
A Discret ionary  Access  Control  M o d e l  
wi th  Temporal  Author izat ions  

El i s a  B e r t i n o  C l a u d i o  B e t t i n i  P i e r a n g e l a  S a m a r a t i  

Dipartimento di Scienze dell'Informazione 
Universith di Mflano 

Milano, Italy 

A b s t r a c t  

Conventional authorization models enforcing discre- 
tionary p o l i c i e s  are  based on authorizations which 
specify, for  each user or group of users in the sys- 
tem, the accesses he is allowed to execute on objects. 
We propose a new authorization model which allows to 
associate with each authorization temporal constraints 
which restrict the validity of the authorization. More- 
over, in our  m o d e l  we allow the specification of tem- 
poral dependencies among authorizations. Temporal 
dependencies allow the derivation of new authoriza- 
tions on the basis of the presence or of the absence of 
other authorizations in given t ime intervals. In the pa- 
per we present the main characteristics of our model 
and illustrate some research issues we are currently 
investigating. 

1 I n t r o d u c t i o n  

The area of database security has been recently re- 
ceiving much attention from both researchers and sys- 
tem developers. Indeed, from the industrial side, sys- 
tems are now available (e.g., Trusted Oracle [13]) 
that  are secure against attacks like Trojan Horses 
and some types of covert channels [1, 6, 5, 9, 15]. 
From the research point of view, several directions can 
be devised concerning respectively discretionary ac- 
cess control mechanisms and mandatory  access control 
mechanisms. Along the first direction, current access 
control models are being extended to meet require- 
ments deriving from more articulated security policies 
and from new data  models, like object-oriented data  
models and deductive data  models [14, 4, 10, 7, 17]. 
In particular, the increased awareness of data  se- 
curity in application environments has resulted in 
the need of flexible authorization models able to di- 
rectly support  application security policies. Exam- 
ples of flexible authorization models include models 
with negative authorizations [3], with exceptions, with 
roles and tasks [8, 12, 18]. Along the second di- 
rection, mandatory  access control techniques are be- 
ing extended to deal with new-generation DBMS, like 
OODBMS [19, 2, 11] and active DBMS [16], as well 
as to develop techniques to deal with sophisticated at- 
tacks, like those through covert channels. 

The work reported in this paper deals with the first 
of the above research directions. The goal of this work 
is to extend a conventional authorization model with 
temporal  information. The new aspects of our model 
can be summarized as follows. 

First, our model supports the notion of the tempo- 
ral interval of validity of authorizations. In our model 
it is possible to specify that  an authorization will ex- 
pire after a specified point in time, or that  an autho- 
rization is valid only in a specified temporal  interval. 
Note that  in many real-life situations authorizations 
are limited in t ime - consider for example a badge 
which is valid for only one day. 

Second, our model provides the concept of tempo- 
ral dependency among authorizations. A temporal  de- 
pendency can be used, for example, to specify that  a 
user has an authorization as long as another user has 
this authorization. This type of capabilities is very 
useful in many advanced applications, like for exam- 
ple CSCW applications. 

Finally, besides proposing a basic set of operators 
to specify temporal  dependencies, we introduce a for- 
malism to concisely express many dependencies. For 
example, a single s tatement  can specify that  a user can 
read all the files that  another user can read, relatively 
to an interval of time. To our knowledge, our work 
is the first to propose an authorization model with 
those temporal  capabilities. Note that  many new ap- 
plications, such as office automation,  CAD, CSCW, 
require such authorization functionalities. 

The remainder of this paper is organized as fol- 
lows. Section 2 illustrates the main characteristics 
of our proposal. Section 3 presents the formal defi- 
nitions for our model. Section 4 discusses some prob- 
lems concerning the management  of authorizations in 
our model. Section 5 discusses some research issues 
which we are currently investigating. Finally, Section 
6 presents the conclusions. 

2 O v e r v i e w  o f  t h e  a u t h o r i z a t i o n  

m o d e l  

In this section we illustrate the characteristics of our 
model. The new features of our authorization model 
can be summarized as follows: 

T e m p o r a l  v a l i d i t y  f o r  a u t h o r i z a t i o n s  Each 
authorization is associated with a time interval. 

102 



An authorization is valid only during the asso- 
ciated t ime interval and expires after the time 
interval elapses. 

Temporal dependencies ,~rnong authorizations 
A temporal  dependency specifies that  an autho- 
rization depends on another authorization un- 
der a dependency mode. Possible dependency 
modes are: WHENEVER, ASLONGAS, WHENEV- 
ERNOT, UNLESS. Intuitively, the semantics of 
the dependency modes is as follows. 

• Dependency "hi WHENEVER A2" states 
that  authorization A1 can be considered 
valid every t ime authorization A2 is valid. 

• Dependency "A1 ASLONGAS A2" states that  
if authorization A2 is valid at the time at 
which the dependency is specified, then also 
authorization hi is valid and it will remain 
valid until authorization a2 remains valid. 

The ASLONGAS dependency mode, like the 
WHENEVER dependency mode, allows to derive 
authorization A1 from authorization a2. 
The difference between the two modes is as fol- 
lows. In order to derive authorization A1 at a 
given time, the dependency mode WHENEVER re- 
quires authorization A2 to be valid at that  time. 
By contrast, the dependency mode ASLONGAS 
requires Ag. to have been valid since the t ime the 
dependency has been specified. 

• Dependency "A1 WHENEVERNOT A2" states 
that  A1 is valid every t ime A2 is not valid. 

• Dependency "A1 UNLESS A2" states that  if 
As is not valid at the time at which the 
dependency is specified, then A1 becomes 
valid and it will remain valid until the last 
instant before the one at which As becomes 
valid. 

The difference between the UNLESS and WHEN- 
EVERNOT modes is analogous to the difference 
between ASLONGAS and WHENEVER. In particu- 
lar, in order to derive authorization A1 at a given 
time, dependency mode WHENEVERNOT requires 
authorization A2 to be not valid at that  time. By 
contrast, the dependency mode UNLESS requires 
that  A2 has not been valid since the time the 
dependency has been specified. 

A temporal  dependency among two authoriza- 
tions, together with the instant in which it is 
inserted, it is called derivation rule. 

P a r a m e t r i c  d e r i v a t i o n  ru l e s  These rules are used 
to concisely define derivation rules. Parametric 
derivation rules are rules which can be applied 
to different subjects, objects, or access modes. 

Derivation rules allow the derivation of new autho- 
rizations on the basis of the presence or of the absence 
of other authorizations. 

The following example illustrates derivation rules. 

E x a m p l e  2.1 Consider the authorizations and 
derivation rules illustrated in Figure 1. A1, A2, and 
A3 are temporal  authorization rules; their validity in- 
tervals are [10, 20], [30, 40], and [15, 50], respectively. 
R1, Rg_, Rz, R4, and 1~5 are derivation rules expressing 
dependencies among authorizations. The t ime associ- 
ated with each rule is the t ime at which the rule has 
been specified. Rule R~ is parametric since it has a 
parameter,  instead of a specific value, for the access 
mode of the authorizations. The use of the parame- 
ter allows to apply the rule for different values of the 
access mode field. 

According to the semantics of the temporal  depen- 
dency mode, the following authorizations can be de- 
rived from the rules above. 

RI :  From rule R1 and authorization A1, authoriza- 
tions ( [ 5 , 9 ] ,  ( John ,  Ol, r e ad )  ), 
([21,29], (John,Ol,read)), and ( [ 4 1 , o o ] ,  
( J o h n , o l , r e a d ) )  can be derived. Tha t  is, the 
authorization (John,  ol , r e a d )  can be derived 
for every time instant in which authorization 
( A l i c e ,  ol , r e a d )  is not valid. 

R2: From rule R~. and authorization A1, authoriza- 
tion (1"6,93, ( B o b , o l , r e a d ) )  can be derived, 
where 6 is the instant at which Rx is inserted, 
and 9 is the instant preceding the first instant 
at which ( A l i c e ,  01 , r ead )  becomes valid. Note 
the difference between this rule and the anal- 
ogous rule R1 with the WHENEVERNOT depen- 
dency mode. 

R3: From rule R3 and authorizations At and A2, au- 
thorizations (1"13,20],  (Sam,ol,read)), and 
( [ 3 0 , 4 0 ] ,  ( S a m , o l , r e a d ) )  can be derived. 

I%4: From rule R4 and authorization A1, authoriza- 
tion ( [ 1 4 , 2 0 ] ,  ( M a t t , o l , r e a d ) )  can be de- 
rived, where 14 is the instant at which R4 is in- 
serted, and 20 is the instant preceding the first 
instant at which ( A l i c e ,  01 , r ead )  becomes not 
valid. Again note the difference between this 
rule and the analogous rule with the WHENEVER 
dependency mode (Rs). 

Rs:  From rule R5 and authorizations A1, A2, and 
As, authorizations ( [ 1 0 , 2 0 ] ,  (Ann, 01 , r ead )  ) 
(1"30,40],  ( A n n , o l , r e a d ) ) ,  and (1"10,50], 
(Ann,ol , w r i t e )  ) can be derived. Note that,  be- 
ing the considered rule parametric with respect 
to the access mode, it has allowed the derivation 
of authorizations with different access modes. 

The authorizations considered valid at a given time 
are, beside the authorization explicitly specified, the 
authorizations derivable through the application of 
derivation rules. Then, every t ime an access request is 
submitted to the system, the access control is executed 
to determine whether the access is authorized. The 
access is authorized if either an explicit authorization 
exists for it or an authorization for it can be derived 
by the application of the rules. Note however, that  

103 



(A1) ( [ 1 0 , 2 0 ] ,  ( A l i c e , o l , r e a d ) )  

(12) ( [30,40], CAlico, ol, read) ) 

(A3) ([15,50], (Alice,ol,erite)) 
(R1) ( 5 : ( J o h n , o l , r e a d )  WHENEVERNOT ( A l i c e , o l , r e a d ) )  

(R2) (6:  ( B o b , o l , r e a d )  UNLESS ( A l i c e , o l , r e a d ) )  

(R3) (13:(Sam,ol,read) WHENEVER (Alice,ol,read)) 

(1t.4) ( 1 4 : ( M a t t , o l , r e a d )  ASLONGAS ( A l i c e , o l , r e a d ) )  

(RS) (16: (Ann,ol,-) WHENEVER (Alice,Ol,-)) 

Figure 1: An example of authorizations and derivation rules 

authorizations derived by the rules are not explicitly 
stored in the authorization base, rather, the existence 
of a derived authorization for a given t ime instant is 
determined at the t ime the access is requested. In- 
deed, explicitly storing derived authorizations would 
require continuous modification of the derived autho- 
rizations upon modification, addition, or removal of 
other authorizations. 

3 F o r m a l  s e m a n t i c s  

In this sections we formalize the concepts introduced 
earlier. 

D e f i n i t i o n  3.1 ( A u t h o r i z a t i o n )  An authorization 
is a triple ( s , o , m )  where 

s G S is the subject (user) to whom the authorization 
is granted 

o E 0 is the object on which the authorization is 
granted 

ra E M is the access mode, or privilege, for  which the 
authorization is granted. 

Triple (n ,o,ta) states that  user s is authorized to ex- 
ecute access mode m on object o. 

D e f i n i t i o n  3.2 ( T e m p o r a l  a u t h o r i z a t i o n )  A 
temporal authorization is a pair 
( t ime, auth) ,  where t ime  is a t ime interval [ t i , t j ] ,  
with t i E IN, t j E  IN U oo, 
t i _< t j ,  and a u th  is an authorization. 

Temporal  authorization ( [ t l ,  t 23, (n ,  o,  m) ) states 
that  subject m is allowed to exercise access mode m 
on object o in the interval [ t l  ,t23 including t ime in- 
stants tx and t2. 

A simple authorization, i.e., an authorization with- 
out any temporal  constraint, can be represented as a 
temporal  authorization whose validity spans from the 
t ime to which the authorization is granted to infinity, x 

a This corresponds to having an implicit ALLTIME operator, 
often used in temporal logics [20]. 

As already mentioned, starting from the specified 
temporal  authorizations, new authorizations can be 
derived through rules. Derivation rules are defined as 
follows. 

D e f i n i t i o n  3.3 ( D e r i v a t i o n  r u l e )  A derivation 
rule is defined as 
( t r : t l ( dep -mode )A2) ,  where t r  is the t ime at which 
the rule has been specified, ~1 and 1~2 are authoriza- 
tions, and (dep-mode) is one of  the following depen- 
dency modes: WHENEVER, ASLONGAS, WHENEVER- 
NOT, UNLESS. 

The semantics of a derivation rule depends on the 
dependency mode used in the rule as illustrated in 
Section 2. 

Unlike authorizations, derivation rules do not have 
associated t ime intervals. A rule is considered valid 
from the t ime t r  of its insertion until the t ime it is 
deleted or infinity. 

D e f i n i t i o n  3.4 ( P a r a m e t r i c  d e r i v a t i o n  r u l e )  A 
parametric derivation rule is a derivation rule where 
symbol "--" appears for  subjects, objects, or access 
modes in the authorizations. I f  symbol "--" appears 
in an authorization of the rule, it must appear, in the 
same position, also in the other authorization. 

Symbol " - "  is a parameter  which denotes any sub- 
ject, object, or access mode depending on its position 
in the authorization. 

A Temporal Authorization Base ( T A B )  thus con- 
sists of the union of t h e t e m p o r a l  authorizations and 
the derivation rules. 

The following section illustrates the management 
of the authorization base and discusses some issues 
which must be considered in the administration of au- 
thorizations in our model. 

4 A d m i n i s t r a t i o n  o f  a u t h o r i z a t i o n s  

In our model, we allow the administrator to modify 
the TAB by adding, removing, or modifying temporal  
authorizations and derivation rules. The administra- 
tive operations which the administrator  can execute 
are as follows. 

104 



GRANT To grant a privilege on an object to a subject. 
The grant operat ion results in the addition of a 
new tempora l  authorization. 

REVOKE To revoke a privilege on an object from a 
subject. The revoke operation results in the 
deletion of all the tempora l  authorizations of the 
subject for the privilege on the object. The re- 
voke operation can be used also to remove a spe- 
cific authorization of the subject. 

MODIFY To modify the tempora l  constraint of an au- 
thorization previously granted. 

ADDR.ULE To add a new derivation rule. 

DROPRULE To drop a derivation rule previously spec- 
ified. 

Note tha t  execution of administrat ive operations 
requires particular care in our model. In particular, 
also if the adminis t ra tor  revokes an authorization or 
drops a rule, the considered authorizat ion/rule  may  
not be deleted by the TAB. The same applies when 
an authorization expires. This is due to the fact that  
evaluation of tempora l  dependency modes such as UN- 
LESS and ASLONGAS requires evaluating the validity 
of some authorizations in a past t ime interval. There- 
fore, uncontrolled deletion of authorizations or rules, 
even if revoked or expired, may  bring to an incorrect 
evaluation of other authorizations later on. 

To illustrate, consider the TAB of Figure 1. At 
t ime 20 authorization A1 expires. However, it cannot 
be deleted from the authorization base because it is 
needed for the application of rule R4. 

For this reason, we consider that  every t ime a 
REVOKE/DROPRULE operation is required, the cor- 
responding authorizat ion/rule  is not removed, rather 
is tagged as unusable with the t ime t d at which the 
adminis t ra tor  asked for its deletion. 

We are investigating an algori thm for the main-  
tenance of the TAB. The algori thm is based on the 
classification of tempora l  authorizations and deriva- 
tion rules as follows: 

W i t h d r a w n  Temporal  authorizations and derivation 
rules whose removal has been explicitly required 
(with a REVOKE/DR.oPR.ULE command)  by the 
administrator .  

E x p i r e d  Temporal  authorizations and derivation 
rules which have not been withdrawn but which 
are not applicable anymore.  They are autho- 
rizations whose end-t ime has passed and UN- 
LESS/ASLONGAS rules from which no authoriza- 
tions can be derived anymore.  2 

A c t i v e  Temporal  authorizations and derivation rules 
not withdrawn nor expired. 

2The semantics of WHENEVER and WHENEVERNOT rules im- 
plies that they cannot expire. 

The algori thm we are investigating periodically ex- 
amines the TAB and eliminates the expired and with- 
drawn authorizations which are not needed (and will 
never be needed again in the future). Developing the 
algorithm requires to devise a mechanism which de- 
termines whether a given authorizat ion/rule  may  need 
to be evaluated in the future because of the presence 
of an ASLONGAS or UNLESS rule. The algorithm for 
maintaining the TAB must  be proved to be correct, 
i.e., not to remove authorization which will be needed 
again. To formally prove the correctness of the al- 
gori thm we are formalizing a set of properties which 
characterize whether a given authorizat ion/rule  may 
still have effect in the evaluation of the TAB or is, 
and will always be, ineffective. Obviously, ineffective 
authorizat ions/rules will be the only rules which the 
algorithm can remove. 

Another issue regarding the adminis trat ion of au- 
thorizations concerns the consistency of the autho- 
rization base. We proved that  we cannot have sets 
of rules leading to an inconsistent authorization base. 
However, in our model authorizations can be derived, 
through derivation rules, on the basis of the presence 
or the absence of other authorizations. Then, the in- 
teraction of different types of rules, those operating on 
the presence of authorizations (WHENEVER. and AS- 
LONGAS) and those operat ing on the absence of au- 
thorizations (WHENEVER.NOT and UNLESS) may have 
undesirable effects. We have characterized such sit- 
uations on the basis of the  definition of critical sets 
of rules. A set of rules is said to be critical if, start-  
ing from the assumption that  an authorization is not 
valid, it allows to derive the authorization. A simple 
critical set is the rule expressing the dependency "A1 
WHENEVER.NOT hl". This rule states tha t  every t ime 
authorization '~1 is not valid, it is valid. Indeed, if A1 
is not in the TAB nor can be derived by other rules, 
then through this rule, it can be derived. Critical sets 
may  result f rom the combination of several rules. Al- 
though only the adminis t ra tor  can modify the TAB, 
it can happen tha t  he inserts a rule which triggers a 
critical set formed by a long rule chain. We do not 
allow critical sets of rules in our model.  We are de- 
veloping an algorithm for the identification of critical 
sets of rules. 

5 R e s e a r c h  I s s u e s  

The work reported in this paper  is currently being 
carried out by the authors and several issues are being 
investigated. 

A first issue concerns the development of algo- 
r i thms and tools for the representation and mainte-  
nance of the authorization base. The  main  complexity 
of our authorization model derives f rom the need to 
use an inference mechanism to derive authorizations 
from the authorizations stored into the authorization 
base. Therefore, this inference process must  be en- 
hanced by using techniques similar to those proposed 
for view material izations in relational databases and 
deductive databases.  Adminis t ra t ion tools are partic- 
ularly crucial when dealing with sophisticated autho- 
rization models. In our model,  for example,  it is im- 

105 



portant  to develop a tool providing information about 
derivation rules involved in critical sets. 

A second issue we are investigating concerns the ad- 
ministration of authorizations. In the paper we have 
made the hypothesis that  the administration is cen- 
tralized, i.e., only the administrator is allowed to mod- 
ify the authorization base. An alternative decentral- 
ized policy can be devised. However, the application 
of such a policy would require particular consideration 
of the temporal  constraints associated with the autho- 
rizations and their modification. For example, a user 
should be authorized to grant an authorization for a 
t ime interval if it does not have that  authorization in 
that  specific interval. Then upon granting of an autho- 
rization, the temporal  constraints associated with the 
authorizations of the grantor must be propagated to 
the authorization being granted. Moreover, possible 
modifications to the temporal  constraints associated 
with the authorizations of a user must be propagated 
to the authorizations the user has granted. 

A third issue we are investigating concerns the as- 
sociation, with each rule, of a t ime interval of validity 
as done for the authorizations. In the paper we have 
considered a rule is valid from the t ime it is inserted 
until the t ime it is deleted. The model can be easily 
extended to the consideration of t ime interval associ- 
ated with rules. 

A further direction we plan to investigate concerns 
the introduction of negative authorizations. Negative 
authorizations are authorizations which specify the de- 
nial for a user to execute a particular access. Rules 
can be devised which allow the derivation of either 
positive or negative authorizations on the basis of the 
presence or absence of a denial. The consideration of 
both positive and negative authorizations may lead to 
cases of inconsistencies which therefore will need to be 
investigated. 

6 C o n c l u s i o n s  
In this paper, we have presented a survey of a tem- 
poral authorization model. This model has several 
innovative features, such as temporal  dependencies 
among authorization rules. We believe that  such fea- 
tures are crucial for the support  of many advanced 
applications. The main qualifying points of this work 
are three. First, our work proposes a model that  di- 
rectly supports the requirements of many application 
environments. Indeed, in many real-life situations, 
authorizations have a limited validity and they may 
depend from each other. Second, our authorization 
model is independent from any specific data  model. 
It can be applied to relational database systems, as 
well as object-oriented database systems and deduc- 
tive database systems. Third,  it opens several new re- 
search issues that  need both theoretical investigations 
as well as experimental work. 

R e f e r e n c e s  
[1] V. Atluri, E. Bertino, and S. Jajodia.  Achieving 

stricter correctness requirements in multilevel se- 
cure databases. In Proc. IEEE Symposium on 

Security and Privacy, pages 135-147, Oakland, 
California, May 1993. 

[2] E. Bertino, L. Mancini, and S. Jajodia.  Collect- 
ing garbage in multilevel secure object stores. In 
Proc. IEEE Symposium on Security and Privacy, 
Oakland, California, May 1994. 

[3] E. Bertino, P. Samarati ,  and S. Jajodia.  Autho- 
rizations in relational database management  sys- 
tems. In Proc. First ACM Conference on Com- 
puter and Communications Security, Fairfax, Vir- 
ginia, November 1993. 

[4] E. Bertino and H. Weigand. An approach to au- 
thorization modeling in object-oriented database 
systems. Data and Knowledge Engineering, 12(1), 
1994. 

[5] D. D. Clark and D. R. Wilson. A compari- 
son of commercial and military computer  security 
policies, In Proc. IEEE Symposium on Security 
and Privacy, pages 184-194, Oakland, California, 
April 1987. 

[6] O. Costich. Transaction processing using 
an untrusted scheduler in a multilevel secure 
database with replicated architecture. In C.E. 
Landwehr, editor, Database Security, V: Sta- 
tus and Prospects, pages 173-189. North-Hollandi 
Amsterdam, 1992. 

[7] K. Dittrich, M. Hartig, and H. Pfefferle. Dis- 
cretionary access control in structurally object- 
oriented database systems. In C.E. Landwehr, ed- 
itor, Database Security, II: Status and Prospects, 
pages 105-121. North-Holland, Amsterdam, 
1989. 

[8] J.E. Dobson and J.A. McDermit.  Security mod- 
els and enterprise models. In C.E. Landwehr, ed- 
itor, Database Security, 1I: Status and Prospects, 
pages 1-39. North-Holland, Amsterdam, 1989. 

[9] V. Doshi and S. Jajodia.  Referential integrity in 
multilevel secure database management  systems. 
In G.G. Gable and W.J.Caelli,  editors, I T  Se- 
curity: The Need for International Cooperation, 
pages 359-371. North-Holland, 1992. 

[10] E. B. Fernandez, E. Gudes, and H. Song. A secu- 
rity model for object-oriented databases. In Proc. 
IEEE Symposium on Security and Privacy, pages 
110-115, Oakland, California, May 1989. 

[11] S. Jajodia and B. Kogan. Integrating an object- 
oriented data  model with multilevel security. 
Proc. 1EEE Symposium on Security and Privacy, 
Oakland, California, pages 76-85, May 1990. 

[12] D. Jonscher, J.Moffett, and K. Dittrich. Com- 
plex subjects or: the striving for complexity is 
ruling our world. In Proc. of the 7th 1FIP WG 
11.3 Workshop on Database Security, pages 18- 
36, Huntsville, Alabama, September 1993. 

106 



[13] W. T. Maimone and I. B. Greenberg. Single- 
level multiversion schedulers for multilevel secure 
database systems. In Proc. 6th Annual Computer 
Security Applications Conf., pages 137-147, "lhc- 
son, Arizona, December 1990. 

[14] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. 
A model of authorization for next-generation 
database systems. A CM Trans. on Database Sys- 
tems, 16(1):88-131, March 1991. 

[15] W.R. Shockley, M. Heckman, R.R. Schell, D.E. 
Denning, and T.F.  Lunt. The SeaView security 
model. IEEE Transactions on Software Engineer- 
ing, 16(6):593-607, June 1990. 

[16] K.P. Smith. Managing rules in active databases. 
PhD Thesis, December 1992. 

[17] D. L. Spooner. The impact of inheritance on secu- 
rity in object-oriented database systems. In C.E. 
Landwehr, editor, Database Security, II: Sta- 
tus and Prospects, pages 141-160. North-Holland, 
Amsterdam, 1989. 

[18] 

[19] 

[20] 

G. Steinke and M. Jarke. Support for security 
modeling in information systems. In B.M. Thu- 
raisingham and C.E. Landwehr, editors, Database 
Security, VI: Status and Prospects, pages 125- 
141. North-Holland, Amsterdam, 1993. 

M. B. Thuraisingham. Mandatory security in 
object-oriented database system. In Proc. Conf. 
on Object.Oriented Programming: Systems, Lan- 
guages, and Applications, pages 203-210, October 
1989. 

Johan van Benthem. Temporal logic. In D. Gab- 
bay, C. Hogger, and J. Robinson, editors, Hand- 
book of logic in artificial intelligence and logic 
programming, volume 3. Oxford University Press, 
1991. 

107 


