
Healthcare Information Architecture: Elements of a N e w Paradigm

Daniel J. Ess in 1 and T h o m a s L. L inco ln 1'2

1 University of Southern California, 2 The RAND Corporation

An Electronic Medical Record (EA~) must provide a
secure, permanent archive for an individual's medical
records and also function as a multi-purpose database
that supports the complex, varied activities of patient
care. Meeting these objectives requires unusual
flexibility in how data are retrieved and processed.
Semantic and referential integrity must preserved both
over time and as chunks of information are exchanged
with other systems. Relationships between data entries
must determined dynamically based on actual events,
rather than statically through application design.
Distributed data requires that new forms of system
security be incorporated into an EA~ at a structural
level, with an emphasis on the labeling of elements to be
secured behind a security barrier, with audit trails to
document necessary overrides and monitor for
suspicious use. A modular information architecture is
proposed that integrates requirements for structure,
content, processing and security.

I - Introduction

To effectively reform healthcare, a paradigm shift will
be required in healthcare computing. To meet new
requirements, we will need new data management
systems that are not merely a superficial rearrangement
of existing hospital information systems.. Despite some
computerization, the traditional paper-based medical
record continues to serve all aspects of clinical care. It
represents a kind of primitive blackboard system that
passively organizes each patient's care and facilitates the
solving of medical problems. In this sense, it both
documents and communicates. Problems and their
solutions are formulated on the chart, and various care
providers consult it in order to coordinate the process.
Thus some steps are procedural and some are cognitive.
The paper chart also has some notoriously awkward
characteristics. It is available in only one place when it is
often needed in several simultaneously. It is fragmented,
particularly with respect to imaging data, and is

insufficiently indexed, with no single ordering
satisfactory for all purposes. It is also often illegible.

Creating an electronic medical records system
(EMRS) that can satisfy this same wide range of uses as
the paper chart presents both a specific and a generic
challenge to computing science. The task is to turn this
classic paper source into one that will relieve the evident
shortcomings without introducing new complications --
such as unwanted access -- all the while retaining the
many advantages of the paper format. It is comfortably
structured as a collection of documents, is able to
encompass the variability and complexity of medical
phenomena and health care practice, can be perused with
minimal procedural navigation, it is portable to all
venues, and it constitutes a single permanent legal
document, appropriately signed by those responsible.
This is a tall order, but we believe it to be possible using
today's technology, given some decisions about certain
policy parameters, plus some directed research and
development.

To the present, attempts to create an EMR have fallen
short. The most important reason for failure has been the
assumption that clinical activities can be redirected into
machine oriented formats and that the various rigidities
introduced for the convenience of the computer will not
interfere with clinical work. This assumption ignores the
heuristic value of the approaches to information
management embodied in the paper record. They are not
arbitrary, but have been refined over time to deal with
difficult issues. Thus, as advocated by Donald Norman in
his book for a general audience: "Things That Make Us
Smart: Defending human attributes in the age of the
machine" [1], success of an EMRS will depend upon
supporting the flow of clinical work as it is most
effectively accomplished by numerous participants,
through a careful choice of data structures and of the
underlying architecture.

32

2 - R e q u i r e m e n t s Authenticity

The behavior an EMRS should exhibit is complex: 1)
It must provide a rich method of representing
information so that content, meaning and context are not
obscured, insuring that the raw data is not prematurely
replaced by interpretation or conjecture. 2) It must be
"open" so that a wide range of information management
appliances (applications), each with its own set of
functional requirements, can use the information as a
resource. 3) It must inform users about the nature of the
information that it contains. 4) It must be able to
selectively retrieve information, either for human
viewers or to serve as knowledge sources for automated
process- control and decision-support systems. 5) Since
different groups of users each have their own agenda and
preferences, there must be great flexibility in rendering
the information for presentation. 6) It must store the data
in ways that meet permanence regulations. 7) It must
structurally address the issues of privacy, confidentiality
and security.

The challenge to information scientists is to devise an
information architecture that will address these
requirements. The first step is to isolate basic properties
that can be combined to create systems that exhibit the
desired behavior (Table 1).

Table 1
Properties of Database Systems Designed to

Store and
Process Medical Records

Atomicity Semantic Integrity Flexibility
Authenticity Security Processability
Persistence Performance Interoperability

Atomicity

Each entry placed into EMRS should be self-
contained, i.e., atomic. It must contain sufficient
information to remain informative if removed from its
host environment, and its authenticity must be preserved.
Each entry must be registered using a time-base that is
sufficiently fine-grained to allow an accurate chronology
of events to be constructed. This is especially important
when many participants are adding items concurrently in
response to a single external event. In a certain sense an
entry is an object.

All entries must be unalterable [2] and permanently
archived. Each entry must be preserved, as it was
entered, in order to meet medico-legal standards. Each
document must be sealed with some type of encrypted
checksum so that it can be verified that no changes have
occurred since the document was committed to storage.

Updates are not permitted once documents have been
committed. Corrections must be appended as new
documents. Ordinary retrieval processes will only display
those entries which, taken together, constitute the
"official" correct record. Audit trails must be included,
so that, with appropriate permission, the entire record
can become visible, including those entries that have
been superseded.

Persistence

The period during which legal unalterability must be
ensured is over 20 years in the case of records that
document care to infants but may be shorter in the case
of adults. With the current interest in a "lifetime medical
record," individual documents may have to be
maintained for over a century.

Database technologies that require that the data be
periodically copied and/or reformatted as part of system
maintenance and database restructuring would violate
the unalterability requirement. However, as long as the
original is never altered, working copies could be made
freely since they could always be verified for accuracy
against the original. This suggests the use of robust
write-once media for the originals.

This requirement also implies that the data stores are
external to and independent of any particular processing
environment. Data stored internally to a specific
application or platform cannot be accessed directly by
others and even complicates modifying the original
applications as their requirements evolve.

Flexibility of Representation and Retrieval

The document structure must freely accept descriptive
material of arbitrary length and it must be possible to
qualify or annotate any or all quantitative items in the
document.

Entries must accommodate fuzzy information such as
approximate dates and times, information for which only
qualitative definitions exist and statements of opinion.
Retrieval functions must produce useful results even if
Information is missing. Information may appear to be
missing if, for security reasons, is unreachable in the
absence of special access authorization.

33

The data contained within the persistent data store
should be structured so that any conceivable query can be
expressed as a first-order expression against such a
database. The semantics of the data and the database
must be explicitly recorded as part of the database and
must be easily discoverable.

This is necessary because, although the typical
database can be queried for a list of relation names, there
is no way to determine their semantic nature or
relationship [3, 4], because traditional data management
techniques hide the semantics of the database from the
users. Today non-technical users are unable to query
most databases because much of the knowledge of the
meaning of individual attributes or relationships is
implicitly embedded within the logic of the retrieval
programs. Furthermore, there is no way to determine
how many relations exist within the database that might
contain information relevant to a particular inquiry.
When role or relationship information is confounded by
being present in the names of both relations and
attributes, semantic heterogeneity increases. In order to
avoid obscuring the semantics of the data, one has to
consider the database as a whole [4]. These authors
assert that the first order normal form (1ONF) in which
the database consists of a single relation and contains
specific slots (i.e. attributes) that hold the information,
would have been represented as by relation and attribute
names if the database were in some traditional normal
form, e.g. 3NF. They further state that any conceivable
query can be expressed as a first-order expression against
such a database. We take the matter even further, and
assert that this concept can be applied to non-normal
form databases (in which each entry is arbitrarily
complex), provided that there is a mechanism to apply
the first-order expressions to the output of intentionally
defined functions that can be applied to the data.

Both developers and users need adequate tools to help
them explore the semantics of the database and to
determine what terms have been used before, and in
what context. As the volume of stored data grows,
discovering the semantics of past and present data
models becomes an increasingly difficult task. But a lack
of this capability leads to Keyword Drift [5], a
phenomenon whereby the semantics of an application
wander over time. Users who do not have good
information about what terms are currently active
continually invent new keywords and new rules for
categorizing and indexing the same information that
they have coded before. As old data become
unrecognizable through this process, they become
fossilized and unusable -- effectively non-existent for
ordinary purposes.

Semantic Integrity

Medical documents make frequent reference to data
that are coded and/or maintained by ancillary systems.
In a "properly normalized" relational database, a medical
document would store only the appropriate foreign keys
needed to join with the relations containing the
explanatory detail. However, many coding schemes
change from year to year and often retain the same cede
numbers even though the underlying definitions have
been altered. It is not always possible to insure that the
necessary systems (or versions of systems) will be on-line
to satisfy a relational query at the time a document needs
to be viewed or copied to an outside agency. Therefore,
all information that is necessary to insure the semantic
integrity of a document must be copied and stored in the
document itself at the time it is committed to storage.
The intent is to copy just enough information to preserve
integrity (readability and context) of the individual entry.

lnteroperability

Documents transferred (or accessed) between sites, or
used at the same site at different times, must be
interoperable (processable at the recipient site and
informationally equivalent). It must be possible to access
the information content of documents, independent of
the nature of the host system or in the absence of any
sophisticated data manager (i.e. humans can read them
with a low-level disk editor if all else fails).

Processabil i ty

Each document must also include meta-information
that describes its semantic content and organization.
This information must be computable and accessible
through queries. Existing documents may be candidates
for inclusion in queries or new transactions on the basis
of an arbitrarily large number of rule-based criteria.
Similarly, the result sets produced by arbitrarily complex
transactions must be accessible through query languages
and application programming interfaces (API) so that
they can be used as input to other queries and processes.

Performance

The speed with which database operations can be
accomplished is always an important non-functional
requirement. Slow responses commonly violate the
cognitive tempo. In addition, there are many medical
situations in which rapid access to information is
crit ical.

34

Security

In order for the healthcare process to be most
effective, the medical record must contain accurate and
complete information that reveals the details of people's
lives and their medical histories, what was done for them
and why and who was involved. In order to elicit the
maximum detail, each participant must feel confident
that the information will not fall into the wrong hands
and be used against them. For this reason, just as there
are legal requirements for record retention, there are
legal and ethical requirements that the records be kept
secure and confidential so that each individuals privacy
is preserved.

3 - I n f o r m a t i o n R e p r e s e n t a t i o n

None of the requirements or properties discussed
above addresses the structure of the atomic unit of data
storage. It is clear that in order to treat this disparate but
highly inter-related data as a single resource it must be
unified into a single structure that contains not only the
data but a variety of semantic information (meta-data) to
guide its subsequent retrieval and use. We theorize that
the atomic unit of storage should be an encapsulated
complex object with specific structural properties which
we will now describe. We hypothesize that objects, so
constructed, have the properties necessary to enable this
unification. We call these objects Loosely Structured
Documents [6]. The term "loosely structured" refers to
the fact that there may be wide variations in content and
modest variations in structure within individual
documents without obscuring their similarity to other
documents of the same type.

The accumulated details that can be found in a
collection of medical records exhibit complexity that is
unbounded. The information may come in hundreds .~ of
formats and the content differs widely depending on the
domain from which these data originated. Viewed from a
somewhat greater distance, the paper medical record is a
collection of separate loosely structured documents [7,8].
Some data is highly quantitative, often organized in a
tabular format. Some information is semi- quantitative
data and is commonly collected using questionnaires and
check lists. Records of interviews are almost entirely
narrative. The most common records, those documenting
ambulatory care encounters and admission to a hospital
combine quantitative, semi-qnantitative and narrative
components into documents that have a loosely
structured quality. Headers are in reality labels (or tags)
that identify the content of different sections (such as

i A sales brochure for [6] offered "800 useful nursing forms"

Heart, Lungs, Impression, etc.). Some entries include
logical links to physiological monitoring data and/or
image data that are stored in other places. Within each
type of form, flowsheet or document, some well
established convention is used to structure the
information. A variety of these forms are kept handy to
that the users can easily switch between variants that
organize the information differently or that impose more
or less structure as each case dictates.

Structured documents have become a familiar
convention. TEX and WordPerfect use internal markup
to denote formatting and style regions. CLOS (the
Common Lisp Object System) and various frame-based
knowledge representations define slots within objects.
Boxer, a computational medium for elementary school
students, creates structure with nested boxes [9]. Tex and
other markup languages also include conventions for
representing arrays and tabular data structures as
streams of text with embedded tags to denote the position
of each datum within the array. The Standardized
Generalized Markup Language [10] derives its openness
and flexibility from the use of meta-level descriptors of
document structure. Each of these markup conventions is
intended to introduce a structure into data in order to
enhance its ability to be processed computationally.

The internal structure of each document type found in
the medical chart has many of the characteristics of the
machine processable structures mentioned above, i.e. the
structure usually is (or can be) indicated by topic
headings inserted into the text. Tags such as CC: (chief
complaint), and PMH: (past medical history) are
immediately familiar to all practitioners and isolate
specific regions of content. In effect, these tags
constitute a markup language that emphasizes medical
content. Missing tags imply the absence of significant
material (in the opinion of the original observer). Other
tagged sections may be optionally or conditionally
inserted into specific documents in much the same way
that a paper record may contain an annotation in the
margin. More importantly, with appropriate tagging,
highly structured tabular data can be represented using
the same conventions.

Dayal [11] discusses documents as an example of
complex objects and identifies a number of requirements
for managing data objects with a complex internal
structure. Complex objects are "highly structured objects
that are composed of other objects." For example: "a
document may be composed of sections ... and the
sections themselves may be composed of section
headings, paragraphs of text, and figures." In this sense,
medical charts, and their component entries, are clearly
complex data objects. "In many applications these
complex objects are the units for storage, retrieval,

35

update, [and] integrity control The most fundamental
requirement of a complex object is that the user be
allowed to manipulate it as a whole." Attempting to store
medical records in conventional (e.g. relational)
databases results in each object being reduced to a
number of tuples scattered among a variety of tables.
Because "there is no way to specify to the DBMS
[database management system] that all of these linked
tuples form a single complex object" operations on
complex objects require complex sequences of relational
commands.

Since objects can be arbitrarily complex, the potential
number of relationships between objects is potentially
unbounded [11]. Therefore, Dayal suggests that
databases provide a general facility for specifying
relationships between complex objects and/or their
components in terms of functions defined over sets of
complex objects instead of being limited to a small
number of distinguished relationships with fixed
semantics as is common in relational databases.

Objects, whether simple or complex, may have
attributes that are not recorded directly within them but
which must be derived indirectly from other data. This
implies that data models in general should be extended
to include the capability to return information by
inference (but, in certain instances, also to block it). In
other words, the results of database queries may include
data that is not ever stored in the database but is derived
dynamically from indirect sources or that is computed by
arbitrary procedures. Scientific and medical databases
have a corollary requirement - the ability to view
complex objects at different levels of abstraction. This
capability can be obtained by defining views over the
output of retrieval functions alone or in combination
with values derived from exteusionally defined functions
that are stored within the database.

Dayal [11] notes that "in some cases, it is too
expensive to compute every inteusionally-defined
function on demand (i.e. at query execution time). It may
be cheaper to precompute and cache its values instead.
For querying purposes ... the function may be treated as
being an exteusionally-defined function. However,
updates to the function's arguments may cause the
cached values to become obsolete, requiring propagation
of the update."

4 - T h e P r o p o s e d A r c h i t e c t u r e

Structure

The above requirements emphasize the need to treat
the persistent data store as a discrete entity, separate
from any application. In order to translate those

requirements into an implementation a convention for
structuring the documents must be adopted that can 1)
accommodate variations in complexity, 2) allow
application and knowledge evolution, 3) provide
interoperability and open, self-describing semantics and
4) allow a wide variety of domain specific applications
share, and be applied to, the same data. One candidate
for a structuring convention is HyTime the
Hypermedia/Time-based structuring language (ISO/IEC
10744-1993) [12]. It is built on the Standard Generalized
Markup Language (SGML) 0SO/IEC 8879-1986) and
introduces two abstractions that together provide a
notation for defining a generalized hierarchy of
occurrence types and a means of recording them. Using
SGML, the internal structure of documents are specified
by Document Type Definitions (DTD) formal,
computable statements that describe how documents will
be structured and what mandatory and optional
components will be present. The first level of abstraction
is the DTD itself. The syntax of DTD's is expressed as a
nested set of elements. Each element has its own generic
identifier, an optional set of attributes and attribute data
types, and a BNF-like production stating what sort of
data can be placed inside each element or level of the
element hierarchy [12]. The second level of abstraction
is provided by HyTime's architectural forms.
Architectural forms are element meta-declarations that
define the elements that can appear in DTD's or meta-
DTD's.

Architectural forms define the class hierarchy of
documents that can be entered into the data store and
thus, in this case, distinguish a system as a medical
system. At the architectural form level, developers can
specify the structure of the various components of a
document, i.e. "who," "what," "where," etc. These
elements can then be assembled as necessary to create
the DTD's that will actually control what information is
collected and how it is rendered (displayed). An
architectural form specification defines the minimum
information that must appear, any anticipated but
optional information that may appear, and how any
additional notations should be "marked up" so that they
can be located and classified. It must specify what rules
in the knowledge envelope of the system can be used to
validate input and which rules define the syntax that can
be used to enter and flag nonconforming data and
annotations. A given architectural form may be used by
zero, one, or many DTD's. Forms that are implemented
by zero DTD's function as abstract types from which
subclasses can be derived.

36

Application Independent Resources

It is not sufficient for the semantics of documents to
be open. For a given domain, e.g. the EMRS, all
applications accessing these documents must apply
consistent logic during processing in order to maintain
semantic integrity. This requires an explicit mechanism
for creating data transformation and retrieval functions.
This must be done at the domain level so that all
applications in the domain can share them. There are a
growing number of systems that do this. Hypercard and a
variety of other Macintosh applications can share
XCMD's. Dynamic Link Libraries in Windows, N-T, and
OS/2, are language independent and can be shared any
application capable of calling them. Stored procedures in
SQL databases and Remote Procedure Calls in various
UNIX systems address the same need for application
independent, system-wide resources. All applications
using such resources achieve consistent behavior and, as
a consequence, consistent semantics.

Under this model, application development would
have two components. 1) The persistent data store -- the
document types and their semantics and the layer of
function resources must share an evolutionary
development path. 2) User-interfaces -- query languages,
APrs and wrappers (temporary encapsulations of
process-related data in non-document form) may be
application-specific. The relationship between these
components is represented diagrammatically in Figure 1.

Application Independent Database Structure

The requirement for interoperability anticipates that
future systems will rely heavily on distributed
processing. Workstations will perform computationaUy
intensive tasks that are departmentally or functionally
specific in nature. Logically, this implies that portions of
the database will be accessed frequently by some
applications and rarely (or never) by others. Security,
confidentiality and network efficiency will each be
promoted by logically partitioning the database and
distributing certain portions to the site of most frequent
use. Federations of application specific systems will
replace the monolithic information systems of today. If
the requirements for atomicity and processability are
met, it will be possible to aggregate the data when
necessary.

Meeting the atomicity and persistence requirements
separates the traditional problem of database
concurrency control into two pans. Since no updates to
existing entries are allowed, all users are free to add new
records at will. Entries that are intended to correct other

entries may produce user views that only display the
most current information.

The atomicity requirement also supports fault-
tolerant, high-performance designs. Since existing
records are never physically updated or deleted, the
process of replicating the data to remote locations can be
approached in a more leisurely fashion. It will be
possible to queue transactions requiring replication,
establish priorities, and even temporarily suspend the
process if there is a physical disturbance on a portion of
the network. Parallel processing [13] and blackboard
systems [14] are almost accident byproducts. Resilient
medical systems have high availability requirements.
Many are expected to be "up" continuously. This
requirement is incompatible with the current generation
of DBMS and operating systems that require periodic
"down-time" for maintenance and the installation of new
software versions. Externalizing the persistent data store
offers a wide range of new opportunities to design
methods that can provide continuous access to the data
when various applications, or system components, are
taken off-line for testing, modification or repair.

Creating an Open Environment for Application
Development

The layered architecture allows application
development to proceed asynchronously and in parallel
on many fronts overcoming a traditional bottleneck. To
allow this parallel activity without elaborate
coordination, applications will use the DTD's and other
explicit representations of database semantics as the
control mechanisms. Because properly constructed
DTD's are computable, this approach should detect and
eliminate designs or actions that would violate system
integrity. Semantic checks can occur both in
compilation, for the static elements, and during
execution for the dynamic constructs. Once such tools
are in place, it will be possible to engage end-nsers into
the application development process without a loss of
control. This scenario is compatible with both the desire
for better engineered software, a more productive less
error-prone development methodology, and the changes
that are occurring in the way organizations and work are
managed [15].

5 - S e c u r i t y I s sues .

Constructing security for an information architecture
such as the one described here is a multidimensional
problem. The appropriate security level for individual
pieces of information is not stable over time and is
frequently context dependent. As Ware has emphasized

37

[16], that security technology will always fall short, and
that the greatest risk is unauthorized use by authorized
users. Confidentiality and privacy must be considered to
be at ongoing risk even when data systems themselves
are otherwise secure. Complicating matters further, the
very techniques that one hopes to use to improve patient
care, namely aggregating data and by drawing inferences
from it in order to gain diagnostic and therapeutic
insights, are considered threats in other settings.

The architecture is modular and layered rather than
monolithic (Figure 1). This provides the basis for
systems in which the components are mutually
distrustful [17]. Separating applications from data makes
it possible to model work processes and construct data
flows that clearly define boundaries of trust, for example,
no one ordering supplies to restock the warehouse should
ever be connected to any data source containing patient
specific information. Each layer has specific security
related tasks to perform.

The security behavior of the data layer must be
adaptive, internally controlled and self-protective. It
must decide whether or not to release information and it
must control the permanent filing of new entries. It
should also generate audit trails of database access
(whether it stores then or not). The decision to release or
accept information may be total or partial and it may be
independent or mediated via trusted interactions with
other system components. Loosely Structure Documents
provide a mechanism to encapsulate security related
information within them that can drive this activity. The
approach is to tag those areas of content that have
special security implications, such as the identities of the
author and patient, the circumstances of document
creation and any areas of the content that have a higher
or lower level that the document as a whole. The default
behavior of the persistent data store would be to only
release information to the creator of the information, the
individual to whom the information referred, or to
properly cleared system administrators - unless there
were additional restrictions encapsulated within a
particular document that blocked this process.

The meta-data layer contains the information that
defines the formatting and content architecture of the
documents stored in the data layer. This layer also
contains application specific wrappers. Wrappers are
temporary encapsulations of process-related data in non-
document form. This is an ideal place to assemble the
information needed to drive access-control in a
production environment as well as to maintain working
copies of work in process and the knowledge bases
needed to support production applications. In part,
access can be controlled by creating application specific
wrappers that only maintain working copies of a limited

amount of data. Applications that only have access to
these abstracts, but not the data layer, cannot violate it.
The volume of information will be too great and the
number of users too large to create specific authorization
matrices. Most access control to the data layer will have
to be handled on the basis of role information. Some
roles can be defined statically, others are defined by prior
events. In this model, role information would be supplied
to an access controller by a wrapper (Figure 1). This
wrapper might (among other things) construct
association tables based on:

1) role assigning events
Dr. Smith is credentialed as a member of the

active staff for 2 years and has privileges in
general surgery.

Dr. Garcia is credentialed as a member of the
active staff for 2 years and has privileges in
pulmonary medicine.

Nurse Adams has a valid license and is hired
by the facility.

2) administrative events
Nurse Adams is assigned to the Surgical Floor.
Mrs. Jones is admitted to the Surgical Floor by

Dr. Smith
Mr. Jackson is admitted to the Medical Floor by

Dr. Garcia
Dr. Smith requests a pulmonary consultation

The access control function would infer that:
Dr. Smith and Dr. Garcia can read all records

and create entries relating to Mrs. Smith.
Nurse Adams can read and create entries

relating to the current admission of Mrs.
Smith as well as read her history for the
past year.

Mr. Jackson has a cardiac arrest. Dr. Smith and
Nurse Adams respond to the emergency.
They assert that it is an emergency and
have full access to the records for the
duration of the event. They both have
subsequent read-access to any entries that
they made during the event.

If the facility was informed that Dr. Cohen, also
on the staff, had joined Dr. Smith in
practice, Dr. Cohen would have access to
Mrs. Jones' records.

After Mrs. Jones is discharged Nurse Adams
and Dr. Garcia no longer have access to
Mrs. Jones' records.

The relationship between any access controller and
the data-layer is clearly a trusted one.

38

Another wrapper might keep a working copy of the
last week's vital signs and lab results on hospitalized
patients for rapid retrieval and manipulation and an
index of the data available on those patients that could be
retrieved from the data layer. The difficult trade off is to
decide how much information to disclose - too little and
patient care be compromised, too much and the potential
for an inferential attack is increased.

At the function layer and the application layer, the
implementation of security will depend on the approach
taken to creating the access controllers. While existing
techniques may be applicable there are some challenging
clinical requirements at the application layer to consider.
One such challenge is presented by the need for virtual
sessions. In a fast-paced chaotic environment like a
trauma center, a physician may need to start work on
several patients simultaneously and have the ability to
continue the work on any patient from any available
workstation. This calls for some type of virtual session
manager that keeps all database connections alive, saves
the state of all visual displays and can restore the
operational state of the program on any terminal when
requested by the initiator of the event or by another
authorized individual.

Access control has different meanings depending on
context and time. As described in the scenario above, in
an emergency context a wider range of individuals are
allowed access. The value of some data is time limited.
For example, the number ounces of liquid that Mrs.
Jones consumed on her first day in the hospital day
typically has a low security during the hospital stay and
the level decreases steadily after discharge. Although the
data must be retained for a legally prescribed length of
time, the likelihood that this data will ever be retrieved is
extremely low.

Several other security questions must be addressed
that have little to do with the information architecture
presented here but remain as open issues in the
healthcare domain. The first relates to authorized
copying of data. Various groups and the federal
government would like to have access to various portions

of the medical record to support a variety of research and
planning activities. Should copies of this information be
released or should these organizations be required to use
it under secure conditions? If copies are released how
should they be tracked7 Can the systems controlling the
data layer automatically apply transformations to the
data as it is released to prevent the use of aggregation
techniques to reestablish the identify of individuals? Is it
possible to produce specially encrypted copies with built-
in expiration dates on the decryption keys? Can data be
released in an active form so that it can detect if it has
been removed from a controlled environment and "self
destruct"? Can data be released while maintaining
control over the retrieval functions by allowing users a
remote sites to "borrow" functions via remote procedure
calls?

6 - C o n c l u s i o n

The model presented in this paper suggests an
approach to the development of medical records
databases that focuses on creating tools: 1) to establish
and maintain a persistent store of data that is external to
all applications, 2) to allow those involved in medical
events to accurately and efficiently document what has
occurred, 3) to allow individuals and processes access to
the accumulated information, and 4) to address at a
structural level the need to insure that the database is
permanent and secure.

Some of the requirements described here raise
fundamental research issues that will need further study.
Others, especially the reliance on raw text searching
(even if assisted by content delimiting tags) and the
assumption that security and open access are not
contradictory are frequently perceived to present
overwhelming obstacles. Many of these apparent
obstacles are being overcome in the research lab, some
have already been implemented and others are in search
of new paradigms in system security.

39

Environment Specific
Query Languages and

API's

Application Layer [
Query Languages Application Program

Interfaces

Application Specific and
System-Wide Data

Update and Retrieval
Function Resources

Function Layer]

Document Type
Definition Pool and
Application Specific

Wrappers

Meta-Data Layer I

App 1 App n

Shared Data
Resource

System Wide

t

Wrappers

t
Document Type Definitions

t

I Data Layer

I I i
] ~' Persistent Data Store ~'

Modula r and Layered Structure of the EMR
Illustrating Data Flows to a Specific Appl icat ion

Figure 1.

References

[1] Norman D: "Things That Make Us Smart: Defending
human attributes in the age of the machine," Addison-Wesley,
1993.

[2] Prosser RL: "Alteration of Medical Records Submitted
for Medicolegal Review" JAMA Vol. 257, No. 19, May 20,
1992, pp. 2630-2631.

[3] Krishnamurthy R, Litwin W, Kent W: "Language
Features for lnteroperability of Databases with Schematic
Discrepancies," Proc. of ACM-SIGMOD Conf. SIGMOD
Record, 20, 2, (June 1991), 40-49.

[4] Litwin W, Ketabchi M, Krislmamurthy R: "First Order
Normal Form for Relational Databases and Multidatabases,"
SIGMOD Record, 20, 4, (December 1991), 74-76.

[5] Essin DJ: Unpublished material. 1987.
[6] Rowland HS: Nursing forms manual. Aspen Systems

Corp., Rockville, Md. 1985
[7] Essin DJ: Intelligent Processing of Loosely Structured

Documents as a Strategy for Organizing Electronic Health Care
Records. Methods of Information in Medicine, in press.

[8] Lincoln TL, Essin DJ and Ware WH: The Eloctronic
Medic~ Record: A Challenge for Computer Science to
Develop Clinically and Socially Relevant Computer Systems to

40

Coordinate Information for Patient Care and Analysis. The
Information Society, Vol. 9, No. 2 (Apr-Jun 1993), 157-188.

[9] Soloway E: Reading and Writing in the 21st Century,
Commun ACM Vol. 36, No. 3, May 1993, pp. 23-30.

[10] Goldfarb C: "The SGML Handbook," Oxford
University Press, 1990.

[11] Dayal U, Manola F, et al: "Simplifying Complex
Objects: The Probe Approach to Modeling and Querying
Them," Proceedings of German Database Conference, Burg
Teclmik and Wissenschaft-87. reprinted in Zdonik, S. and
Meyer, D. Readings in Object-Oriented Database Systems,
Morgan Kaufman Publishers, San Mateo, CA 1990.

[12] Newcomb S, Kipp N, and Newcomb V: "The TIyTime'
Hypermediafrime-based Document Structuring Language,"
Commun. ACM, 24, 11, (November 1991), 67-83.

[13] Carriero N and Gelernter D: Linda in Context.
Commun. ACM, 32, 4, (April 1989), 444-459.

[14] Nii HP, Feigenbaum EA, Anton JJ and Rockraore AJ:
Signal-to-Symbol Transformation: HASP/SIAP Case Study. in:
Englemore R and Morgan T. Blackboard Systems. Addison
Wesley 1988.

[15] Tapscott D and Caston A: "Paradigm Shiit: The New
Promise of Information Technology" McGraw-Hill, 1993.

[16] Ware WH: personal communication.
[17] Computers at Risk: Safe Computing in the Information

Age. National Research Council. National Academy Press,
1991.

41

