
Secure Computing with the Actor Paradigm

Bhavani Thuraisingharn
The MITRE Corporation

202 Burlington Road
Bedford, Massachusetts 01730

Abstract

This paper describes the a.ctor model of concurrent
computation and discusses some of t,he issues in secur-
ing such a model.

1 Introduction

Various computing paradigms (or models of compu-
tation) have been proposed for concurrent computing
systems. Notable among these are (1) the sequen-
tial process pa.radigm, (2) the functiona. pa.ra.digm,
and (3) the actor paradigm. In the sequent,ial pro-
cess paradigm, sequence of tra,nsformations a.re per-
formed on states which are ma.pping from locat,ions to
values. The transformations may depend on certa.in
inputs and may produce certain outputs which may
depend on the inputs (see for example [HOAR78]). In
the functional paradigm, a. funct,ion is a, computa.tiona.l
element which acts on data. without the use of a. store.
Functional models are deriva,tives from the lambda-
calculus based langua.ges such as Lisp. Concurrency
is exploited by evalua.ting a.rguments of a. funct.ion in
parallel and is being used in data flow archit,ectures
(see for example [WENG75]). In the a.ctor pa.ra.digm,
actors are computational agent.s which receive com-
munication from other actors and respond to the com-
munication in a specified manner. That is, these com-
putational agents communicat,e asynchronously wit,11
each other by exchanging messa.ges which a.re called
tasks (see for example [AGHASG]). Act,or is a more
powerful model of computa.tion tha.n the ot,her two
as the sequential model and the functiona. model can
be defined in terms of the actor model. It is envis-
aged that the next genera.tion computing systems will
be those based on massively pa.ra.llel architectures and
the actor model of computation a.ppears to be an a.p-
propriate one for such systems.

While much of the previous work on secure com-
puter systems has focussed on nonconcurrent com-

01993 ACM O-89791-635-2 $1.50

puting systems (see, for example, [GAS%$]), receut,ly
some work on the security a.spects of the sequent.ia.1
process paradigm has been report.ecl (see for exa.mple
[FOUNSO]). However, if t.he nest, generat,ion comput-
ing systems are to be made secure, then the security
issues of the models proposed for ma.ssively parallel
architectures need t,o be examined. Since the act,or
model of concur-rent, comput.a.tion is becoming popu-
lar for such systems, we feel t,liat it. is useful t.0 start
with the actors model. Therefore, iu t,his paper we dis-
cuss some of the issues on securing t,lie a.ct,or moclel.*

The organiza.tion of this paper is as follows. In sec-
tion 2, we provide an overview of t,lie act,or model a.s
given in [AGHA8G]. I ii se&on 3. our l~roposecl moclel
for secure comput.ation will be discussed. Some of the
complexities involved in proving t.hat. a.n a.ct,or syst,em
is secure will be noted in section 4. Since the ac-
tor model can be rega.rded as a. va.riation of object.-

oriented computat.ion, some of the related work in se-
curing object-oriented syst.ems will be given in sectsion
5. The paper win be concluded in section 6.

2 Actor Model of Concurrent Compu-
tation

Although the act.or model 1la.s roots in the pro-
gramming language Simula. [DAIILiO], it, was not un-
til the work of Hewit,t and Baker in 1077 [HEW1771
that research began a.ct,ively on such a model for par-
allel architectures. h4uch of t.he c0ncept.s and ideas
that we know today of t.lie a.ctor motlcl have resulted
from Agha’s thesis on t,his subject. The cliscussion ou
actors given in this section ha.s been obt,ainrtl from
[AGHA8G].

An a.ctor system c0nsist.s of a collect,ion of actors
which a.re the comput,ational a.gent.s. As st,a.tecl in
[AGHASG], comput.a.tion in an a.ct,or system is carried

l We are not proposing he act,or model to lx t.he icleal one for
concurrent comput,ing sysberns. Our objective is to investi.gat,e
only the securit.y issues for t Ile act or nloclel.

76

Pcmhsion 10 copy without fee all or pan of thir material is granted.
provided that the copies M not made or distributed for dbwt commercial
advantage. the ACM copyright notice and the title of the publication and
its date appear. and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise. or m republish,
requires a fee and/or specific permission.

out in response to communications sent to the system.
Communications are conta.ined in “tasks.” Tasks con-
sist of three components. A ta.g (which identifies the
task), a target address (which is the ma.il a.ddress of
an actor to which the communication is sent) and a
communication. Communication could contain data
values, expressions, and even commands. When a
communication is received by a.n actor, new tasks and
actors are created. When an actor is no longer active,
it is removed from the system. Similarly, when the
processing of a task is completed, it is also removed
from the system.

An actor accepts a communication when it pro-
cesses the task containing the communication. The
tasks sent to an actor are mailed in a. queue. An actor
is specified as a pair containing a ma.il a.ddress and a
behavior. The behavior is a. function of the communi-
cation accepted by the actor. When a.n a.ctor a.ccepts a
communication, in addition to creating new actors and
tasks, it must also compute a repla.cement behavior.
Certain actors within an actor system communicate
with the outside world. These actors are called the
recipients. The outside world could even be another
actor system.

We will describe the essent,ial points with an exam-
ple taken from AGHA8G]. Tl le exa.mple is illustra,ted
in figure 1.t When an actor ma,chine X,, a,ccepts the
nth communication in a mail queue, it will crea.te a
new actor machine Xn+l, which will ca.rry out the re-
placement behavior of the a.ctor. The new actor ma-
chine will point to the cell in the mail-queue in which
the n + 1st communica.tion is placed. That is, when
X, processes the 11th communica.tion, it will determine
the replacement behavior for t,he n+lth communica-
tion. In other words, while S,,, continues to process the
nth communication, Xn+l could start processing the
n + lth communication. The two actor machines X,

and &+I will not affect each others beha.vior. Ea.ch
of the actor machines may crea.te their own ta.sks a.nd
actors as defined by their respective behaviors. Before
X, creates Xn+l, X, may have a,lrea.dy creat,ed some
actors and tasks. Furthermore, X,, may still be in
the process of creating more tasks and actors even a.s
X ,,+I is doing the same. Once X, completes process-
ing the nth communication, it will no longer process
any additional communicat.ions. While processing the
n + lth communication, Xn+l could crea.te a. new a.c-
tor X,,+z and a replacement behavior for X,+2 so that
Xn+z can process the n, + 2th communication received
at the same mail address.

t Permission to reproduce figure 1 will be requeskd from t,he
author of [AGHA86] and MIT Press.

The key issues in the actor model is t.o exploit con-
currency, but a.t the same time encourage cooperat,ive
computing. As a result, the actor model is being pro-
posed for not only systems such as opemting systems,
distributed systems, and pa.ra.llel processing systems,
but also for coopera.tive and collaborat.ive computing
applications.

3 Towards a Multilevel Secure Actor
System

We are concerned with developing a model for con-
current comput,at,ion in a. mult,ilevel environment wit,11
actors as the underlying compuMion agent,s. The first
question tha.t must be answered is what are the ent,it,ies
of cla.ssificat,ion? That is, should t.hey be act,ors, t,a.sks,
behaviors, and communicat,ions. The nest, question is
how should computation proceed in such a model SO

that there is no informa.tion flow from a higher level
to a lower level? In this se&ion we propose a. model
for secure computa,tion ba.sed on the act,ors paradigm.

The entit,ies of classifica.tion in t,he proposed model
are the actors themselves, among ot.hers (such as
tasks, behaviors, communicat.ions, and mail ad-
dresses). That is, whenever a.n a.ctor is created, it. is as-
signed a security level. An a.ctor is a pa.ir consisting of
a ma.il a.ddress and a behavior. Tha.t is, an a.ctor is cre-
a.ted by another actor by first, crea.ting a ma.il a.ddress
and then assigning a beha.vior t.o the address. the se-
curity level of a.n a.ctor is also specified by t,he creat,or.
An actor whose securit,y level L may create act,ors a.t.
a. level which domina.tes L. If an act,or .-11 a.t level Ll
creates an a&or .42 at level L2 where L2 > Ll, t.hen
the a.ddress of L2 is visible t,o Ll. This means t,hat.
a.ny actor at level L(L1 < L < L2) may send com-
munica.tions t,o A2. A2 will not, be able t.o send any
coiiiiiiuiiica.tions to the a,ctors a.t level L * (L* < L2).
We define a. multilevel secure a.ctor syst,em (RILS/AS)
to be a system of actors in which each a&or is a.ssigned
a securit,y level and t.he a,ct,ors in the syst,em send t,asks
in such a. wa.y that there is no informat,ion flow from
a. higher level to a. lower level. Similarlyj a mult.ilevel
a.ct,or model is an a&or model for a mult,ilevel envi-
roninent .

Consider the example discussed in sect.ion 2. Sup-
pose an actor S,, a.t level L processes the n t,h com-
munication in its ma.il queue. This communicat,ion
must have been sent by a.11 actor a.t level L or below.
S, ma.y create new actors at a level which domina.tes
L, it ma.y crea.te additional t.asks, and also creat,es a.11
a.ctor ,~n+l and specifies a. repla.cement. behavior for

77

Figure 1: An abstract representation of transition

x xl+1 n+1. will process the 1% + lth communication
received. The question is should X, and Xn+l be at
the same level or could the level of X + 1 domina,te the
level of X,. Since X, and Xn+l share the same mail
address, whenever an actor sends a communica.tion to
this mail address it is reasonable to assume tl1a.t the
security level of the actor is the same as the first actor
to be assigned to such an a.ddress. Therefore, in our
proposed model, X, and Xn+l are a.t the sa.me level
L. The essential points are illustra.ted in figure 2.

Next we formalize the notions discussed in the pre-
vious paragraphs. In particular, we define tasks, ac-
tors, and behaviors for a multilevel environment.

Suppose an actor A at level L crea.tes a ta.sk t. Then
t is a triple (i, m, Ic) where i is a ta.g, 172 is a mail
address to which the task is being sent (i.e., the target
address), and k is a communica,tion. The ta.sk t has a
security level and is equal to L. Tha,t is, we assume
that any information tha.t is crea.ted by an a.ctor a.t
level L must be classified at level L also. In our model,
tags, mail addresses, and communications also have
security levels. The security level of lo and i are a.lso
L. However, if the creation of the task t resulted from
some other task (possibly sent by a lower level actor)
received by A, then information about tha,t ta.sk may
be embedded into it. The security level of the mail
address m is dominated by L. This is because an a.ctor
can create actors at a higher level. Since m is visible
to A, m may have been created by a lower level actor,
in which case m is assigned the level of its creator.
That is, an actor at level L can have a ma,il a.ddress
at a lower level.

The set of all possible tasks T is defined by

T=IxMxK (1)

where 1 is the set of all possible tags, AB is the set

of all possible ma.il a,ddresses, and li is t,he set, of all
possible communications.

The set of all possible a.ctors is given by

ACT=MxB (‘2)

where M is the set of a,11 possible mail a,ddresses and
B is the set of a.11 possible behaviors. Each a&or -4
in ACT is a pair which consist,s of a. ma.il address and
a behavior. the security level L of .-l must don1inat.e
the levels of it.s address a.nd behavior. This is beca.use
the actor who crea,tes A a.ssigns a behavior to the mail
address created for A.

Let b be the beha.vior of an a.ctor A at mail a.ddress
m, which processes a task with tag t and communica.-
tion b. The behavior is a. funct,ion which is defined a.s
follows:

b(L, I,,, t) = (T*, ACT*, A*) (Z3)

where T* = *(PI, p?, . , p,,) is a. set. of tasks crea.ted,

and ACT* = (Al, A?, . . , sl,,,) is a. set of a.ct,ors cre-
ated, and A* is a.11 a&or which shares t,he sa.me ma.il
a.ddress as A.

The following conditions hold:
(i) The tag t of the t,a.sk processed is a. prefix of all
ta.gs of the tasks crea.ted. Tha,t is:

Furthermore, the level of pi is t,he same as t,ha.t. of il.
(ii) The tag t of t.he t.ask processed is a. prefix of all
mail a.ddresses of t,he a.ct.ors crrat.etl. That is:

Vi(1 < i < m. + bi E BEIf: E 1(--l;, = (t.t:, bi))) (5)

Furthermore, level of ‘4i must domina.te t,he level of -4.

Figure 2: An abstract representation of transition in a multilevel secure a.ctor system

(iii) Let I* be the set of ta.gs of newly crea.ted ta,sks
and M* be the set of mail addresses of newly created
actors. then no element of I * UAd* is the prefix of
any other element of the same set.
(iv) There is always a replacement behavior b’. Tha.t
is:

3b’ E B(A* = (m, b’)). (6)

Furthermore, the levels of A and A* a.re the sa.me.

4 A Note on Configurations and Tran-
sitions

At any instant, an actor system is defined by its
configuration. A configuration of such an a.ctor sys-
tem is described by the actors and tasks it contains.
To define configurations, we first define a. local states
function. A local states function F is a function whose
domain is M* and its range is B where M* is a finite
set of mail addresses and B is the set of all possible
behaviors. That is, a local states funct.ion defines the
actors of the systems by a.ssigning behaviors to mail
addresses. A configuration is a pair (F, T1;) where F
is the local states function and T* is a fin&e subset
of the tasks T such tha.t (i) no task in T* has a. tag
which is a prefix of either another tag of a task or of
a mail address in the domain of F and (ii) no mail
address in the domain of F is the prefix of either an-
other mail address in the doma.in of F or of a ta.g of a
task in T*. These restrictions are necessary to ensure
that for a given configuration, there exist transitions
with unprocessed tasks. This way, an a.ctor syst,em
can evolve.

The evolution of an actor system is defined by the
initial configuration and transitions between the con-

figurations. One initial configura.tion consist,s of a set
of actors and tasks that. are crea.ted initially. The t,ra.n-
sitions in a.n actor system are quite different from a
sequential possibly non deterministic model. While in
a nondeterministic sequential process a unique transi-
tion does occur, as sta.ted in [AGHAfiG]. in concurrent,
systems such as actors, ma.ny tra.nsition paths with dif-
ferent viewpoint,s may be consistent. represent,at,ions of
the actua,l evolution.

Beca.use of the complexities involved in the act,or
system, could the usua.1 t.echniques t,hat have been
used to prove t.1la.t a syst,em is secure be applied for
such systems? Usually it is shown that the initial
state of the syst,em is secure and tha.t state t.ransitions
maintain the security properties. As st,at.ed ea.rlier, the
transitions in a, concurrent, syst.em are not, st,ra.ightfor-
wa.rd and therefore the t,raditiona.l approa.ch t.o proving
tl1a.t a. system is secure may not be sufficientS. Resea.rch
needs to be carried out in order tSo det.ermine ways of
proving the security of concurrent processing syst.ems.

5 Related Work

Although security issues for the concurrent com-
putational models such a.s a.ct.ors a.re yet to be in-
vestiga.ted, the work tha.t 1la.s been done so fa.r on
object-oriented da,tabase system securit,y is somewl1a.t
rela.ted. Much of the work on object.-oriented data.-
base systems security (see, for esample. KEEF88,
THUR89a, MILL89, THUR90) assume a. passive
model of objects. Tha.t is, t,he 0bject.s conta.in da.ta val-
ues and subjects, which are t,he active ent,ities such as
processes, send messa.ges t,o objects t,o execut,e cert,ain
methods and retrieve or upda.te the values. The earli-
est work on an a,ctive model of 0bject.s was proposed
in [THUR89b]. Tl lis model incorporat.ed securit.y int.0

19

the active model proposed in [ROSZ89]. A more de-
tailed investigation of security for such a model was
described in [JAJOSO]. However, concurrent execu-
tion and cooperation was not a consideration in these
active models.

The main difference between the active models pro-
posed in the object-oriented database security work
and the actor model proposed here is that the objec-
tive of the actor model is to exploit concurrent com-
putations as well as ensure cooperation. The active
object-oriented models do not create new objects. It
is assumed that the objects already exist and mes-
sages are sent in order to retrieve and update values.
The messages are intercepted by a trusted filter. In
the actor model, new actors are created when com-
munication is received in order to exploit concurrent
problem solving.

6 Conclusion

In this position paper, we first described the essen-
tial points of the actor model of concurrent comput,a-
tion. As stated earlier, the actor model is particularly
useful for concurrent and cooperative problem solving
applications. Next we proposed a secure model for
concurrent computation which is based on the actor
paradigm.

Much remains to be done before an MLSf AS can
be developed. First of all, we did not consider all of
the constructs of the actor model in our discussions.
That is, only a very small subset of the constructs
were considered. In order to develop a useful MLS/AS,
the security issues for the complete actor model must
be investigated. Also, our approach is one way to
securing the actor model. Different altertmtives need
to be explored before one can be selected. Even with
the model that we have proposed here, we need to
prove tha.t there is no information flow from a higher
level to a lower level. As stated in section 4, the issues
involved may be quite different to those for sequential
processes.

Since the actor model is being proposed for a va-
riety of systems including massively parallel architec-
tures and cooperative computing a.pplications, we en-
visage that a MLS/AS could be used for multilevel
parallel processing and cooperative computing appli-
cations. We also envisage that the actor model could
be used for implementing role-ba.sed security policies.
The work described in this pa.per is just the first step
towards developing an MLS/AS.

Acknowledgements

I thank Jonathan Millen a.nd Arnon Rosent.hal for
their comments on this paper.

References

[AGHA86] Agha, G., ACTORS: 1986, A Model of
Concurrent Computation in. Distributed Systems,
M.I.T. Press, Cambridge, MA.

[DAHL70] Dahl, 0. et al., 1970, Simula Common
Base Language, Technical Report S-22, Norwe-
gian Comput,ing Center.

[FOUNSO] Proceedings of the Third Compuifr Secn-
rity Foundations Workshop, June 1990.

[GASS88] Gasser, M., Building Secure Sysiems, 1988,
Van Nostrand, New York.

[HEW1771 Hewitt C. and H. Ba.ker, 1977, “Laws for
Communica.ting Pa.ra.llel Processes,” ZFIP Cow
ference Proceedings.

[HOAR781 Hoare, A. 1978, “Communica.t,ing Sequen-
tial Processes,” C0111.11? crl~.icalions of t/t c A cnr,
Vol. 21, no. 8.

[JAJ090] Jajodia S., and B. I<oga.n, 1990, “Iotegrat-
ing an Object-Oriented Dat,a Model Wit.11 Multi-
level Security,” Proceedings of the IEEE Sympo-

sium 072, Security and Privacy, Oa.kland, CA.

[KEEF88] Keefe, T., W. T. Tsa.i, a.nd B. M. Thu-
raisingham, Oct,ober 1988, “A Securit,y Policy for
Object-Oriented DBMS,” Proceedings of Ihe 11th
NC.9 Conference.

[MILLSO] Millen, J. and T. Lunt, 1989, “Securit,y for
Knowledge Ba.se Ma.nagement. Syst,ems,” Techni-
cal Report,, MTR 686, The MITRE Corporat.ion,
Bedford, MA.

[ROZE89] Rozenshtein, D. and N. Minsky, 1989, *‘A
Law-Governed Object-Oriented System,” Jour-
nal of Object-Oriented Programv1il,g, Vol. 2, no.

2, March/April.

[THUR89] Thuraisingham, B. M., Oct,ober 1989,
“Mandatory Security in Object,-Orient,etl Da.t.a-
ba.se Mana.gement. Syst.ems,” Proccrdirtgs of

th.e ACM Couferewe on Object-Orienied PIV-
gramming Systems, Lnngua.ges nud .4pplicnlious

(OOPSLA), New Orleans, LA.

80

[THUR89b] Thuraisingham, B. M., and F. Chase,
1989, “An Object-Oriented Approach to Develop-
ing Secure Software Systems,” CIPHER (IEEE).

[THURSO] Thuraisingham, B. M., March/April 1990,
“Security in Object-Oriented Database Systems,”
Journal of Object-Orienied Prograntmin.g, Vol. 2,
no. 6.

[WENG75] Weng, K., 1975, Stream-Oriented Compu-
tation in Data Flow Schemas, TM 68, MIT Lab-
oratory for Computer Science.

81

