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A b s t r a c t  

A method of treating several unspecified policies is pre- 
sented. Precise notions of policy combination, pol- 
icy conflict, conflict resolution, and policy precedence 
are introduced. Necessary and sufficient conditions 
for policies to be combined without conflict are estab- 
lished. 

1 I n t r o d u c t i o n  

The work reported here is part of Phase II of the "Mul- 
tipolicy Machine" project, a Small Business Innovative 
Research contract addressing multiple-policy interac- 
tions. Phase I focused on the identification and initial 
treatment of multipolicy-machine topics. Phase II in- 
cludes detailed design of the multipolicy machine; col- 
laboration with a commercial vendor; construction of 
a formal model of the "multipolicy machine"; and the 
design and implementation of a prototype illustrating 
the multipolicy machine solutions. This paper reports 
on the modeling task of Phase II. 

Phase I of the Multipolicy-Machine project iden- 
tiffed a wide range of pertinent topics across all lev- 
els of abstraction, from organizational considerations 
of policy matters to implementation design options. 
(See [HOS92a] and [HOS92b].) Since the modeling 
task focuses on a conceptual level of discourse appro- 
priate for system evaluation at the higher trust levels 
of the Trusted Computing System Evaluation Criteria 
[TCSEC85], part of the modeling task was to divide 
the Phase I results into those that were, and were not, 
properly addressed in a formal security policy model. 
An interesting aspect of the effort is that the model- 
ing of the "Multipolicy Machine" addresses the inter- 
actions between unspecified policies, rather than the 
conceptualization of a specific set of policies. Hence, 
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two initial steps in the modeling task were to deter- 
mine the topics for consideration within the modeling 
study and establishing a conceptual framework for ad- 
dressing unspecified policies. 

Section 2 below addresses the Phase I topics that 
were identified for modeling treatment. Section 3 
presents the conceptual framework used for modeling 
the "Multipolicy Machine"; the specific model arti- 
facts introduced to address the multipolicy-machine 
topics; and the general results achieved. Section 4 
summarizes the work accomplished to date and delin- 
eates possible future work. 

2 Topics  for Inc lus ion  

The first step in picking topics for conceptual model- 
ing was to determine the appropriate level of "policy". 
Four levels of "policy" were used: organizational, con- 
ceptual, abstract-design, and implemented-design. 

Organizational policies address the full range of en- 
terprises, people, information, and resources. The 
policies are narrative, intended for human readers and 
may be layered. A division of a corporation, for exam- 
ple, is subject to corporate Policies and Procedures, 
but also impose its own additional (or "implement- 
ing") policies. It is also subject to local occupancy 
codes, state unemployment insurance regulations, and 
federal occupational safety standards. All these poli- 
cies are termed "organizational". 

A conceptual policy is a representation of part of 
an organizational policy in abstract, conceptual terms. 
This policy is typically easy to relate to the portion 
of the organizational policy it is intended to repre- 
sent. Careful translation of an organizational policy 
into conceptual terms is the first essential step in con- 
ceptual analysis. 

A design that builds on conceptual modeling itself 
translates an external policy (here, the conceptual pol- 
icy) into its own terms. Part of the design process is 
tracing the organizational policy requirements to the 



conceptual, through the abstract-design policy to a fi- 
nal implemented-design policy. 

The sieve tha t  was used to select multipolicy- 
machine topics for modeling t rea tment  was the lim- 
itation to conceptual policy concerns. Topics tha t  ad- 
dressed organizational or design issues were reserved 
for direct, engineering examination. The conceptual 
topics and those tha t  were directly supported by con- 
ceptual mechanisms were investigated thoroughly. 

The conceptual policy topics selected for t rea tment  
are as follows: 1 representing more than one policy; 
metapolicies; representing the combination of policies; 
elaborating on the notion of "contradictory" or "con- 
flicting" policies; resolving conflict; precedence and or- 
der; and policy evolution. 

The multipolicy-machine topics are presented in 
two groups. The fundamental  topics ( that  is, rep- 
resention of more than one policy, conceptual-level 
metapolicies, combinations of policies, conflicting poli- 
cies, and conflict resolution) are addressed directly in 
the model development below. The derivative top- 
ics (precedence, order, and policy evolution) are ad- 
dressed narratively at the end of the following section. 

3 M o d e l i n g  R e s u l t s  

The mathemat ica l  modeling of multiple policies will 
proceed as follows: Conceptual Framework  (section 
3.1) t reats  a mathemat ica l  representation of a gen- 
eral computing machine; Direct Topics (section 3.2) 
addresses the representation of combinations of poli- 
cies and the representation of "policy conflict"; and 
Derivative Topics (section 3.3) addresses the notions 
of policy precedence, ordered policies, and policy evo- 
lution. 

3.1 Conceptual Framework 

3.1.1 Bas i c  C o m p u t i n g  M a c h i n e  

The basis required for modeling multiple policies is 
tha t  of a basic computing machine. The development 
here generalizes tha t  in [BLP73, LPB73, BELL73, 
BLP75] in two ways. The first is allowing more than 
a single initial state. The second is the more signifi- 
cant: generalizing from deterministic changes of s tate  
to (possibly) non-deterministic transitions. 

The elements of the basic machine are four: states; 
requests; decisions; and the machine's state-transit ion 

1For addi t ional  information about  the  selection process and 
results,  see [BELL94, pp.  10-17]. 

relation. 
The notation used for the first three elements of the 

model are as shown in table 1 below. 

I Elements  Nota t ion  I 

States z E Z 
Requests R E T~ 
Decisions D E 79 

sequence of requests 
sequence of decisions 
sequence of states 

T ~  ; x E T ~  ; s t  
79"~ ; X E 79N ; y t  

Z ~  ; z E Z ~  ; zt 

Table 1: Basic Elements 

The component sets used here are left unspecified. "Re- 
quests" and "Decisions" are the inputs to and outputs from 
the calculating machine, respectively. All the sequences 
(7~' ,  79Af, and Z ~f) are defined as mappings from the set 
of natural numbers Af to the sequenced set (that is, to 7~, 
79, and Z). 

These basic sets express the machine statically. The 
state transition relation determines the dynamic nature of 
the machine. 

Definit ion 1 State  Transit ion Relation: A state tran- 
sition relation 142 is a subset of the Cartesian product 
T ~ x Z x 7 9 x Z : W C _ ~ x Z x ~ x Z .  

YV identifies "allowable changes of state" as follows. If, 
while in state zt-1, the machine receives the input xt, then 
the output of the machine, yt, and the next state, zt, must 
appear with (x t , z t -1)  in ld; : (xt ,z t_l ,y~,z~) E )4). 

Definit ion 2 The basic calculating machine is the system 

~(T~,79,Z, )4) ,Zo) ,  where zo E Zo and 

(x , y , z )  E ~ ( ~ , 7 9 ,  Z ,  )~V, Zo)  

¢=~ Vt E Af, ( x t , z t - l , y t , z t )  E )42. 

Note that in contrast to [BLP75], the indeterminate 
initial state is replaced by an indeterminate set of initial 
states: Z0 C Z. Note further that ld; is not required to 
be a function. More than one result is possible for any 
(x~,zt-1) e ~ x Z.  

3.1 .2  R e p r e s e n t a t i o n  o f  "Pol icy"  

A "policy" is defined here as a "value" on a computation 
of the basic machine. "A policy makes value judgments" 
is used synonymously with "a policy associates a value". 



D e f i n i t i o n  3 A policy is a function 

l i :  (T~ N,/)~¢, Z ~¢) --. V. 

The perspective taken herein is slightly different from 
most security models in that  its focus is the entire com- 
putat ion ( x , y , z )  rather than the individual transitions 
zt-1 --* zt. 2 Nevertheless, a traditional goal of most se- 
curity modeling has been to identify local properties of or 
restrictions on the underlying machine that  ensure prop- 
erties about all possible computations, a Hence not only is 
this perspective appropriate for dealing with very abstract, 
non-specific conceptual-policies, but it also has sufficient 
precedent in the literature. 

One can view the security modeling of computing re- 
sources as a task of determining what additional con- 
stralnts that  one would like to add to an already-defined 
machine (that doesn't  meet one's security needs) in order 
to emulate a related, more restricted machine that does 
meet one's needs. 

3 .1 .3  S i m p l e - S e c u r i t y  E x a m p l e  

The familiar "simple-security property" [BLP75] can be 
used to illustrate the notion of "policy" as it is defined here. 
"Simple-security" for the system E is defined in terms of 
states, as follows: 

is SS-Secure 
iff V(x, y, z) 6 E Vt 6 flf (zt is ss-secure.) 

Equivalently, one can define Hss  in the following fash- 
ion. Let ~r3 denote the projection onto the third factor 
and ran, the range of a function. For any function "op" 
mapping V ~  to V, define 

liSS zx op o ran o a ~  o ~ra. 

With the stated-based policy a, ,  : Z --* temp and the 
value sets val = {may,  cannot} and V A L  = {BAD, GOOD}, 
define the function ~/as follows: 

~(]g) = ~ GOOD i f  K = { m a y }  

l BAD i f  cannot 6 K. 

Simple-security can then be pictured as in figure 1. 
The simple-security example generalizes in a direct 

fashion to discretionary-security and *-property-security 
found in [BLP75]. 4 

2Non-interference models are an exception to this 
generalization. 

3The Basic Security Theorem [BLP73] and several unwind- 
ing theorems (such as [GOME84]) are examples. 

4AIthough ss-security is state-based (as are ds-security and 
*-property-security), not all policies are. Non-interference relies 
on "purging" all test computations to establish "interference". 

This sort of policy is a direct E (TE~ :D, Z, ),V, Z0) --. V function 

that cannot be factored through Z. 

Z - -*  Z ~f ~--- 

1o,. 
val ----* val ~ v o ran 

E ( T ~ , ~ ) , Z , W ,  Zo)  

(n  ~,  I ~ ,  z ~) 

I Hss 
VAL 

Figure  1: Simple-Securi ty  Example  

3 . 2  D i r e c t  T o p i c s  

This section addresses some of the multipolicy-machine 
topics directly within the modeling framework. The topics 
addressed are combinations of policies (using policy com- 
biners) and policy conflict (using policy attenuations, non- 
conflicting policies, and policy combiners that resolve con- 
flict). 

3 .2 .1  P o l i c y  C o m b i n a t i o n s  

With a policy defined as a mapping that  associates a value 
with every computation, it is obvious that  a multiple pol- 
icy situation is exactly the existence of several value judg- 
ments on a single machine. The interest lies in constructing 
descriptive mechanisms to address putt ing several policy 
judgments together. At the conceptual level that  question 
becomes: 

given a set of policies {/-/A1 . . . .  , HA. }, how does 
one determine the joint "value" judgment of the 
entire set? 

The basic notion is that  of a "policy combination" or 
"policy combiner". A policy combiner for policies HA and 
liB is a mapping from the combination of value sets VA 
and VB to a single value set V. 

De f in i t i on  4 For llA and liB, the combination of HA 
and l ib  is a function CA,B that maps VA x VB to V. 

A policy combiner associates with every calculation in 

E(TE, T ) , Z , W ,  Zo)  a value judgment in V by combining 

the values assigned by HA and HB using the mapping CA,B 
as shown in figure 2. 

The composition CA,B o (HA X HB) will denoted by 

C~,B : P~ ~ ,7~ , z ,W,  zo ~ (VA X liB) ~ V. 

Def in i t i on  5 For policies { II  AI . . .  HA.  }, their combina- 
tion is a function 

CA1 ..... An :VA,  X ' ' '  X V A .  "~ V.  



zo)ll  "", v,,× } 
zo) ", 

Figure  2: Two-Pol icy Combiner  

II × 

~ ( n , ~ , z , W ,  Zo) ff-~ VA. 

Figure  3: N-Policy Combiner  

A general policy combiner associates a value as in fig- 
ure 3. C~1 ..... A, will be used to denote the composition 
CAt ..... a,, o (KIA1, × ' ' "  × HA,,). 

The n-policy combiner provides the descriptive mecha- 
nism to combine policies. The composition CA~ ..... A'` cap- 
tures the combining aspect while C~1 ..... A, captures the 
full mapping from the elements of the system to the set of 
values V. 5 

For the remainder of this development, it will be as- 
sumed that VA =--- ~) for every policy HA and that CA,B 
is of a very simple form, such as V ("join" or "OR") or A 
("meet" or "AND" ). 

3 . 2 . 2  C o n f l i c t  

The notion of conflict between policies (at the organiza- 
tional level) leads to the modeling concepts of policy at- 
tenuation and conflict-resolving policy combiners. 

A policy HA assigns a single value to every computa- 
tion in the system. A policy at tenuation for HA specifies 
a set of value judgments that  are acceptable to HA. 6 The 
value KIA(X,y, z) is always included within the policy at- 
tenuation se t  aA(KiA(x,y,z)) .  In the usual case, all the 
value sets are the same ordered set (V, _>) and attenua- 
tions are of the form "anything below the policy value" or 
"anything above the policy value". An "anything below" 

5Note that C ° satisfies the definition of "policy". A1,...,A'` 
6An "at tenuat ion"  is a "weakening". A policy a t t e n u a t i o n  

is a set of acceptable "weaker" value judgments associated with 
the pure policy value judgment HA. 

attenuation is termed a "min-attenuation"; an "anything 
above" attenuation, a "max-attenuation". 

D e f i n i t i o n  6 A policy attenuation is a function 

a:V --* ~'(V), 

where v E a(v) Vv • V. 

For a policy HA, an associated policy attenuation will 
be denoted aA.  The set of values a(v)  represent "non- 
conflicting" policy values wi[h respect to the value v. 

For example, consider the simple-security- and discre- 
tionary-security-policies, KIss and KIDS, with policy values 
Vss = VDS ---- ]), where V -- { must,  may, cannot } and the 
value set is transitively ordered by must  > may > cannot. 
Both KIss and KIDS assign the value cannot for an un- 
acceptable calculation and may for a calculation that is 
not unacceptable. The implicit understanding is that if 
KIss (respectively, KIDS) judges a calculation may, a com- 
bined judgment of cannot would not be considered sedi- 
tions. Hence, a value judgment of may carries the con- 
notation that  may is preferred, but  that cannot would be 
tolerated. Similarly, a value judgment of cannot not only 
prefers cannot, it will not tolerate any value above cannot. 
Thus the policy attenuations a s s  and aDS are represented 
as follows: 

{may ,  cannot} if v----may 
ass  (v) = { cannot } if v ---- cannot. 

and 

As a second example, consider a public health policy 
KIPH and a privacy policy ff[PRIV, both with the same 
value set { must,  may, cannot }. The policy KIPRIV assigns 
values may and cannot, in the same way as Kiss and KIDs 
do. The public health policy KIPH, on the other hand, 
assigns the values must  and may. The value judgment 
must  relates to information that is vital to countering 
severe community-threat hazards such as a tuberculosis 
epidemic. The value judgment must  therefore connotes a 
policy opinion that certain information (or certain calcula- 
tions or certain actions) carmot be held away from public 
scrutiny. Thus, the policy at tenuation apRIY is equiva- 
lent to ass  and aDS, while the policy at tenuation apH is 
represented as follows: 

f {mus t ,  m a y }  i f v : m a y  (v) a p H  { must  } if v = must.  

One policy accepts values at or above its preferred judg- 
ment (the policy HpH), while the other accepts values at 
or below its preferred judgment (the policy HpRIV). 

Policy attenuations make possible the definition of pol- 
icy conflict. The concept of conflict is approached double 



negatively. Policy HB is said to non-conflict with policy 
l iA provided its value judgments  are always in the set of 
acceptable weakened values delineated by the  policy at- 
t enua t ion  CA. T h a t  is, policy l i b  non-conflicts with l iA 
provided tha t  the value B would assign is acceptable to 
policy A. Policies conflict if neither one is non-conflicting 
with the  other. 

D e f i n i t i o n  7 Let  policies HA and l iB  have attenuations 
aA and C~B, respectively. Policy l iB  is said to be non- 
conflicting with HA provided 

V(x,  y, z)  E ~ (T~, I )  , Z ,  VV, Z o )  , 

l i B ( x , y , z )  • OIA ( I i A ( X , y , z ) )  

Otherwise, l iB  conflicts with l iA .  

If l iB  conflicts with I1A, there is an  (x, y, z) such tha t  

l i B ( x , y , z )  ¢ O~A(IIA(X,y ,z) ) .  

We call such an  (x, y, z) an  i l lustrative conflict of l iB with 
l iA.  A n  element  

(x, y, z)  • ~ (T~, :D, Z ,  )~V, Z o )  

is a conflict between HA and l iB  if it  is either an  illustra- 
t ive conflict of l iA with / /B or an i l lustrative conflict of 
l iB  with HA. Call  HA and  l i b  mutua l ly  non-conflict ing if 
there is no conflict (x, y, z) between l iA and l iB.  

More generally, we say tha t  (x, y, z) is a conflict among 
the set of policies 

{ A 1 , . . . , A ~ }  

if there are 1 _< i , j  < n such tha t  ( x , y , z )  is a conflict 
between liA~ and  l iAj .  The  set { A 1 , . . .  ,An } is called 
mutua l ly  non-confl ict ing if there is no conflict among the 
set of policies. 

D e f i n i t i o n  8 For an ordered set of  values (V, ~) ,  a min-  
a t t enua t ion  is policy at tenuation (~ provided 

~ ( v )  = { v '  : v~-v',v'•V}. 
Dually, o~ is a max-a t t enua t ion  provided 

~(v)={v'  : v ~ v ' , v '  •V}.  

If (V, ~-) is a boolean latt ice (V, V, A), then  the ele- 
ments  "less than"  an  element v are the interval from O 
to v, and  the  elements "greater than"  an  element v are 
the interval  f~om v to 1. In  this case, min -a t t enua t ion  will 
be called MEET-ATTENUATION, and max-a t tenua t ion ,  JOIN- 
ATTENUATION. The  lat t ice (V, >) ,  a l inearly ordered set, 
is a common case. 7 

A policy combiner  CA,B is said to "resolve the conflicts" 
between policies l iA and HB provided it is a policy com- 
biner  tha t  non-conflicts  with bo th  HA and FIB. 

7S. Ovchinnikov has noted the similarity between these lat- 
tice value-sets and Goguen's L-fuzzy sets [GOGU67]. 

D e f i n i t i o n  9 The policy combiner CA,B RESOLVES COI1- 
flicts between M A and M s  (relative to aA and O~ B ) provided 
C°A,B non-conflicts with both MA and l iB .  C°A1 ..... A n  re- 
solves conflicts amongst  the policies { l i  A1, . . . , l i  An } pro- 
vided it non-conflicts with liA~ fo r  1 < i < n. 

T h e o r e m  1 For policies { l i A 1 , . . .  , I1An } with associ- 
ated rain-attenuations { a A l , .  • •, OlAn } ,  there e ~ s t s  a pol- 
icy combiner CA1 ..... An that is non-confl ict ing with every 
l iar .  

Proof:  Let 

CA, ..... An (X, y, Z) A :=mAn{ l i A , ( x , y , z )  : 1 < i < n } .  

Because C~A~ is a min -a t t enua t ion  and 

d~l  ..... An(~,Y,Z)  < n A , ( ~ , y , z ) ,  

CA1 ..... An non-conflicts with l iAr.  s 
The  dual  result  holds for max-a t tenua t ions .  Similarly 

for mee t -a t t enua t ion  and  jo in -a t t enua t ions  ( subs t i tu t ing  
{ A, ___ } and  { V, ~- }, respectively, for the pair  { i n  f ,  <_ }). 

T h e o r e m  2 Let l iA  and l iB  be policies. Let  OlA be a min-  
at tenuation and aB,  a max-at tenuation.  There is a policy 
combiner CA,B that resolves conflicts between HA and HB 
i f f  l i  A ~_ l i B .  

P r o o f :  If l iA  ~_ I IB,  CA,B ~- 7rA (the project ion onto 
l iA) is such a policy combiner. If CA,B resolves conflicts 
between l iA and  l iB ,  t hen  HA > C~,B >_ l iB ,  SO tha t  
HA _~ l i B  by t ransi t ivi ty.  

C o r o l l a r y  3 Let V be linearly ordered and let policy l i b  
have a max-at tenuat ion a s .  There is no policy combiner  
CA,B that resolves conflicts between l iA  and l iB  i f  

ran  HA -- ran  HB ~£ O. 

P r o o f :  Let v '  = m i n ( r a n  HA -- ran  H B ) .  Now, 

v ~ E r a n  l i B  and  V tp ~ V t :=~ V t E l i B  

because ~B is a max-a t t enua t ion .  Since v ~ ~ ran  l iB ,  

v N > v ~ Vv" E ran  l iB .  

Hence, 

V ( ~ ' , y ' , z ' )  e IIA~(V') 
l iA (X', y' ,  z ')  ----- v '  < l iB  (X', y ' ,  Z'). 

HA ~ l i b  and the result  follows f~om Theorem 2. 

C o r o l l a r y  4 Let  V be linearly ordered and let policy HA 
have a min-at tenuat ion CA. There is no policy combiner  
CA,B that resolves conflicts between l i n  and l i b  i f  

ran  l iB  -- ran  HA ¢ O. 

P r o o f :  This  corollary is dual  to corollary 3. 

SNote that any policy combiner less than CA1 ,...,A~ also re- 
solves conflicts among { I1A1, .. . , l lAn }. 



3.3 Derivative Topics 
The remaining multipolicy-machine modeling topics are 
addressed in this section: policy precedence, policy order, 
and policy evolution. 

3 .3 .1  P o l i c y  P r e c e d e n c e  

The notional idea of "precedence" is captured via a model- 
ing hmction that  is called a "policy precedence". A policy 
precedence associates a value in an ordered set T with ev- 

ery computation in the system ~ (T~, T), Z,  )47, Zo) .  

D e f i n i t i o n  10 A (policy) precedence is a function 

O:~(T~,D,Z,  YV, Zo) ---* T, 

where T is a set ordered by >_ . The precedence associated 
with policy HA is denoted QA. 

Two distinct forms of precedence-respecting policy 
combiners are introduced. The absolute-precedence pol- 
icy combiner totally ignores the lower-precedence-level 
policy. 9 The second type of precedence is the conflict- 
precedence policy combiner. 

An absolute-precedence policy combiner assigns values 
not-in-conflict with the high-precedence policy, totally dis- 
regarding the low-precedence policy. A conflict-precedence 
policy combiner combines two policies without precedence 
when possible. When there is conflict between the policies, 
it resolves the conflict in favor of the higher-precedence 
policy. 

D e f i n i t i o n  11 An absolute-precedence policy combiner 
is a policy combiner CA,B that satisfies the following sym- 
metric conditions: 

QA (x, y, z) < QB (x, y, z) 
=~ (x, y, z), not a conflict between //B ~ C~,B 

~B(X,y,z) < QA(X,y,z) 
=~ (~c, y, z), not a conflict between HA & C~, B 

Conflict-precedence is defined in a fashion similar to 
that of absolute-precedence, with the addition of a conflict 
condition. 

D e f i n i t i o n  12 A conflict-precedence policy combiner is a 
policy combiner CA,B that satisfies the following symmetric 
conditions: 

(x ,y ,z ) ,  a conflict between HA ~ M B  
QB(x,y,z)  ( Q A ( x , y , z )  
=~ (x, y, z), not a conflict between HA & C~,B 

9 T h i s  d i s c u s s i o n  is p h r a s e d  in t e r m s  o f  t w o  po l ic ies ;  g e n e r a l -  
i z a t i o n  t o  n p o l i c i e s  is s t r a i g h t f o r w a r d .  

(x, y, z), a conflict between HA ~ / / B  
& OA(X,y,z) < OB(X,y,z) 

(x,y,  Z), not a conflict between / / s  &C~,B 

Ss-security and ds-security neatly illustrate the differ- 
ence between conflict- and absolute-precedence. By theo- 
rem 1, there is a policy combiner C~,B for l l s s  and IIDS 
that resolves their conflicts. For any precedences Oss and 
ODS, C~,B is a conflict-precedence policy combiner. 

On the other hand, for Qss < ODS ( o r  the reverse), any 
absolute precedence policy combiner will ignore either the 
values of l l s s  or those of IIDs. Moreover, the fact that 
absolute-precedence policy combiners ignore some policy 
value judgments allows policy variation through changing 
either the policy combiner or the precedence functions 0A~. 

3.3 .2  O r d e r  

The idea of "order of execution" of policies has also been 
raised as an aspect of metapolicy. This notion is similar to 
a common implementation of access control lists (ACLs) 
that calculates the effect of a set of ACL entries by find- 
ing the "first" ACL entry that addresses a pending access 
request. To illustrate, suppose Jones requests read access 
to file foo where the ACL for foo is 

UserID GroupID 

Smith 
Verwirrt 

Wesson 
Crisco 

Darwin 
Jones 

r w  

null 
r w  

r 

r e w  

r e w  

Jones will be granted read access, unless Jones is a 
member of the group Verwirrt: Verwirrt's null access 
would be calculated for relevancy before Jones's rew ac- 
cess is calculated. The result is no access at all. Suppose, 
on the other hand, foo's ACL were rearranged as follows: 

UserID GroupID 

Smith 
Jones 

Verwirrt 
W e s s o n  

Crisco 
Darwin 

[ Modes [ 

r w  

r e w  

null 
r w  

r 
i 

r e w  

Then the ACL entry granting Jones few access would 
be evaluated before the nu//access ACL entry for Verwirrt 
was reached) ° 

It has been noted frequently that an order-based deter- 
mination of a joint ACL decision is fiaught with confusion 

1°While this example is absolute-precedence, the point of the 
example is the order, not the type of precedence. 



for the user of the system who is trying to grant or to re- 
voke access privilege. One is required to decide not only 
on the ACL entry to make, but also to check the entire 
ACL for unintended side-effects. 

Fortunately, "order" is just  a special case of precedence. 
Specifically, prepending the ordinal to each ACL entry that 
represents its place in the list allows a sequential process 
to be represented as a function. The initial ACL above 
would then become 

[ Ord ] UserID 

1 Smith 
2 
3 Wesson 
4 Crisco 
5 
6 Jones 

OroupID [ Modes[  

r w  

Verwirrt null 
r w  

r 
Darwin rew 

f e w  

Rearrangement of these ACL entries would not, in this 
implementation, alter the result of the calculation: 

I Ord ] UserID 

4 Crisco 
1 Smith 
6 Jones 
3 Wesson 
5 
2 

GroupID ] Modes]  

Darwin 
Verwirrt 

r 

r w  

rew 
rw 
rew 
null 

Both ordered ACLs produce the same joint ACL deci- 
sion. 

Similarly, an "order" on policies is equivalent to having 
a precedence function identical to the order. Consider an 
ordered list of policies, (HA1, . . . ,  HA,).  Since the order 
is itself injective onto the set of policies, the inverse of 
the order is a mapping from HAl to the set of integers 
{ 1,2 . . . . .  n }. Defining 

0A~ (x, y, z) ~ i, 

yields precedence functions for all the policies. Hence, an 
ordering of policies HAl is a special case of precedence, 
and order reduces to a previously solved problem, namely 
precedence. 

3.3.3 Pol icy  Evolut ion 

Policy evolution involves the idea of a policy or a set of 
policies changing. One kind of change would be the total 
replacement of policy HA by a second policy HB. A second 
kind of change would be a slight alteration of policy HA. A 
third change would be the addition or deletion of a policy. 

At the conceptual level, a "slight alteration of policy" 
is not really distinct from the replacement of one policy 
by another: swapping out policy HA for either a "slight 
alteration" or a radically different policy is a change of 
policies in any case. Thus, there remains the replacement 

of a policy, the addition of a policy, and the deletion of a 
policy. 

At the conceptual level, an alteration of precedence 
could cause an absolute-precedence policy combiner to 
alter, add or delete a policy. Consider the three poli- 
cies HA, HB, and He with associated precedence func- 
tions {OA,~B,OC}. Assume that  c0A and 0B assign the 
value 1 to all calculations and that 0v assigns 0 to all 
calculations. An absolute-precedence policy combiner on 
{ HA, FIB, He } will ignore He. Thus, that policy combiner 
makes it appear that  there are only two policies in force. 
Altering 0A to be identically 0 makes the policy combiner 
ignore HA also. That  alteration was effectively a policy 
deletion. Similarly, altering 0c to be identically 1 puts He  
into force. That  action "adds" policy He .  The combina- 
tion of those two changes is effectively the "replacement" 
of HA by H e  .11 

"Policy evolution" can thus be viewed as a higher-level 
perspective on changes to policy precedence values. The 
ability to add and to delete policies produces the ability to 
"change" policies, either slightly different policies or sig- 
nificantly different policies. Policy evolution is a special 
case of varying policy precedence. 

4 Summary  and Future Work 

This modeling task has resulted in capturing the appropri- 
ate Mnltipolicy-Machine topics in a conceptual framework. 
In addition, two general results have been established, one 
that a set of min-attenuated (resp. max-attenuated) poli- 
cies have a policy combiner that  resolves conflicts and the 
other that establishes necessary and sufficient conditions 
for a min-attenuated policy HA and max-attenuated policy 
HB to have a non-conflicting policy combiner. 

This essential step in the conceptual analysis of the 
Multipolicy-Machine has produced descriptive machinery 
that generalizes the traditional security-policy-modeling 
perspective in allowing non-determinacy, a set of initial 
starting states, and sets of unspecified policies. Further, 
an initial set of general results has been established. Gen- 
eral utility of these results will be able to be assessed when 
these preliminary tools are put to use in the derivation of 
specific solutions for a multipolicy-machine implementa- 
tion. 
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