
The No-Policy Paradigm: Towards a Policy-Free Protocol
Supporting a Secure X Window System

Mark Smith
AT&T Bell Laboratories

Guilford Center
Greensboro, North Carolina 27420

Abstract

This pa.per proposes a fra.mework for a. secure, inter-
operable X Window System* prot,ocol. It reint.roduces
the concept of a policy-free protocol within the contest
of the X Window System with the goa. of a.chieving
industry consensus on that prot,ocol for secure oper-
ation. We claim that this consensus can be a,chieved
without requiring vendors to a.gree on a. single sta.n-
dard security policy, much less a.greeing on a. part.icu-
lar implementation of a. securit.y policy. A policy-free
protocol framework a.nd it.s impact on X Window ap-
plications is proposed. The relevance of t.his fra.me-
work to other trusted syst,ems is explored.

1 Introduction

The problem of constructing a secure X Window
system has been treated in severa. prior account,s [2,
4, 6, 111. Epstein [4] in pa,rticula.r cont,ains a break-
down of the secure X Window problem by problem
area (e.g., manda.tory a.ccess cont.rol. discretionary ac-
cess control, object reuse) and by level of trust (e.g.,
Bl trust, Compartmented Mode Workst.a.tion t,rust,,
B3 trust). These treatments hint, a.t t.he problem of
creating a secure interoperable X. In order for a.ny X
Window system to be consistent with X’s original de-
sign goals, it must be interoperable. Tha.t is, it, must
be possible for the user to run an ,Y CITi&ozo client
from any machine on the network where the X Server
runs, independent of the ha.rdware architecture of t,he
ma.chine the client is running on. Set Figure 1 for a.
possible X Window topology.

Int,eroperability is attained t.hrough t(he specifca-
tion of a standa.rd X protocol as defined by t,he MIT
X Consortium. As vendors ga.in more experience with

*The X Window System is a trademark of t.he Massachuselts
Institute of Technology.

01993 ACM O-89791-635-2 $1.50

We propose a. framework for the crea.tion of a single
X prot,ocol est,ension that. is capable of suppor(ing all
t,he securit.y feat,ures. al (ributes and policies I lla(vtzn-
dors (a.ntl (#heir customers) &sire. llldustr~ (‘olls~ll8lls

on a. prol.ocol fit t.itlg t.liis frame\rork worlltl yitdtl all S

Window est,ension. leading event,ually to an il\ttxrop-

era.ble secure X Window syst,em.
The proposal tlefines separabk policy-frfc and

policy-defining subsyst.ems. This rea.rchitectllrc of
security-providing facilit.ies is similar t,o t,hat, prol>ostd

Permission 10 copy widmul fee all or Pal of this material is granted,
provided dwt tie copies arc not made or diitibuwd for dim1 commercial
advantage. ~hc ACM copyright notice and Ihe title of the publication and
h date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or lo republish.
requires a fee and/or specific pemdssion.

109

X and desire additional X capabilities, t.he st.andard
evolves. There is a faci1it.y called e.~l~t.siol, t.hat allows
a. vendor t,o “burn in” novel S protocol esknsions.
These vendor-specific est.ensions may be reviewed by
t,he MIT X Consort,ium for event,ual inclusion int,o a.
new X standard. When an est,ension is a.pprovetl and
included in the X Window st.andard. t,he facilit,ies it
provides become effectively interoperable. The MIT
X Consort,ium also includes in its “sample s(‘rvt:r” a
set of est.ensions which are not. yeI. in t,ht> 81 alldart
but. which a.re dcemrtl t.0 be of suficient \-all1t~ 10 war-
rant. inclusion. A vendor need not. (and solnt‘t imes
does not) pass on t.he RIIT sample server vt~rbiltim t.O

its customers. Inst.eacl. a vendor may clloost~ to se-
lect or reject, a,ny est,ensions it. receives from t.hc NIT
sa.mple server. All esknsion t.hus becomes effcct.ively
interoperable if all vendors choose t.0 include it. iu t.heir
delivered X Servers.

There are t,wo problems wit.11 X \Viut-low scc1lrit.y
extensions.

1.

2.

The MIT X Consort.iunl has hist.oricall~~ incllltlctl
only t,lie most, mininlal llot ion of access cot11 rol in
it.s X prot.ocol standard.

Several vendors have a.ddetl access cont.rol cxt.en-
sions to the X prot.ocol. These extensions are not,
interoperable; moreover, t,hey do not, necessarily
reflect the same security policy.

I I
machine 3
vendor C

Figure 1: An X window topology

in [l], [3] and suggested by [12]. In pa.rticula.r, [l] sug-
gests a policy-free mechanism for a.ccess cont,rol with
architectural advantages similar t.o t.hose of our pro-
posal. Perhaps more relevant is the fa.ct t,ha.t X was
originally designed based on the principle of a policy-
free protocol [7]. X is window management policy-free,
allowing vendors the freedom to design and develop X
window managers however they see fit. Though there
has been some criticism of policy-free protocols for use
in a graphical system, they have the distinct advan-
tage of allowing vendors to standa.rdize on relatively
non-controversial, mechanistic prot,ocols, ra.ther than
on much more controversial window ma.nagement poli-
cies, for example.

Experience has shown that simi1a.r difficulties exist,
when vendors attempt to standa.rdize on a pa.rticu-
lar protocol supporting securit,y att.ributes or policies.
Even in cases where vendors a.gree on the securit,y pol-
icy (e.g., the Compartmented Mode Worksta.tion pol-
icy), they do not necessa.rily agree upon t,he protocol,
since security policies can be implemented using va.ri-
ous techniques (e.g., separation vs. fine grained access
control) and typically these t*echniques impa.ct t,he pro-
tocol. Furthermore, certain aspects of “standard” se-
curity policies ma.y be left to the interpretation of t,he
vendor and the accrediting body, and different. “sub-
policies” may be allowable under the st,andard (for
example, access control list,s a.re 0ptiona.l for the Com-
partmented Mode Workstation). Finally, a. single ven-
dor may desire to support a customer ba.se demanding
different security policies.

What is desired therefore is a. protocol tl1a.t passes
two tests: (1) it must allow the vendor to use what-
ever technique the vendor desires t,o implement the
security policy, and (2) ‘t i must aHow impleiiient,a.tioli
of the security policy of the vendor’s choice. It is also
highly desirable tha.t the protocol minima.lly impact,

the performa.nce of t.lie syst.em. \\:e claim t.hat on11
a. prot.ocol pa.ssi tig thcsc t,est,s 1la.s a cha.ncc t,o at.tain
vendor consensus lf~ading t,o illt.elol,elal,ility.

A framework for creat,ing such a policy-free prot.o-
co1 is proposed in t,he following sect.ion. The prot.ocol’s
impa.& on the X Server a.ncl policy-defining X c1ient.s
are explored, followed by a summa.ry of t,he expect,ed
impact on t.he embedded base of X Wiudow clients
(referred to as the COTS, or commercia.l off the shelf,
client base). Finally, a generalization of t.he archi-
tectural principle of policy-free int.erfaccs support.ing
security policies is discussed.

Throughout, t,his paper, t.lie t,erm “X” refers I,0 t.lie
MIT X Window System, “CRIW” rrft>rs t.o t I~(> Corn-
pa.rt,mciit.etI RIode 1Vorkst.a t ion. and ‘.r\\c!l” refers t.0

Access Cont~rol Informat.ion.

2 Proposed Protocol Framework

2.1 Protocol Overview

The at,t,empt to specify a. protocol support.ing var-
ious secririt.y policies nnd implement.a.t.ions t.liereof is
silnilar to t.lie funct.ional decoml~osit.ion met~l~otlology
of an ol,ject.-orient.etl system. or more particularly that.
of a st,rongly typed sgst.em. This decomposition is t.hus
similar t,o the one described by LOCK [lo]. which spec-
ifies securit,y policy based on object, and subject, t,!pe
rules.

In pa.rticula.r, %ubject,s” and “object.s” sl~oulcl be
t,ype-classified in a policy-free protocol in order t.o sup-
port a large class of labeling security policies. How-
ever, such a cla.ssificat.ion is not, sufficient. t.0 specify
very fine-grain4 policies t.liat ma.ke use of object. ac-
cess cont,rol lists. or subject, capabilit.ies [12]. There-
fore, for t.lie protocol t.0 I,(> sullicic~nt.l\- gcll(~ral. it.

110

must also include the ability to identify AC1 on a per-
subject or per-object basis.

There are other issues to consider besides what
might be called “pure” access control. The protocol
must not preclude the const(ruction of a secure infras-
tructure capable of being accredited. Such an infras-
tructure must pass certain int,egrit,y t,ests; for example,
a change to an object’s AC1 cannot be ma.de while it is
being accessed (the drunquilify property). Also, provi-
sion must be made for trust,ed paths, so that X clients
doing trusted I/O have provably unspoofable access to
the physical display, and so that the X Server has un-
spoofable access to trusted policy-cognizant X clients.
Other infrastructure requirements will be introduced
in the following sections a.s well.

2.2 Architecture

The key aspect of the archit,ecture shown in Figure
2 is the construction of a policy-rlefif,ir,g cliel,l (PDC),
providing the basic Access Cont,rol Decision Funct,ion
(ADF) as defined in [3] and [12]; the X Server, in
nearly all cases, provides the a.na.logous Access Control
Enforcement Function (AEF). Note that the PDC 1la.s
the same client/server relationship to the X Server as
any other client; it can be simila.rly reloca.ted t,o a.ny
machine on the network.

In addition to the server/client relationship, t,he
network over which the X Server, PDC, a.nd ot.her
X clients communicate must. provide certain aut,lien-
tication capabilities. In particula.r, it, must. not, allow
an untrusted a.pplicat.ion t.o spoof t,he PDC, and it,
must allow the PDC to aut,hentica.te a.ny ot.her client.
This particular requirement, a.lso implies that the t,ra.-
ditional meaning of “X client” must, be strengthened:
historically, “X client” ha.s meant “a, connection to the
X Server.” In theory, the X protocol a.llows more than
one process to communicat,e on a single connect,ion
to the X Server, although in pmctice t.his capabi1it.y
has not been widely used. In order for t.he PDC t,o
authenticate a client, it, must, assume t.hat, a, client is
a subject, and t,herefore t.here can only be a. single
identifiable client on a. connection. The network must,
provide a way to restrict a.ccess t,o a. connect,ion in t,he
required manner.

2.3 Proposed Mechanisms

The framework for the policy-free prot.ocol will be
summarized by high-level functions enumerated be-
low. These functions can be considered at. the logical
level of the Xlib int,erfa.ce [8], a.nd simila.rly, ea.& one

would correspond t,o a pa.rticu1a.r prot.ocol request. or
event.+

2.3.1 Access Control Mechauisms (inc:lutling
cut ad paste)

The proposed fra.mework implies t.1la.t the X Server
a.ssume the role of Access Cont,rol Enforcement Func-
t,ion (AEF) and t,ha.t the PDC be t,he Access (.‘ont,rol
Decision Function (ADF). Basically this means that
the X Server sends an event when a. subject, att.empts
to access an object, and that the PDC replies with a.
request indicating (1) whether the a.ccess was granted,
and (2) if not, what error condition is represented by
the access denia.1.

This separation of duty a.llows a clean impl~~men-
tation of nleninfen policies. The Inost. well-k~~owtl of
t.iiis class of policies is t.he cntw cut and pasl(~ pol-

icy. In t,liis policy, when a subject att.cnipt.s to past,e
previously cut. t1at.a int.0 a t.arget. window wlmac~ wcu-

rit,y cla.ssifica.tion differs from t,liat, of t hr source win-
dow, an interactive window session is required before
the pa,ste opera.tion ca.n complete. This int,eract.ion re-
minds the user of the source a.nd ta.rget. window classi-
fica.tions a.nd asks t,he user t,o verify t.he reclassifica.tion.
Such a.n interaction can be handled cleanly and wit,li-
out race conditions if t.he PDC init.iat.es t.he intcaract.ive
verificat,ion session upon receiving t.lie appropriate ac-
cess cont.rol request. 0t.l ier int.ewsl ing nirtli;ll iou poli- _
cies can be similarly iml,lementcztl.

The sepa.rat.ion of clut,y also allows a straighi.forward
imi)lement.at.ioli of float.ing informat.ion labels as spec-
ified by t,he CM\\: requirement,s. 111 part.icll1a.r. the
PDC can implement, t.he policy whereby a successful
“read” a.ccess to a part,icular object. by a particular
subject results in a change t,o t.hc AC1 of the subject.
based on the rela.tionship bet.n;een the client’s cllrrent
AC1 and the newly accessed object ‘s ACI.

The following mechanisms arc sllflicient. IO imple-
mait, access conl.rol:

l RequestAccess(eutityID. cutityTypc. cli-
eutID, accessMotllod) evrnt. ‘l’lw S Server
sends t,his “event.” (really a request.) t.o t,he PDC
whenever a subject, (specified 1)~ clieutID a.t-
tempts to a.ccess an ent,ity* (specified by enti-

111

machine 3
vendor C

Figure 2: An X window topology with a policy-defining client

tyID). The X S erver rd.30 sends the entity’s t,ype
(entityType).

Entities in the X Server must. be classified by type
in order to take adva,nta.ge of t.ype-based policies.
The decomposition of X Windows entit.ies into
types has been treated elsewhere (e.g., [2]) and
is outside the scope of this paper. We general-
ize the usual object decomposit,ion somewhat, by
allowing the definition of subject. access policies.
This is necessary in order to implement a. gener-
alized form of privilege described lat,er.

l AccessAnswer(yesuo) request. This “re-
quest” (really a reply) is t,he PDC’s reply to t,he
RequestAccess() policy quest,ion. yeslro con-
tains the answer, either ‘yes’ or an error return
defining what the access denia.1 policy is for this
particular access request.

Note that the PDC need not, send an immedia.te
AccessAnswer() reply upon receipt of a. Reques-
tAccess(). Rather, as described a.bove, it. can imple-
ment a mediation policy on the access, or even delay
the request to throttle a. covert, channel, before reply-
ing.

A RequestAccess might a.lso signal the PDC t,o
create a new access control binding. For example, the
successful attempt to create a new object would typi-
cally cause the PDC to synthesize new ACI (perha,ps
from the subject’s ACI) to be bound to the object.

2.3.2 Access Control Iuformation Biudiug
Mechanisms

There must be a wa.y for X to bind AC1 t,o subjects
and objects. In order for t,he prot,ocol t.o rema.in policy-
free, this AC1 must be uninterpreted by t,he X Server.

The protocol should t.herefore provide only a transport
mechanism and binding seiiiant,ics for ACI.

An important, considerat5ion is the location of the
bindings bet.ween entities a.nd ACI. These bindings
should be st,ored in the PDC, since it must, be a.ble
to make a,ccess decisions ba.sed on current bindings.
If the X Server st.ored the bindings, it, would ha.ve to
verify the validity of every AccessAuswer() request
by checking the esist.ence of t.he a.ccessed object.

The AC1 binding may be &her st,at.ic (e.g.. Bell-
LaPa.dula mantlat,ory access) or may be tather dy-
na.mic (e.g., CM\\’ sul,ject. float.ing informa.t.ion labels
or object. ACLs). The pot,eut.ia.l for dyna.mism requires
tha,t t,he binding mechanisms be as general as possible,
allowing the PDC fine-grained cont.rol over the ACI.

The following mechanisms are sufIicient. t,o imple-
ment AC1 binding policies:

l BiuclClientACI(clientID, clientAC1) event,.
The X Server sends t,his event. t,o the PDC. The
event cont,a.ins t.he handle of a. client (a clieu-
tID) that, just connect,4 to t.he X Server, a.nd the
AC1 of this client. a.s report,ecl fron, flie rtef njork.
Thus, a. net.work support.ing a secure X \\‘intlow
syst.em must, be able to provide this service; his-
torically, similar services ha.ve been proposed for
secure net,worli services such as RIAXSIX [13].4
The PDC binds the clieutAC1 to t.he client. de-
noted by clientID .n

112

l BindObjectACI(objectID, objectAC1)
event. This event is similar to BindClientACI()
and requires that the PDC bind the access control
information to a particular X Server object. It is
expected that this event is the result of a privi-
leged client’s desire to cha.nge the AC1 of a par-
ticular object (see the “Policy emula.tion mecha-
nisms” section below).

The PDC is also capable of binding object AC1
unprompted; for example, as a side effect of a
successful RequestAccess() event requesting a

new object be created. In that case, a reasonable
policy would be that the newly created object is
bound to AC1 derived from the creating client’s
bound ACI.

2.3.3 Privilege Assertion Mecllanisnls

There are two genera.1 classes of privilege which are
relevant to the protocol framework. First, t,here a.re
subject privileges which are used by the PDC in order
for it to implement windowing security policy. Ma.ny
vendors desire to define fine-gra.ined privilege policies
which allow clients the right to ena.ble and disable their
own current privilege set (privilege bmcbeliag: see [4]).
The following mechanism is sufficient to allow in-bnnd
(that is, X protocol) privilege bra.cketing:

l BindClientACI(clientAC1) request,. This
request has syntax simi1a.r to t.he I3ind-
ClientACI() eveut described above. In t.liis
case, the client requests t,ha.t, it,s privilege set be
changed as specified by the clientAC1. The X
Server forwards this request, to the PDC using
the BindClientACI() event. The PDC defines
a policy which decides whether to honor the AC1
(privilege) change request, presum&ly based on
the AC1 alrea.dy bound to the request,ing client.

Note that it is possible for t.he PDC to grant fine-
grained policy-defining privileges t,o other clients as it
sees fit using only the mechanisms support,ing t.his first.
class of privilege.11

110 ne possible use of this mechanism would be t.o support. a
complex privilege-bracketed inform&on labeling scheme. For
example, a vendor may wish to implement a policy whereby
the zterm terminal emulator will change the visible information
label in a window based on the inform&on in that window.
One way to implement this policy is as follows: (1) zle~n~ is
granted the “creat.e TCB-private window” and “change privilege
to write to TCB-private window” privileges by the secure OS;
(2) the rterm is bound to t.hese privileges when it. connect.s t.o
the X Server; (3) xterm creat.es a TCB-privat.e label window,
which the PDC allows; (4) when it. notices that. it. must. writ.e

The second class of privilege is the class of policy-
defining privileges, in particukr, the privilege to be a.
policy-defining client. A mechanism must. exist. allow-
ing the PDC to declare itself a.s a PDC t,o the X Server.
The following mechanism is sufficient. t.o support t,he
policy-defining privilege:

l AssertPrivilege request. This request, simply
informs t(lie X Server t.lia,t the requesl ing client,
wishes to be t,he PDC. The first. client request-
ing the privilege is granted the privilege. If the
request is not granted, the request,iug client re-
ceives a failure notifica.tion.

It is required that the underlying secure operat.ing
system provide a t,rust.ed pa.th and t.rust.etl start up se-
mantics so t,hat. t.he PDC is gua.rant,ecd t.o be t.he first, S
client, to send t,his request,. (One possible iiiiplcnwnt~a-
t,ioii of t.liis t,ruskcl path would be for t.lw Ii?411s login
program t.o st,art, up the PDC. which woultl in t.urn
sta.rt, up t,he X Server a.ncl send it. t.hc AswrtPrivi-
lege() request,. Should a. spoofing PDC: int.cwt4e. the
trust,ed PDC would receive a. failure not,ificat.ion and
would be able t,o termina.te t,he session and a.udit the
spoof. Since t.he real PDC is using a.n underlying net,-
work t.rust.ed pa.th, it can trust. Hiat. t,lie reply from the
AssertPrivilege() is genuine.)

2.3.4 Policy Coguimuce Mccll;luisms

There needs t.0 exist. meclia.nisms wlwn~l~y a clicwl~ can
be cogn izasf of t,lle policy ht. PDC’ tl&nes. An es-
ample of such a. client, would lw a gnrlgtf rtlrrlj.ngtr,
where a, gadget is an object defined by 1.11~ client, (a.nd
whose t,ype is not known by t,he X Server). A client,
may define a gadget, such tl1a.t it. emlllates an X Win-
dow, for example. Such a client would need t,o know
what, window policy is being defined by the PDC iu
order for it t,o emula.te t,he same polic!. for t.lw o1~ject.s
it. defines.

The mechanisms t.o support, this cognizance capa-
bilit,y are basically ext.eilsions of nwcllanisnis i\ll.t’ild\
defined. These meclia.nisms are as follomx:

l RequestAccess(eutityTypc. autityAC1,
clieutAC1, accessMethod) request,. This re-
quest h.as syntas similar t.o t.he R.equestAc-
cess() event described previously. Iu 6his case,

113

however, the policy cognizant client, sends the re-
quest to the X Server, which forwa.rds it to the
PDC. The PDC then sends t,he reply back t,o the
X Server as defined above. Not.e that the policy
cognizant client must specify the t,ype a.nd AC1 of
the accessed entity, and the t#ype of the accessing
client, in order to find out what policy the PDC
enforces.

l AccessAnswer(yesno) event. When the X
Server receives the answer from the PDC, it for-
wards it back to the emulating client as an event,.

l GetACI(entityID) request. The policy cog-
nizant client requests that the AC1 bound to en-
tityID be returned t,o it. The X Server forwards
the request to the PDC. It is expected tha.t the
PDC will require that. the requesting client pass
access control checks before it returns the bound
ACI.

l BoundACI(entityAC1) event,. The entity-
AC1 is returned to the requesting client; or if the
PDC disallows the request, null AC1 is returned.

l BindObjectACI(objectID, objectAC1) re-
quest. This request allows t,he policy cognizant
client to request t1ia.t the PDC bind new object
AC1 to the specified object.. It is espected t.hat,
the PDC will require tha.t t,he policy cogniza.nt
client possess a.n appropria.te privilege.

The X Server is required to ma.rk the AccessAu-
swer() and BoundACI() events with a. ta.g indicat-
ing that the answer is genuine; ot.herwise a ma.licious
client could use the generic X \Vindow event8 mecha-
nisms to spoof the PDC.

These mechanisms provide a. simple method for a
client to find out wha.t policy the PDC is defining. For
simple policies (e.g., strict nut wit,h a. few labels),
this method is sufficient; for more complex policies, it,
may be necessa.ry for the policy defining client, to ma.ke
assumptions about the PDC policy. The problem is
analogous to the problem of a client t,hat wishes t.o be
cognizant of the window management, policy; in that
case, the X Protocol also provides only basic informa-
tion about the policy and a. client, needing to know
more would ha.ve to ma.ke assump8ions based on t,he
documentation describing the window manager.

2.4 Backward Compatibility

It is important for an X Server implementing the
above mechanisms to maintain a backu~ard compnfibil-
ity mode so that customers can choose t,o enable or

disable the securit,y policy as desired. The backward
compatibility mode is simple in this case: if no client
declares itself as a. PDC, t.he X Server will not. issue
any RequestAccess() events, and the server will im-
plement it.s original policy. Also, should a. policy cog-
nizant client issue a RequestAccess() or GetACI()
request, the X Server will always ret,urn an Acces-
sAnswer() yes or BoundACI() 71.~111, respectively.
This retains interoperability in ba.ckward compa.tible
mode.

2.5 Security through Encapsulation or
Separation

Several vendors ha.ve att.empted t.o implement. secu-
rit,y policy by c~~cnp,strlnlio7r or .srpnration, whereby the
X Server runs uutrust,ed. In an encnps~lolio~ archit.ec-
ture, there is t,ypica.lly a. sma.11, t.rusted X Server emu-
la.tor which handles a. limited set of t.rust.ed windowing
operations [4]. Alternatively, for t.he seporofion archi-
tect,ure, a. secure network and t.rust,ed X c1ieut.s could
be configured to implements secure windowing policy,
without. the need t.0 implement. a. mult.ilevel)< Server.

These archit.ect,ures can be made int.eroperable I)y
defining a simple PDC! t.ha.t emiilalf3 t,h(l original S
Window policy by giving a “yes” answer to any pol-
icy questions. (A PDC must. be defined: ot,herwise,
another client, could spoof t,he PDC simply by doing
an AssertPrivilegc() request..) In general, encap-
sula.tioii or sepa.ra.tion a.rchitectures are defining vir-
tual ma.cliines, where individuad clients (even security-
cognizant ones) ~1~01~1~ ~of be aware of the underlying
window securit,y policy.

2.6 Performance

The proposed prot,ocol framework has pcrformnnce
implica.tions. In particular. nearly every S \\:iii-
dow request will cause the generaGo of one or
more RequestAccess()/AccessAuswer() t.ransac-
t.ions. This pot.ent.ial performance problem ca.n be
solved or mitigat,ed in several wa.ys.

The first way is by t,aking advant.a.ge of local config-
u&ions. Typically, a. machine support.ing t,he ,X Win-
dow Syst,em also supports an in-memory local client.
comiect.ion faci1it.y. whcrc,by c1ient.s running on Ille
same machine as t.he S Server c0mmunicat.c~ via shared
memory. If t.he S Server and t.he PDC: are on t.lre sanle
machine, the RequestAccess() ovt>rheatl should be
considerably lessened.

The second way, which is a.n est.ension of t,he first,,
is for X terminals t,o support, t,he proposed prot.ocol.**

“The possibiliby of t.his happening is largely predicated IV~-~I

114

Typically, X terminals provide enough memory for
some clients to reside in the termi11al fir1nware along
with the X Server. X terminals also often provide
downloading capabilities. Such capa,bilities could be
used to create an X terminal-local configuration simi-
lar to the first method above. In this case, tl1e perfor-
mance should be even better, because the X terminal
is dedicated to X Window operations.

The third way is for the X Server to provide a11 ac-
cess decision cacheing facility, where the PDC’s prior
decisions are remembered by the server for lat,er de-
cisions. It is expected that ma11y RequestAccess()s
will be identical (or at least tlla.t the relevant AC1 will
be identical for many RequestAccess(so there
would be a high cache hit ratio over the lifetime of an
X Window invocation.

While it is possible to defi11e a rea.sona.ble ca.cheing
scheme to take advantage of these properties, it is
not yet clear if it is really necessary. Such a. scheme
would complicate the prot,ocoltt, a.11d in order for the
scheme to be interoperable, This complica.tion would
have to include, a.mong other things, a. ca.che flushing
mechanism to allow the implement~a.tion of ttltre-based
policies such as RELEASEABLE AT itimei-see [3].
vendors would have to a.gree on a. pa.rticular ca.cheing
protocol, perhaps before the problem is complet.ely un-
derstood. For these reasons, we have chose11 not to
include a cacheing scheme in the proposed framework.

The fourth way is to implement the PDC not as a
separate client but as a dyna.mica.lly loadable library
linked to the X Server. This method 11a.s bee11 prot,o-
typed by the author, using libra.ry procedure ca.lls in
pla.ce of protocol tra.nsa.ctions bet.wee11 t,l1e X Server
and PDC, as a basic proof of concept, of t,l1e prot.o-
co1 interface and as a simple performance modeling
mechanism. The prototype implement,ed a. very sim-
ple DAC policy. It did violi conta.in the policy cog-
nizance mechanisms. The protot#ype coufir1ned t,hat
many RequestAccess()/AccessAnswer() transa.c-
tions occur in the sta.rtup phase of the X clients from
the standard MIT distribut,ion. However, a.ft.er t,his
small initial delay, no other dela.ys based 011 this sim-
ple policy were noticeable. More performa.nce model-
ing must be done with more co1nplex policies before
the mechanisms can be deemed practical.

the protocol being standardized by the MIT X Consort.ium as
described earlier.

ttThis complication would have t,o include, among other
things, a cache flushing mechanism to allow t.he implement.abion
of time-based policies such as RELEASEABLE AT <t.ime>-
see [3].

3 Implications for X Server and Policy
Defining Client

The proposed fra,inework makes certa.in assump-
tions about the behavior of the X Server and the PDC.

First, the framework does 11ot indicate what., if any,
st.eps should be take11 by tl1e X Server or the PDC t,o
alleviate denial of service &tacks. For example. t,l1e
framework does not, dict,a.te that only t.rustetl client,s
be able t,o use the XGr&Server() request; XGrab-
Server0 tells the server t,o listen oiily t,o t.he client. is-
suing t,l1e request unt,il further notice. There are ma,ny
other ways that a ma.licious client could degra,de ser-
vice through norma. X Window requests. For the pro-
posed fra,mework, t.11e X Server should be able t,o t,rans-
late at least so1ne of t.11ese dellia.l of service problems
into access requests t,l1at t,he PDC ca.11 act, upon. For
t,he exa.mple a.bove, one rea.sonable solut,ion would be
for t,l1e X Server t,o defi11e a SERVER object. t,ype a.ntl
t,o issue a. RequestAccess() request,ing WR.ITE a.c-
cess t.o t,ha.t SERVER. object. for t.hc request.i11g client..
The PDC can t.hen decide if it. sl1011ltl rcyst.rict. accass
t.0 this part.icu1a.r opemtion.

To generahze somewha.t, the proposed framework
assumes tlla.t the decomposition of the X Server into
objects, object types, and a.ccess met.11ods be do11e in
such a way tlla.t n/l reoso7,nble policies ca.11 be imple-
mented. It is not. clear by which crit,erion oiie sliould
classify policies as reasonable: however, esperieiice
wit,11 exist,ing secure X \Vindow syst.eni models should
be very lielpful it1 t.liis regard. One possible difficult\
here is t.lie creat,io11 of a11 S Server t.lia.t. is cog11izant. of
the rela.tionsliip bet.wre11 reqriest,s alid even& so t.hat
covert, channels ca11 1,~ t.reated as access req11est.s.::

A furt.her assumpt,io11 is t.hat. t.11e infrastruct,ure (the
secure OS a.ud t.11e secure network) provide fa.cilities
that do not compromise t,l1e securit,y policies defined
by the PDC. For exa.mple, t,l1ere must. be a. t,rust,ed
path to the PDC so that anot.her clie11t, cannot. spoof
it. Also, the X Server must. not, a.llow access t,o au
object when t,liat. ol,ject.‘s AC1 is being bou11d (t,lie
fmnqrtilily property). Finall?, t.lierr must be a trust.ed
pa.tli bet.wee11 t.lie X Server aiid t.he physical display t,o
preserve t.lie iiit,egrit,y of a.ny sec1irit.y relevaiit. oul~p11t~
(e.g., visible labels) or securit,y relevant. illput, (e.g.. a
security ma.rking creat.4 at. t,lie user’s discret.ion).

1iEpstein [4] not,es t.hat. the most difficult. of t.he covert chan-
nels is t.he window exposure problem whereby one client. can
signal another client through t.he exposure of a previously cov-
ered window. The X Server must have a Rerluest.Access()
st.rat.egically placed so that t.he PDC’ can determine t.he AC1
of the exposing client and of the exposed window. awl make a
decision based on t hvir relat ionhllip.

115

It is important to note that the implementation
of the proposed framework alone is not sufficient for
the X Window System to be certifiable past Bl or
Bl/CMW. A modular restructuring and covert chan-
nel analysis of the X Server, or possibly the imple-
mentation of an encapsulation or separation trusted
X architecture as previously described, would also be
necessary preconditions for B2 or B3 certifiability.

4 Implications for X Window System
Embedded Base

A major advantage of a policy-free interface to the
X Server is that the vendor can decide wl1a.t impact
the security policy will have on the embedded COTS
client base. For example, the vendor may choose to
implement a restricted form of the ss-propert,y by mak-
ing all objects invisible to a. client unless t,heir RIAC
labels are equal. Such a policy would tend t.o be use-
ful in a system where the cust,omer site is int,erest,ed
in strict separation of la.beled da.ta; however, such a.
policy has a.n impact on administra.tive COTS clients
such as xlswi?ls that is different from the impact of a
“read down” policy.

Often, the vendor will be choosing between defining
a policy that reports tha.t a.n access fa.ilure is due t,o t,he
nonexistence of an object, aad a. policy tha.t reports
that the failure is due to a securit.y viola.tion. The ven-
dor also has the opportunity to construct, clever sub-
policies such as (for exa.mple) defining cert.ain objects
as public, in order to provide grea.ter compa.ti1~ilit.y
with a particular COTS client.

The vendor can also make use of sophisticated poli-
cies in the attempt to provide compa.tibility. For ex-
ample, a vendor willing to ana,lyze the behavior of a
particular COTS client might write a. PDC defining
a particular privilege that allows the client to a.ccess
data that the invoking subject could not.

5 Implications for Other Trusted Sys-
tems

It has been noted [2] that the hist,orical absence of
a security policy has hampered the effort of reaching
a consensus on a secure X Window system, largely
because vendors have tailored the X protocol to pro-
vide the level of securit.y and compa.tibilit~y tha.t they
thought necessary. However, it is a.lso true tha.t t,he
absence of a standard protocol has a.llowed vendors t.o
explore many implement.a.t,ion possibilities, and in so

doing there are now a set of de facfo requirements for
the support of various policies and implement,ations
in any standard. From this point. of view, the X Win-
dow system is in a superior position rela.tive t,o other
systems with premature de facto st,andard policy in-
terfaces. Probably the best exa.mple of a premat,ure
policy standard is t.he UNIX discret,ionary access con-
trol policy and implement,a.t,ion, which (1) cannot. be
changed, and (2) cannot be described in fewer t,han
ten complex rules(!).

It is much easier to add (re-engineer) a new policy
interface than it is to change (reverse engineer) an ex-
isting one. The reverse engineering problem is t,hat, the
goals of security (requiring a clear formula.tion) and
compatibility (requiring no change to an old, unc1ea.r
formulat~ion) a.re at. odds. This in turn implies t.1la.t
a. rearchitect,ure of a.n existing syshem such as IJNlX
along the lines of the proposed framework would be
problemat.ic at. best.. The problem has bc:en faced I)!
the ORGCON prot.ot,ype project. [3] (among ot.hers):
in t1ia.t. ca.se, archit.ect.ural purit.y was sacrificed for ex-
pediency.

For newer trusted syst,ems, t,he met.hodology im-
plied by t,he proposed fra.mework 1la.s general appli-
ca.bilit,y. Specifically, the t,rustecl syst,em designer is
forced to fa.ce t,he following quest,ion: Given a target,
policy problem space, what, is t,lie simplest, a.ud best-
performing meclia.nism t.liat ca.n be built. t,liat will sup-
port, t,he en1 ire policy problem space’? It. has ofl.?n hap-
pened t,liat. t,he general applicabilit,y of a trltsl.4 SYS-
t.eni is not, realized unt.il it. is fielded and IIP\~ sc,curity
requirements are generat,ecl based on field experience.
The separation and decomposit.ion methods described
above would be a. hedge against. this event.uality.

6 Conclusions

By abstracting t,he securit,y policy decision-ma.king
funct,ion away from t,lie policy enforcements funct.ion,
a simple, mechanist,ic iJlt.erface will oft.fw bf~ome ap-
pa.rent,. Such an interface has t.he pot,ent,ial of beiug
b0t.h ~~oI~-coII~I‘o~~FI:s~~/(and f.r/ei,sil)/f to a large class
of securit,y policies.

We exanlined t.he eflects of constructing such an in-
terfa.ce for t,he X Window Syst,em 1 whose very reason
for existence is t,o support. a large, distributed. het.-
erogeneous, open, a.nd evolving graphical user int.er-
face environment. The a.pproach appears t,o be most.
promising in syst,ems with t,hose qualit.ies: t.1111 appli-
cability of blie approach is less evident. iii syst.c’tns t.llat
are relat.ively small, monolitliic. proprietary. 01’ lln-
changing over t.inie.

116

References [14] DNSIX 3.0 Architectural Ouerview, Rev I, Se-
cureware, April 1992.

[l] Grenier, G., R. C. Holt, and M. Funkenhauser,
Policy vs Mechanism in the Secure Tunis Operat-
ing System, IEEE, p. 84, 1989.

[2] Faden, G., Reconciling CMW Requirements witch
Those of Xl 1 Applications, Proceedings of the 14th
National Computer Security Conference, Washing-
ton, D.C., October 1-4, 1991.

[3] Abrams, M. et al, Generalized Framework for Ac-
cess Control: Towards Prototyping the ORGCON
Policy, Proceedings of the 14th National Computer
Security Conference, Washington, D.C., October
1-4, 1991.

[4] Epstein, J. and J. Picciotto, Trusting X: Issues in
Building Trusted X Wi;ldow Systems or What’s
not Trusted About X?, Proceedings of the 14th
National Computer Security Conferelrce, Wa.shing-
ton, D.C., October l-4, 1991.

[5] Rosenthal, D., LINX-a Less INsecure X sewer,

Sun Microsystems, April 1989.

[6] Picciotto, J., Trusted S IVindow System, MTP
288, The MITRE Corpora.tion, Februa.ry 1990.

[7] Scheifler, R. and J. Get,tys, S Window System,
Digital Press, 1990.

[8] Gettys, J., R. Scheifler, a.nd R. Newma.n, Xlib-The
C Language X Interface, Silicon Press, 1989.

[9] Graubart, R., J. Berger, and J. Woodward, Com-
partmented Mode Worksta.tion Evaluation Crit,e-
ria, Version 1 (Final), DIA Directsorate for Infor-
mation Services, 1991.

[lo] O’Brien, R. and C. Rogers, Developing Applica-
tions on LOCK, Proceedings of the 14il1 Nationnl
Computer Security Conference, Wa,shington, D.C.,
October 1-4, 1991.

[ll] Carson, M. et al., Secure Window Systems for
UNIX, Proceedings of the 1989 Winter USENIX
Technical Conference, Sa.n Diego, CA, Ja.n 30-Feb
3, 1989.

[12] Access Control Framework, CD10181-3, ISO/IEC
JTC l/SC 21 N6188, June 24, 1991.

[13] Department of Defense, Department of Defense
Trusted Computer System Evaluatioll. Criteria,
DOD 5200.2%STD, December 1985.

117

