
A Shift in Security Modeling Paradigms

Ja,mes G. Willia.ms
The MITRE Corporation

202 Burlington Road
Beclforcl, Massachusetts 01730

Abstract

Models of the external syst,em interface of a com-
puter have been successfully used to describe con-
fidentiality requirements. This pa.per discusses the
use of an external-interfa,ce model t1la.t supports the
external consistency objective of Cla.rk and \,+Ylson
as well as internal structura.1 constra.int,s needed t,o
meet identified externa.l-int.erface requirementSs. These
internal constraints identify a. vendor-supplied “In-
tegrity Trusted Computing Base” tl1a.t handles infor-
mal proofs called “pedigrees.” The increa.sing use of
external-interface models, which this work illust,ra.tes,
represents a paradigm shift in t#he construction of se-
curity models.

1 Introduction

The paradigm shift referred t.o in t,he t,it,le of this
position paper was first reported at, t,lie 1001 Fran-
conia Computer Security Workshop IV [l] and a.ga.iii
more recently in [Z]. Briefly, t.he shift, is from models
that attempt to define securit,y requirement,s in t,erms
of controlled system entities towa,rds more comprehen-
sive models that begin with wha.t a.re essentia.lly “bla.ck
box” requirements on the syst.em int,erfa.ce. In the case
of mandatory nondisclosure requirements, this shift
was motivated by persistent, reservations about, t.he a.d-
equacy of tra.ditiona.1 access-cont,rol models [3] and ha.s
led to newer models that include both noninterference-
like requirements a.nd more tra.ditiona.1 int.erna.1 con-
straints [4, 51. These newer models show t,ha.t, a.t the
least, noninterference-like condit.ions can rule out a
large variety of known covert, channels. Moreover, t,o
bring traditional a.ccess cont,rol models up t,o a. compa-
rable level of stringency, it is necessa.ry t.o make some

*This paper reports on joint, work with Leonard J. La Padula.
This work was supported in part. by t.he Nat.icmal Securit.y
Agency under MITRE Project S3.50.

significant additions, including a varia.nt. of tranquil-
ity, definitions of wl1a.t. const.itutes reading a.nd writ-
ing, I/O constraints ana.logous to simple securit.y a.nd
the st,a.r propert,y, and a. scparat.e model of process
scheduling [5].

A taxonomy of st,a.ges of elaboration in the devel-
opment of trusted systems was presented in [l] whose
first three stages may be summarized as follows:

Trust o6jecfi~~es describe what. is to IW achieved
by an information-processing cbnt.erprise. an im-
portant component of which is ;I colnput.iIlg s!.s-
tern.

E~:2erl,al-illlerfnce rqrrirelucuts morlcls describe
the belmviors of cornput ing s~st.rins, t lwir users.

and other entities in t.he systems’ environment~s
in such a way as to all0ca.W responsibilit,ies for
a.chieving t,he identified t,rust, ol)jrct ives.

17,iernnl reyuirewenfs m0tlrl.s tlt~scribe, in a.11 ab-
stract manner, how the system rt~sl~oli~il)ilit,ies
given in the ext.ernal-illtcrfa.cc~ nlotl(~ls iIre Inc‘l.
wit.hiii t.he syst,em.

The primary purpose of [I] :. t wa< 0 st.lltly t.lle WOrli

of Clark and Wilson [G] through t.he use of ext,ernal-
interface modeling to see if a. similar gain in clarity
would result. The init,ial result of t.his elTort. was the
identification of severa. system-int,erface requirements,
some ofJwhich were implicit in t,he work of Cla.rk and
Wilson while ot.hers appea.retl to support the Clark-
\\‘ilsoii object.ives but. were not. containrtl in t.lieir fa-
mous work.

Aft,er t.he 1991 Franconia \\;orkshop, we sclcct.ctl
ext.ernal-coiisist.ency a.s the most. proniinfWt~ of lhf var-
ious Clark-Wilson objectives and I>c~gal~ t,lle process

of elaborating t.his object,ive t.0 obt.ain user responsi-
bilities, external-interface requirenlcnts. and int,ernal
system requirement,s.

The following sect.ions discuss the est.ernal-
consistency object,ive, several srippor’t.ing esl.erna.l-

1993 ACM O-89791-635-2 57

interface requirements, and some consequences for the
internal structure of a computing system.

2 Formulating the External Consis-
tency Objective

External consistency is the ability of a computing
system to give correct informa.tion about, its external
environment. We begin with some typical examples.
If an inventory program says tha.t a. warehouse con-
tains given levels of various supplies, then the named
supplies really can be found a.t the warehouse. If a
bank statement lists a particular balance for an ac-
count, then the balance is correct. as of t,he time it
was issued. If a computing syst.em la.bels an output as
“secret,” then the contained information 1la.s a classi-
fication level dominated by “secret..” If a computing
system issues a “sell” order for one million shares of
stock, then that is the intent of it,s controlling orga.-
nization. A “sunrise” program correctly predicts sun-
rises. This last, somewhat atypical exa.mple, is useful
because of its stark simplicity.

To model external consistency, we need to account
for the fact that computers are capa.ble of producing
output which users interpret as assertions about real-
world entities (including, as a special ca.se, the visible
behavior of the computing syst.em it,self). In working
formally with such assertions, there a,re severa, difficul-
ties that do not a.rise in the propositions of first-order
logic.

The truth or falsity of a rea.l-world a.ssertion can
vary with time unless it contains explicit qua.lifications
explaining when it is true. Anot,her pot.ent.ial dificu1t.y
with real-world assertions is that t,hey a.re only approx-
imately correct unless level of accuracy is included in
the assertion itself or in its context of interpreta.tion.
For example, the following assertion is very unlikely to
be exactly correct because most events do not happen
on minute boundaries:

system: The sun will rise at 5:4?’ a.m. today.

A third potential difficulty is that. reaLworld asser-
tions tend to rely hea.vily on cont*ext for their mea.ning
through the use of complex sema.ntic conventions.

For the sa.ke of a simple model, we view a. cornput,-
ing system through a sta.bilizing filter t,ha.t. maps each
assertion input to or received from t.he syst,em t.o a,
corresponding “stable” assertion whose trut,h is time-
independent and whose accuracy is specified wit,hin
the assertion itself. Thus, for modeling purposes, the
above assertion might be replaced with the following:

system: At Logan Airport on 29 September 1992,

the sun rises between 5:46:5g a.m. and 5:47:01 a.m.
In this form, the trut,h of the nssert.ion depends only

on the language used to express it (English) a.nd on
facts‘of astronomy but not on context,ual information
such as the time or place it was issued or t.he intent, of
its author.

Taking the above examples a.nd issues into a.ccount,,
we are led to the following securit.y objective:

2.1 External-Consistency Objective

Each assertion received from the system (a.nd recast.
in stable form) is a true description of realit,y.

This objective applies uniformly to all a.ssertions
made by the system, including account status reports,
fina.ucia.1 t.ransa.ctions, purport.ed facts about, t.he be-
havior of programs, a.nd so fort,li.

3 Requirements at the System Inter-
face

According t.o t,he taxonomy described in [l]. t.he
second sta.ge, a,fter iclent.ifying ba.sic objectives. is to
a.llocate responsibilities t.0 t,he system and it.s users.
This a.llocation should be done in such a way as 1.0
ensure effective support, even though users make mis-
ta,kes and, inJsome cases, are maliciously motiva.ted.
After briefly mentioning user responsibilities, wedcon-
sider some examples of syst,em responsibilit,ies, infor-
ma.1 presenta.tions of est,erna.l-illt.erface requirement.s,
a.nd, finally, w1la.t would be involved in a. precise
model.

The users must, agree on a common language for
describing reaLworld or ot,her sit uat.ions, and this lan-
gua.ge must8 contain a. veiitlor-sul,l~lied sul,langrlage

that is uuderstood by t.he comput iug syst.em so l.hat.
t,lie syst,em ca.n meaningfully pa,rt.icipat.e in support,-
ing the ext,ernal-consist,ency object,ive. The assertions
and request.s which users input. t,o t,he syst,em must be
correct; fa.iling this, users must, adequately warn t,lie
system of possible errors.

In talking a.bout. system lesponsil,ilit,ies, we really
mea.n vendor responsibilit.ies deriving from vendor a.d-
vert,isements about, support, for external consist.ency.
We wa.nt. to discu& what, t,he vc,litlor-supplic:tl hard-
ware/soft,ware configuration should do to supl)orl. es-
t,erna.l consistency. Coiisequent,ly, we are iiit.erc5t.4 in
properties which are satisfied if 1 he syst.em is iust.allcd
properly a.nd has not been inapl)ropriately t,ampered
with.

There are surprisingly few a.ssertions t,hat, a. prop-
erly installed system might, t.ake full responsibilit,y for.

58

Only trivial examples such as the following come to
mind: when the computer is turned on, it mentions
that the system clock has gained three da.ys since it
was last turned off. Let us see wha.t a vendor might
be able to say in support of the examples we ha.ve
considered so far.

The simplest typical example is, perhaps, that of a
nondisclosure label. The accompanying security docu-
mentation might explain that an output label provides
a security level which dominates the information dis-
played, subject to various caveats: users have correctly
identified levels of inputs on which the outputs were
based, and there might be problems relating to covert
channels, inference, and/or aggregation. A “Trusted
Facility Manual” might furt.her explain how to iden-
tify the users who contributed the pot,ent,ia.lly mis-
labeled information on which the output was based.
Notice that external consist,ency goes fa.r beyond the
traditional notion of label integrit#y as discussed in the
Trusted Network Interpretation of the TCSEC (TNI)

[71.
In all of the remaining exa.mples, the correctness

of the explicit or inferred output assertion depends
on the correctness of bot,h a,pplica.tion softwa.re a.nd of
user-supplied inputs. Even the sunrise program de-
pends not only on the correctness of its software but,
a.lso on the correct setting of t.lie syst,em clock. In all
of these cases, the system can support esterna.1 consis-
tency by giving useful informa.tion about, who supplied
the inputs on which a given out,put depends. It ca.n
do this, in particular, for assert.ions about, softwa.re
correctness.

With sufficient care, it is possible for the system
to fully comprehend the actions upon which correct-
ness of output depends, to dist.inguish between rele-
vant user actions and its own a.ctions, to t.a.ke respon-
sibility for its actions, a.nd t.o provide feedback on user
actions that a.re crucia.1 t,o the correct,ness of a. given
output.

3.1 Warranties on Correctness of System
output

In view of the above examples, the main externa.l-
interface requirement we shall impose in support of
the external-consistency objective is the following:

Output-Warranty Requirement

The system shall ha.ve the a.bili t,y t,o ma.rk
some of its outputs as “warrant,ed,” mea.ning
that these outputs a.re correct. provided the

inputs on which they a.re ult.imat.ely based
are themselves correct,.

We refer to the set of previous I/O event.s that t.he
correctness of an out,put depends on as it.s I/O ba.sis.
The I/O basis for an out,put is allowed t.o include previ-
ous outputs as a matter of convenience (e.g., the basis
for this month’s bank statement includes the closing
balance from last month’s bank balance, which is a,p-
propriate, if it was not contested.)

The above output-warranty requirement is closely
related to the following ava.ilability requirement,, which
we have not carefully studied: the syst,em must, be able
to provide useful descriptions of I/O bases; in pa.rt.ic-
ular, these descriptions must not be too complex. In
support of t.his availahi1it.y requirPn\(9lt. the syshem
t.ypica.lly ident.ifies t,he user and/or nscr group respon-
sible for ea.& a.ssertion in a basis. nut. t,he correct,-
ness of this identificat,ion relies OII 1.111~ Ident,ifica,tion
and Aut,hentica.tion (I c& A) process as we’ll as on t,he
correctness of administ,ra.tive informat.ion supplied by
the system’s security personnel. Usually. users a.re in-
terested in “reduced” bases from which unint.erest,ing
cavea.ts have been st.ripped (e.g., correct,ness of t,he I
ck A mechanism. correct.ness of administ rat.i\.cz rc~o~~tls.
correctness of t,he syst,em clock. e1.c.).

The a.bove o~lt,l~ut,-~\ra.rrant,~ reqllirc~mc~nt. can be
st,rengt,lieiietl considerably in order t.o accomm0tlat.e
t.lie possibilit,y of incorrect iiiput,s. One caii require
that outputs be based only on cert,ifiably correct, in-
puts and that t,he syst~em be able t,o discard even cer-
tified input,s if they are la.ter found t.o be incorrect.
There are many possible forms of input, cert.ificat,ion.
A common form is corrobora.tion, in which a. first input,
must be endorsed by a. second input. from a different,
properly aut,liorized user. The syst.em’s abi1it.y to rec-
ognize corroborat.ed assert.ions may rest. part I\. on acl-
minist.rative procedures wliicli guaraiil~(~c. for c~sample.
tSlia.t. no user has more t.lian 011~ logitt iiiliile.

3.2 An Error-Handling Requirement

So fa.r, we lia.ve dea.lt, only wit,li “posit.ive” informa.-
tion. We now talk about what, t,o do when it, becomes
evident, tl1a.t a. previously believed I/O assertion is in-
correct. We want. to select,ively invalit1at.e any other
out,put, a.ssert,ions whose trut.li dt~pentls on t.liis one.
The word ‘select,ivcly” is import.allt. here. C’ollsitler.
for example, an illput, event. which inst.alls a program
t.liat. 1~a.s a virus in it.. We inight. IX> able t.0 tliscretlih
t,liis pr0gra.m by erasing t,lie syst,eni‘s disks and repro-
gra.mmiiig the syst,em from scratch. I)llt. wr would pre-
fcr a.n ea.sier, more selective approach. namely, t.liat. of

59

just telling the system to disregard the infected pro-
gram and all information that has been derived from
it.

Error Suppression Requirement

For any I/O assertion e, it is always possi-
ble to provide a later “inva.lidating” input e’,
such that, after e’ has been input and pro-
cessed, e will never a.gain be used in the I/O
basis of any later output.

This requirement does not actua.lly say that an
invalidating input must be selective. Selectivity
is actually an ava.ila.bi1it.y requirement ra.ther t,ha.n
an integrity requirement, but we mention se1ectivit.y
in order to ward off trivia.1 solutions t.o the error-
suppression requirement.

4 Internal-Requirements Model

In order for a system to perform selective invalicla-
tion of information, it is necessary for it to tra.ck how
each output and intermedia,te result. has been derived.
This derived requirement is essentia.lly the dntn con&
7luiZy requirement found in DOD Directive 5200.28.J[$]
(parent document to the TCSEC).

Fulfillment of the da&continuit,y requirement
amounts to keeping a complete register of the eveuts
that have led to a giveu warranted result. This reg-
ister, which we refer to a.s a pedigree, a.mounts to a.11
informal proof of the correctness of the result relative
to its I/O basis. When oue looks closely, one discovers
that these informal proofs rely not only on assertions
in an I/O basis but on post,ulates, much a.s tra.ditiona.1
proofs rely on axioms. In this case, postulates are as-
sertions whose truth is esta.blished through direct ob-
servation and processing by t.rusted softwa.re. Thus,
there is a notion of Integrity Trusted Compuliug Bnse
(ITCB) which produces these postula.tes.

To provide an internal-requirements model tha.t
guarantees the above external-interfa.ce requirements,
it is necessary to describe au interfa.ce langua.ge a.nd
to explain how it is used by the ITCB. One of the ob-
jectives of the internal-requirements model is t,o a.llow
the construction of assertions tl1a.t are ba.sed ent.irely
on corroborated inputs. Such assert,ions ha.ve pedi-
grees, all of whose input assertions are corroborated.
Another objective is to provide an interfa.ce la.ngua.ge
strong enough to support the kinds of wa.rrant.ies ma.de
by vendors about their own softwa.re.

The fundamental elements of the internal system
policy are user ids, data. items, data aggregates, pedi-
grees, and certified processes (CPs). Dat,a, items are
analogous to t,he “cont.rolled dat.a it.ems” of Clark aud
Wilson. Some data items a.re warranted assertions;
some are “coufigura.tion items” of t,be sort found iu
configuration-managemeut policies. Some warra.nt,ed
assertions a.re role aut.lioriza.tions. Some role autbo-
rizations allow certain users to fun&ion as security
administrators. Each user group is defined by a set of
role authorizations.

Certified processes a.re built up from certified sta.te
transformations; these may be classified as Integrity-
Validation Procedures (IVPs) or Transform Proce-
dures (TPs), as in Cla.rk and Wilson, according to
wliet.her or not, they espIicit.1~~ iiianipulat.tz his tle-
scriptious.

While t,lrere are imny det,ails, 1 he basic require-
ments of the internal model a.re easy enough t.o st,ate.
The ma.in requirement, is tha.t, in every reacha.ble st,a.te,
every wa.rra.nted ass&ion is support,ed by a. valid pedi-
gree. The notion of a va.lid pedigree is defined in t,erms
of a state-dependent set of postulat,es. St.at.e-t.rausition
coustra.ints a.re needed t.o explain how t.he ITCB adds
uew postula.tes.

The most sophisticat.ed examples of error handling
are perhaps associat.ed wit.11 configurat.ioii inanage-
ment. (CM) syst.ems [$I]. In such a syst,eni. t,lie claim
t.liat, a program serves a. part.icular purpose is sup-
ported by what. is essent.ially an elaborat,e pedigree
that. intertwines aut.horizecl iuputs from syst.em devel-
opers with assumpt,ions about t,lie belia.vior of Uieir
softwa.re-development, t,ools. CR1 syst.ems allow devel-
opers to ma.inta.iii useful cla.ims about soft.ware sys-
tems in the face of discovered errors and changing
requirements, and t,beir clrange-control mechanisms
provide a lrseful stalting point, in designiiig specific
mechanisms 5rit.h which t.0 sa.t.isfy t.lle above> ~xrror-
suppression requirement,.

5 Preliminary Conclusions

Strong support for t,he ext,erna.l-consist,ency objec-
tive eiita.ils severa. ext,ernal-interface requiremen&,
a.mong them a requirement for vendors t.0 produce lim-
it,ed warrant.ies as t,o the correct.ness of orlt,put,s and a
requirement. t,o suppress erroneous irifornlal ion wlirn
errors a.re discovered and report.etl t.0 t.lie syst.cAin.

Successful iiiil’lemelit.at.ioii of t lirse requiremenhs
involves t.lle abi1it.y t,o formulate “stable” assert.ions

whose trut,li does not. vary wit.11 t.he st,at.e of c-lie sys-

60

tern and to maintain registries or “pedigrees” that jus-
tify these assertions relative to an assumed I/O basis.
Pedigrees must rely not only on user-supplied inputs
but also on direct observations and other “postulates”
whose correctness is the responsibility of an ITCB.

Using the mechanisms of an internal model, it
should be possible to design an I & A mechanism
that can produce pedigrees for assertions of the form
“user U asserted A” in which all user assertions are
corroborated. The necessary I & A requirements are
much stronger than those of theJTCSEC but not much
stronger than those of the draft “Minimum Security
Functional Requirements” (MSFR) produced recently
by the Federal INFOSEC Criteria Working Group.
The main addition to the MSFR requirements is that,
when a new user is introduced to the system, his iden-
tity must be corroborated by two system a.dministra-
tors.

The internal model provides a natural fra.mework
for discussing configuration management (CM), a.nd
traditional CM ideas provide a. na.tura.1 starting point
for the construction of pedigrees and ba.sis descrip-
tions for certified procedures. Such pedigrees rest on
certified assertions about, the behavior of compilers,
linkers, and configuration builders such as the UNIX
“make” program. These tools are exa.mples of TPs.

One can show that it is not possible to construct
reliable pedigrees for CPs without access mechanisms
stronger than those found in UNIX. Consider dyna,mic
linking, for example. To conclude that a dyna.mica.lly
linked program satisfies a. known specification, it is
necessary to know tha.t it,s linked subrout.ines behave
as expected. In recognition of t,his, the UNIX ld.so
linker checks version numbers. But its checks only
work if the semantics of version numbers is respected.
That is, (a) programs are not modified without incre-
menting version numbers, a.nd (b) if only the minor
version number is changed, then the new pr0gra.m is
certified to satisfy the specifica.tion for the old pro-
gram. Unfortuna.tely, UNIX does not directly support
the enforcement of these constraints.

References

[l] LaPadula, L. J., and J. G. Willia.ms, June 1991,
“Toward a Universal Int,egrit#y Model,” Proceedir1.g.s
of The Computer Security Foundatious Workshop
IV, pp. 216-218, Franconia, NH.

[2] LaPadula, L. J., 13 Ja.nua.ry 1992, “Taxonomy for
Stages of Elabora.tion of Requirements,” Nua.nce
Forum Entry LJL-3, Dockma.st,er.

131

[41

PI

PI

PI

PI

PI

McLean, J., April 1987, “Reasoning About Secu-
rity Models,” Proceedings of the 1987 Symposium
on Security and Pri,uacy, pp. 123-131, IEEE, Oa.k-
land, CA.

Gove, R. A., September 1984, “Ext.ending the
Bell & La Padula. Securit.y hiIode1,” Proceedings of
the ‘7th DOD/NBS Computer Security Conference,
NBS/NCSC, pp. 112-119, Ga.ithersburg, RID.

Williams, J. G., May 1991, “Modeling Nondisclo-
sure in Terms of t,he Subject.-Inst,ruct,ion St,ream,”
Proceedings of the 1991 Symposium on Research in

Security an.d Privacy, IEEE, pp.J64-77, Oakland,
CA.

Clark, D. D., and D. R. Wilson. April 1987, **A
Compa.rison of Commercial and Milibary Com-
puter Security Policies,” Proceedings of the 1987
Symposium 01). Security n,,rl Pricwcy. IEEE. pp.
184-194, Oakland. CA.

Na.ti0na.l Comput,er Securit.y Cent.rr. .July 1987,
Trusted Net.work Tnt.erpret.at.ion of t.he TCSEC
(TNI), NCSC-TG-005, Nat.ional Comput,c:r Secu-
rity Center, Lint.hicum, RID.

Depa.rtment of Defense, March 1988, Securit,y Re-
quirements for Automat.ed Informa.tion Syst.ems
(AISs), DOD Direct,ive 5200.28.

Witgift, D., 1991, nlefhons nr,d Tools for Soflcuare
Confignmtion Management. .John \\.iley &Y Sons.

61

