
Versatile Integrity and Security Environment (VISE)
for Computer Systems

Charles G. Limoges, Ruth R. Nelson*, John H. Heimann, David S. Becker

Information Systems Security Directorate, GTE Government Systems Corporation
77 A Street, Needham, Massachusetts 02194

Abstract
We have developed a model of security and integrity

for computer systems, the Versatile Integrity and Security
Environment (VISE), which describes the basic
functionality of these systems and which addresses data
confidentiality and correctness of processing. It has
yielded significant insight into secure application-
oriented systems and is applicable to both Department of
Defense and commercial requirements. Based on our
model, we have developed an implementation framework
which provides for enforcement of fiexible access controls
that are easily defined and tailored to meet a variety of
requirements. This paper examines the integrity problem,
discusses the general ideas behind VISE, illustrates the
requirements of the framework, and demonstrates how the
framework meets a general need for secure, high-integrity
processing systems.

1.0 Integrity and security

A "secure" computer system's security services, e.g.,
confidentiality and integrity, interact with each other, and
are not independent. Integrity is an absolute necessity for
providing confidentiality. Secure systems which focus
solely on confidentiality for security may not, in actuality,
be able to assure this service, and hence, may not even be
secure by their own definition.

1.1 Integrity

Much effort on the part of others has been put into
studying integrity as a component of computer security,
looking at several of its qualities. Most of this work
focused on integrity as an inherent property of data, which
must be preserved by protecting the data from
unauthorized change. We take a different perspective.

Now at Information System Security, 48 Hardy Avenue,
Watertown, Massachusetts 02172

Data integrity in a computer system depends on how
the data is handled by the software, not solely on its
content. Change is inherent in computer systems -
processing data involves changing the data or using it to
generate new data. Therefore, integrity in a processing
environment depends on the correctness of the changes
that occur to data, and not on prevention of change. Since
data in a computer system is changed by users through
software programs, integrity depends upon the correctness
of software and the correct relationship between the
software and the data on which it operates.

It is well known that proving correctness of software is
a difficult if not impossible problem. This knowledge led
to the current multilevel security (MLS) approach, based
on the reference monitor concept. In this approach, only a
small amount of the software requires high assurance of
correct functionality; this "trusted computing base"
protects the confidentiality of the data in the system from
compromise by untrusted users or untrusted software.
Unfortunately, systems built on this principle, which
embodies a specific, limited definition of security, do not
meet all users' needs.[1,2] In many, if not all, systems,
significant portions of the application software must
operate correctly and must violate the security definition
implicit in the MLS models.

The VISE approach also relies on a small amount of
trusted software, but the purpose of this enforcement
mechanism is to protect the application functionality as
well as the data.

We specifically define integrity as freedom from
corruption or tampering which adversely affects a
system's functions. For a computer system, this definition
implies "correctness of processing" among the users,
programs, and data elements of the system. This
definition follows from examining various types of
applications, where high integrity is regarded as
important, and extracting integrity requirements that are
common to them all--the essential requirement being
correctness of processing.

109

High integrity applications include secure systems,
command and control systems, and communications
systems. Examples of secure systems include accounting
systems, cryptographic key management systems, and
electronic funds transfer systems. An example of a
command and control system is a weapons launch control
system, and an example of a communications system is an
electronic mail system.

The common requirement for all of these systems,
regardless of the specific application, is that system
functions must be performed correctly and exactly as
expected. This is the essence of integrity. All systems,
whether they perform accounting, manage keys, transfer
funds, launch weapons, or send mail, must maintain
correctness of processing. Considering the reliance of
these systems on software, integrity is something that is
desired of every program designed. However, since even
non-malicious human users and programmers are fallible,
some measure of control is needed to maintain integrity
within the computer system itself.

1.2 The integrity problem
Increased awareness of malicious computer software

has focused more attention on the problem of integrity.
An understanding of the problem stems from these
questions: Can users be sure that they're working with
accurate data? Has a user's program been maliciously or
erroneously modified? Do users really know what their
programs are doing? The root of the problem is that, in
computer systems, users do not directly change data -
programs do it for them. Users may only assume that
their data is being handled in an expected manner by the
programs they run.

To illustrate the integrity problem, assume a user is
running an editor program to create a message. The user
types:

From: Bush
To: Schwarzkopf
Class : TOP SECRET
Subject: Desert Storm
Message: Cease fire

The editor program, which has been maliciously
modified to alter text, writes:

From: Bush
TO : Schwarzkopf
Class : TOP SECRET
Subject : Desert Storm
Message : Take Baghdad

As observed here, a loss of integrity can be very costly,
potentially much more damaging than unauthorized
disclosure of information.

1.3 Integrity threats

Loss of integrity can be either intentional or accidental.
Intentional threats are due to humans, possibly program
developers or system users, authorized or not.
Mechanisms for loss include viruses, Trojan horses, logic
bombs, and malicious modification of programs or data
(as in the above example). Accidental loss may be due to
erroneous modification Of programs or data, or on
hardware or software failure.

1.4 Integrity as a part of security

Integrity is a fundamental requirement for total system
security. If a program executing in some environment is
to do so securely, with respect to handling data and
communicating with users, then that environment must
ensure that essential security services are provided. The
environment must reliably identify the user with whom it
is communicating (authentication), and it must ensure that
data it handles is not communicated to an unauthorized
user (data confidentiality). Additionally, the environment
must ensure that the program is performing only its
expected functions, and that both the program's functions
and the data it operates on are not maliciously altered
(integrity). Overall system security cannot be assured
without integrity of critical system functions, such as
authentication and access control mechanisms.

Traditional views of computer security do not
specifically address integrity. Although they identify the
need for protecting data from unauthorized disclosure
(data confidentiality), they are not concerned with the
effects a malicious program might have on other programs
or unclassified system data. An analysis of the DoD
Trusted Computer System Evaluation Criteria[3],
commonly referred to as the "Orange Book," reveals
where the integrity problem comes into play.

1.5 Traditional "Orange Book" security

General concerns about computer security led the DoD
to develop requirements for assuring data confidentiality.
These requirements are specified in the Orange Book, a
reference for traditional computer security. Requirements
are grouped into hierarchical classes which reflect
different levels of protection to be provided by a "trusted"
system - "trusted" to provide data confidentiality. These
requirements range from providing discretionary (user
defined) access control lists for files, to providing
mandatory (system defined) sensitivity labels for all data.

110

The Orange Book is based on the Bell-LaPadula model
of confidentiality[4], although other similar data flow
security models also fit within the criteria. This model
considers the elements of a computer system to be either
"subjects" or "objects." Subjects -- users, or processes
executing on behalf of users -- act upon objects --
programs, or elements of data. In the Bell-LaPadula
model, every subject and object is associated with a
particular confidentiality level, i.e., classification. Orange
Book systems enforce the Bell-LaPadula rules of "simple
security" and the "*-property." The simple security rule
ensures that subjects can only read objects at or below
their level of confidentiality. The *-property ensures that
subjects can only write to objects at or above their level of
confidentiality. Enforcement of these access rules
maintains data confidentiality, preventing data from high-
level subjects and objects from leaking to lower level
subjects and objects (Figure 1).

Subjects Access Rules Objects

Figure 1. BelI-LaPadula Model

In its view of a computer system, the Orange Book
considers two kinds of software - the Trusted Computing
Base (TCB), and everything else. The TCB is "trusted" to
enforce access rules and to protect itself from
modification. The TCB also may include "trusted
processes." These are programs that are allowed to
violate the Bell-LaPadula rules. Like the TCB, trusted
processes are protected from modification, and are trusted
to enforce the system security policy even if they break
the Bell-LaPadula rules. Everything else, which may
include many useful application programs, is assumed to
be potentially hostile, or "untrusted," by the TCB. The
TCB restricts these programs' access to data and prevents
them from modifying the TCB itself, but does not protect
the programs themselves from modification.

1.6 The Orange Book is incomplete

The solution outlined in the Orange Book is primarily
concerned with data confidentiality, and does not address
integrity. Users are not distinguished from the programs
they run - a subject can be either a user or a program
running on his or her behalf. The useful work of a
system, and possibly its critical mission function, is

performed by untrusted application programs with no
guarantee of integrity. Thus, the security of an Orange
Book system can be undermined by its lack of integrity
protection.

Consider the previous "Desert Storm" example where a
malicious editor changed a message. Since the editor has
not changed the classification of the message, the system
is still functioning in a perfectly trusted manner according
to the Orange Book rules. Data confidentiality has been
maintained.

2.0 Versatile Integrity and Securi ty E n v i r o n m e n t
(VISE) model

As shown in the previous section, the security outlined
in the Orange Book is inadequate. Application programs
and operational data, the most valuable parts of a system,
must be protected not only from unauthorized disclosure,
but also from unauthorized change. Correctness of
processing must also be maintained. In terms of security,
the relationship between data and program is just as
important as the relationship between user and data. A
corrupted program can corrupt data. A program allowed
more access than needed can leak data. User interaction
with programs, and program interactions with data, must
be strictly controlled. An integrity solution must enforce
these controls.

The solution we have developed, the Versatile Integrity
and Security Environment (VISE) Model, is based upon
these goals.

2.1 Cont r ibu t ions f rom other models

Prior to developing the VISE Model, we examined
existing security and integrity models to determine
whether or not they could meet our needs for data
confidentiality and functional integrity. The models
reviewed include Clark and Wilson [5], Harkness-Pitelli
[6], Bell-LaPadula, Goguen and Meseguer [7], Lipner [8],
and Biba [9]. We also reviewed security and integrity
concepts developed under the National Security
Agency/Secure Computing Corporation Logical Co-
processing Kernel (LOCK) project [10]. We concluded
that, although these models provide valuable insight to
security and integrity solutions, none completely meets
our goals for a high integrity solution. However, many of
the ideas presented in these models are useful and
applicable to a comprehensive integrity solution, and
these ideas have been incorporated into the VISE Model.

The Clark and Wilson model explicitly addresses
application integrity. It defines integrity in terms of self-
consistency of data and separation of duties among users.
Self-consistency of data implies that the correctness of
certain data, such as accounting data, may always be

Iii

verified by "balancing the books," much like balancing
checkbook credits and debits. Separation of duty protects
functional integrity by dividing a critical process into sub-
processes, and allowing only certain users to perform each
part. For example, in a funds transfer system, one user
might only be allowed to enter funds transfers, another
user might only be allowed to approve the transfers, and
still another user might only be allowed to execute the
transfers. Thus, the chance that one or more users could
collude maliciously to undermine a critical process is
greatly reduced. These concepts are clearly useful for
applications such as accounting, but the model does not
provide guidance on there use in general applications.

The Clark and Wilson model includes the most
important concept which we have used in VISE. This is
the notion of the triple (user, program, data) instead of the
pair (user, data). The departure from the subject-object
paradigm allows the particular functionality of the system
(represented by the programs) to be controlled and
managed separately from the human users and the data
acted upon by the programs. The triples are far less
abstract than the subject-object pairs and can reflect the
actual operations of a computer system in a much more
natural manner. The complication of managing the triples
is more than balanced by the simplicity, accuracy and
power of their expression. Access decisions in the Clark
and Wilson model and in VISE are expressed in terms of
a user being allowed to use a particular program to access
particular data.

The work of Harkness and Pitelli identifies the concept
of command authorization as a component of integrity:
"that all commands capable of changing data be executed
only when issued by authorized users." They also
demonstrated the direct relationship of command
authorization to Clark and Wilson's separation of duty
and Goguen and Meseguer's non-interference, both
identified as requirements for high integrity systems.

The BeU-LaPadula security model provides the basic
idea of data confidentiality, which is the capacity to
control a user's ability to access data - a required
component of system security. However, the Bell-
LaPadula requirements of no "read up" and no "write
down" incorporate a particular security policy. These
rules are neither necessary nor sufficient for all secure
systems, and do not provide integrity. For example, a
database management program might extract unclassified
records from a classified database on behalf of an
uncleared user. Such a program must operate as an
exception to the Bell-LaPadula model. In the VISE
model, we wanted to incorporate treatment of these
programs, and not treat them as exceptions.

The Goguen and Meseguer security model is based on
the idea of "non-interference" - that commands issued by
one user do not, under certain conditions, appear to affect

a system as viewed by another user. Non-interference is
desirable for a high-integrity system. A multi-level
security policy, for example, may be represented by the
requirement that users operating at a given security level
are non-interfering with users operating at lower security
levels. Uncleared users should have no indication
whatever of a cleared user's classified activities. This
model has been shown to be essentially equivalent to the
Bell-LaPadula model, and adds nothing new for integrity
protection.

The Lipner security model requires controlled
"promotion" of programs from development to production
status and calls for the enforcement of rigid configuration
controls on the operational environment. These
requirements are indeed critical to the development of a
high-integrity system. Programs should only be
developed by trusted developers, and should be
thoroughly inspected and tested in an isolated
environment before production use.

The Biba integrity model was found not applicable to
our integrity solution. Biba postulates a hierarchy of data
integrity levels, analogous to the Bell-LaPadula levels of
confidentiality, where untrusted processing can only
decrease the integrity of data. We found no consistent
relationship of this integrity hierarchy to real applications.
We also found that the Biba model is inconsistent with
functions which intuitively "increase" data integrity, such
as intell igence fusion, which correlates related
information from multiple sources to increase the
accuracy and validity of the data.

The LOCK program developed the ideas of type
enforcement and "assured pipelines." Type enforcement
supports access control and integrity through the use of
labels and levels on subjects and objects which go beyond
classification markings. Assured pipelines, which may be
created using type enforcement, direct the output from
one function to be input to another. Type enforcement is
used in VISE to assure that programs operate on suitable
data and produce suitably typed data. VISE combines this
type enforcement with the Clark and Wilson triple, not
with the subject-object pair.

In general, the Bell-LaPadula, Goguen and Meseguer,
Lipner, and Biba models did not meet our needs because
they do not address our definition of integrity. We needed
more in our model, including control over user access to
data and control over what a potentially corrupt programs
may do. We particularly wanted to distinguish between
users and programs. We did not want to make the
assumption, as done in some models, that programs
inherit privileges from the user running them. We believe
that users and programs must be identified and handled
separately, and that programs' actions on data should be
restricted independent of user privileges, thus making it
impossible for a potentially malicious program to exploit

112

the full capabilities of a highly-privileged user without
that user's knowledge.

2.2 The VISE model

For the purpose of discussing the VISE Model, it is
important to define exactly what we mean by the terms
user, program, data, security policy, and system security
administrator. A user is a human who is actively
communicating with a computer system. Programs are
individually identifiable collections of executable
instructions, e.g., executable code files. Data are
individually identifiable information elements, e.g., files,
records, etc. A security policy is a set of criteria that
dictates the security rules for a specific environment. A
security administrator is a user responsible for ensuring
adherence to a security policy. For programs and data in
particular, although their representation in actual systems
can vary, the use of these general terms will still be
consistent in any application of the VISE Model (Figure
2).

Figure 2. VISE Model

Our model of integrity provides control of a computer
system's processing environment and the interactions
between its elements - users, programs, and data.
Controlling these interactions, restricting what programs a
user may run and limiting what data a program or user
may read and write, assures data confidentiality and
integrity. In the model, we refer to restricting what
programs a user may run as functional limitation of
a c c e s s .

VISE supports the concepts of separation of duty,
command authorization, and assured pipelines. VISE also
provides for the controlled promotion of development
code to a production environment. These concepts are
combined with our observation that users and programs
are different and have distinct privileges, and that a
general integrity solution should be versatile enough to
address many applications.

VISE accomplishes all of this through configuration
control of system elements, and enforcement of flexible
access control rules. Configuration controls are placed
upon the users, programs, and data elements of a system
in order to identify individual elements and to protect
these elements from unauthorized use. Interactions
between elements are regulated by the VISE enforcement
mechanism, which implements the security administrator-
def'med access control scheme. A key characteristic of the
VISE model is that it enforces access control decisions
based on the triple of user, program, and data, not the
subject-object pair.

2.3 Operational concept of model

We have stated that the VISE Model is based on the
concept of functional limitation of access, the concept that
users and programs may have different privileges, and the
concept that programs running on behalf of a user do not
take on the privileges of the user. To see the implications
of this in a real computer system, consider the following
example. A user is attempting to edit a file. The user
should only be allowed to edit the file if the following
conditions are met:

• The user is allowed to run the editor program.
• The editor program is allowed to use the file as

input and output on behalf of the user.
The significance of the concepts described above is

illustrated here in this example. By limiting functional
access, the user can run the editor program only if he or
she is authorized to do so. By applying access control
based on the triple of user, program, and data, the user and
the editor program are treated separately in making the
access control decision. Instead of combining the
privileges of user and program together as a single
"subject," the privileges of the user and the editor
program are evaluated independently to determine
whether to allow access to the file (data).

3.0 VISE framework

The VISE framework is a set of requirements for
implementing the VISE model on an actual computer
system. The framework also divides the task of
configuring a VISE-protected system into logical phases
to ensure protection of users, programs, and data.
Constructing this framework has proven to be extremely
useful, in that it aids us in investigating the issues
involved with assuring integrity for actual systems, and it
also serves as a mechanism whereby the VISE model
itself can be evaluated. We view the VISE framework as
one possible implementation of the VISE model.

113

3.1 Overview of VISE framework

The VISE Framework allows security administrators to
configure an actual computer system, employing the VISE
Model, to meet their specific needs for data
confidentiality and integrity. Programs, system users, and
elements of data are identified to VISE and protected.
Programs are write-protected. Users are tagged with
distinguishing characteristics, such as job title or
department number. Data is also tagged with
corresponding characteristics.

The access control policy for the system is represented
to VISE by security administrators in the form of access
control rules. These rules compare specific characteristics
of users and data elements to make access control
decisions. For the access control policy of the previous
example, where the user attempted to edit a file, rules
would allow only certain users to run the editor, and
would restrict the files that a particular user could access.
Other rules would restrict the editor program itself to
accessing only text files (not system files or executable
code f'des).

The VISE Framework assures integrity though the
functions of registration, policy representation, and
enforcement (Figure 3).

t J
I

I Operatorlnterface I

t
1 1 7

I Application I li::l Application 2 l~i "'" I Application n I

Figure 3. VISE Functions

Registration provides configuration control, policy
representation implements the site-specific access control
policy, and enforcement makes and upholds all access
control decisions (evaluates access control rules). Each of
these functions will be discussed in more detail in the
sections that follow.

3.2 Registration

All users and programs on a system must be introduced
to VISE though a registration process. Registration
supports access control, and thus integrity, by maintaining
configuration control of the users of the computer system
and the programs that are to be recognized on the
computer system.

3.2.1 User registration: User registration uniquely
identifies users and links them to specific user
characteristics. For example, a user might be linked to a
characteristic called "Job Title" with a value of
"Engineer." This same user might also be linked to a
characteristic called "Dept. Number" with a value of
"100." Use of these characteristics, called attributes, in
making access control decisions is discussed in the section
on policy representation. As an example, the table below
summarizes a possible assignment of attribute values
during user registration for user Jones:

User I JobTitle I Dept. Number
Jones Engineer 100

Users must be registered in order to log-in to and use a
VISE-protected computer system.

3.2.2 Program registration: Programs are installed
on a VISE-protected system though program registration.
Programs must be registered in order for them to be
executed by users or other programs. Each program, once
registered on the system, is write-protected to preclude
corruption by accidental or malicious modification.

3.3 Policy r ep re sen t a t i on

As previously stated, a security policy is a set of rules
defining the security services required in a specific
environment. An example is the U.S. Government 's
policy for handling classified information. This policy
states that any person having access to classified material
must have a proper security clearance and a valid need to
know. Another policy might be used by a bulletin-board
service (BBS) that provides advertising services to
subscribers and to the general public. The administrators
of the BBS may allow any user to read advertisements,
but may allow only subscriber users to post
advertisements. Note that access control policies may
vary for different organizations, or even for different sites
within an organization, depending on the specific needs of
each.

Policy representation allows a system-specific access
control policy to be expressed to VISE so that it may be
enforced on an actual computer system. Through policy
representation, a security administrator defines the
attributes, types, and rules which tailor VISE to meet an
organization's access control needs.

3.3.1 Attributes: As discussed above, attributes
represent characteristics of users (User Attributes) or data
(Data Attributes). An attribute is defined by its name, a

114

set of values, and an ordering scheme. Attribute
comparison between user and data elements is the basis
for access control decisions.

For example, to represent the user characteristic of Job
Title discussed earlier, a security administrator would
define a user attribute of"Job Title." This attribute might
include hierarchical values of "Engineer," "Manager," and
"Dept. Head." Other attributes, such as "Dept. Number,"
may not have hierarchical values, and would have an
ordering scheme of "independent."

An example of a data attribute would be "File Type."
This attribute could be used to identify data elements that
are used by different programs, and might be defined with
values like "Text File," "Drawing," or "Spreadsheet."
Data attributes can also represent characteristics of data
that are related to characteristics of users, and these
relationships can be useful when making comparisons. A
data attribute "Data Dept. No." could be defined with the
same range as the user attribute "Dept. Number." This
data attribute could be used to identify data created by
each individual department. The example attributes of
"Job Title," "Dept. Number," and "File Type" are listed in
the table below:

User attributes are linked to specific users during user
registration. Data attributes are assigned to specific
elements of data during data attribute assignment, which
is discussed in the section on enforcement.

Attribute Order Value #1

Job Title Hierarchical Engineer

i i

Dept. Independent 100
Number

i i

File Type Independent Text File

Value Value #3
#2

Manager Dept.
Head

i

300
i

Drawing Spread-
sheet

200

3.3.2 Types : Types are compositions of attributes,
with restrictions on the values that each attribute can take.
A type consists of a name and a logical expression. For
instance, to represent a restriction that a person's Job Title
must be greater than or equal to "Manager" and a person's
Dept. Number must be equal to "100," the security
administrator could define a type called "Dept. 100 -
Administrative," using the expression below:

Type
Dept. 100- Administrative

Expression
Job Title >= "Engineer" and

Dept. Number = "100"

Types are useful as shorthand for representing
restrictions on one or more attributes. When used in an
access control rule (described in the next section), the type

is evaluated to yield a Boolean result of true or false.
Using the example, a user can be determined to either be,
or not be, of the type Dept. 100 - Administrative.

3.3.3 Rules: Rules express the system's access
control policy to VISE in a form that can be both easily
understood by human security administrators and used to
enforce access control on a computer system.

Three kinds of rules may be defined: user-to-program
rules, program-to-data rules, and user-to-data rules. Each
rule type restricts interactions between two system
elements. Before any access is allowed, all applicable
rules are evaluated by the VISE enforcement mechanism
(described in a later section).

Each rule is an expression, similar to the expressions
used to define types. Expressions can use the logical
"and," "or," and "not," as well as the comparison
operators, "=," ">," and "<."

These rules are flexible. They may be changed by the
security administrators whenever a change in the
organization's access control policy is desired. This
flexibility allows VISE to be configured to match other
security and integrity models, including that of Bell-
LaPadula where appropriate.

User - to-program rules: User-to-program rules
restrict users' ability to execute programs. Depending
upon the security policy, security administrators may want
to limit which users may run which programs. To meet
this need, both "general" and "specific" user-to-program
rules can be written by the security administrator.
General user-to-program rules automatically apply to
every program on the system, and must be met before any
program is executed. Specific user-to-program rules, on
the other hand, apply to only one program, and must only
be met if a user attempts to run that program. For
example, if there were an editor program that only
members of department 100 were allowed to use, then this
restriction could be represented as a user-to-program rule,
as in the following:

Kind of Specific/ Specific Allow Access
Rule General Name if:

Specific EDITOR.EXE User/
Program

Dept. Number =
"100"

Program-to-data rules: Program-to-data rules restrict
programs' access to data by limiting what data may be
read as input and written as output. By defining these
rules for each registered program, security administrators
can ensure that programs can only operate on data for
which they were intended. For example, if an application
required that text file messages created by users must be

115

reviewed and approved before being processed by an e-
mail program, then program-to-data rules could be used to
represent this restriction. For the "Reviewer" program,
the example program-to-data rules, shown below, would
only allow the reviewer program to read files of the type
"Text File," and would only allow the reviewer program
to write files of the type "Reviewed."

Kind of Rule

Program/Data
Program/Data

Input/ Allow Access if:
Output

Input File Type = "Text File"
Output File Type = "Reviewed"

Program-to-data output rules tell the VISE
enforcement .mechanism how to automatically assign
attributes to data created by a program. This "attribute
assignment" is described in Section 3.4.3.

A security administrator can define as many or as few
program-to-data rules for a registered program as are
needed to bring the program in line with the site's access
control policy. These restrictions can also be changed as
a program proves itself in testing, gradually giving it more
access to operational data. New and untested programs
can start out with very restrictive program-to-data rules,
which can be loosened as confidence is gained in the
programs' operation.

Besides restricting unproven programs, program-to-
data rules are also useful for creating assured pipelines.
Consider a message release system application, alluded to
earlier, that requires messages to be reviewed by a
supervisory authority before being e-mailed from a site.
This application would involve the editing of message
files, the review of these message f'des for approval, and
finally, the mailing of these approved messages from the
site. With the appropriate attributes defined, user-to-
program rules could be defined to funnel the output of one
program into the other, creating an assured pipeline. The
editor could be restricted to only reading and writing
message files, the reviewer could be restricted to only
reading message files and only writing approved
messages, and the mailer program could be restricted to
only reading approved messages. Since other programs
can be prevented from reading and writing such files
through program-to-data rules, complete control of
process information flow can be assured.

User-to-data rules: User-to-data rules restrict a users'
ability to read data. As with user-to-program rules, both
"general" and "specific" user-to-data rules can be written
by the security administrator. General user-to-data rules
automatically apply to all data on the system. Specific
user-to-data rules, on the other hand, apply to only one

element of data, and must only be met if a user attempts to
read that element of data.

For example, there might be a requirement that each
department's files should only be read by people in that
particular department. This restriction could be
represented as a general user-to-data rule. First, the
security administrator would need to define a data
attribute of "Data Dept. Number," which would match the
user attribute, Dept. Number. The security administrator
would then insert an expression indicating that the user's
"Dept. Number" must equal the "Data Dept. Number" for
the data being read. This general user-to-data rule is
shown in the table below.

Restrictions on other data may require a specific user-
to-data rule. For example, if there were a personnel data
file that only the department head and the managers of
department 100 were allowed to read, then this restriction
could be represented as a user-to-data rule. This rule
would be a "specific" rule, applying to just the personnel
file (PERSN.DAT), and would include an expression
relating the attribute Job Title to a value of"Manager," as
shown below:

Kind of Specific/ Specific
Rule General Name

| !

User/ General - -
Data
User/ !Specific PERSN.DAT
Data

Allow Access if:

Dept. Number =
Data Dept. Number

Job Title >=
"Manager"

3.4 Enforcement

Decisions granting or denying access to any program
or element of data within a VISE-protected computer
system are made by the VISE enforcement process.
Enforcement evaluates the rules defined during policy
representation using the attribute values assigned during
registration. The enforcement process is performed
automatically for all program execution and data access
attempts.

The VISE enforcement mechanism is linked tightly to
the operating system (OS). It is never bypassed. The
enforcement function receives access requests from the
OS, processes these requests, and sends responses back to
the operating system to grant or deny access. The
requests, described in the sections that follow, include
program execution requests and data access requests.

3.4.1 Program execution request: Program
execution requests are sent by the OS whenever a user
attempts to run a program, or a program attempts to run
another program. Enforcement validates each request by

116

evaluating all user-to-program rules using the specific
attribute values of the user.

For example, assume that user Jones attempts to run
the editor program (EDITOR.EXE), and that Jones has the
user attribute values in Section 3.2.1. Assume the user-to-
program rules of Section 3.3.3. For enforcement to
validate the program access request, user Jones value for
the attribute Dept. Number, "100," is evaluated in the
user-to-program rule. Since Jones' Dept. Number equals
"100," the user-to-program rule is met. Enforcement
returns a response to the OS granting access to
EDITOR.EXE, and the program is run for user Jones.

3.4.2 Data access request: Data access requests axe
sent by the OS whenever a program attempts to read or
write a data element. Enforcement validates each request
by evaluating all program-to-data rules and user-to-data
rules using the specific attribute values of the user and the
data dement involved.

Continuing with the example of user Jones running the
EDITOR.EXE program, assume that Jones attempts to
edit the file PERSN.DAT. Assume the user attribute
values for Jones from the above example, and the user-to-
data rules of Section 3.3.3.

Assume for this example that program EDITOR.EXE
was registered with the following program-to-data rules:

Kind of Rule Input/Output Allow Access
if:

i i

Program/Data Input File Type = "Text
File"

m m

Program/Data Output File Type = "Text
File"

Also assume that the data PERSN.DAT has the
following data attribute values:

I OataOe, Number I I
PERSN.DAT 100 Text File

For enforcement to validate the data access request, the
data element's (PERSN.DAT) value for the attribute is
evaluated in the "input" program-to-data rule (shown
above). Since the File Type of PERSN.DAT equals "Text
File," the input program-to-data rule is met. The
EDITOR.EXE program is allowed to use PERSN.DAT as
input.

Next, user Jones' value for the attribute Dept. Number,
"100," is evaluated in the first user-to-data rule shown
above. This value is compared with the Data Dept.
Number of the file PERSN.DAT, which also happens to
be "100." Since the values are equal, the first rule is met.

Enforcement then evaluates the second user-to-data
rule, using user Jones' value for Job Title, "Engineer."
This value is checked to ensure that it is greater than or
equal to the value "Manager." Since "Engineer" is less
than "Manager," the second rule fails. Enforcement
returns a response to the OS denying access to
PERSN.DAT, and user Jones is not able to edit the file.

3.4.3 Data attribute assignment: Data elements,
created or modified by programs during execution, are
linked to corresponding data attribute values during data
attribute assignment. This process is similar to user
registration, where user attribute values are linked to
particular users. However, data attribute assignment is
automatically performed on program output, as part of the
enforcement function. Program-to-data rules, enforced by
VISE, dictate how data attribute values are allowed to
change.

Data attribute assignment enforces "output" program-
to-data rules by correctly labeling a program's output
data. For example, a text editor program might be
restricted by the following program-to-data rules:

Kind of Rule

Program/Data

Input/
Output

Input

Allow Access if."

File Type =
"Text File"

Program/Data Output File Type =
"Text File"

i i

Program/Data Output Data Dept. Number =
Dept. Number

If a new file is created, then data attribute assignment
would link data attribute values according to the output
program-to-data rules. The new file is labeled with a File
Type of "Text File," and would also be labeled with the
Dept. Number associated with the user running the editor
program.

4.0 Conclusions and related work

The GTE investigation of integrity in computer
systems has led us to a much clearer understanding of
both integrity and security issues, particularly for mission-
oriented systems. Integrity and security (confidentiality)
are n o t independent, particularly in systems which must
violate the constraints of the Bell and LaPadula or other
data flow models to accomplish their missions. In these
systems, and, we believe, in most systems, security-
relevant processing cannot be totally restricted to a small
subset of the software. It is useful and important to
protect the quality of the application software, to control
its use by human users and to constrain its operation by

117

limiting what data a particular program can access.
Attention to these areas, even if it does not offer total
assurance of security, can reduce risk. Real security
compromises have resulted from allowing software to run
with privilege (because it needs to) without protecting its
quality or constraining its data access. Code and data are
represented similarly in system memory, but compromise
has resulted from execution of code which was introduced
into the system as data.

4.1 Conclusions

A few of our key conclusions are:
• Integrity in a processing system depends upon

the correctness of change, rather than protection
of data from change.

• Data flow models capture the idea of security as
control of access to data. It is important to
consider control of functionality as well.

• Current models incorporate the policy of "no
read up, no write down." This policy is useful in
some, but not all systems. VISE allows the
enforcement of a broader variety of policies,
depending on the needs of the system and the
mission.

4.2 Related work

A formal representation of the VISE model was
created for the NCSC as part of GTE 's Internetwork
Security Research contract. This model is not intended as
a complete security solution, but represents control of the
program execution in a processing system. It is part of a
collection of models for network security, which also
includes an identification and authentication model and a
model for secure movement of data from one end-system

to another across a packet internetwork.
We also developed a VISE system demonstrator. This

focused our attention on some practical problems such as
suitable attributes for users and data, and the identification
of programs in a system.

GTE is investigating functional security in distributed
systems, extending some of the VISE concepts to process
protection in a distributed environment.

5 . 0 R e f e r e n c e s

[1] R. Nelson, "What is a Secret and What Does That Have to
do with Computer Security?," presented at the New Security
Paradigms Workshop II, Liule Compton, RI, August 1994.
[2] C. Limoges, R. Nelson, J. Brunell, J. Heimann, "Security for
Mission-oriented Systems," MILCOM '92, San Diego, CA,
September 1992.
[3] Department of Defense Trusted Computer Security
Evaluation Criteria, DoD 5200.28-STD, National Computer
Security Center, December 1985.
[4] D.E. Bell and L.J. LaPadula, "Secure Computer Systems: A
Mathematical Model," ESD-TR-73-278 Volume 2, MITRE,
November 1973.
[5] D. Clark and D. Wilson, "A Comparison of Commercial and
Military Computer Security Policies," Proceedings of the 1987
IEEE Symposium on Security and Privacy, Oakland, CA, April
1987.
[6] Pitelli, P., "Formalizing Integrity using Non-Interference,"
Proceedings of 1 lth National Computer Security Conference,
Baltimore MD, October 1988.
[7] Goguen, J. A. and Meseguer, J., "Security Policies and
Security Models," Proceedings of the 1982 IEEE Symposium on
Security and Privacy, Oakland, CA, April 1982.
[8] Lilmer, S. B., "Non-Discretionary Controls for Commercial
Applications," Proceedings of the 1982 IEEE Symposium on
Security and Privacy, Oakland, CA, April 1982.
[9] Biba, K. J., "Integrity Considerations for Secure Computer
Systems," MITRE Technical Report TR-3153, April 1977
[10] Saydjari, O. S., et al., "LOCKing Computers Securely,"
LOCK - Selected Papers, 1985-1988, Secure Computing
Technology Center.

118

