the
policy-defining privilege:

¢ AssertPrivilege() request. This request simply
informs the X Server that the requesting client
wishes to be the PDC. The first client request-
ing the privilege is granted the privilege. If the
request is not granted, the requesting client re-
ceives a failure notification.

It is required that the underlying secure operating
system provide a trusted path and trusted startup se-
mantics so that the PDC is guaranteed to be the first X
client to send this request. (One possible implementa-
tion of this trusted path would be for the UNIX logm
program to start up the PDC. which would in turn
start up the X Server and send it the AssertPrivi-
lege() request. Should a spoofing PDC intercede. the
trusted PDC would receive a failure notification and
would be able to terminate the session and audit the
spoof. Since the real PDC is using an underlying net-
work trusted path, it can trust that the reply from the
AssertPrivilege() is genuine.)

2.3.4 Policy Cognizance Mechanisms

There needs to exist mechanisms whereby a client can
be cognizani of the policy that PDC defines. An ex-
ample of such a client would be a gadgct manager,
where a gadgel is an object defined by the client (and
whose type is not known by the X Server). A client
may define a gadget such that it emulates an X Win-
dow, for example. Such a client would need to know
what window policy is being defined by the PDC in
order for it to emulate the same policy for the objects
it defines.

The mechanisms to support this cognizance capa-
bility are basically extensions of mechanisms already
defined. These mechanisms are as follows:

e RequestAccess(entityType. entityACI,
client ACI, accessMecthod) request. This re-
quest has syntax similar to the RequestAc-
cess() event described previously. In this case,

an information label, rterm requests that it be given the right
to write into the TCB-private area and the PDC grants the
privilege; (5) zferm writes the new information label into the
TCB-private window, which the PDC allows: and (8) rterm
relinquishes its right to write into the TCB-private window.
It is worth noting that the X Server was never aware of the
semantics of either of the privileges used in this scenario.

however, the policy cognizant client sends the re-
quest to the X Server, which forwards it to the
PDC. The PDC then sends the reply back to the
X Server as defined above. Note that the policy
cognizant client must specify the type and ACI of
the accessed entity, and the type of the accessing
client, in order to find out what policy the PDC
enforces.

e AccessAnswer(yesno) event. When the X
Server receives the answer from the PDC, it for-
wards it back to the emulating client as an event.

e GetACI(entityID) request. The policy cog-
nizant client requests that the ACI bound to en-
tityID be returned to it. The X Server forwards
the request to the PDC. It is expected that the
PDC will require that the requesting client pass
access control checks before it returns the bound

ACL

e BoundACI(entityACI) event. The entity-
ACI is returned to the requesting client; or if the
PDC disallows the request, null ACI is returned.

¢ BindObject ACI(objectID, objectACI) re-
quest. This request allows the policy cognizant
client to request that the PDC bind new object
ACI to the specified object. It is expected that
the PDC will require that the policy cognizant
client possess an appropriate privilege.

The X Server is required to mark the AccessAn-
swer() and BoundACI() events with a tag indicat-
ing that the answer is genuine; otherwise a malicious
client could use the generic X Window event mecha-
nisms to spoof the PDC.

These mechanisms provide a simple method for a
client to find out what policy the PDC is defining. For
simple policies (e.g., strict MAC with a few labels),
this method is sufficient; for more complex policies, it
may be necessary for the policy defining client to make
assumptions about the PDC policy. The problem is
analogous to the problem of a client that wishes to be
cognizant of the window management policy; in that
case, the X Protocol also provides only basic informa-
tion about the policy and a client needing to know
more would have to make assumptions based on the
documentation describing the window manager.

2.4 Backward Compatibility

It is important for an X Server implementing the
above mechanisms to maintain a backward compatibil-
ity mode so that customers can choose to enable or

114

disable the security policy as desired. The backward
compatibility mode is simple in this case: if no client
declares itself as a PDC, the X Server will not issue
any RequestAccess() events, and the server will im-
plement its original policy. Also, should a policy cog-
nizant client issue a Request Access() or GetACI()
request, the X Server will always return an Acces-
sAnswer() yes or BoundACI() null, respectively.
This retains interoperability in backward compatible
mode.

2.5 Security through Encapsulation or
Separation

Several vendors have attempted to implement secu-
rity policy by encapsulation or separation, whereby the
X Server runs untrusted. In an encapsulation architec-
ture, there is typically a small, trusted X Server emu-
lator which handles a limited set of trusted windowing
operations [4]. Alternatively, for the separation archi-
tecture, a secure network and trusted X clients could
be configured to implement secure windowing policy,
without the need to implement a multilevel X Server.

These architectures can be made interoperable by
defining a simple PDC that emulates the original X
Window policy by giving a "yes” answer to any pol-
icy questions. (A PDC must be defined; otherwise,
another client could spoof the PDC simply by doing
an AssertPrivilege() request.) In general, encap-
sulation or separation architectures are defining vir-
tual machines, where individual clients (even security-
cognizant ones) should not be aware of the underlying
window security policy.

2.6 Performance

The proposed protocol framework has performance
implications. In particular, nearly every X Win-
dow request will cause the generation of one or
more RequestAccess()/AccessAnswer() transac-
This potential performance problem can be
solved or mitigated in several ways.

The first way is by taking advantage of local config-
urations. Typically, a machine supporting the X Win-
dow System also supports an in-memory local client
connection facility, whereby clients running on the
same machine as the X Server communicate via shared
memory. If the X Server and the PDC are on the same
machine, the RequestAccess() overhead should be
considerably lessened.

The second way, which is an extension of the first,
is for X terminals to support the proposed protocol.™”

tions.

**The possibility of this happening is largely predicated upon

Typically, X terminals provide enough memory for
some clients to reside in the terminal firmware along
with the X Server. X terminals also often provide
downloading capabilities. Such capabilities could be
used to create an X terminal-local configuration simi-
lar to the first method above. In this case, the perfor-
mance should be even better, because the X terminal
is dedicated to X Window operations.

The third way is for the X Server to provide an ac-
cess decision cacheing facility, where the PDC’s prior
decisions are remembered by the server for later de-
cisions. It is expected that many RequestAccess()s
will be identical (or at least that the relevant ACI will
be identical for many RequestAccess()s), so there
would be a high cache hit ratio over the lifetime of an
X Window invocation.

While it is possible to define a reasonable cacheing
scheme to take advantage of these properties, it is
not yet clear if it is really necessary. Such a scheme
would complicate the protocol’t, and in order for the
scheme to be interoperable, This complication would
have to include, among other things, a cache flushing
mechanism to allow the implementation of time-based
policies such as RELEASEABLE AT jtime;-see [3].
vendors would have to agree on a particular cacheing
protocol, perhaps before the problem is completely un-
derstood. For these reasons, we have chosen not to
include a cacheing scheme in the proposed framework.

The fourth way is to implement the PDC not as a
separate client but as a dynamically loadable library
linked to the X Server. This method has been proto-
typed by the author, using library procedure calls in
place of protocol transactions between the X Server
and PDC, as a basic proof of concept of the proto-
col interface and as a simple performance modeling
mechanism. The prototype implemented a very sim-
ple DAC policy. It did not contain the policy cog-
nizance mechanisms. The prototype confirmed that
many RequestAccess()/AccessAnswer() transac-
tions occur in the startup phase of the X clients from
the standard MIT distribution. However, after this
small initial delay, no other delays based on this sim-
ple policy were noticeable. More performance model-
ing must be done with more complex policies before
the mechanisms can be deemed practical.

the protocol being standardized by the MIT X Consortium as
described earlier.

11 This complication would have to include, among other
things, a cache flushing mechanism to allow the implementation
of time-based policies such as RELEASEABLE AT <time>—
see [3].

115

3 Implications for X Server and Policy
Defining Client

The proposed framework makes certain assump-
tions about the behavior of the X Server and the PDC.

First, the framework does not indicate what, if any,
steps should be taken by the X Server or the PDC to
alleviate denial of service attacks. For example, the
framework does not dictate that only trusted clients
be able to use the XGrabServer() request; XGrab-
Server() tells the server to listen only to the client is-
suing the request until further notice. There are many
other ways that a malicious client could degrade ser-
vice through normal X Window requests. For the pro-
posed framework, the X Server should be able to trans-
late at least some of these denial of service problems
into access requests that the PDC can act upon. For
the example above, one reasonable solution would be
for the X Server to define a SERVER object type and
to issue a RequestAccess() requesting WRITE ac-
cess to that SERVER object for the requesting client.
The PDC can then decide if it should restrict access
to this particular operation.

To generalize somewhat, the proposed framework
assumes that the decomposition of the X Server into
objects, object types, and access methods be done in
such a way that all reasonable policies can be imple-
mented. It is not clear by which criterion one should
classify policies as reasonable; however, experience
with existing secure X Window system models should
be very helpful in this regard. One possible difficulty
here is the creation of an X Server that is cognizant of
the relationship between requests and events so that
covert channels can be treated as access requests.t

A further assumption is that the infrastructure (the
secure OS and the secure network) provide facilities
that do not compromise the security policies defined
by the PDC. For example, there must be a trusted
path to the PDC so that another client cannot spoof
it. Also, the X Server must not allow access to an
object when that object’s ACI is being bound (the
tranquility property). Finally, there must be a trusted
path between the X Server and the physical display to
preserve the integrity of any security relevant output
(e.g., visible labels) or security relevant input (e.g.. a
security marking created at the user’s discretion).

HEpstein [4] notes that the most difficult of the covert chan-
nels is the window exposure problem whereby one client can
signal another client through the exposure of a previously cov-
ered window. The X Server must have a RequestAccess()
strategically placed so that the PDC can determine the ACI
of the exposing client and of the exposed window. and make a
decision based on their relationship.

It is important to note that the implementation
of the proposed framework alone is not sufficient for
the X Window System to be certifiable past Bl or
B1/CMW. A modular restructuring and covert chan-
nel analysis of the X Server, or possibly the imple-
mentation of an encapsulation or separalion trusted
X architecture as previously described, would also be
necessary preconditions for B2 or B3 certifiability.

4 Implications for X Window System
Embedded Base

A major advantage of a policy-free interface to the
X Server is that the vendor can decide what impact
the security policy will have on the embedded COTS
client base. For example, the vendor may choose to
implement a restricted form of the ss-property by mak-
ing all objects invisible to a client unless their MAC
labels are equal. Such a policy would tend to be use-
ful in a system where the customer site is interested
in strict separation of labeled data; however, such a
policy has an impact on administrative COTS clients
such as zlswins that is different from the impact of a
“read down” policy.

Often, the vendor will be choosing between defining
apolicy that reports that an access failure is due to the
nonexistence of an object, and a policy that reports
that the failure is due to a security violation. The ven-
dor also has the opportunity to construct clever sub-
policies such as (for example) defining certain objects
as public, in order to provide greater compatibility
with a particular COTS client.

The vendor can also make use of sophisticated poli-
cies in the attempt to provide compatibility. For ex-
ample, a vendor willing to analyze the behavior of a
particular COTS client might write a PDC defining
a particular privilege that allows the client to access
data that the invoking subject could not.

5 Implications for Other Trusted Sys-
tems

It has been noted [2] that the historical absence of
a security policy has hampered the effort of reaching
a consensus on a secure X Window system, largely
because vendors have tailored the X protocol to pro-
vide the level of security and compatibility that they
thought necessary. However, it is also true that the
absence of a standard protocol has allowed vendors to
explore many implementation possibilities, and in so

116

doing there are now a set of de facto requirements for
the support of various policies and implementations
in any standard. From this point of view, the X Win-
dow system is in a superior position relative to other
systems with premature de facto standard policy in-
terfaces. Probably the best example of a premature
policy standard is the UNIX discretionary access con-
trol policy and implementation, which (1) cannot be
changed, and (2) cannot be described in fewer than
ten complex rules(!).

It is much easier to add (re-engineer) a new policy
interface than it is to change (reverse engineer) an ex-
isting one. The reverse engineering problem is that the
goals of security (requiring a clear formulation) and
compatibility (requiring no change to an old, unclear
formulation) are at odds. This in turn implies that
a rearchitecture of an existing system such as UNIX
along the lines of the proposed framework would be
problematic at best. The problem has been faced by
the ORGCON prototype project [3] (among others):
in that case, architectural purity was sacrificed for ex-
pediency.

For newer trusted systems, the methodology im-
plied by the proposed framework has general appli-
cability. Specifically, the trusted system designer is
forced to face the following question: Given a target
policy problem space, what is the simplest and best-
performing mechanism that can be built that will sup-
port the entire policy problem space? It has often hap-
pened that the general applicability of a trusted sys-
tem is not realized until it is fielded and new security
requirements are generated based on field experience.
The separation and decomposition methods described
above would be a hedge against this eventuality.

6 Conclusions

By abstracting the security policy decision-making
function away from the policy enforcement function,
a simple, mechanistic interface will often become ap-
parent. Such an interface has the potential of being
both non-confroversial and extensible to a large class
of security policies.

We examined the effects of constructing such an in-
terface for the X Window System, whose very reason
for existence is to support a large, distributed, het-
erogeneous, open, and evolving graphical user inter-
face environment. The approach appears to he most
promising in systems with those qualities; the appli-
cability of the approach is less evident in systems that
are relatively small, monolithic. proprietary. or un-
changing over time.

References

[1] Grenier, G., R. C. Holt, and M. Funkenhauser,
Policy vs Mechanism in the Secure Tunis Operat-
ing System, IEFE, p. 84, 1989.

[2] Faden, G., Reconciling CMW Requirements with

Those of X11 Applications, Proceedings of the 14th

National Computer Security Conference, Washing-

ton, D.C., October 1-4, 1991.

Abrams, M. et al, Generalized Framework for Ac-
cess Control: Towards Prototyping the ORGCON
Policy, Proceedings of the 14th National Compuler
Security Conference, Washington, D.C., October
1-4, 1991.

Epstein, J. and J. Picciotto, Trusting X: Issues in
Building Trusted X Window Systems or What’s
not Trusted About X7, Proceedings of the 14th
National Computer Security Conference, Washing-
ton, D.C., October 1-4, 1991.

[5] Rosenthal, D., LINX-a Less INsecure X server,
Sun Microsystems, April 1989.

[6] Picciotto, J., Trusted X Window System, MTP
288, The MITRE Corporation, February 1990.

[7] Scheifler, R. and J. Gettys, X' Window System,
Digital Press, 1990.

[8] Gettys, J., R. Scheifler, and R. Newman, Xlib—The
C Language X Interface, Silicon Press, 1989.

[9] Graubart, R., J. Berger, and J. Woodward, Com-
partmented Mode Workstation Evaluation Crite-
ria, Version 1 (Final), DIA Directorate for Infor-
mation Services, 1991.

{10] O’Brien, R. and C. Rogers, Developing Applica-
tions on LOCK, Proceedings of the 1{th National
Computer Security Conference, Washington, D.C|
October 1-4, 1991.

[11] Carson, M. et al., Secure Window Systems for
UNIX, Proceedings of the 1989 Winier USENIX
Technical Conference, San Diego, CA, Jan 30-Feb
3, 1989.

[12] Access Control Framework, CD10181-3,1SO/IEC
JTC 1/SC 21 N6188, June 24, 1991.

[13] Department of Defense, Department of Defense
Trusted Compuler System FEvaluation Crierza,
DoD 5200.28-STD, December 1985,

117

[14] DNSIX 3.0 Architectural Overview, Rev 1, Se-
cureWare, April 1992.

