A Shift in Security Modeling Paradigms

James G. Williams
The MITRE Corporation
202 Burlington Road
Bedford, Massachusetts 01730

Abstract

Models of the external system interface of a com-
puter have been successfully used to describe con-
fidentiality requirements. This paper discusses the
use of an external-interface model that supports the
external consistency objective of Clark and Wilson
as well as internal structural constraints needed to
meet identified external-interface requirements. These
internal constraints identify a vendor-supplied “In-
tegrity Trusted Computing Base” that handles infor-
mal proofs called “pedigrees.” The increasing use of
external-interface models, which this work illustrates,
represents a paradigm shift in the construction of se-
curity models.

1 Introduction

The paradigm shift referred to in the title of this
position paper was first reported at the 1991 Fran-
conia Computer Security Workshop IV [1] and again
more recently in {2]. Briefly, the shift is from models
that attempt to define security requirements in terms
of controlled system entities towards more comprehen-
sive models that begin with what are essentially “black
box” requirements on the system interface. In the case
of mandatory nondisclosure requirements, this shift
was motivated by persistent reservations about the ad-
equacy of traditional access-control models [3] and has
led to newer models that include both noninterference-
like requirements and more traditional internal con-
straints {4, 5]. These newer models show that, at the
least, noninterference-like conditions can rule out a
large variety of known covert channels. Moreover, to
bring traditional access control models up to a compa-
rable level of stringency, it is necessary to make some

*This paper reports on joint work with Leonard J. La Padula.
This work was supported in part by the National Security
Agency under MITRE Project 8350.

1993 ACM 0-89791-635-2

57

significant additions, including a variant of tranquil-
ity, definitions of what constitutes reading and writ-
ing, I/O constraints analogous to simple security and
the star property, and a separate model of process
scheduling {5].

A taxonomy of stages of elaboration in the devel-
opment of trusted systems was presented in {1} whose
first three stages may be summarized as follows:

o Trust objectives describe what is to be achieved
by an information-processing enterprise, an im-
portant component of which is a computing sys-
tem.

o External-interface requirements models describe
the behaviors of computing systems, their users,
and other entities in the systems’ environments
in such a way as to allocate responsibilities for
achieving the identified trust objectives.

o Internal requirements models describe, in an ab-
stract manner, how the system respounsibilities
given in the external-interface models are met
within the system.

The primary purpose of [1] was to study the work
of Clark and Wilson [6] through the use of external-
interface modeling to see if a similar gain in clarity
would result. The initial result of this effort was the
identification of several system-interface requirements,
some ofJwhich were implicit in the work of Clark and
Wilson while others appeared to support the Clark-
Wilson objectives but were not contained in their fa-
mous work.

After the 1991 Franconia Workshop. we selected
external-consistency as the most prominent of the var-
jous Clark-Wilson objectives and began the process
of elaborating this objective to obtain user responsi-
bilities, external-interface requirements. and internal
system requirements.

The following sections the external-
consistency objective, several supporting external-

discuss

interface requirements, and some consequences for the
internal structure of a computing system.

2 Formulating the External Consis-
tency Objective

External consistency is the ability of a computing
system to give correct information about its external
environment. We begin with some typical examples.
If an inventory program says that a warehouse con-
tains given levels of various supplies, then the named
supplies really can be found at the warehouse. If a
bank statement lists a particular balance for an ac-
count, then the balance is correct as of the time it
was issued. If a computing system labels an output as
“secret,” then the contained information has a classi-
fication level dominated by “secret.” If a computing
system issues a “sell” order for one million shares of
stock, then that is the intent of its controlling orga-
nization. A “sunrise” program correctly predicts sun-
rises. This last, somewhat atypical example, is useful
because of its stark simplicity.

To model external consistency, we need to account
for the fact that computers are capable of producing
output which users interpret as assertions about real-
world entities (including, as a special case, the visible
behavior of the computing system itself). In working
formally with such assertions, there are several difficul-
ties that do not arise in the propositions of first-order
logic.

The truth or falsity of a real-world assertion can
vary with time unless it contains explicit qualifications
explaining when it is true. Another potential difficulty
with real-world assertions is that they are only approx-
imately correct unless level of accuracy is included in
the assertion itself or in its context of interpretation.
For example, the following assertion is very unlikely to
be exactly correct because most events do not happen
on minute boundaries:

system: The sun will rise at 5:47 a.m. loday.

A third potential difficulty is that real-world asser-
tions tend to rely heavily on context for their meaning
through the use of complex semantic conventions.

For the sake of a simple model, we view a comput-
ing system through a stabilizing filter that maps each
assertion input to or received from the system to a
corresponding “stable” assertion whose truth is time-
independent and whose accuracy is specified within
the assertion itself. Thus, for modeling purposes, the
above assertion might be replaced with the following:

system: At Logan Airport on 23 Seplember 1992,

58

the sun rises belween 5:46:59 a.m. and 5:47:01 a.m.

In this form, the truth of the assertion depends only
on the language used to express it (English) and on
facts of astronomy but not on contextual information
such as the time or place it was issued or the intent of
its author.

Taking the above examples and issues into account,
we are led to the following security objective:

2.1 External-Consistency Objective

Each assertion received from the system (and recast
in stable form) is a true description of reality.

This objective applies uniformly to all assertions
made by the system, including account status reports,
financial transactions, purported facts about the be-
havior of programs, and so forth.

3 Requirements at the System Inter-
face

According to the taxonomy described in [1]. the
second stage, after identifying basic objectives. is to
allocate responsibilities to the system and its users.
This allocation should be done in such a way as to
ensure effective support even though users make mis-
takes and, inJsome cases, are maliciously motivated.
After briefly mentioning user responsibilities, weJcon-
sider some examples of system responsibilities, infor-
mal presentations of external-interface requirements,
and, finally, what would be involved in a precise
model. g

The users must agree on a common language for
describing real-world or other situations, and this lan-
guage must contain a vendor-supplied sublanguage
that is understood by the computing system so that
the system can meaningfully participate in support-
ing the external-consistency objective. The assertions
and requests which users input to the system must be
correct; failing this, users must adequately warn the
system of possible errors.

In talking about system responsibilities, we really
mean vendor responsibilities deriving from vendor ad-
vertisements about support for external consistency.
We want to discuss what the vendor-supplied hard-
ware/software configuration should do to support ex-
ternal consistency. Consequently, we are interested in
properties which are satisfied if the system is installed
properly and has not been inappropriately tampered
with.

There are surprisingly few assertions that a prop-
erly installed system might take full responsibility for.

Only trivial examples such as the following come to
mind: when the computer is turned on, it mentions
that the system clock has gained three days since it
was last turned off. Let us see what a vendor might
be able to say in support of the examples we have
considered so far.

The simplest typical example is, perhaps, that of a
nondisclosure label. The accompanying security docu-
mentation might explain that an output label provides
a security level which dominates the information dis-
played, subject to various caveats: users have correctly
identified levels of inputs on which the outputs were
based, and there might be problems relating to covert
channels, inference, and/or aggregation. A “Trusted
Facility Manual” might further explain how to iden-
tify the users who contributed the potentially mis-
labeled information on which the output was based.
Notice that external consistency goes far beyond the
traditional notion of label integrity as discussed in the
Trusted Network Interpretation of the TCSEC (TNI)
[7].

In all of the remaining examples, the correctness
of the explicit or inferred output assertion depends
on the correctness of both application software and of
user-supplied inputs. Even the sunrise program de-
pends not only on the correctness of its software but
also on the correct setting of the system clock. In all
of these cases, the system can support external consis-
tency by giving useful information about who supplied
the inputs on which a given output depends. It can
do this, in particular, for assertions about software
correctness.

With sufficient care, it is possible for the system
to fully comprehend the actions upon which correct-
ness of output depends, to distinguish between rele-
vant user actions and its own actions, to take respon-
sibility for its actions, and to provide feedback on user
actions that are crucial to the correctness of a given
output.

3.1 Warranties on Correctness of System
Output

In view of the above examples, the main external-
interface requirement we shall impose in support of
the external-consistency objective is the following:

Output-Warranty Requirement

The system shall have the ability to mark
some of its outputs as “warranted,” meaning
that these outputs are correct provided the

59

inputs on which they are ultimately based
are themselves correct.

We refer to the set of previous I/O events that the
correctness of an output depends on as its I/O basis.
The /0 basis for an output is allowed to include previ-
ous outputs as a matter of convenience (e.g., the basis
for this month’s bank statement includes the closing
balance from last month’s bank balance, which is ap-
propriate, if it was not contested.)

The above output-warranty requirement is closely
related to the following availability requirement, which
we have not carefully studied: the system must be able
to provide useful descriptions of I/O bases; in partic-
ular, these descriptions must not be too complex. In
support of this availability requiremient, the system
typically identifies the user and/or user group respon-
sible for each assertion in a basis. But the correct-
ness of this identification relies on the Identification
and Authentication (I & A) process as well as on the
correctness of administrative information supplied by
the system’s security personnel. Usually, users are in-
terested in “reduced” bases from which uninteresting
caveats have been stripped (e.g., correctness of the I
& A mechanism, correctness of administrative records,
correctness of the system clock, etc.).

The above output-warranty requirement can be
strengthened considerably in order to accommodate
the possibility of incorrect inputs. One can require
that outputs be based only on certifiably correct in-
puts and that the system be able to discard even cer-
tified inputs if they are later found to be incorrect.
There are many possible forms of input certification.
A common form is corroboration, in which a first input
must be endorsed by a second input from a different,
properly authorized user. The system’s ability to rec-
ognize corroborated assertions may rest partly on ad-
ministrative procedures which guarantee. for example,
that no user has more than one login name.

3.2 An Error-Handling Requirement

So far, we have dealt only with “positive” informa-
tion. We now talk about what to do when 1t becomes
evident that a previously believed 1/0 assertion is in-
correct. We want to selectively invalidate any other
output assertions whose truth depends on this one.
The word “selectively™ is important here. Consider,
for example, an input event which installs a program
that has a virus in it. We might be able to discredit
this program by erasing the system’s disks and repro-
gramming the system from scratch, but we would pre-
fer an easier, more selective approach, namely, that of

Just telling the system to disregard the infected pro-
gram and all information that has been derived from
it.

Error Suppression Requirement

For any I/O assertion e, it is always possi-
ble to provide a later “invalidating” input e’,
such that, after e’ has been input and pro-
cessed, e will never again be used in the I/O
basis of any later output.

This requirement does not actually say that an
invalidating input must be selective. Selectivity
is actually an availability requirement rather than
an integrity requirement, but we mention selectivity
in order to ward off trivial solutions to the error-
suppression requirement,

4 Internal-Requirements Model

In order for a system to perform selective invalida-
tion of information, it is necessary for it to track how
each output and intermediate result has been derived.
This derived requirement is essentially the date conti-
nuity requirement found in DOD Directive 5200.28](8]
(parent document to the TCSEC).

Fulfillment of the data-continuity requirement
amounts to keeping a complete register of the events
that have led to a given warranted result. This reg-
ister, which we refer to as a pedigree, amounts to an
informal proof of the correctness of the result relative
to its I/O basis. When one looks closely, one discovers
that these informal proofs rely not only on assertions
in an I/O basis but on postulates, much as traditional
proofs rely on axioms. In this case, postulates are as-
sertions whose truth is established through direct ob-
servation and processing by trusted software. Thus,
there is a notion of Integrity Trusted Computing Base
(ITCB) which produces these postulates.

To provide an internal-requirements model that
guarantees the above external-interface requirements,
it is necessary to describe an interface language and
to explain how it is used by the ITCB. One of the ob-
jectives of the internal-requirements model is to allow
the construction of assertions that are based entirely
on corroborated inputs. Such assertions have pedi-
grees, all of whose input assertions are corroborated.
Another objective is to provide an interface language
strong enough to support the kinds of warranties made
by vendors about their own software.

60

The fundamental elements of the internal system
policy are user ids, data items, data aggregates, pedi-
grees, and certified processes (CPs). Data items are
analogous to the “controlled data items” of Clark and
Wilson. Some data items are warranted assertions;
some are “configuration items” of the sort found in
configuration-management policies. Some warranted
assertions are role authorizations. Some role autho-
rizations allow certain users to function as security
administrators. Each user group is defined by a set of
role authorizations.

Certified processes are built up from certified state
transformations; these may be classified as Integrity-
Validation Procedures (IVPs) or Transform Proce-
dures (TPs), as in Clark and Wilson, according to
whether or not they explicitly manipulate basis de-
scriptions.

While there are many details, the basic require-
ments of the internal model are easy enough to state.
The main requirement is that, in every reachable state,
every warranted assertion is supported by a valid pedi-
gree. The notion of a valid pedigree is defined in terms
of a state-dependent set of postulates. State-transition
constraints are needed to explain how the ITCB adds
new postulates.

The most sophisticated examples of error handling
are perhaps associated with configuration manage-
ment (CM) systems {9]. In such a system, the claim
that a program serves a particular purpose is sup-
ported by what is essentially an elaborate pedigree
that intertwines authorized inputs from system devel-
opers with assumptions about the behavior of their
software-development tools. CM systems allow devel-
opers to maintain useful claims about software sys-
tems in the face of discovered errors and changing
requirements, and their change-control mechanisms
provide a useful starting point in designing specific
mechanisms with which to satisfy the above error-
suppression requirement.

5 Preliminary Conclusions

Strong support for the external-consistency objec-
tive entails several external-interface requirements,
among them a requirement for vendors to produce lim-
ited warranties as to the correctness of outputs and a
requirenent to suppress erroneous information when
errors are discovered and reported to the system.

Successful implementation of these requirements
involves the ability to formulate “stable™ assertions
whose truth does not vary with the state of the sys-

tem and to maintain registries or “pedigrees” that jus-
tify these assertions relative to an assumed 1/0O basis.
Pedigrees must rely not only on user-supplied inputs
but also on direct observations and other “postulates”
whose correctness is the responsibility of an ITCB.

Using the mechanisms of an internal model, it
should be possible to design an I & A mechanism
that can produce pedigrees for assertions of the form
“user U asserted A” in which all user assertions are
corroborated. The necessary I & A requirements are
much stronger than those of theJTCSEC but not much
stronger than those of the draft “Minimum Security
Functional Requirements” (MSFR) produced recently
by the Federal INFOSEC Criteria Working Group.
The main addition to the MSFR requirements is that,
when a new user is introduced to the system, his iden-
tity must be corroborated by two system administra-
tors.

The internal model provides a natural framework
for discussing configuration management (CM), and
traditional CM ideas provide a natural starting point
for the construction of pedigrees and basis descrip-
tions for certified procedures. Such pedigrees rest on
certified assertions about the behavior of compilers,
linkers, and configuration builders such as the UNIX
“make” program. These tools are examples of TPs.

One can show that it is not possible to construct
reliable pedigrees for CPs without access mechanisms
stronger than those found in UNIX. Consider dynamic
linking, for example. To conclude that a dynamically
linked program satisfies a known specification, it is
necessary to know that its linked subroutines behave
as expected. In recognition of this, the UNIX Ild.so
linker checks version numbers. But its checks only
work if the semantics of version numbers is respected.
That is, (a) programs are not modified without incre-
menting version numbers, and (b) if only the minor
version number is changed, then the new program is
certified to satisfy the specification for the old pro-
gram. Unfortunately, UNIX does not directly support
the enforcement of these constraints.

References

(1} LaPadula, L. J., and J. G. Williams, June 1991,
“Toward a Universal Integrity Model,” Proceedings
of The Computer Securily Foundations Workshop
IV, pp. 216-218, Franconia, NH.

[2) LaPadula, L. J., 13 January 1992, “Taxonomy for
Stages of Elaboration of Requirements,” Nuance
Forum Entry LJL-3, Dockmaster.

61

[3] McLean, J., April 1987, “Reasoning About Secu-
rity Models,” Proceedings of the 1987 Symposium
on Security and Privacy, pp. 123-131, IEEE, Oak-
land, CA.

[4] Gove, R. A., September 1984, “Extending the
Bell & La Padula Security Model,” Proceedings of
the 7th DOD/NBS Computer Security Conference,
NBS/NCSC, pp. 112-119, Gaithersburg, MD.

[5] Williams, J. G., May 1991, “Modeling Nondisclo-
sure in Terms of the Subject-Instruction Stream,”
Proceedings of the 1991 Symposium on Research i
Security and Privacy, IEEE, pp.J64-77, Oakland,
CA.

[6] Clark, D. D., and D. R. Wilson, April 1987, “A
Comparison of Commercial and Military Com-
puter Security Policies,” Proceedings of the 1987
Symposium on Security and Privacy. IEEE, pp.
184-194, Oakland. CA.

[7] National Computer Security Center, July 1987,
Trusted Network Interpretation of the TCSEC
(TNI), NCSC-TG-005, National Computer Secu-
rity Center, Linthicum, MD.

(8] Department of Defense, March 1988, Security Re-
quirements for Automated Information Systems

(AISs), DOD Directive 5200.28.

[9] Witgift, D., 1991, Methods and Tools for Software
Configuration Management. John Wiley & Sons.

