
M o d e l i n g the "Mult ipo l icy Machine"

D. Elliott Bell*

D. Bell, Ltd.

A b s t r a c t

A method of treating several unspecified policies is pre-
sented. Precise notions of policy combination, pol-
icy conflict, conflict resolution, and policy precedence
are introduced. Necessary and sufficient conditions
for policies to be combined without conflict are estab-
lished.

1 I n t r o d u c t i o n

The work reported here is part of Phase II of the "Mul-
tipolicy Machine" project, a Small Business Innovative
Research contract addressing multiple-policy interac-
tions. Phase I focused on the identification and initial
treatment of multipolicy-machine topics. Phase II in-
cludes detailed design of the multipolicy machine; col-
laboration with a commercial vendor; construction of
a formal model of the "multipolicy machine"; and the
design and implementation of a prototype illustrating
the multipolicy machine solutions. This paper reports
on the modeling task of Phase II.

Phase I of the Multipolicy-Machine project iden-
tiffed a wide range of pertinent topics across all lev-
els of abstraction, from organizational considerations
of policy matters to implementation design options.
(See [HOS92a] and [HOS92b].) Since the modeling
task focuses on a conceptual level of discourse appro-
priate for system evaluation at the higher trust levels
of the Trusted Computing System Evaluation Criteria
[TCSEC85], part of the modeling task was to divide
the Phase I results into those that were, and were not,
properly addressed in a formal security policy model.
An interesting aspect of the effort is that the model-
ing of the "Multipolicy Machine" addresses the inter-
actions between unspecified policies, rather than the
conceptualization of a specific set of policies. Hence,

*Copyright (~) 1994 Data Security Incorporated. Research
performed under Subcontract DSI--4300-B of SBIR contract
F19628-93-C.-4}022.

two initial steps in the modeling task were to deter-
mine the topics for consideration within the modeling
study and establishing a conceptual framework for ad-
dressing unspecified policies.

Section 2 below addresses the Phase I topics that
were identified for modeling treatment. Section 3
presents the conceptual framework used for modeling
the "Multipolicy Machine"; the specific model arti-
facts introduced to address the multipolicy-machine
topics; and the general results achieved. Section 4
summarizes the work accomplished to date and delin-
eates possible future work.

2 Topics for Inc lus ion

The first step in picking topics for conceptual model-
ing was to determine the appropriate level of "policy".
Four levels of "policy" were used: organizational, con-
ceptual, abstract-design, and implemented-design.

Organizational policies address the full range of en-
terprises, people, information, and resources. The
policies are narrative, intended for human readers and
may be layered. A division of a corporation, for exam-
ple, is subject to corporate Policies and Procedures,
but also impose its own additional (or "implement-
ing") policies. It is also subject to local occupancy
codes, state unemployment insurance regulations, and
federal occupational safety standards. All these poli-
cies are termed "organizational".

A conceptual policy is a representation of part of
an organizational policy in abstract, conceptual terms.
This policy is typically easy to relate to the portion
of the organizational policy it is intended to repre-
sent. Careful translation of an organizational policy
into conceptual terms is the first essential step in con-
ceptual analysis.

A design that builds on conceptual modeling itself
translates an external policy (here, the conceptual pol-
icy) into its own terms. Part of the design process is
tracing the organizational policy requirements to the

conceptual, through the abstract-design policy to a fi-
nal implemented-design policy.

The sieve tha t was used to select multipolicy-
machine topics for modeling t rea tment was the lim-
itation to conceptual policy concerns. Topics tha t ad-
dressed organizational or design issues were reserved
for direct, engineering examination. The conceptual
topics and those tha t were directly supported by con-
ceptual mechanisms were investigated thoroughly.

The conceptual policy topics selected for t rea tment
are as follows: 1 representing more than one policy;
metapolicies; representing the combination of policies;
elaborating on the notion of "contradictory" or "con-
flicting" policies; resolving conflict; precedence and or-
der; and policy evolution.

The multipolicy-machine topics are presented in
two groups. The fundamental topics (that is, rep-
resention of more than one policy, conceptual-level
metapolicies, combinations of policies, conflicting poli-
cies, and conflict resolution) are addressed directly in
the model development below. The derivative top-
ics (precedence, order, and policy evolution) are ad-
dressed narratively at the end of the following section.

3 M o d e l i n g R e s u l t s

The mathemat ica l modeling of multiple policies will
proceed as follows: Conceptual Framework (section
3.1) t reats a mathemat ica l representation of a gen-
eral computing machine; Direct Topics (section 3.2)
addresses the representation of combinations of poli-
cies and the representation of "policy conflict"; and
Derivative Topics (section 3.3) addresses the notions
of policy precedence, ordered policies, and policy evo-
lution.

3.1 Conceptual Framework

3.1.1 Bas i c C o m p u t i n g M a c h i n e

The basis required for modeling multiple policies is
tha t of a basic computing machine. The development
here generalizes tha t in [BLP73, LPB73, BELL73,
BLP75] in two ways. The first is allowing more than
a single initial state. The second is the more signifi-
cant: generalizing from deterministic changes of s tate
to (possibly) non-deterministic transitions.

The elements of the basic machine are four: states;
requests; decisions; and the machine's state-transit ion

1For addi t ional information about the selection process and
results, see [BELL94, pp. 10-17].

relation.
The notation used for the first three elements of the

model are as shown in table 1 below.

I Elements Nota t ion I

States z E Z
Requests R E T~
Decisions D E 79

sequence of requests
sequence of decisions
sequence of states

T ~ ; x E T ~ ; s t
79"~ ; X E 79N ; y t

Z ~ ; z E Z ~ ; zt

Table 1: Basic Elements

The component sets used here are left unspecified. "Re-
quests" and "Decisions" are the inputs to and outputs from
the calculating machine, respectively. All the sequences
(7~' , 79Af, and Z ~f) are defined as mappings from the set
of natural numbers Af to the sequenced set (that is, to 7~,
79, and Z).

These basic sets express the machine statically. The
state transition relation determines the dynamic nature of
the machine.

Definit ion 1 State Transit ion Relation: A state tran-
sition relation 142 is a subset of the Cartesian product
T ~ x Z x 7 9 x Z : W C _ ~ x Z x ~ x Z .

YV identifies "allowable changes of state" as follows. If,
while in state zt-1, the machine receives the input xt, then
the output of the machine, yt, and the next state, zt, must
appear with (x t , z t -1) in ld; : (xt ,z t_l ,y~,z~) E)4).

Definit ion 2 The basic calculating machine is the system

~(T~,79,Z,)4) ,Zo) , where zo E Zo and

(x , y , z) E ~ (~ , 7 9 , Z ,)~V, Zo)

¢=~ Vt E Af, (x t , z t - l , y t , z t) E)42.

Note that in contrast to [BLP75], the indeterminate
initial state is replaced by an indeterminate set of initial
states: Z0 C Z. Note further that ld; is not required to
be a function. More than one result is possible for any
(x~,zt-1) e ~ x Z.

3.1 .2 R e p r e s e n t a t i o n o f "Pol icy"

A "policy" is defined here as a "value" on a computation
of the basic machine. "A policy makes value judgments"
is used synonymously with "a policy associates a value".

D e f i n i t i o n 3 A policy is a function

l i : (T~ N,/)~¢, Z ~¢) --. V.

The perspective taken herein is slightly different from
most security models in that its focus is the entire com-
putat ion (x , y , z) rather than the individual transitions
zt-1 --* zt. 2 Nevertheless, a traditional goal of most se-
curity modeling has been to identify local properties of or
restrictions on the underlying machine that ensure prop-
erties about all possible computations, a Hence not only is
this perspective appropriate for dealing with very abstract,
non-specific conceptual-policies, but it also has sufficient
precedent in the literature.

One can view the security modeling of computing re-
sources as a task of determining what additional con-
stralnts that one would like to add to an already-defined
machine (that doesn't meet one's security needs) in order
to emulate a related, more restricted machine that does
meet one's needs.

3 .1 .3 S i m p l e - S e c u r i t y E x a m p l e

The familiar "simple-security property" [BLP75] can be
used to illustrate the notion of "policy" as it is defined here.
"Simple-security" for the system E is defined in terms of
states, as follows:

is SS-Secure
iff V(x, y, z) 6 E Vt 6 flf (zt is ss-secure.)

Equivalently, one can define Hss in the following fash-
ion. Let ~r3 denote the projection onto the third factor
and ran, the range of a function. For any function "op"
mapping V ~ to V, define

liSS zx op o ran o a ~ o ~ra.

With the stated-based policy a, , : Z --* temp and the
value sets val = {may, cannot} and V A L = {BAD, GOOD},
define the function ~/as follows:

~(]g) = ~ GOOD i f K = { m a y }

l BAD i f cannot 6 K.

Simple-security can then be pictured as in figure 1.
The simple-security example generalizes in a direct

fashion to discretionary-security and *-property-security
found in [BLP75]. 4

2Non-interference models are an exception to this
generalization.

3The Basic Security Theorem [BLP73] and several unwind-
ing theorems (such as [GOME84]) are examples.

4AIthough ss-security is state-based (as are ds-security and
*-property-security), not all policies are. Non-interference relies
on "purging" all test computations to establish "interference".

This sort of policy is a direct E (TE~ :D, Z,),V, Z0) --. V function

that cannot be factored through Z.

Z - -* Z ~f ~---

1o,.
val ----* val ~ v o ran

E (T ~ , ~) , Z , W , Zo)

(n ~, I ~ , z ~)

I Hss
VAL

Figure 1: Simple-Securi ty Example

3 . 2 D i r e c t T o p i c s

This section addresses some of the multipolicy-machine
topics directly within the modeling framework. The topics
addressed are combinations of policies (using policy com-
biners) and policy conflict (using policy attenuations, non-
conflicting policies, and policy combiners that resolve con-
flict).

3 .2 .1 P o l i c y C o m b i n a t i o n s

With a policy defined as a mapping that associates a value
with every computation, it is obvious that a multiple pol-
icy situation is exactly the existence of several value judg-
ments on a single machine. The interest lies in constructing
descriptive mechanisms to address putt ing several policy
judgments together. At the conceptual level that question
becomes:

given a set of policies {/-/A1 , HA. }, how does
one determine the joint "value" judgment of the
entire set?

The basic notion is that of a "policy combination" or
"policy combiner". A policy combiner for policies HA and
liB is a mapping from the combination of value sets VA
and VB to a single value set V.

De f in i t i on 4 For llA and liB, the combination of HA
and l ib is a function CA,B that maps VA x VB to V.

A policy combiner associates with every calculation in

E(TE, T) , Z , W , Zo) a value judgment in V by combining

the values assigned by HA and HB using the mapping CA,B
as shown in figure 2.

The composition CA,B o (HA X HB) will denoted by

C~,B : P~ ~ ,7~ , z ,W, zo ~ (VA X liB) ~ V.

Def in i t i on 5 For policies { II AI . . . HA. }, their combina-
tion is a function

CA1 An :VA, X ' ' ' X V A . "~ V.

zo)ll "", v,,× }
zo) ",

Figure 2: Two-Pol icy Combiner

II ×

~ (n , ~ , z , W , Zo) ff-~ VA.

Figure 3: N-Policy Combiner

A general policy combiner associates a value as in fig-
ure 3. C~1 A, will be used to denote the composition
CAt a,, o (KIA1, × ' ' " × HA,,).

The n-policy combiner provides the descriptive mecha-
nism to combine policies. The composition CA~ A'` cap-
tures the combining aspect while C~1 A, captures the
full mapping from the elements of the system to the set of
values V. 5

For the remainder of this development, it will be as-
sumed that VA =--- ~) for every policy HA and that CA,B
is of a very simple form, such as V ("join" or "OR") or A
("meet" or "AND").

3 . 2 . 2 C o n f l i c t

The notion of conflict between policies (at the organiza-
tional level) leads to the modeling concepts of policy at-
tenuation and conflict-resolving policy combiners.

A policy HA assigns a single value to every computa-
tion in the system. A policy at tenuation for HA specifies
a set of value judgments that are acceptable to HA. 6 The
value KIA(X,y, z) is always included within the policy at-
tenuation se t aA(KiA(x,y,z)) . In the usual case, all the
value sets are the same ordered set (V, _>) and attenua-
tions are of the form "anything below the policy value" or
"anything above the policy value". An "anything below"

5Note that C ° satisfies the definition of "policy". A1,...,A'`
6An "at tenuat ion" is a "weakening". A policy a t t e n u a t i o n

is a set of acceptable "weaker" value judgments associated with
the pure policy value judgment HA.

attenuation is termed a "min-attenuation"; an "anything
above" attenuation, a "max-attenuation".

D e f i n i t i o n 6 A policy attenuation is a function

a:V --* ~'(V),

where v E a(v) Vv • V.

For a policy HA, an associated policy attenuation will
be denoted aA. The set of values a(v) represent "non-
conflicting" policy values wi[h respect to the value v.

For example, consider the simple-security- and discre-
tionary-security-policies, KIss and KIDS, with policy values
Vss = VDS ----]), where V -- { must, may, cannot } and the
value set is transitively ordered by must > may > cannot.
Both KIss and KIDS assign the value cannot for an un-
acceptable calculation and may for a calculation that is
not unacceptable. The implicit understanding is that if
KIss (respectively, KIDS) judges a calculation may, a com-
bined judgment of cannot would not be considered sedi-
tions. Hence, a value judgment of may carries the con-
notation that may is preferred, but that cannot would be
tolerated. Similarly, a value judgment of cannot not only
prefers cannot, it will not tolerate any value above cannot.
Thus the policy attenuations a s s and aDS are represented
as follows:

{may , cannot} if v----may
ass (v) = { cannot } if v ---- cannot.

and

As a second example, consider a public health policy
KIPH and a privacy policy ff[PRIV, both with the same
value set { must, may, cannot }. The policy KIPRIV assigns
values may and cannot, in the same way as Kiss and KIDs
do. The public health policy KIPH, on the other hand,
assigns the values must and may. The value judgment
must relates to information that is vital to countering
severe community-threat hazards such as a tuberculosis
epidemic. The value judgment must therefore connotes a
policy opinion that certain information (or certain calcula-
tions or certain actions) carmot be held away from public
scrutiny. Thus, the policy at tenuation apRIY is equiva-
lent to ass and aDS, while the policy at tenuation apH is
represented as follows:

f {mus t , m a y } i f v : m a y (v) a p H { must } if v = must.

One policy accepts values at or above its preferred judg-
ment (the policy HpH), while the other accepts values at
or below its preferred judgment (the policy HpRIV).

Policy attenuations make possible the definition of pol-
icy conflict. The concept of conflict is approached double

negatively. Policy HB is said to non-conflict with policy
l iA provided its value judgments are always in the set of
acceptable weakened values delineated by the policy at-
t enua t ion CA. T h a t is, policy l i b non-conflicts with l iA
provided tha t the value B would assign is acceptable to
policy A. Policies conflict if neither one is non-conflicting
with the other.

D e f i n i t i o n 7 Let policies HA and l iB have attenuations
aA and C~B, respectively. Policy l iB is said to be non-
conflicting with HA provided

V(x, y, z) E ~ (T~, I) , Z , VV, Z o) ,

l i B (x , y , z) • OIA (I i A (X , y , z))

Otherwise, l iB conflicts with l iA .

If l iB conflicts with I1A, there is an (x, y, z) such tha t

l i B (x , y , z) ¢ O~A(IIA(X,y ,z)) .

We call such an (x, y, z) an i l lustrative conflict of l iB with
l iA. A n element

(x, y, z) • ~ (T~, :D, Z ,)~V, Z o)

is a conflict between HA and l iB if it is either an illustra-
t ive conflict of l iA with / /B or an i l lustrative conflict of
l iB with HA. Call HA and l i b mutua l ly non-conflict ing if
there is no conflict (x, y, z) between l iA and l iB.

More generally, we say tha t (x, y, z) is a conflict among
the set of policies

{ A 1 , . . . , A ~ }

if there are 1 _< i , j < n such tha t (x , y , z) is a conflict
between liA~ and l iAj . The set { A 1 , . . . ,An } is called
mutua l ly non-confl ict ing if there is no conflict among the
set of policies.

D e f i n i t i o n 8 For an ordered set of values (V, ~) , a min-
a t t enua t ion is policy at tenuation (~ provided

~ (v) = { v ' : v~-v',v'•V}.
Dually, o~ is a max-a t t enua t ion provided

~(v)={v' : v ~ v ' , v ' •V}.

If (V, ~-) is a boolean latt ice (V, V, A), then the ele-
ments "less than" an element v are the interval from O
to v, and the elements "greater than" an element v are
the interval f~om v to 1. In this case, min -a t t enua t ion will
be called MEET-ATTENUATION, and max-a t tenua t ion , JOIN-
ATTENUATION. The lat t ice (V, >) , a l inearly ordered set,
is a common case. 7

A policy combiner CA,B is said to "resolve the conflicts"
between policies l iA and HB provided it is a policy com-
biner tha t non-conflicts with bo th HA and FIB.

7S. Ovchinnikov has noted the similarity between these lat-
tice value-sets and Goguen's L-fuzzy sets [GOGU67].

D e f i n i t i o n 9 The policy combiner CA,B RESOLVES COI1-
flicts between M A and M s (relative to aA and O~ B) provided
C°A,B non-conflicts with both MA and l iB . C°A1 A n re-
solves conflicts amongst the policies { l i A1, . . . , l i An } pro-
vided it non-conflicts with liA~ fo r 1 < i < n.

T h e o r e m 1 For policies { l i A 1 , . . . , I1An } with associ-
ated rain-attenuations { a A l , . • •, OlAn } , there e ~ s t s a pol-
icy combiner CA1 An that is non-confl ict ing with every
l iar .

Proof: Let

CA, An (X, y, Z) A :=mAn{ l i A , (x , y , z) : 1 < i < n } .

Because C~A~ is a min -a t t enua t ion and

d~l An(~,Y,Z) < n A , (~ , y , z) ,

CA1 An non-conflicts with l iAr. s
The dual result holds for max-a t tenua t ions . Similarly

for mee t -a t t enua t ion and jo in -a t t enua t ions (subs t i tu t ing
{ A, ___ } and { V, ~- }, respectively, for the pair { i n f , <_ }).

T h e o r e m 2 Let l iA and l iB be policies. Let OlA be a min-
at tenuation and aB, a max-at tenuation. There is a policy
combiner CA,B that resolves conflicts between HA and HB
i f f l i A ~_ l i B .

P r o o f : If l iA ~_ I IB, CA,B ~- 7rA (the project ion onto
l iA) is such a policy combiner. If CA,B resolves conflicts
between l iA and l iB , t hen HA > C~,B >_ l iB , SO tha t
HA _~ l i B by t ransi t ivi ty.

C o r o l l a r y 3 Let V be linearly ordered and let policy l i b
have a max-at tenuat ion a s . There is no policy combiner
CA,B that resolves conflicts between l iA and l iB i f

ran HA -- ran HB ~£ O.

P r o o f : Let v ' = m i n (r a n HA -- ran H B) . Now,

v ~ E r a n l i B and V tp ~ V t :=~ V t E l i B

because ~B is a max-a t t enua t ion . Since v ~ ~ ran l iB ,

v N > v ~ Vv" E ran l iB .

Hence,

V (~ ' , y ' , z ') e IIA~(V')
l iA (X', y' , z ') ----- v ' < l iB (X', y ' , Z').

HA ~ l i b and the result follows f~om Theorem 2.

C o r o l l a r y 4 Let V be linearly ordered and let policy HA
have a min-at tenuat ion CA. There is no policy combiner
CA,B that resolves conflicts between l i n and l i b i f

ran l iB -- ran HA ¢ O.

P r o o f : This corollary is dual to corollary 3.

SNote that any policy combiner less than CA1 ,...,A~ also re-
solves conflicts among { I1A1, .. . , l lAn }.

3.3 Derivative Topics
The remaining multipolicy-machine modeling topics are
addressed in this section: policy precedence, policy order,
and policy evolution.

3 .3 .1 P o l i c y P r e c e d e n c e

The notional idea of "precedence" is captured via a model-
ing hmction that is called a "policy precedence". A policy
precedence associates a value in an ordered set T with ev-

ery computation in the system ~ (T~, T), Z,)47, Zo) .

D e f i n i t i o n 10 A (policy) precedence is a function

O:~(T~,D,Z, YV, Zo) ---* T,

where T is a set ordered by >_ . The precedence associated
with policy HA is denoted QA.

Two distinct forms of precedence-respecting policy
combiners are introduced. The absolute-precedence pol-
icy combiner totally ignores the lower-precedence-level
policy. 9 The second type of precedence is the conflict-
precedence policy combiner.

An absolute-precedence policy combiner assigns values
not-in-conflict with the high-precedence policy, totally dis-
regarding the low-precedence policy. A conflict-precedence
policy combiner combines two policies without precedence
when possible. When there is conflict between the policies,
it resolves the conflict in favor of the higher-precedence
policy.

D e f i n i t i o n 11 An absolute-precedence policy combiner
is a policy combiner CA,B that satisfies the following sym-
metric conditions:

QA (x, y, z) < QB (x, y, z)
=~ (x, y, z), not a conflict between //B ~ C~,B

~B(X,y,z) < QA(X,y,z)
=~ (~c, y, z), not a conflict between HA & C~, B

Conflict-precedence is defined in a fashion similar to
that of absolute-precedence, with the addition of a conflict
condition.

D e f i n i t i o n 12 A conflict-precedence policy combiner is a
policy combiner CA,B that satisfies the following symmetric
conditions:

(x ,y ,z) , a conflict between HA ~ M B
QB(x,y,z) (Q A (x , y , z)
=~ (x, y, z), not a conflict between HA & C~,B

9 T h i s d i s c u s s i o n is p h r a s e d in t e r m s o f t w o po l ic ies ; g e n e r a l -
i z a t i o n t o n p o l i c i e s is s t r a i g h t f o r w a r d .

(x, y, z), a conflict between HA ~ / / B
& OA(X,y,z) < OB(X,y,z)

(x,y, Z), not a conflict between / / s &C~,B

Ss-security and ds-security neatly illustrate the differ-
ence between conflict- and absolute-precedence. By theo-
rem 1, there is a policy combiner C~,B for l l s s and IIDS
that resolves their conflicts. For any precedences Oss and
ODS, C~,B is a conflict-precedence policy combiner.

On the other hand, for Qss < ODS (o r the reverse), any
absolute precedence policy combiner will ignore either the
values of l l s s or those of IIDs. Moreover, the fact that
absolute-precedence policy combiners ignore some policy
value judgments allows policy variation through changing
either the policy combiner or the precedence functions 0A~.

3.3 .2 O r d e r

The idea of "order of execution" of policies has also been
raised as an aspect of metapolicy. This notion is similar to
a common implementation of access control lists (ACLs)
that calculates the effect of a set of ACL entries by find-
ing the "first" ACL entry that addresses a pending access
request. To illustrate, suppose Jones requests read access
to file foo where the ACL for foo is

UserID GroupID

Smith
Verwirrt

Wesson
Crisco

Darwin
Jones

r w

null
r w

r

r e w

r e w

Jones will be granted read access, unless Jones is a
member of the group Verwirrt: Verwirrt's null access
would be calculated for relevancy before Jones's rew ac-
cess is calculated. The result is no access at all. Suppose,
on the other hand, foo's ACL were rearranged as follows:

UserID GroupID

Smith
Jones

Verwirrt
W e s s o n

Crisco
Darwin

[Modes [

r w

r e w

null
r w

r
i

r e w

Then the ACL entry granting Jones few access would
be evaluated before the nu//access ACL entry for Verwirrt
was reached) °

It has been noted frequently that an order-based deter-
mination of a joint ACL decision is fiaught with confusion

1°While this example is absolute-precedence, the point of the
example is the order, not the type of precedence.

for the user of the system who is trying to grant or to re-
voke access privilege. One is required to decide not only
on the ACL entry to make, but also to check the entire
ACL for unintended side-effects.

Fortunately, "order" is just a special case of precedence.
Specifically, prepending the ordinal to each ACL entry that
represents its place in the list allows a sequential process
to be represented as a function. The initial ACL above
would then become

[Ord] UserID

1 Smith
2
3 Wesson
4 Crisco
5
6 Jones

OroupID [Modes[

r w

Verwirrt null
r w

r
Darwin rew

f e w

Rearrangement of these ACL entries would not, in this
implementation, alter the result of the calculation:

I Ord] UserID

4 Crisco
1 Smith
6 Jones
3 Wesson
5
2

GroupID] Modes]

Darwin
Verwirrt

r

r w

rew
rw
rew
null

Both ordered ACLs produce the same joint ACL deci-
sion.

Similarly, an "order" on policies is equivalent to having
a precedence function identical to the order. Consider an
ordered list of policies, (HA1, . . . , HA,). Since the order
is itself injective onto the set of policies, the inverse of
the order is a mapping from HAl to the set of integers
{ 1,2 n }. Defining

0A~ (x, y, z) ~ i,

yields precedence functions for all the policies. Hence, an
ordering of policies HAl is a special case of precedence,
and order reduces to a previously solved problem, namely
precedence.

3.3.3 Pol icy Evolut ion

Policy evolution involves the idea of a policy or a set of
policies changing. One kind of change would be the total
replacement of policy HA by a second policy HB. A second
kind of change would be a slight alteration of policy HA. A
third change would be the addition or deletion of a policy.

At the conceptual level, a "slight alteration of policy"
is not really distinct from the replacement of one policy
by another: swapping out policy HA for either a "slight
alteration" or a radically different policy is a change of
policies in any case. Thus, there remains the replacement

of a policy, the addition of a policy, and the deletion of a
policy.

At the conceptual level, an alteration of precedence
could cause an absolute-precedence policy combiner to
alter, add or delete a policy. Consider the three poli-
cies HA, HB, and He with associated precedence func-
tions {OA,~B,OC}. Assume that c0A and 0B assign the
value 1 to all calculations and that 0v assigns 0 to all
calculations. An absolute-precedence policy combiner on
{ HA, FIB, He } will ignore He. Thus, that policy combiner
makes it appear that there are only two policies in force.
Altering 0A to be identically 0 makes the policy combiner
ignore HA also. That alteration was effectively a policy
deletion. Similarly, altering 0c to be identically 1 puts He
into force. That action "adds" policy He . The combina-
tion of those two changes is effectively the "replacement"
of HA by H e .11

"Policy evolution" can thus be viewed as a higher-level
perspective on changes to policy precedence values. The
ability to add and to delete policies produces the ability to
"change" policies, either slightly different policies or sig-
nificantly different policies. Policy evolution is a special
case of varying policy precedence.

4 Summary and Future Work

This modeling task has resulted in capturing the appropri-
ate Mnltipolicy-Machine topics in a conceptual framework.
In addition, two general results have been established, one
that a set of min-attenuated (resp. max-attenuated) poli-
cies have a policy combiner that resolves conflicts and the
other that establishes necessary and sufficient conditions
for a min-attenuated policy HA and max-attenuated policy
HB to have a non-conflicting policy combiner.

This essential step in the conceptual analysis of the
Multipolicy-Machine has produced descriptive machinery
that generalizes the traditional security-policy-modeling
perspective in allowing non-determinacy, a set of initial
starting states, and sets of unspecified policies. Further,
an initial set of general results has been established. Gen-
eral utility of these results will be able to be assessed when
these preliminary tools are put to use in the derivation of
specific solutions for a multipolicy-machine implementa-
tion.

References

[BELL94] D. E. Bell, "Multipolicy Machine Model",
DBL Item 94-019, D. Bell, Ltd., Reston, VA,
6 February 1994.

11Clearly the same result could have been achieved by alter-
ing the policy combiner itself. There is, however, an elegance
about leaving the policy combiner unchanged and altering the
(instantaneous) precedence functions.

[BLP73]

[BELL73]

[BLP751

[Gocu67]

[GOME84]

[HOS92a]

[HOS92b]

[LPB73]

[TCSEC85]

D. E. Bell and L. J. La Padula, "Secure Com-
puter Systems: Mathematical Foundations",
MTR-2547, Vol. I, The MITRE Corporation,
Bedford, MA, 1 March 1973. (ESD-TR-73-
278-I)

D. E. Bell, "Secure Computer Systems: A Re-
finement of the Mathematical Model", MTR-
2547, Vol. III, The MITRE Corporation, Bed-
ford, MA, December 1973. (ESD-TR-73-
278-III)

D. E. Bell and L. J. La Padula, "Secure Com-
puter Systems: Unified Exposition and Mul-
tics Interpretation", MTR-2997, The MITRE
Corporation, Bedford, MA, July 1975. (ESD-
TR-75-306)

J. A. Goguen, "L-Fuzzy Sets", J. Math. Anal.
Appl. 18 145-174.

J. A. Goguen and J. Meseguer, "Unwind-
ing and Inference Control", Proe. 1984 IEEE
Symp. on Security and Privacy, Oakland, CA,
April 29-May 2, 1984, 75-86.

H. H. Hosmer, "Metapolicies II", Proe. 15th
NCSC, Baltimore, MD, October 13-16, 1992,
369-379.

H. H. Hosmer, "The Multipolicy Paradigm",
Proc. 15th NCSC, Baltimore, MD, October
13-16, 1992, 409-422.

L. J. La Padula and D. Elliott Bell, "Secure
Computer Systems: A Mathematical Model",
MTR-2547, Vol. II, The MITRE Corporation,
Bedford, MA, 31 May 1973. (ESD-TR-73-
278-II)

Department of Defense Trusted Computer
System Evaluation Criteria, DoD 5200.28-
STD, December 1985.

