Secure Computing with the Actor Paradigm

Bhavani Thuraisingham
The MITRE Corporation
202 Burlington Road
Bedford, Massachusetts 01730

Abstract

This paper describes the actor model of concurrent
computation and discusses some of the issues in secur-
ing such a model.

1 Introduction

Various computing paradigms (or models of compu-
tation) have been proposed for concurrent computing
systems. Notable among these are (1) the sequen-
tial process paradigm, (2) the functional paradigm,
and (3) the actor paradigm. In the sequential pro-
cess paradigm, sequence of transformations are per-
formed on states which are mapping from locations to
values. The transformations may depend on certain
inputs and may produce certain outputs which may
depend on the inputs (see for example [HOAR78]). In
the functional paradigm, a function is a computational
element which acts on data without the use of a store.
Functional models are derivatives from the lambda-
calculus based languages such as Lisp. Concurrency
is exploited by evaluating arguments of a function in
parallel and is being used in data flow architectures
(see for example [WENG75]). In the actor paradigm,
actors are computationai agents which receive com-
munication from other actors and respond to the com-
munication in a specified manner. That is, these com-
putational agents communicate asynchronously with
each other by exchanging messages which are called
tasks (see for example [AGHAS6]). Actor is a more
powerful model of computation than the other two
as the sequential model and the functional model can
be defined in terms of the actor model. It is envis-
aged that the next generation computing systems will
be those based on massively parallel architectures and
the actor model of computation appears to be an ap-
propriate one for such systems.

While much of the previous work on secure com-
puter systems has focussed on nonconcurrent com-

©1993 ACM 0-89791-635-2 $1.50

76

puting systems (see, for example, [GASS88]), recently
some work on the security aspects of the sequential
process paradigm has been reported (see for example
[FOUN90]). However, if the next generation comput-
ing systems are to be made secure, then the security
issues of the models proposed for massively parallel
architectures need to be examined. Since the actor
model of concur-rent computation is hecoming popu-
lar for such systems, we feel that it is useful to start
with the actors model. Therefore, in this paper we dis-
cuss somme of the issues on securing the actor model.”

The organization of this paper is as follows. In sec-
tion 2, we provide an overview of the actor model as
given in [AGHAS8G6]. In section 3. our proposed model
for secure computation will be discussed. Some of the
complexities involved in proving that an actor system
is secure will be noted in section 4. Since the ac-
tor model can be regarded as a variation of object-
oriented computation, some of the related work in se-
curing object-oriented systems will be given in section
5. The paper win be concluded in section 6.

2 Actor Model of Concurrent Compu-
tation

Although the actor model has roots in the pro-
gramming language Simula [DAHL70], it was not un-
til the work of Hewitt and Baker in 1977 [HEW177]
that research began actively on such a model for par-
allel architectures. Much of the concepts and ideas
that we know today of the actor model have resulted
from Agha’s thesis on this subject. The discussion on
actors given in this section has been obtained from
[AGHASG).

An actor system consists of a collection of actors
which are the computational agents. As stated in
[AGHAS8G], computation in an actor system is carried

*We are not proposing the actor model to be the ideal one for
concurrent computing systems. Our objective is to investigate
only the security issues for the actor model.

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
A iation for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

out in response to communications sent to the system.
Communications are contained in “tasks.” Tasks con-
sist of three components. A tag (which identifies the
task), a target address (which is the mail address of
an actor to which the communication is sent) and a
communication. Communication could contain data
values, expressions, and even commands. When a
communication is received by an actor, new tasks and
actors are created. When an actor is no longer active,
it is removed from the system. Similarly, when the
processing of a task is completed, it is also removed
from the system.

An actor accepts a communication when it pro-
cesses the task containing the communication. The
tasks sent to an actor are mailed in a queue. An actor
is specified as a pair containing a mail address and a
behavior. The behavior is a function of the communi-
cation accepted by the actor. When an actor accepts a
communication, in addition to creating new actors and
tasks, it must also compute a replacement behavior.
Certain actors within an actor system communicate
with the outside world. These actors are called the
recipients. The outside world could even be another
actor system.

We will describe the essential points with an exam-
ple taken from AGHAB8G]. The example is illustrated
in figure 1.! When an actor machine X,, accepts the
nth communication in a mail queue, it will create a
new actor machine X, 41, which will carry out the re-
placement behavior of the actor. The new actor ma-
chine will point to the cell in the mail queue in which
the n + 1st communication is placed. That is, when
X, processes the nth communication, it will determine
the replacement behavior for the n+1th communica-
tion. In other words, while .X,, continues to process the
nth communication, X,41 could start processing the
n + 1th communication. The two actor machines X,
and X, will not affect each others behavior. Each
of the actor machines may create their own tasks and
actors as defined by their respective behaviors. Before
Xn creates Xp4+1, X, may have already created some
actors and tasks. Furthermore, X,, may still be in
the process of creating more tasks and actors even as
Xn41 is doing the same. Once X, completes process-
ing the nth communication, it will no longer process
any additional communications. While processing the
n + 1th communication, X4, could create a new ac-
tor X,,+2 and a replacement behavior for X, ;2 so that
Xn+2 can process the n+ 2th communication received
at the same mail address.

t Permission to reproduce figure 1 will be requested from the
author of [AGHAB86) and MIT Press.

71

The key issues in the actor model is to exploit con-
currency, but at the same time encourage cooperative
computing. As a result, the actor model is being pro-
posed for not only systems such as operating systems,
distributed systems, and parallel processing systems,
but also for cooperative and collaborative computing
applications.

3 Towards a Multilevel Secure Actor
System

We are concerned with developing a model for con-
current computation in a multilevel environment with
actors as the underlying computation agents. The first
question that must be answered is what are the entities
of classification? That is, should they be actors, tasks,
behaviors, and communications. The next question is
how should computation proceed in such a model so
that there is no information flow from a higher level
to a lower level? In this section we propose a model
for secure computation based on the actors paradigm.

The entities of classification in the proposed model
are the actors themselves, among others (such as
tasks, behaviors, communications, and mail ad-
dresses). That is, whenever an actor is created, it is as-
signed a security level. An actor is a pair consisting of
a mail address and a behavior. That is, an actor is cre-
ated by another actor by first creating a mail address
and then assigning a behavior to the address. the se-
curity level of an actor is also specified by the creator.
An actor whose security level L may create actors at
a level which dominates L. If an actor Al at level L1
creates an actor A2 at level L2 where L2 > L1, then
the address of L2 is visible to L1. This means that
any actor at level L(L1 < L < L2) may send com-
munications to A2. A2 will not be able to send any
communications to the actors at level L x (Lx < L2).
We define a multilevel secure actor system (MLS/AS)
to be a system of actors in which each actor is assigned
a security level and the actors in the system send tasks
in such a way that there is no information flow from
a higher level to a lower level. Similarly, a multilevel
actor model is an actor model for a multilevel envi-
ronment.

Consider the example discussed in section 2. Sup-
pose an actor X, at level L processes the nth com-
munication in its mail queue. This communication
must have been sent by an actor at level L or below.
X,, may create new actors at a level which dominates
L, it may create additional tasks, and also creates an
actor X, 4, and specifies a replacement behavior for

1 2

mail queue l

Figure 1: An abstract representation of transition

Xnt+1. Xny1 will process the n + 1th communication
received. The question is should X,, and X, 1 be at
the same level or could the level of X +1 dominate the
level of X,. Since X, and X,,+; share the same mail
address, whenever an actor sends a communication to
this mail address it is reasonable to assume that the
security level of the actor is the same as the first actor
to be assigned to such an address. Therefore, in our
proposed model, X,, and X, are at the same level
L. The essential points are illustrated in figure 2.

Next we formalize the notions discussed in the pre-
vious paragraphs. In particular, we define tasks, ac-
tors, and behaviors for a multilevel environment.

Suppose an actor A at level L creates a task {. Then
t is a triple (¢,m, k) where i is a tag, m is a mail
address to which the task is being sent (i.e., the target
address), and k is a communication. The task ¢ has a
security level and is equal to L. That is, we assume
that any information that is created by an actor at
level L must be classified at level L also. In our model,
tags, mail addresses, and communications also have
security levels. The security level of k and 7 are also
L. However, if the creation of the task ¢ resulted from
some other task (possibly sent by a lower level actor)
received by A, then information about that task may
be embedded into it. The security level of the mail
address m is dominated by L. This is because an actor
can create actors at a higher level. Since m is visible
to A, m may have been created by a lower level actor,
in which case m is assigned the level of its creator.
That is, an actor at level L can have a mail address
at a lower level.

The set of all possible tasks T is defined by

T=IxMxK (1)

where I is the set of all possible tags, M is the set

78

of all possible mail addresses, and K is the set of all
possible communications.
The set of all possible actors is given by

ACT =M x B (2)

where M is the set of all possible mail addresses and
B is the set of all possible behaviors. Each actor A
in ACT is a pair which consists of a mail address and
a behavior. the security level L of A must dominate
the levels of its address and behavior. This is because
the actor who creates A assigns a behavior to the mail
address created for A.

Let b be the behavior of an actor A at mail address
m, which processes a task with tag ¢ and communica-
tion k. The behavior is a function which is defined as
follows:

b(k,m,t) = (T*, ACT*, Ax) (3)

where T = *(p1,p2,- -+, pn) is a set of tasks created,
and ACT* = (A, A2,--, Am) is a set of actors cre-
ated, and A* is an actor which shares the same mail
address as A.

The following conditions hold:
(i) The tag t of the task processed is a prefix of all
tags of the tasks created. That is:

Vi(l <i<n=m; € Mk N, € I(p: = (t.t;, m; k;)))

(4)
Furthermore, the level of p; is the same as that of A.
(i) The tag t of the task processed is a prefix of all
mail addresses of the actors created. That is:

Vi(l <i<m=bie Bt € I(A; = (t.t), b)) (5)

Furthermore, level of .4; must dominate the level of A.

T |

level L2
Mail Address atlevel L1 =< L2

migee | T = []

| L3
Mail Addrees at level L2 «< L3

&)

Figure 2: An abstract representation of transition in a multilevel secure actor system

(iii) Let I+ be the set of tags of newly created tasks
and M« be the set of mail addresses of newly created
actors. then no element of I * UM« is the prefix of
any other element of the same set.

(iv) There is always a replacement behavior 4. That
is:

3b' € B(A* = (m,b)). (6)

Furthermore, the levels of A and Ax are the same.

4 A Note on Configurations and Tran-
sitions

At any instant, an actor system is defined by its
configuration. A configuration of such an actor sys-
tem is described by the actors and tasks it contains.
To define configurations, we first define a local states
function. A local states function F' is a function whose
domain is M* and its range is B where M* is a finite
set of mail addresses and B is the set of all possible
behaviors. That is, a local states function defines the
actors of the systems by assigning behaviors to mail
addresses. A configuration is a pair (F,T+) where F
is the local states function and T'* is a finite subset
of the tasks T such that (i) no task in T has a tag
which is a prefix of either another tag of a task or of
a mail address in the domain of F' and (ii) no mail
address in the domain of F is the prefix of either an-
other mail address in the domain of F or of a tag of a
task in Tx. These restrictions are necessary to ensure
that for a given configuration, there exist transitions
with unprocessed tasks. This way, an actor system
can evolve.

The evolution of an actor system is defined by the
initial configuration and transitions between the con-

79

figurations. One initial configuration consists of a set
of actors and tasks that are created initially. The tran-
sitions in an actor system are quite different from a
sequential possibly non deterministic model. While in
a nondeterministic sequential process a unique transi-
tion does occur, as stated in [AGHAS8G6]. in concurrent
systems such as actors, many transition paths with dif-
ferent viewpoints may be consistent representations of
the actual evolution.

Because of the complexities involved in the actor
system, could the usual techniques that have been
used to prove that a system is secure be applied for
such systems? Usually it is shown that the initial
state of the system is secure and that state transitions
maintain the security properties. As stated earlier, the
transitions in a concurrent system are not straightfor-
ward and therefore the traditional approach to proving
that a system is secure may not be sufficient. Research
needs to be carried out in order to determine ways of
proving the security of concurrent processing systems.

5 Related Work

Although security issues for the concurrent com-
putational models such as actors are yet to be in-
vestigated, the work that has been done so far on
object-oriented database system security is somewhat
related. Much of the work on object-oriented data-
base systems security (see, for example. KEEF388,
THURS89a, MILL89, THUR90) assume a passive
model of objects. That is, the objects contain data val-
ues and subjects, which are the active entities such as
processes, send messages to objects to execute certain
methods and retrieve or update the values. The earli-
est work on an active model of objects was proposed
in [THURS89b]. This model incorporated security into

the active model proposed in [ROSZ89]. A more de-
tailed investigation of security for such a model was
described in {JAJO90]. However, concurrent execu-
tion and cooperation was not a consideration in these
active models.

The main difference between the active models pro-
posed in the object-oriented database security work
and the actor model proposed here is that the objec-
tive of the actor model is to exploit concurrent com-
putations as well as ensure cooperation. The active
object-oriented models do not create new objects. It
is assumed that the objects already exist and mes-
sages are sent in order to retrieve and update values.
The messages are intercepted by a trusted filter. In
the actor model, new actors are created when com-
munication is received in order to exploit concurrent
problem solving.

6 Conclusion

In this position paper, we first described the essen-
tial points of the actor model of concurrent computa-
tion. As stated earlier, the actor model is particularly
useful for concurrent and cooperative problem solving
applications. Next we proposed a secure model for
concurrent computation which is based on the actor
paradigm.

Much remains to be done before an MLS/AS can
be developed. First of all, we did not consider all of
the constructs of the actor model in our discussions.
That is, only a very small subset of the constructs
were considered. In order to develop a useful MLS/AS,
the security issues for the complete actor model must
be investigated. Also, our approach is one way to
securing the actor model. Different alternatives need
to be explored before one can be selected. Even with
the model that we have proposed here, we need to
prove that there is no information flow from a higher
level to a lower level. As stated in section 4, the issues
involved may be quite different to those for sequential
processes.

Since the actor model is being proposed for a va-
riety of systems including massively parallel architec-
tures and cooperative computing applications, we en-
visage that a MLS/AS could be used for multilevel
parallel processing and cooperative computing appli-
cations. We also envisage that the actor model could
be used for implementing role-based security policies.
The work described in this paper is just the first step
towards developing an MLS/AS.

80

Acknowledgements

I thank Jonathan Millen and Arnon Rosenthal for
their comments on this paper.

References

[AGHAS86] Agha, G., ACTORS: 1986, A Model of
Concurrent Computation in Distributed Systems,
M.LT. Press, Cambridge, MA.

[DAHL70] Dahl, 0. et al., 1970, Simula Common
Base Language, Technical Report 5-22, Norwe-
gian Computing Center.

[FOUNQO0] Proceedings of the Third Computer Secu-
rity Foundations Workshop, June 1990.

[GASS88] Gasser, M., Building Secure Systems, 1988,
Van Nostrand, New York.

[HEWI77] Hewitt C. and H. Baker, 1977, “Laws for
Communicating Parallel Processes,” IFIP Con-
ference Proceedings.

[HOAR78] Hoare, A. 1978, “Communicating Sequen-
tial Processes,” Communications of thc ACM,
Vol. 21, no. 8.

[JAJO90] Jajodia S., and B. Kogan, 1990, “Integrat-
ing an Object-Oriented Data Model With Multi-
level Security,” Proceedings of the IEEE Sympo-
stum on Securily and Privacy, Oakland, CA.

[KEEF88] Keefe, T., W. T. Tsai, and B. M. Thu-
raisingham, October 1988, “A Security Policy for
Object-Oriented DBMS,” Proceedings of the 11th
NCS Conference.

[MILL89] Millen, J. and T. Lunt, 1989, “Security for
Knowledge Base Management Systems,” Techni-
cal Report, MTR 686, The MITRE Corporation,
Bedford, MA.

[ROZEB9] Rozenshtein, D. and N. Minsky, 1989, “A
Law-Governed Object-Oriented System,” Jour-
nal of Object-Oriented Programming, Vol. 2, no.
2, March/April.

[THUR89] Thuraisingham, B. M., October 1989,
“Mandatory Security in Object-Oriented Data-
base Management Systems,” Proceedings of
the ACM Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications
(OOPSLA), New Orleans, LA.

[THUR89b] Thuraisingham, B. M., and F. Chase,
1989, “An Object-Oriented Approach to Develop-
ing Secure Software Systems,” CIPHER (IEEE).

[THUR90] Thuraisingham, B. M., March/April 1990,
“Security in Object-Oriented Database Systems,”
Journal of Object-Oriented Programming, Vol. 2,
no. 6.

[WENGT75] Weng, K., 1975, Stream-Oriented Compu-
tation in Data Flow Schemas, TM 68, MIT Lab-
oratory for Computer Science.

81

