
Providing Non-hierarchical Security through Interface Mechanisms

Deborah Hamilton

Hewlett-Packard Labs

Abstract
Common security models provide protection in an

hierarchical fashion (i.e. there is a trusted core with outer
circles of less secure code and data). There is only one
method of providing protection. This model makes it
difficult to protect code and data with multiple types of non-
hierarchical policies. It implies complete trust in the core
requiring thorough evaluation each time modifications are
made. This paper first describes a paradigm shift to non-
hierarchical security. It then describes an interface
mechanism with the potential for providing an efficient,
configurable and non-hierarchical security mechanism
more suitable for commercial requirements.

1 Introduction

The increasing complexity of current systems and the
growing range of security requirements is forcing a
paradigm shift. This paper first describes some problems
with current security models and then discusses a paradigm
shift that could provide a more suitable model. It then
provides some background information, assumptions and
an overview on a procedural communication and
protection mechanism which we claim can aid in the
paradigm shift. Next, the paper describes how this interface
mechanism allows for a separation between the policy and
mechanism. A comparison is made between security
enforced through an interface mechanism and common
models. The paper then discusses how interfaces can
provide an efficient enforcement for multiple and
configurable policies. Functionality requirements and
technical challenges are also discussed. Finally, a prototype
is described along with ideas for future work.

2 Limitations of current systems

Two major limitations in current systems are the
integration of the security policy with the enforcement
mechanism and the size and complexity of the of the TCB.
These limitations cause problems because:

1. One must trust the operating system. Although the
operating system has access to everything, one must
trust it will not modify anything directly or
indirectly in an incorrect way. There are many cases,
for example, where users have been able to get the
operating system to indirectly modify code that
should not be accessible to the user. Due to the size
and complexity of common operating systems it is
almost impossible to verify all actions for all inputs
without restricting the functionality and impacting
the performance significantly. Furthermore, it is
cumbersome to reevaluate the code when changes
are made.

2. It is difficult to support a variety of policies as well
as support multiple policies at one time because the
security policy and enforcement mechanism are
entangled and not designed with this in mind. If they
could be separated, it would allow solution
providers to concentrate on the security
requirements instead of the mechanism. It would
also allow configurable policies and make
production of and experimentation with a variety of
policies possible.

3. Most operating systems provide no support for a
variation in the type and granularity of protection.
Often applications are built over the operating
system to overcome some of these limitations. For
example, databases can be built to give more variety
on the type and granularity of protection. However,
one must believe that the database protection can not
be subverted and one must accept the increased
overhead.

These are serious limitations which are unacceptable in
the majority of commercial systems.

The traditional orange book model conceptually has the
TCB surrounded by layers which give less and less
accessibility as one goes away from the core. This
approach is hierarchical. Most if not all the code and data
is available while in the operating system core while less
code and data is accessible as one goes further out in the
circle. Figure one gives a conceptual picture of the

89

traditional security model with both categories
(receptionist/doctor) and security labels (high/low).

/ / eption st '
Low

Hierarchical
Security

Figure one

This model has one method of protecting code/data and
one method of gaining access to it. Code/data in the outer
layers are accessible to those operating further in.
Programs may execute in one layer but have access to areas
further out. It is similar to a one-room log cabin with one
door and several walls encircling the cabin each with one
door. It is difficult to support multiple and non-hierarchical
policies with one method of entry (i.e. one door). It is also
difficult to provide control once a program has access to the
operating system. Using a one-room house was sufficient
before the necessity arouse to have many people using the
room for many different purposes. However, the one room
- one entry model no longer maps to the real word needs of
commercial systems.

The current approach to making a system more secure is
by re-enforcing the security boundaries (i.e. adding another
wall around the house or reinforcing an existing one). This
prevents bad people from entering the yard or house.
However, this doesn' t help us address the limitations
previously listed. This is - it doesn' t help us control and
limit access to those allowed into the yard and/or house.

3 The paradigm shift: Moving from an
hierarchical to a non-hierarchical model

It is time for a paradigm shift from a one-room/one
entry model to a modern office complex. We must build
rooms inside the operating system and allow multiple
entries and methods of providing protection for the various
rooms. In an office complex there are different means for
entry depending upon the hour and person entering. For
example, temporary employees wouldn' t be given free
reign of the building. They may be allowed entrance only
when escorted after showing an ID during specified hours
at predefined doors. The VIPs, however, may have keys
which allow them in any door at any time. In addition, there
may be a drive-through window staffed with people who

service requests for information and maintain control over
access.

Figure two gives a picture of a non-hierarchical model.
This model allows parts of the operating system to operate
in separate segments. Programs may also run in one or
more separate segments. Data may be stored in the same
segments as the program that accesses them or may divided

 atient
k, ~ystemff, y [Record l

~" "'~'" 1 k,Data J

Non-hierarchical
Security

Figure two

among a few segments. Several segments may be
accessible at the same time.

The states in figure two represent accessibility to a
group of data and/or code. Notice that there may be
multiple methods of getting to a state. For example, the
Low state can be reached either directly or via the high
state. Information about how the state was reached is
maintained in case it is needed to determine the next state.

Sometimes one may want the security model to be
hierarchical as when using a low/high level security model.
It is easy to see how a non-hierarchical model could imitate
a low/high level by defining high security to give access to
both high and low. However, it is difficult to imagine how
a hierarchical model could effectively produce a non-
hierarchical model such as categories.

The non-hierarchical model can be thought o f as an
object-oriented view. Each segment represents an object
which may have code or data. These objects can maintain
attributes and state information which may be based on
users, programs, or arguments given when running the
program.This information can be used when determining
access or when restricting access to parts of the object from
access/view. For example, in a patient record system, one
may want to designate access based on roles and allow
access to only portions of the record (i.e. only the doctor
can write in diagnostics section). Although information is
available about which user has run a program, there is no
pretense that programs are always run on behalf of one and
only one user as in the current models.

90

4 The interface mechanism

A successful transition to a non-hierarchical mechanism
requires an efficient, secure, flexible and easy to use
mechanism. Some people have attempted to move from a
hierarchical model to a non-hierarchical model but were
unsuccessful for various reasons.

Attempts to build a non-hierarchical protection
mechanism into the software application layer present
several problems. First, security depends on the
mechanism being impossible to subvert. Second, the
mechanism must give adequate performance in order for it
to be used pervasively throughout the system. Third, if
applications must be retrofitted, it stands less chance of
being used and accepted. Fourth, the granularity of the
protected .regions should be adaptable. Fifth, the
mechanism should provide protection within the kernel so
that giving access to a part of the kernel does not mean free
reign. This makes verification easier and allows a true non-
hierarchical model.

We have developed an interface mechanism that is
efficient and secure. We believe it can be used pervasively
in a system with little overhead. A user can run programs
as they now do with the desired amount of protection.

5 Background

A paper design of an operating system, Brevix, was
developed at Hewlett-Packard Labs [1]. Various aspects of
the design showed significant potential for short-term and
long-term applications and were further developed and
prototyped. This paper describes one aspect, the interface
mechanism, which provides a well-defined inter-space
interface for isolating and controlling access to code. We
also discuss potential extensions related to implementing
security policies. The low-level detail of the interface
mechanism is not required for a high-level discussion of
the security aspects and was thus left out of this document.

6 Abstracting out the underlying
hardware assumptions

The interface mechanism assumes a mechanism for
protecting virtual address space. The prototype described
in this paper was developed on the PA-RISC platform
which meets the above requirement by using protection
IDs. This virtual address protection mechanism will not be
discussed here - refer to [3] for details. Instead we will
assume this protection is possible and will abstract out the
underlying assumptions made by the interface mechanism
for the sake of simplicity and generality.

We will use the term protection ID to imply that there is
something one must posses in order to gain access to a
protected region. One is able to restrict what type of access
the protection ID gives: read-only, read/write,
read/execute, or read/write/execute. There can be many

protected regions and many protection IDs. The protection
IDs are not transferable - only trusted code controls them
and can give out access. One protection ID may give access
to multiple protected regions and there may be identical
protection IDs giving access to the same region but two
different protection IDs can not give access to the same
protected region. There may be unprotected regions which
do not require a protection ID for access and trusted
regions whose access is controlled through a mechanism
other than protection IDs. If access is requested without a
valid protection ID or other type of permission, a trap is
taken in the trusted code. If the protection ID can not be
obtained an error is returnedto the caller.

7 Interface mechanism overview

The interface mechanism provides a method for
controlling access through a well-defined procedural
interface between address spaces. The granularity of
address space is flexible. For example, the kernel or users
may each operate in one address space or may be broken
apart into multiple address spaces based on functionality.

Each process has its own collection of currently
available protection IDs which we will refer to as a
protection domain. These protection IDs give each process
direct access to their own space (code/text/data) as well as
possibly other protected regions. The protection domain
may also include information on what type of access is
allowed and other security relevant information. The
protection domain can only be modified through the
interface mechanism.

An interface definition must be given for each set of
entry points that is provided to external callers. This
information is used by the interface mechanism to
determine how to modify the caller's protection domain as
it crosses into the callee code through one of the predefined
entry points. During the call, the caller will have access to
the necessary protection IDs for execution in the callee
code. Immediately before the execution returns to the
caller code, the interface mechanism modifies the
protection domain again deleting the protection IDs
temporarily given for access in the callee space
(code/text/data).

Protection domains can also be changed by privileged
processes in a special way which will not be undone after
crossing back out of the privilege process. This allows
privileged processes to setup the protection domain during
login, for example.

Regions of the virtual address space may also be defined
as unprotected and thus accessible to all without the use of
a protection ID. When a caller crosses an interface into an
unprotected region, the protection domain need not be
updated. The callee code will be executed under the same
protection domain as before the interface was crossed.

The crossing from caller code into the callee code
through the interface mechanism is referred to as the
interface crossing. A thread represents a single flow of

91

control within the system.When a thread crosses an
interface by making a procedure call, three things are
ensured by the interface mechanism.

• The thread may enter the new code only at a valid
entry point advertised by that code.

• If necessary, the thread enters the protection domain
of the new code. The system ensures that the regions
of virtual memory available to the thread are those
of the new protection domain.

• The thread may carry parameters across the
interface.

When the thread returns across the interface from the
called code, three things are ensured by the system:

• The thread may only return to the call site.

• The thread returns to the protection domain of the
caller. The system ensures that the regions of virtual
memory available to the thread are those of the
original protection domain.

• Any return values from the procedure call are made
available to the caller according to the return
convention of the system.

There are three types of interfaces: open, unprotected
and protected. Each class of interface provides a higher
degree of protection than it's predecessor.

• Open interfaces enable a callee's subroutine to be
linked into the caller's code. The code will run in the
same protection domain as the caller. An open
interface provides an efficient mechanism for
library calls such as bzero where no data from the
callee is accessed. This is accomplished by
performing all interface related activity at initial
binding time, rather than at call time.

• Unprotected interfaces cause a change in the
protection domain at interface crossing time. Any
caller may use an unprotected interface.

• Protected interfaces cause a change in the protection
domain at interface crossing time. Access to
protected interfaces is restricted to a set of callers
through the use of access control qualifiers.

Interface crossing must be efficient in order to provide a
viable solution. As much of the required processing as
possible should be done before the actually crossing. For
example, entry point addresses and protection IDs can be
determined at boot time. In additional, the interface
mechanism can be optimized to:

• Use hardware protection access checks for
efficiency

• Eliminate unnecessary context-switches (one is
required at most, none if an interface specifies that
no protection is required)

• Minimize branches (entry point addresses are
embedded in caller's a.out image)

Since all protection domain changes and thus all
changes to security information and availability to
protection IDs are done through the interface mechanism,
access and modifications to security information can be
controlled and monitored. The trusted code executed at
interface crossing time can provide hooks for a security
manager.

8 Implications of the interface mechanism
on security

Security functionality can be separated into two parts:

• Enforcement mechanism - the actual access check

• Policy implementation - determining when to give
access

The interface mechanism provides the enforcement
through the hardware at access time. The policy
implementation is done by means of temporary or
permanent modifications to the protection domain during
interface crossing. Notice that the enforcement mechanism
and the policy implementation are separate and
independent.

The interface mechanism must determine how to
modify the protection domains - either by using some built
in knowledge or by consulting a security manager. In either
case, the protection domain modifications will be
determined based on the security policy, the current
protection domain (including the relevant security
information), and the type of interface about to be crossed.

9 Comparisons with other models

Discussing the differences between the interface
mechanism and security in other models helps to clarify the
interface mechanism.

9.1 Reference monitor

There are several major differences between the
reference monitor model [2] and the interface mechanism:

• Degree of separation between security enforcement
and policy implementation: A reference monitor
integrates the two - both are done at the same time
by the same process. There have been some
attempts to separate the two. For example, in the IX
Unix model developed by AT&T everything is
labeled and checked before every data transfer as in
the reference monitor model. However, the actual
access check is optimized by setting a flag and
calling the policy implementation code when
necessary. Even though the code has been
optimized, the two are still dependent on one

92

another. The interface mechanism separates the
security enforcement and policy implementation
completely. The security enforcement has no
dependencies on the policy implementation - it
simply expects to enforce whatever has been set up
by the policy implementation.

• Location o f interception: A reference monitor
intercepts each data access where as the interface
mechanism only intercepts when making intra-
space calls in order to update the caller's protection
domain. This creates a more efficient mechanism. It
creates extra work, however, if trying to track all
actual data accesses since the interface mechanism
can only know when one has a protection ID for
access and not when and how it is used (see the
section on auditing below).

• Ability to trade-offprotection and efficiency: The
interface mechanism allows the callee to either have
unprotected regions, give direct access to protected
regions or force callers to go through the interface
crossing mechanism in order to gain access to
protected regions. The overhead associated with
modifying the protection domain is only taken when
crossing into a protected interface. One may choose
not to trade security off for efficiency by defining
unprotected interfaces which require no overhead.
In addition, much of the work for interface crossing
can be preprocessed making the crossing more
efficient at the expense of disallowing dynamic
changes to the security information. The reference
monitor model takes the overhead hit for calling the
monitor each time even if nothing needs to be done.

• Efficiency o f access check: Access checks are
integrated into the hardware when using interface
mechanisms on PA-RISC -- there is no overhead
associated with it.

• Size o f trusted code: Since the interface mechanism
uses hardware access checks, the amount of trusted
code is minimized.

• Data sharing methods: Interface mechanisms allow
four types of data sharing: no protection, direct
access, parameter passing, and restricted use while
in the callee code. The strict reference monitor
model provides only one outside of the trusted code
- data passed through the reference monitor.

• Control over granularity o f protection: The
reference monitor does not allow control over the
granularity of protection The interface mechanism
has a great degree of flexibility in determining the
appropriate granularity for protection. The data to
be shared can be divided into small chunks of which

each requires a distinct protection ID. This option
may create significant overhead but is possible. One
can also put all shared data into one region and have
an optimal solution at the expense of granularity of
protection.

9.2 Messaged-based communication and protected
ports

Several systems such as MACH use a protected
message port scheme to control access to data. All
communication and data sharing is done through messages
which often results in a large overhead. There is no method
of efficiently sharing some region of data unless the
protection mechanism is by-passed. A port must be defined
for each type of access desired. Once again, the separation
of enforcement and policy implementation, location of
interception, the ability to make trade-offs, the efficiency
of access checks, size of trusted code, data sharing
methods, and control of protection granularity vary
between this scheme and interface mechanisms.

9.3 Token-based protection

Token-based protection does allow separation between
enforcement and policy implementation but they are not
independent - only certain types of security policies may be
implemented. Once tokens are granted, it is difficult to
control or monitor their use (i.e. what data is accessed)
since tokens are not integrated into and controlled by the
operating system. In the interface mechanism, it is possible
to enforce more control by allowing protection IDs to be
used only during a call through a specified interface
crossing and deleted immediately upon return. Thus the
protection ID is only available only within the callee code.
The efficiency of access checks, size of trusted code, and
data sharing methods vary between this scheme and
interface mechanisms.

I0 Secur i ty pol ic ies

The implications of the separation between the security
enforcement and the policy implementation are important.
The interface mechanism method of controlling access is
not linked to classifications and labels nor any other type of
policy. A variety of security policies could be
implemented. For example, the policy could stipulate that
all interfaces must be protected and that no direct global
data sharing is allowed. This is done by restricting the
sharing of protection IDs. One could simulate delegation
and tokens by allowing interfaces which designate
permanent protection ID access to particular callers.

The protection domains as well as the interfaces can
contain information such as classification labels for use
with MAC and DAC policies. The ability to cross an
interface (and which interface to use) could be determined
based on these labels. A high security interface could give

93

out different protection IDs but use the same entry point
and therefore the same code as a low security interface. In
this situation, two processes using the same code would
have different access.

Roles can be implemented by operating within a
specific callee code. All associated protection domain
changes can be done by crossing the interface into that
callee. Information about the role can be stored in the
protection domain as well. An auditing mechanism can
store the role information along with any protection
domain changes during interface crossing in order to
capture the full environment.

10.1 Configurable policy support

Since the security enforcement and policy
implementation are independent and separate, it is possible
to allow configurable security policies defined at system
generation or boot time (if a secure boot is available). The
security enforcement mechanism needs to know nothing
about the policy. The interface mechanism need only know
where to find the security manager.

10.2 Multiple policy support

A security manager may know about one or more
policies to implement. The security manager would have
overall rules as to which policy to use when. For example,
a process with a protection domain stating MAC could
only use interfaces labeled as MAC and all data regions it
allocates would be identified by the correct label. The
security manager would also have rules as to how to
resolve conflicts between the policies using perhaps a
predefined precedence. This paper does not intend to
address all of the interesting issues associated with trying
to implement multiple policies - only to point out that
interface mechanisms might be a foundation for work in
this area.

10.3 Auditing

The modifications of the protection domains are done
through one process and therefore all changes to access can
be monitored. All security information is contained in the
protection domain (such as user ID and history of
interfaces crossed) so it too is accessible to the audit
mechanism. Since only the interface crossing mechanism
is able to modify the protection domain, it can be securely
maintained.

One drawback to the interface mechanism is that in
order to track all data assesses and modifications at a fine
granularity, one must force all accesses through a callee
which will securely audit the transactions. Alternatively,
one could have the security manager keep track of the
parameters passed in and out and define the interfaces such
that the resulting data access and modifications are
completely predictable.

11 Functional requirements and technical
challenges

There are many interesting research topics associated to
interface mechanisms. This paper does not address the
problems associated with ensuring trusted code for the
interface mechanism or security manager. Neither does it
address how a policy is securely configured or
implemented. Revocation and information management
are two other areas which require more investigation.

During interface crossing, certain information must be
made available to the security manager. For example, the
interface mechanism must know which policy applies as
well as security information relevant to the caller and
interface such as user ID and classification. It is important
to determine how this information can be securely
maintained and accessed by the security manager.

In order to implement some security policies, it must be
possible to revoke protection IDs. The brute force method
may be possible but inefficient. It would require either
keeping track of who is given which protection ID or
changing all of the required protection IDs. A more
efficient method might be forcing a trap for all processes
which would result in a re-evaluation of each protection
domain. In addition, any preprocessed interface crossing
information might need to be re-evaluated.

12 Interface mechanism prototype

We are in the process of prototyping an interface
mechanism on PA-RISC using HP-UX. The motivation for
this effort stems mostly from the difficulties of enhancing,
debugging and maintaining kernel code as well as
introducing third party code. In addition, this prototype
allows us to investigate possibilities such as the potential
for security hooks aimed at commercial applications.

Our prototype implements a simplified version of the
Brevix interface mechanism design. In order to fit the
mechanism into an existing operating system for
prototyping in a timely fashion, we eliminated some of the
complexity and thus some functionality. We focused on
first providing an efficient mechanism to protect against
non-malicious errors. It is our intention to incrementally
work towards a complete Brevix interface mechanism
implementation. The major security relevant distinctions
between our prototype and what is described in the Brevix
design document (as well as in this paper) are:

• Our prototype does not address malicious attacks.
Stacks will always be shared between the caller and
callee. Access to the interfaces will not be
controlled in the prototype - any process that knows
about the interface may use it.

• Each protected region can have only one set of
defined access rights.

94

• Support for reference parameters will be limited to
two cases: contiguous data and a minimal set of
non-contiguous data types. Others must be
identified and dealt with manually. Further work
must be done in order to determine how to track
down and protect chains of reference parameters.

Because of the above restrictions, only kernel-level
interfaces are currently practical.

13 Future work

There are many interesting possible extensions to this
work. Some possibilities include:

• Designing and implementing a security manager.
David Bell and Ruth Nelson presented work at this
workshop that would be interesting extensions for
implementing a security manager on top of this
mechanism.

• Implementation of both hierarchical and non-
hierarchical security policies. It would be
interesting to implement common polices and some
of the new commercial policies within the interface
mechanism.

• Dynamic interface support. The ability to modify
the interface information on the fly would allow
dynamic modification to the associated protection
IDs or entry-points.

14 Summary

The current security models aren't working. We must
find a better model. This is especially true for commercial
systems. A non-hierarchical object-oriented model seems
to provide a better mapping to the commercial
requirements. The Brevix interface mechanism is a
plausible mechanism for exploring this new paradigm.

3. PA-RISC 1.1 Architecture and Instruction Set Reference
Manual. Hewlett-Packard. November 1990.

15 Acknowledgments

The interface prototype was done by the Brevix team:
Bart Sears, Marty Fouts, Tim Connors and myself. I also
want to thank Marty Fouts for reviewing this paper.

16 References

1. Marty Fouts, Tim Connors, Steve Hoyle, Bart Sears, Tim
Sullivan, and John Wilkes. Brevix design 1.00. Technical
Report HPL-OSR-93-22. Operating System Research
Dept., HPL, 1 Apr. 1993.

2. Department of Defense: Trusted Computer System Evaluation
Criteria. December, 1985.

95

